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Abstract. We introduce and study a Hopf algebra containing the descent algebra as a sub-Hopf-algebra. It has
the main algebraic properties of the descent algebra, and more: it is a sub-Hopf-algebra of the direct sum of
the symmetric group algebras; it is closed under the corresponding inner product; it is cocommutative, so it is
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1. Introduction

Recall the definition of the descent algebra. Let Sn denote the symmetric group of order n
and consider in the group algebra Q[Sn] the elements DI , indexed by subsets I of {1, . . . , n}
with DI := ∑

Desc(σ )=I σ, where the descent set of σ ∈ Sn is defined by:

Desc(σ ) := {i, 1 ≤ i ≤ n − 1, σ (i) > σ (i + 1)}.

Let �n denote the linear span of the DI . The descent algebra � is the direct sum of the �n:

� :=
⊕
n≥0

�n ⊂ S :=
⊕
n≥0

Q[Sn].

The graded vector space S becomes a ring by setting σα := 0 if σ and α are not in the
same Sn . Note that S is a ring without a unit for this product (called the inner product).
Solomon proved that � is a subring of S for this product [15]. Besides this inner product,
S has another product (the outer product) and a coproduct which make it a Hopf algebra,
which is not cocommutative (so that S is not generated by its primitive elements, and is not
an enveloping algebra). The descent algebra is also a cocommutative sub-Hopf-algebra of
S, and thus is the enveloping algebra of the Lie algebra of its primitive elements [5, 7]. It is
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identical with the algebra of noncommutative symmetric functions [3]. It is naturally dual
to the algebra of quasi-symmetric functions [4, 7].

A descent algebra can also be naturally associated to any graded connected commutative
or cocommutative bialgebra. Its properties yield, for example, new combinatorial proofs of
the Cartier-Milnor-Moore [9] or the Leray theorems [10].

Besides its rich algebraic structure, a striking feature of the descent algebra is that it is
big enough so as to contain all classical Lie idempotents of the symmetric group algebras,
such as the Dynkin idempotents, the canonical idempotents, the Klyachko idempotents.
However, if the classical Lie idempotents belong to the descent algebra, there are other Lie
idempotents, which do not lie in it. Among others, there is the mysterious Garsia idempotent,
which projects onto the free Lie algebra parallel to the space of proper shuffles, see [2]. Thus
one needs, algebraically speaking, a greater algebra in order to study free Lie algebras from
the representation-theoretic point of view. We introduce here such an algebra, denoted A.

It has the main algebraic properties of the descent algebra, and more: it is a sub-Hopf-
algebra of S, which is cocommutative, so it is the enveloping algebra of the Lie algebra of its
primitive elements; it is closed for the inner product; it contains all Lie idempotents of the
symmetric group algebras. Moreover, its primitive elements are exactly the Lie elements
which lie in the symmetric group algebras (they span the Lie representation of the symmetric
group). From this fact, we can deduce the Hilbert series of A.

This algebra A also appears to be the natural algebraic setting for studying the Lie
properties of the symmetric group algebras, such as the properties of the Lie morphisms
(that is, the morphisms from the free associative algebra to the free Lie algebra which belong
to the symmetric group algebras). For example, the maps from the free associative algebra
to higher components of the derived series of the free Lie algebra which belong to the
symmetric group algebras are Lie morphisms and belong to this new algebra (cf. [12]), as
do mappings related to subspaces of the free Lie algebra which are defined by the geometry
of the bracketings, see Barcelo-Sundaram [1].

2. Tensor algebra and symmetric groups

The ground field is fixed once for all in the article: it is the field Q of rational num-
bers. Tensor products, vector spaces, . . . have to be understood as tensor products over Q,
Q-vector spaces, . . .

Let T be the tensor algebra on an infinite alphabet X : T = ⊕n∈N Tn = ⊕n∈N(QX )⊗n ,
where QX stands for the Q-vector space spanned by X . The tensor algebra is naturally
graded. We use the word notation for the elements of T . For example, we write y1 · · · yn

for y1 ⊗ · · · ⊗ yn ∈ Tn , where the yi s are elements of X . Such a tensor will be called a
word; the words form a basis of T . We shall assume that X contains enough elements: that
is, it contains N, and an element xn for each n ∈ N. We shall often represent permutations
by words; so they are themselves elements of T . For example, the permutation α ∈ Sn is
represented by a word of lenght n: σ = σ (1) · · · σ (n); in general, we shall call numerical
words the words whose letters belong to N.

There is a right action of Sn on T defined by:

∀σ ∈ Sn, y1 · · · yn · σ := yσ (1) · · · yσ (n)
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and y1 · · · ym ·σ = 0 if n �= m. Notice that this action is not a group action, since the
unit of Sn does not act as the identity map on T . It follows from this definition that the
direct sum of the opposite algebras to the symmetric group algebras ⊕n∈NQ[Sn]op, with
the algebra structure defined componentwise, embeds into the algebra of graded linear
endomorphisms of T , End(T ) = �n∈NEnd(Tn). We write ◦ for the corresponding product
on S = ⊕n∈NQ[Sn] and σ (y1 · · · yn) for y1 · · · yn·σ . Notice that, if we write · for the usual
product on Sn (the composition of permutations), we have:

∀(σ, β, γ ) ∈ Sn × Sn × Sm, n �= m : σ ◦ β = β · σ, σ ◦ γ = γ · σ = 0.

Recall also some general facts on Hopf algebras. A graded Hopf algebra over Q is
a graded vector space A = ⊕n∈N An together with morphisms of graded vector spaces
π : A⊗ A → A, η: Q → A, δ: A → A⊗ A, ζ : A → Q and S: A → A. Here, the graduation
on A ⊗ A is defined by: (A ⊗ A)n := ⊕i+ j=n Ai ⊗ A j , and Q is identified with the graded
vector space with Q as a unique non trivial component, in degree 0. These morphisms,
called respectively the product, the unit, the coproduct, the counit and the antipode of A,
are subject to the following conditions:

1. The product and the unit provide A with the structure of an associative algebra with unit,
2. The coproduct and the counit provide A with the dual structure of a coassociative

coalgebra with counit,
3. The coproduct is a morphism of algebras from A to A ⊗ A or, equivalently, the product

is a morphism of coalgebras from A ⊗ A to A,
4. The antipode S satisfies the equation: π ◦ (S ⊗ I ) ◦ δ = π ◦ (I ⊗ S) ◦ δ = η ◦ ζ , where

we write I for the identity of A.

A graded vector space together with morphisms π, η, δ, ζ satisfying conditions 1–3 is called
a graded bialgebra. A graded vector space V is connected if V0 = Q. A coalgebra C (resp.
a bialgebra, a Hopf algebra) is cocommutative if the coproduct is cocommutative, that is
if T ◦ δ = δ, where T is the intertwining operator acting on C ⊗ C : T (x ⊗ y) := y ⊗ x .
An element a in a Hopf algebra is called primitive if and only if δ(a) = a ⊗ 1 + 1 ⊗ a.
A graded connected cocommutative bialgebra is naturally provided with the structure of a
Hopf algebra: the antipode acts as −1 on the graded vector space of primitive elements of
the bialgebra and is characterized by this property. See e.g. [8, 16] for further details on
Hopf algebras.

The tensor algebra T is the free associative algebra on X and we write µ for its product:

µ : T ⊗ T → T ,

µ(y1 · · · yn ⊗ z1 · · · zl) = y1 · · · ynz1 · · · zl .

We write ε for the empty word, which is the unit of T . The tensor algebra T is a graded
connected cocommutative Hopf algebra for the coproduct δ and antipode S defined on the
generators y of T by:

δ(yi ) := yi ⊗ ε + ε ⊗ yi

S(yi ) := −yi .
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The unit η : Q → T and counit ζ : T → Q are defined using the isomorphism: Q ∼= T0 ⊂
⊕n∈NTn = T .

A closed formula for δ can be given as follows. Write P(n) for the set of couples (I, J )
of disjoint complementary subsets of [n] = {1, . . . , n}, with I = {i1 < · · · < ik} and
J = { j1 < · · · < jn−k}. Then:

δ(y1 · · · yn) =
∑

(I,J )∈P(n)

yi1 · · · yik ⊗ y j1 · · · y jn−k .

For example:

δ(x2x1x3) = x2x1x3 ⊗ ε + x2x1 ⊗ x3 + x1x3 ⊗ x2 + x2x3 ⊗ x1 + x2 ⊗ x1x3

+ x1 ⊗ x2x3 + x3 ⊗ x2x1 + ε ⊗ x2x1x3.

3. The coproduct

Definition 1 Let s ∈ S. We say that s has a coproduct in S if there exists s̃ in S ⊗ S ⊂
End(T ⊗ T ) such that:

s̃ ◦ δ = δ ◦ s.

We will see below that such an s̃, if it exists, is unique.
Example: Let s := 12 − 21 ∈ Q[S2]. Then, for all (x, y) in X × X , we have:

s(xy) = xy − yx

and δ ◦ s(xy) = s(xy) ⊗ ε + ε ⊗ s(xy). Therefore, s̃ := s ⊗ ζ + ζ ⊗ s is a coproduct in S
for s.

Counterexample: Let s := 213 ∈ S3. If s had a coproduct in S, the corresponding
element s̃ of S ⊗ S should satisfy the equation s̃ ◦ δ(x1x2x3) = δ ◦ s(x1x2x3) = δ(x2x1x3).
In particular, the equation:

φ(x1x2 ⊗ x3 + x1x3 ⊗ x2 + x2x3 ⊗ x1) = x1x3 ⊗ x2 + x2x3 ⊗ x1 + x2x1 ⊗ x3

should have a solution φ in Q[S2] ⊗ Q[S1]. An easy computation shows that this is not the
case (see also the end of Section 4).

Lemma 2 Assume that τ ∈ S ⊗ S is such that τ ◦ δ = 0, then τ = 0.

To prove the lemma, notice first that, since the action of S ⊗ S = ⊕n,mQ[Sn] ⊗ Q[Sm] on
T ⊗ T preserves the direct sum decomposition ⊕n,mTn ⊗ Tm of T ⊗ T , we may assume
that τ ∈ Q[Sn] ⊗ Q[Sm].

Besides,T is naturally a multigraded algebra:T = ⊕α∈ITα . Here,I is the set of functions
α with finite support from X to N, and Tα is the span of the words having, for any letter
x ∈ X, α(x) occurences of x .
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The decomposition T = ⊕α∈ITα is invariant under the action of S, and the same property
holds for the decomposition ⊕α,α′∈I×ITα ⊗ Tα′ of T ⊗ T under the action of S ⊗ S.

In particular, assume that τ ◦ δ = 0, where τ ∈ Q[Sn] ⊗ Q[Sm]. Then, since x1 · · · xn ⊗
xn+1 · · · xn+m is the projection of δ(x1 · · · xn+m) on one of the components of the
decomposition ⊕α,α′∈I×ITα ⊗ Tα′ we must have:

τ (x1 · · · xn ⊗ xn+1 · · · xn+m) = 0.

Write T(n,m) for the component of ⊕α,α′∈I×ITα ⊗Tα′ containing x1 · · · xn ⊗xn+1 · · · xn+m .
As a (Sn × Sm)op -module, T(n,m) is isomorphic to the regular (right) representation of
Sn × Sm and is generated by x1 · · · xn ⊗ xn+1 · · · xn+m . This implies τ = 0 and the lemma
follows.

It follows from the lemma that, if s ∈ S has a coproduct s̃ in S, s̃ is uniquely defined.

Proposition-Definition 3 Let A := {s ∈ S | ∃s̃ ∈ S ⊗ S, s̃ ◦ δ = δ ◦ s}. Then, we also
have:

A = {s ∈ S | ∃!s̃ ∈ S ⊗ S, s̃ ◦ δ = δ ◦ s}.

For s ∈ A, we call from now on the unique element s̃ ∈ S⊗S the coproduct of s and denote
it by �(s).

For the time being, A is just a subspace of S and � maps A to S ⊗ S. We shall see that
A has a rich algebraic structure. Before that, we characterize combinatorially the elements
of A, and deduce that � maps A into A ⊗ A.

4. A combinatorial characterization of A

Recall that, by Weyl duality, a linear endomorphism of Tn is in Q[Sn] if and only if it
commutes with each homogeneous algebra endomorphism of T . On the other hand, let
T(n) be the component of T = ⊕α∈ITα spanned by x1 · · · xn . For any α ∈ I such that∑

x∈X α(x) = n, there are homogeneous algebra endomorphisms ofT mappingT(n) ontoTα .
Since δ, elements of S, and elements of S ⊗ S commute with homogeneous algebra

endomorphisms of T , it follows from the previous remark that f ∈ Q[Sn] is in A if and
only if there exists f̃ ∈ S ⊗ S such that:

f̃ ◦ δ(x1 · · · xn) = δ ◦ f (x1 · · · xn) (∗)

In other words, to check if an element f in Q[Sn] belongs to An , it is enough to check
that the equation (∗) has a solution f̃ in ⊕m≤nQ[Sm] ⊗ Q[Sn−m].

We need some notation and conventions. The standard permutation st(w) associated to
a numerical word w = w1 · · · wk of length k ≤ n, which is multilinear, that is, without
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repetition of letters, is the unique permutation in Sk defined by:

st(w)(i) < st(w)( j) ⇔ wi < w j .

For example st(3745) = 1423. We also write st for the extension by linearity of st.
Furthermore, if I ⊂ X , define a linear endomorphism PI of T as follows: for any word

w, either each letter in I appears in w and then PI (w) is obtained by removing in w each
letter not in I ; or some letter in I is not in w and we put PI (w) = 0. For example, if
I = {1, 2} and w = 24351, then PI (w) = 21 and PI (352) = 0. Note that if PI (w) �= 0,
then the set of letters in PI (w) is I .

Theorem 4 An element f ∈ Q[Sn] is inAn if and only if it satisfies the following property:
for any disjoint ordered subsets I and J of [n] such that I ∪ J = [n],

(st ⊗ st) ◦ (PI ⊗ PJ )( f )

depends only on |I | and |J |. In this case, �( f ) = ∑
0≤i≤n(st ⊗ st) ◦ (P{1,...,i} ⊗ P{i+1,...,n})

( f ).

Note that PI ⊗ PJ denotes the natural linear mapping from T into T ⊗ T defined on the
words w of T by (PI ⊗ PJ )(w) = PI (w) ⊗ PJ (w); from the context there should be no
confusion with the actual tensor product of the mappings PI and PJ , also written PI ⊗ PJ .

To prove the theorem, suppose that (∗) holds. Replacing the letter xi by the letter i , this
equation may be rewritten equivalently as f̃ ◦ δ(1 · · · n) = δ ◦ f (1 · · · n). This becomes
f̃ ◦ δ(1 · · · n) = δ( f ), since f may be viewed as an element of T .

Now, if g is a linear combination of permutations in Sn , then δ(g) is equal to
∑

(I,J )(PI ⊗
PJ )(g), where the sum is over all (I, J ) ∈ P(n). In particular δ(1 · · · n) = ∑

I,J PI (1 · · · n)⊗
PJ (1 · · · n) = ∑

I,J σI ⊗ σJ , where we write σI for the product in increasing order of the
elements in I . For example δ(123) = 123 ⊗ ε + 12 ⊗ 3 + 13 ⊗ 2 + 23 ⊗ 1 + 1 ⊗ 23 + 2 ⊗
13 + 3 ⊗ 12 + ε ⊗ 123.

Thus we obtain
∑

I,J f̃ (σI ⊗σJ ) = ∑
I,J (PI ⊗PJ )( f ). For reasons of multi-homogeneity,

this equality splits into many equalities: ∀(I, J ), f̃ (σI ⊗σJ ) = (PI ⊗ PJ )( f ). Note that for
fixed I, J , the latter equality is equivalent to (st⊗st)( f̃ (σI ⊗σJ )) = (st⊗st)((PI ⊗ PJ )( f )).
But the left-hand side is equal to f̃ (σ{1,..., | I |} ⊗ σ{1,..., | J |}) = f̃ |I |,|J |, if we write f̃ =∑

i+ j=n f̃ i, j , with f̃ i, j ∈ Q[Si ] ⊗ Q[Sj ]. So the right-hand depends only on |I |, |J |, what
was to be shown.

Conversely, suppose that the property of the theorem holds. Define f̃ = �( f ) as in the
statement. Note that (st ⊗ st) ◦ (PI ⊗ PJ )( f ) is equal to (st ⊗ st) ◦ (P{1,...,i} ⊗ P{i+1,...,n})( f ),
with i = |I |. Hence to f̃ i,n−i . Thus the previous calculations taken backwards imply (∗),
hence the theorem.

We give now another characterization of the elements of A. Denote by ω the shuffle
product and by 〈 , 〉 the scalar product on T for which the set of all words is an orthonormal
basis; this scalar product extends naturally to T ⊗ T , with the same notation. Then it is
well-known that for any elements t, u, v in T , one has 〈δ(t), u ⊗ v〉 = 〈t, uωv〉, see [13]
Proposition I.1.8.
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Note that if u, v are multilinear numerical words, having both the same set of letters, then
〈u, v〉 = 〈st(u), st(v)〉. This equality extends linearly and to the tensor product.

Corollary 5 An element f ∈ Q[Sn] is in An if and only if, for any words u and v such
that uv ∈ Sn, 〈 f, uωv〉 depends only on st(u) and st(v). In this case,

〈�( f ), st(u) ⊗ st(v)〉 = 〈 f, uωv〉.

Indeed, let A, B be the set of letters appearing in u, v respectively. Then 〈 f, uωv〉 =
〈δ( f ), u ⊗ v〉 = 〈(PA ⊗ PB)(δ( f )), u ⊗ v〉 = 〈(PA ⊗ PB)(

∑
(I,J )(PI ⊗ PJ )( f )), u ⊗

v〉 = 〈(PA ⊗ PB)( f ), u ⊗ v〉 = 〈(st ⊗ st) ◦ (PA ⊗ PB)( f ), st(u) ⊗ st(v)〉. The first
part of the corollary follows therefore from Theorem 4. For the last assertion, we have
〈�( f ), st(u) ⊗ st(v)〉 = 〈∑0≤i≤n(st ⊗ st) ◦ (P{1,...,i} ⊗ P{i+1,...,n})( f ), st(u) ⊗ st(v)〉 =
〈(st ⊗ st)(P{1,...,a} ⊗ P{a+1,...,n})( f ), st(u) ⊗ st(v)〉, if we put a = |A|. This is equal by the
theorem to 〈(st ⊗st)(PA ⊗ PB)( f ), st(u)⊗st(v)〉 which is equal to 〈 f, uωv〉 by our previous
computation.

Another consequence is the following.

Corollary 6 If f is in An, then δ( f ) and �( f ) are related as follows:

�( f ) =
∑

0≤i≤n

(st ⊗ st) ◦ (
P{1,...,i} ⊗ P{i+1,...,n}

)
(δ( f ))

and

δ( f ) =
∑

uv∈Sn

〈�( f ), st(u) ⊗ st(v)〉u ⊗ v.

In order to illustrate the previous results, consider f = 213 + 312. With I equal in
turn to {1}, {2}, {3} and J to its complement in {1, 2, 3}, we have: (PI ⊗ PJ )( f ) =
1 ⊗ 23 + 1 ⊗ 32, 2 ⊗ 13 + 2 ⊗ 31, 3 ⊗ 21 + 3 ⊗ 12. After standardization, the three become
all equal to 1 ⊗ 12 + 1 ⊗ 21. Moreover, δ( f ) = f ⊗ ε + 1 ⊗ 23 + 1 ⊗ 32 + 2 ⊗ 13 + 2 ⊗
31 + 3 ⊗ 21 + 3 ⊗ 12 + 21 ⊗ 3 + 12 ⊗ 3 + 13 ⊗ 2 + 31 ⊗ 2 + 23 ⊗ 1 + 32 ⊗ 1 + ε ⊗ f .
Finally, f ∈ A3 and �( f ) = f ⊗ ζ + 1 ⊗ 12 + 1 ⊗ 21 + 21 ⊗ 1 + 12 ⊗ 1 + ζ ⊗ f .

Consider now g = 213. Then, with the same sets I, J , we obtain in turn: 1 ⊗ 23, 2 ⊗
13, 3 ⊗ 21. After standardization the first and the last become: 1 ⊗ 12, 1 ⊗ 21, which are
not equal. Hence g is not in A.

5. The coalgebra structure

The goal of this section is to prove that � maps A into A⊗A and that it is cocommutative
and coassociative.

Lemma 7 The mapping � is a graded cocommutative and coassociative coproduct on A.



308 PATRAS AND REUTENAUER

Assume that f ∈ An . We want to show that �( f ) ∈ ⊕0≤m≤nAm ⊗An−m . By multigrad-
uation and uniqueness arguments as in the previous sections, this amounts to prove that f
has an iterated coproduct of order 3, that is that there exists f̄ ∈ S ⊗ S ⊗ S such that

f̄ ◦ δ[3] = δ[3] ◦ f,

where δ[3] = (δ ⊗ I )◦ δ = (I ⊗ δ)◦ δ, with I the identity of T . Indeed, if this is shown, then
write �( f ) = f̃ = ∑

i fi ⊗gi ; in order to show that f̃ is inA⊗A, it is enough by symmetry
to show, the fi being chosen linearly independant, that the gi are in A. We may write f̄ =∑

i fi ⊗ g̃i , and we have by assumption (
∑

i fi ⊗ g̃i ) ◦ (I ⊗ δ) ◦ δ = (I ⊗ δ) ◦ δ ◦ f ; this
is rewritten

∑
i ( fi ⊗ (g̃i ◦ δ)) ◦ δ = (I ⊗ δ) ◦ (

∑
i fi ⊗ gi ) ◦ δ = (

∑
i fi ⊗ (δ ◦ gi )) ◦ δ.

Now, as in Lemma 2, this implies that
∑

i fi ⊗ (g̃i ◦ δ) = ∑
i fi ⊗ (δ ◦ gi ), and finally

that g̃i ◦ δ = δ ◦ gi , hence that gi is in A.
In order to prove that f has an iterated coproduct of order 3, the same arguments as in

Section 4 show that this property is equivalent to: for all disjoint subsets I, J and K of [n]
such that I ∪ J ∪ K = [n],

(st ⊗ st ⊗ st) ◦ (PI ⊗ PJ ⊗ PK )( f )

= (st ⊗ st ⊗ st) ◦ (
P{1,...,|I |} ⊗ P{|I |+1,...,|I |+|J |} ⊗ P{|I |+|J |+1,...,n}

)
( f ),

or, equivalently, to: (∗) for any words u, v, w such that uvw ∈ Sn, 〈 f, u ω v ω w〉 depends
only on st(u), st(v) and st(w).

Let us prove that this last property is satisfied. We write k (resp. l, m) for the degree of
u (resp. of v and w). Notice that the requirements on u, v and w imply that k + l + m = n.

In the algebra spanned by numerical words, denote by st(m) the composition with st of the
endomorphism acting on the generators by: i �→ i + m. For example, st(2)(31) = (43) since
st(31) = 21. To prove (∗), it is enough to prove that 〈 f, u ω v ω w 〉 = 〈 f, st(u)ω st (k)(v)
ω st (k+l)(w)〉.

We know from Corollary 5 the two words version of this: if x, y are words such that
xy ∈ Sn , with x of length m, then:

〈 f, x ω y〉 = 〈
f, st(x)ω st(m)(y)

〉
.(∗∗)

This equality extends linearly.
Thus we have 〈 f, u ω v ω w〉 = 〈 f, st(u ω v)ω st (k+l)(w)〉.
Define the words u′, v′, of respective length k, l, by u′v′ ∈ Sk+l and st(uv) = u′v′. Let

also w′ = st (k+l)(w). Then st(u′) = st(u), st(v′) = st(v), st(uωv) = st(u′ ω v′) and
w′ = st (k+l)(w′). Observe that since v′ has all its letters in the alphabet {1, . . . , k + l} and
w′ in {k + l + 1, . . . , n}, one has st(k)(v′ ω w′) = st (k)(v′) ω w′. Note also that u′v′w′ ∈ Sn .
We deduce that

〈 f, u ω v ω w〉 = 〈
f, st(u′ωv′)ω st (k+l)(w′)

〉 = 〈 f, u′ ω v′ ω w′〉
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by (∗∗). This is by (∗∗) equal to

〈
f, st(u′)ω st (k)(v′ωw′)

〉 = 〈
f, st(u)ω st (k)(v′)ωw′〉

= 〈
f, st(u)ω st (k)(v)ω st (k+l)(w)

〉
.

This proves what we wanted.
We show now that the coproduct � is cocommutative. Let f ∈A and let T be the in-

tertwining operator acting on T ⊗ T . Since δ is cocommutative, we have: T ◦ δ = δ.
Therefore, T ◦ �( f ) ◦ T ◦ δ = T ◦ �( f ) ◦ δ = T ◦ δ ◦ f = δ ◦ f . Since we know that
the equation f̃ ◦ δ = δ ◦ f has a unique solution f̃ = �( f ) in S ⊗ S, we get: �( f ) = T ◦
�( f ) ◦ T .

On the other hand, let T ′ be the interwining operator acting on S⊗S. We use the Sweedler
notation [16, Section 1.2] and write

∑
( f ) f (1) ⊗ f (2) for the coproduct of f . We then have:

∀(u, v) ∈ T 2.

((T ′ ◦ �)( f ))(u ⊗ v) = (T ′(�( f )))(u ⊗ v) =
(

T ′
( ∑

( f )

f (1) ⊗ f (2)

))
(u ⊗ v)

=
( ∑

( f )

f (2)⊗ f (1)

)
(u ⊗ v) =

∑
( f )

f (2)(u) ⊗ f (1)(v)

= (T ◦ �( f ))(v ⊗ u) = (T ◦ �( f ) ◦ T )(u ⊗ v) = �( f )(u ⊗ v).

Therefore, T ′ ◦ �( f ) = �( f ) and � is cocommutative.
Finally, we prove the coassociativity of �. Let f ∈An . We write A for the identity of A.

We then have:

((� ⊗ A) ◦ �( f )) ◦ δ[3] =
∑
( f )

(
(� ⊗ A)

(
f (1) ⊗ f (2)

)) ◦ δ[3]

=
∑
( f )

(
�

(
f (1)

) ⊗ f (2)
) ◦ (δ ⊗ I ) ◦ δ

=
∑
( f )

((
�

(
f (1)

) ◦ δ
) ⊗ f (2)

) ◦ δ

=
∑
( f )

((
δ ◦ f (1)

) ⊗ f (2)
) ◦ δ

=
∑
( f )

(δ ⊗ I ) ◦ (
f (1) ⊗ f (2)

) ◦ δ = (δ ⊗ I ) ◦ �( f ) ◦ δ

= (δ ⊗ I ) ◦ δ ◦ f = δ[3] ◦ f.

In the same way, we have:

((A ⊗ �) ◦ �( f )) ◦ δ[3] = δ[3] ◦ f.
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Besides, the same argument as in the proof of Lemma 2 shows that, if the equation f̃ ◦δ[3] =
δ[3] ◦ f , where f is fixed, has a solution f̃ in S ⊗ S ⊗ S, then f̃ is unique. Therefore,

((A ⊗ �) ◦ �)( f ) = ((� ⊗ A) ◦ �)( f ),

and the coproduct � is coassociative.

6. The Hopf algebra structure

The purpose of this section is to show that there is a graded connected cocommutative Hopf
algebra structure on A.

Recall that if V is a Hopf algebra, End(V ) is endowed with the structure of an associative
algebra, by the convolution product ∗ defined by:

∀ f, g ∈ End(V ), f ∗ g := µ ◦ ( f ⊗ g) ◦ δ.

In particular, End(T ) is an associative algebra for this product and a Weyl duality argument
or a direct computation shows that S is a subalgebra of End(T ) for ∗ [13]. If V and
V ′ are two Hopf algebras, the restriction of the convolution product on End(V ⊗ V ′) to
End(V ) ⊗ End(V ′) identifies with the product on End(V ) ⊗ End(V ′) viewed as the tensor
product of the two algebras End(V ) and End(V ′), equipped with the convolution product.

Lemma 8 A is a subalgebra of S and of End(T ) for the convolution product.

Indeed, let f, g ∈ A. There is a Hopf algebra structure on T ⊗ T , induced by the Hopf
algebra structure on T . For the corresponding convolution product, S ⊗ S is a subalgebra
of End(T ⊗ T ) (this follows from the corresponding property for S and End(T )). We are
going to prove that �( f ) ∗ �(g), which belongs to S ⊗ S, is a coproduct in S for f ∗ g.
According to the definition of A, it will follow that f ∗ g ∈ A.

We write δ̄ (resp. µ̄) for the coproduct (resp. the product) on T ⊗T . Recall that we write
T for the intertwining operator acting on T ⊗ T . We then have:

(�( f ) ∗ �(g)) ◦ δ = µ̄ ◦ (�( f ) ⊗ �(g)) ◦ δ̄ ◦ δ

= µ̄ ◦ (�( f ) ⊗ �(g)) ◦ (I ⊗ T ⊗ I ) ◦ (δ ⊗ δ) ◦ δ

(by definition of the Hopf algebra structure on the tensor product of two Hopf algebras)

= µ̄ ◦ (�( f ) ⊗ �(g)) ◦ (δ ⊗ δ) ◦ δ

(since δ is coassociative and cocommutative; the next identities follow from the definition
of µ̄ and the fact that δ is a homomorphism)

= µ̄ ◦ (δ ⊗ δ) ◦ ( f ⊗ g) ◦ δ

= δ ◦ µ ◦ ( f ⊗ g) ◦ δ = δ ◦ ( f ∗ g).

Hence f ∗ g has the coproduct �( f ) ∗ �(g) and A is closed under convolution.
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Theorem 9 (A, ∗, �, u, e) is a graded connected cocommutative Hopf algebra.

The unit of A is given by the inclusion: u:A0
∼= Q → A. The counit is given by the

projection e : A → A0. We have shown that A is a graded connected cocommutative
coalgebra and an algebra. The equation �( f ∗ g) = �( f ) ∗ �(g), which follows from our
previous computatious, implies that � is an algebra map from A to A ⊗ A. The existence
of an antipode follows from the connectivity and the cocommutativity of A: the antipode
acts as −1 on the graded vector space of primitives and is characterized by this property.
The theorem follows.

7. The inner product

Recall that the space S, direct sum of all symmetric groups algebras, has a product, the inner
product inherited from composition of permutations. The descent algebra has the striking
property of being closed for this product, a result due originally to Solomon [15]. We show
that A has the same property.

Theorem 10 The vector spaces An ⊂ Q[Sn] ⊂ End(Tn), n ∈ N∗ are closed under the
composition of morphisms in End(Tn). Equivalently, An is closed under the products · and
◦ in Q[Sn]. In particular, An is a subalgebra of the group algebra Q[Sn]. Moreover � is a
homomorphism for the inner product.

The theorem follows immediately from the very definition of A. Indeed, assume that f
and g belong to An , then we have:

�( f ) ◦ δ = δ ◦ f ; �(g) ◦ δ = δ ◦ g,

so that:

�( f ) ◦ �(g) ◦ δ = �( f ) ◦ δ ◦ g = δ ◦ ( f ◦ g),

and �( f ) ◦ �(g) is the coproduct of f ◦ g. In particular, f ◦ g = g · f ∈An and �( f ◦g) =
�( f ) ◦ �(g).

8. Comparison with the descent algebra

First of all, let us show that A contains strictly the descent algebra. As a subalgebra of S for
the convolution product, the descent algebra � is freely generated by the identity elements
1 · · · n ∈ Sn, n ∈ N∗ [13]. Since these elements all have a coproduct in S ⊗ S (given
explicitly by: �(1 · · · n) = ∑n

i=0 1 · · · i ⊗1 · · · n − i), � is certainly a subalgebra of A. The
fact that the inclusion is a strict one could be proved by general arguments involving the
properties of the free Lie algebra or the Hilbert series computations below (Theorem 13).
However, we think it useful and illuminating to give an example.
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Let f be the linear combination of permutations in S4 which maps x1 . . . x4 to the element
[[x1, x2], [x3, x4]] in the derived series of the free Lie algebra. A direct computation shows
that:

f = 1234 − 2134 − 3412 + 3421 − 1243 + 2143 + 4312 − 4321.

Since f is a map from T to the free Lie algebra generated by X (that we view as a Lie
subalgebra of T ), for all t ∈ T , f (t) is a primitive element and we therefore have:

δ ◦ f (t) = f (t) ⊗ 1 + 1 ⊗ f (t) = ( f ⊗ ζ + ζ ⊗ f ) ◦ δ(t),

so that f is in A (and is in fact a primitive element in A). On the other hand, 2134 appears
in the expansion of f but not 3124, which has the same descent set. It follows immediately
that f does not belong to the Solomon algebra.

The same argument shows that, more generally, all the maps from the tensor algebra
to higher components of the derived series of the free Lie algebra which belong to the
symmetric group algebras also belong to the set of primitive elements in A.

The last point that we want to investigate is the behavior of � with respect to the known
Hopf algebra structure of S and on the descent algebra, which is a Hopf subalgebra of S,
cf. [3, 5–7, 11].

Theorem 11 The Hopf algebra A is a Hopf subalgebra of S and � is a Hopf subalgebra
of A.

Recall that the coproduct on S is defined for f ∈ Q[Sn] by [8]:

�( f ) =
∑

0≤i≤n

(st ⊗ st)
(
P{1,...,i} ⊗ P{i+1,...,n}

)
( f ).

It follows from Theorem 4 that, if f ∈ An , this coproduct is equal to the coproduct of f
in S in the sense of Definition 1 and Proposition-Definition 3 above. Since � is a Hopf
subalgebra of S and since A is a subalgebra of S, the theorem follows.

9. Primitive elements and Hilbert series

According to Theorem 9 and to the Cartier-Milnor-Moore theorem [8, 9],A is the enveloping
algebra of its primitive part. We write Lie(X ) for the free Lie algebra on X , identified with
the Lie algebra of primitive elements in T (see [13], also for the general properties of the
free Lie algebras and Lie representations that we are using hereafter).

Theorem 12 The vector space PrimnA of primitive elements of degree n inA is the vector
space:

PrimnA = { f ∈ Q[Sn] ⊂ End(Tn) | I m( f ) ⊂ Lien(X )}
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Moreover, PrimnA is canonically isomorphic (as a vector space) to the multilinear part of
degree n of the free Lie algebra on n generators 1, . . . , n, that is to the Lie representation
Lien of Sn.

Assume that f is a map whose image is contained in Lien(X ). Then, we have:

∀t ∈ Tn, δ ◦ f (t) = f (t) ⊗ ε + ε ⊗ f (t) = ( f ⊗ ζ + ζ ⊗ f ) ◦ δ,

and f ∈ PrimnA. Conversely, the same computation shows that if f is primitive, it is a
map to the set of primitive elements in T .

The last part of the theorem follows from the fact that elements f in An and their
coproducts are characterized by the action of f on the numerical word 1 . . . n (see
Section 4).

Note that this result implies that the Lie elements of S are primitive elements, for the
coproduct defined in [7]; this fact, that was known to Daniel Krob (personal communication),
may of course be proved directly.

The linear generators of Lien (the bracketings of 1, . . . , n) may be represented graphically
by binary trees with n leaves labelled by 1, . . . , n (see [1]). In particular, to each labelled
tree is associated a primitive element of An . It follows, for example, that the submodules
of the action of the symmetric group Sn on Lien studied in [1] can be embedded naturally
in PrimnA and An .

Since the dimension of the Lie representation of Sn is well-known (it is (n − 1)!), the
Hilbert series Hilb(A) of A can be computed easily.

Theorem 13 The Hilbert series of A is:

Hilb(A) =
∏
n≥1

(
1

1 − tn

)(n−1)!

.

The theorem follows from the Poincaré-Birkhoff-Witt theorem which implies that the
Hilbert series of the enveloping algebra of a graded Lie algebra whose component of degree
n has dimension αn is

∏
n≥1( 1

1−tn )αn .
The first terms of the Hilbert series of A are:

Hilb(A) = 1 + t + 2t2 + 4t3 + 11t4 + 37t5 + 167t6 + 925t7 + 6164t8 + · · · .

Note that A is not a subalgebra of the Rahmenalgebra of Armin Jöllenbeck [5]; the latter
is not closed under the inner product, but has interesting applications to character theory of
the symmetric group (it is actually a noncommutative character theory), and to enumeration
of permutations. The algebra recently introduced by Manfred Schocker [14] is generated
by the Lie idempotents of the symmetric group and is a proper subalgebra of A; he has
however theorems on the inner structure of his algebra and a mapping onto the character
ring of the symmetric groups that has no analogue, for the time being, in A.
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