
Journal of Algebraic Combinatorics, 17, 39–56, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

On a Conjecture of R.P. Stanley;
Part I—Monomial Ideals

JOACHIM APEL apel@mathematik.uni-leipzig.de
Mathematisches Institut, Universität Leipzig, Augustusplatz 10–11, 04109 Leipzig, Germany

Received March 9, 2001; Revised April 24, 2002

Abstract. In 1982 Richard P. Stanley conjectured that any finitely generated Z
n-graded module M over a

finitely generated N
n-graded K-algebra R can be decomposed in a direct sum M = ⊕t

i=1 νi Si of finitely many
free modules νi Si which have to satisfy some additional conditions. Besides homogeneity conditions the most
important restriction is that the Si have to be subalgebras of R of dimension at least depth M .

We will study this conjecture for the special case that R is a polynomial ring and M an ideal of R, where we
encounter a strong connection to generalized involutive bases. We will derive a criterion which allows us to extract
an upper bound on depth M from particular involutive bases. As a corollary we obtain that any monomial ideal
M which possesses an involutive basis of this type satisfies Stanley’s Conjecture and in this case the involutive
decomposition defined by the basis is also a Stanley decomposition of M . Moreover, we will show that the criterion
applies, for instance, to any monomial ideal of depth at most 2, to any monomial ideal in at most 3 variables, and
to any monomial ideal which is generic with respect to one variable. The theory of involutive bases provides us
with the algorithmic part for the computation of Stanley decompositions in these situations.
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1. Introduction

This is the first of two articles studying some aspects of a conjecture formulated by Richard
P. Stanley in 1982.

Conjecture 1 ([13], 5.1) Let R be a finitely-generated Nn-graded K-algebra (where R0 =
K as usual), and let M be a finitely-generated Zn-graded R-module. Then there exist
finitely many subalgebras S1, . . . , St of R, each generated by algebraically independent
Nn-homogeneous elements of R, and there exist Zn-homogeneous elements ν1, . . . , νt of
M , such that

M =
t⊕

i=1

νi Si ,

where dim Si ≥ depth M for all i , and where νi Si is a free Si -module (of rank one).
Moreover, if K is infinite and under a given specialization to an N-grading of R is generated
by R1, then we can choose the (Nn-homogeneous) generators of each Si to lie in R1.

Definition 1 Let R be a finitely-generated Nn-graded K-algebra and let M be a finitely-
generated Zn-graded R-module. For each non-negative integer d let �d denote the set of
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all direct sum decompositions M = ⊕t
i=1 νi Si of M in finitely many free Si -modules νi Si

(i ∈ {1, . . . , t}), where the S1, . . . , St are subalgebras of R each of them generated by at
least d algebraically independent Nn-homogeneous elements of R and the ν1, . . . , νt are
Zn-homogeneous elements of M .

If not all sets �d are empty then we call the largest d such that �d �= ∅ the Stanley depth
of M and denote it by Sdepth M .

For Nn-graded polynomial rings R = K[x1, . . . , xm] the existence of Sdepth M , i.e. the
existence of a decomposition of M in finitely many direct summands νi Si satisfying the
above conditions, follows e.g. from results of Riquier related to the solution space of systems
of partial differential equations [11], see also [14]. Specialized to our studies Stanley’s
Conjecture reads as follows:

Conjecture 2 Let R = K[X ] be a polynomial ring in the variables X = {x1, . . . , xn} over
a field K. Then for each monomial ideal I ⊂ R it holds

Sdepth I ≥ depth (XR, I ) = depth I.

That is, there exist a finite decomposition (called Stanley decomposition throughout this
paper) of I of the following type

I =
t⊕

i=1

uiK[Yi ], (1)

where the ui are (monic) monomials, Yi ⊆ X and |Yi | ≥ depth I for all i = 1, . . . , t .

The notion depth I could lead to a confusion since it is also a frequently used short cut
for depth (I, M), the depth of the ideal I on some R-module M . Therefore, we emphasize
that in this paper depth I will always stand for depth (XR, I ), the depth of the maximal
homogeneous ideal of R on I considered as an R-module.

There is a strong relationship between Stanley decompositions and the Riquier-Janet
theory for solving systems of partial differential equations (see [6, 11]) which also produces
a decomposition (1), however, without the additional assumption on the dimension of the
subalgebras. The classical decompositions due to Janet, Thomas, or Pommaret will violate
the crucial condition on the dimension of the subalgebras Si , in general. Here we will rely
on a more general definition of involutive bases introduced in [1]. We will prove a criterion
(Corollary 1) showing that a particular type of involutive decomposition satisfies even the
harder assumptions of Stanley’s Conjecture and, hence, is a Stanley decomposition.

Our definition of involutive bases will turn out to be sufficiently general to allow the
application of the above criterion to some large classes of monomial ideals. Among them
there are all monomial ideals of depth at most 2 (Corollary 3), all monomial ideals in at most
three variables (Theorem 1), and all monomial ideals which are generic with respect to one
variable, i.e. whenever two distinct minimal generators have the same degree in some fixed
variable then there is another minimal generator of strictly smaller degree in this variable
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which divides the least common multiple of these minimal generators (Theorem 2). The
proofs of the theorems give explicit hints how in these cases a Stanley decomposition can
be constructed using the algorithmic methods provided by the theory of involutive bases.

We remark that Example 5 shows that also the notion of involutive bases introduced in
[1] is not powerful enough for the construction of Stanley decompositions for arbitrary
monomial ideals.

2. Involutive bases of polynomial ideals

Let X = {X1, . . . , Xn} be a finite set of indeterminates and T = 〈X〉 denote the free
commutative monoid generated by X . By an involutive division on T we denote a certain
type of subrelations of the conventional division which is defined in the following way.

Definition 2 [1, Definition 3.1] Let (Yu)u∈T be a family of subsets Yu ⊆ X of indetermi-
nates. The family M = (Mu)u∈T , where Mu = u〈Yu〉 for all u ∈ T , is called the involutive
division generated by (Yu)u∈T . For u ∈ Mv we call u anM-multiple of v and v anM-divisor
of u. Furthermore, we say that the variables x ∈ Yu are the M-multipliers and the variables
y ∈ X \ Yu the M-nonmultipliers of u ∈ T . The number |Yu | of M-multipliers is denoted
by Idim Mu and called the involutive dimension of u with respect to M.

Let V ⊆ T be a set of terms and � an order on V . The involutive division M = (Mu)u∈T

is called admissible for (V, �) if for all v, w ∈ V such that w � v it holds either Mw ⊂ Mv

or Mv ∩ wT = ∅. If the admissibility of N = (Nu)u∈T , where Mu ⊆ Nu for all u ∈ V ,
implies that all inclusions have to be equalities then M is called a maximal admissible
involutive division for (V, �). The short cut M is (maximal) admissible for V will express
the existence of � such that M is (maximal) admissible for (V, �).

Note, the familyM is always indexed by the entire set T of monomials. In some situations,
e.g. if involutive divisions admissible on a (finite) subset V ⊂ T are under consideration,
we pass to equivalence classes of families coinciding on V which we simply denote by
M = (Mu)u∈V . Using this convention it makes sense to consider the admissibility of an
involutive division (Mu)u∈T on arbitrary sets V . In contrast, this would be impossible if we
would work with families ranging over smaller index sets.

Example 1 (Part 1) Consider the sequence z2, xyz, y2, x2 of monomials in the variables
x, y, z, which is in increasing order with respect to the reverse lexicographical term order
� extending z � y � x . Let Yz2 = {x, y, z}, Yxyz = Yy2 = {x, y}, and Yx2 = {x}
be the sets of multipliers of the monomials. The cones z2〈Yz2〉, xyz〈Yxyz〉, y2〈Yy2〉, and
x2〈Yx2〉 are pairwise disjoint and even more is true, x2〈Yx2〉∩ (z2, xyz, y2)〈X〉 = y2〈Yy2〉∩
(z2, xyz)〈X〉 = xyz〈Yxyz〉 ∩ z2〈X〉 = ∅.

Hence, M = {z2〈Yz2〉, xyz〈Yxyz〉, y2〈Yy2〉, x2〈Yx2〉} describes an equivalence class of
involutive divisions which are admissible on the ordered set (z2, xyz, y2, x2). In this case
we have Mv ∩ wT = ∅ for all v, w ∈ {z2, xyz, y2, x2} satisfying w � v. Figure 1 provides
an impression of the structure of this equivalence class by displaying the cones formed by
the exponent vectors of the M-multiples of the monomials z2, xyz, y2, x2.1
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Figure 1. M = {z2〈x, y, z〉, xyz〈x, y〉, y2〈x, y〉, x2〈x〉}.

Figure 2. M = {x2z3〈x, z〉, z2〈x, y, z〉, xyz〈x, y〉, y2〈x, y〉, x2〈x〉}.

The alternative condition an admissible involutive division M can satisfy for mono-
mials w � v means that the cone of M-multiples of w is entirely contained in the
cone of M-multiples of v. Such a situation we meet, for instance, in the family M =
{x2z3〈x, z〉, z2〈Yz2〉, xyz〈Yxyz〉, y2〈Yy2〉, x2〈Yx2〉} which defines an equivalence class of in-
volutive divisions admissible on the ordered set (x2z3, z2, xyz, y2, x2) and is displayed in
figure 2. Here, we have the cone inclusion x2z3〈x, z〉 ⊂ z2〈x, y, z〉.
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Figure 3. M = {z2〈x, z〉, xyz〈x, y, z〉, y2〈y, z〉, x2〈x, y〉}.

Finally, in figure 3 there is displayed the cone arrangement M = {z2〈x, z〉, xyz〈x, y, z〉,
y2〈y, z〉, x2〈x, y〉} which is not admissible for any order of the monomials z2, xyz, y2, x2.

Now, let R = K[X ] be the polynomial ring in the variables X = {X1, . . . , Xn} over a field
K. Then the above defined involutive divisions gives rise to the distinction of a particular
type of Gröbner bases of ideals of I .

Definition 3 Let ≺ be an admissible term order, F a finite set of non-zero polynomials
and M an involutive division admissible for the set lt F of leading terms of F . If lt (I ) =⋃

f ∈F M lt f , where I = FR denotes the ideal of R generated by F , then F is called an
M-involutive basis of I with respect to ≺. If, in addition, the union on the right hand side
is disjoint we call F a minimal M-involutive basis of I with respect to ≺.

Example 1 (Part 2) Consider the monomial ideal I = (z2, xyz, y2, x2) ⊂ K[x, y, z].
An ordered M-involutive basis of I (with respect to an arbitrary term order ≺) is given by
(z2, y2z, xyz, x2z, y2, x2 y, x2), where the essential multiplier sets ofM are Yz2 = {x, y, z},
Yy2z = Yy2 = {x, y}, and Yxyz = Yx2z = Yx2 y = Yx2 = {x}. Figure 4 shows that the
cones Mu , u ∈ {z2, y2z, xyz, x2z, y2, x2 y, x2}, exhaust the set lt I of leading terms
of I . Moreover, these cones are pairwise disjoint and, therefore, the above M-involutive
basis is minimal. A possible completion of the generating set displayed in figure 2 to
an M-involutive basis is (x2z3, z2, y2z, xyz, x2z, y2, x2 y, x2), where Yx2z3 = {x, z} is
the additional set of multipliers. However, this basis is not minimal since x2z3〈x, z〉 ∩
z2〈x, y, z〉 �= ∅.

Obviously, any M-involutive basis F of I is also a Gröbner basis of I . Using some well-
known facts on Gröbner bases and taking into account the uniqueness of the M-reduction
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Figure 4. Ordered involutive basis (z2, y2z, xyz, x2z, y2, x2 y, x2).

process [1, Definition 5.1] with respect to minimal involutive bases it follows

I =
⊕
f ∈F

f K[Y f ] (2)

for an arbitrary minimal M-involutive basis F of I , where M is generated by (Zu)u∈T and
Y f = Z lt f .

For given I , ≺ and M there need not exist any M-involutive basis of I with respect
to ≺. However, at least we have:

Proposition 1 Let F be a finite set of non-zero polynomials generating the ideal I ⊂ R
and ≺ be an admissible term order. Then there exists a finite set G ⊂ I \ {0}, a linear order
� of lt G and a (maximal) admissible involutive division M on (lt G, �) such that G is a
(minimal) M-involutive basis of I with respect to ≺.

Proof: Algorithm 4 from [1] was proved to compute in a finite number of steps an in-
volutive division M and a finite set G such that G is an M-involutive basis of I w.r.t. ≺.
� can be even prescribed as e.g. a reverse lexicographical order of the set T but can be
altered during the completion process as well. It is an easy exercise to show that M can
be maximized and G be minimized by possibly enlarging the cones M lt g and by removing
redundant elements from G.

Example 1 (Part 3) Consider U = {z2, yz2, xyz, y2, xy2, x2, x2z} and an involutive di-
vision defined by the multiplier sets Yz2 = {x, z}, Yyz2 = {z}, Yxyz = {x, y, z}, Yy2 =
{y, z}, Yxy2 = {y}, Yx2 = {x, y}, Yx2z = {x}.

The set of involutive cones are pairwise disjoint and exhaust lt I , see figure 5. Neverthe-
less, U is not an M-involutive basis since, similarly to the example from figure 3, M is not
admissible on (U, �) for any linear order �.
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Figure 5. “Non-involutive” basis {z2, yz2, xyz, y2, xy2, x2, x2z}.

The reason to exclude such situations is that the order � is essential for the correctness
of the completion algorithm 4 from [1] as well as for the forthcoming Corollary 1 which is
one of the main results of this paper.

3. An upper bound criterion for the depth

In the previous section we recalled the existence of minimalM-involutive bases with respect
to maximal admissible involutive divisions. Now, we will study the properties of such bases
in the case of monomial ideals in view of Conjecture 2. Note, the admissible term order ≺
is of no importance in the monomial case. If the reader likes he may assume an arbitrary ≺
to be fixed.

If some decomposition (2) arising from an involutive basis satisfies Stanley’s Conjecture
then, obviously, there is also a minimal M-involutive basis with respect to a maximal
admissible involutive division M having this property. In the rest of the paper by an M-
involutive basis U of a monomial ideal I we will always mean that U consists of monic
monomials, i.e. elements of T , M is a maximal involutive division admissible on (U, �),
and U is a minimal M-involutive basis of I . Recall, each monomial ideal I possesses a
uniquely determined minimal generating set formed by monic monomials. When the ideal I
is clear from the context we will refer to this set by B. Unless stated differently we consider
only nontrivial ideals I , i.e. 0 ⊂ I ⊂ R. We start with the definition of some notions which
will turn out to be useful during our studies of Stanley’s Conjecture.

Definition 4 Let U be an M-involutive basis of I , u ∈ U , and x an M-nonmultiplier
of u. An element v ∈ U is called a x-witness for u iff v � u, u � v, degx v > degx u and
degy v ≤ degy u for all M-nonmultipliers y �= x of u. If, in addition, degx v = degx u + 1
then v is called a strong x-witness.
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A set W (u) ⊂ U consisting of a (strong) x-witness for u for each M-nonmultiplier x
will be called a (strong) witness set for u.

Example 1 (Part 4) Recall the orderedM-involutive basis (z2, y2z, xyz, x2z, y2, x2 y, x2)
with corresponding multiplier sets Yz2 = {x, y, z}, Yy2z = Yy2 = {x, y} and Yxyz = Yx2z =
Yx2 y = Yx2 = {x} displayed in figure 4.

The variables y and z are the M-nonmultipliers of u = x2. The only z-witness for u is
the monomial z2, however, it is not a strong one.

In contrast, x2z and y2z are no z-witnesses for u since x2z is a multiple of u and y2z has
a larger degree than u in both nonmultipliers.

Furthermore, z2 is a strong z-witness for both u′ = x2z and u′′ = xyz. The monomial
x2z possesses the strong witness set W (x2z) = {xyz, z2}.
Definition 5 Let U be anM-involutive basis of the ideal I . The involutive dimension of U
with respect to M is defined by Idim MU := minu∈U Idim Mu . Moreover, the maximum
Idim I := max{Idim MU | U is M-involutive basis of I } is called the involutive dimension
of I .

Remark 1 For arbitrary graded ideals I we have Idim I ≤ Sdepth I .

Recall some obvious facts on involutive bases. Every M-involutive basis U of I contains
all minimal generators of I . Any element u of an M-involutive basis U of I possesses a
witness set W (u). For the last time let us emphasize our restriction to minimal involutive
bases with respect to maximal admissible involutive divisions, both restriction are of course
essential in the last statement.

Lemma 1 Let U be an M-involutive basis of I . Further, assume there exist u ∈ U and
x ∈ Yu such that Idim Mu = Idim MU and u possesses a strong witness set W (u) satisfying
degx u > degx v for all v ∈ W (u).

Then the M-nonmultipliers of u annihilate a common non-zero element a ∈ I/x I .

Proof: For each M-nonmultiplier y and the corresponding strong y-witness vy ∈ W (u)
of u define ty := lcm (u,vy )

y . By the property of a strong witness it follows that degy ty =
degy vy − 1 = degy u and degz ty = degz u for all M-nonmultipliers z of u.

We will show that a := lcm y∈X \ Yu ty satisfies the assertions of the lemma. a ∈ I is
obvious, it remains to show a /∈ x I and ya ∈ x I for each M-nonmultiplier y of u. By
construction yty = lcm (u, vy) divides ya. According to our assumptions on x we have
xvy | yty and, hence, xvy | ya. This implies ya ∈ x I , i.e. each M-nonmultiplier y of u
annihilates the element a.

Now, assume a ∈ x I , i.e. a
x ∈ I . Since U is an M-involutive basis there exists w ∈ U

such that a
x ∈ Mw = w〈Yw〉. Hence, a

x = ws for some monomial s ∈ 〈Yw〉. By construction
of a we have degx a = degx u and degy a = degy u = degy vy − 1 for all y ∈ X\Yu . Since
a = wxs this implies

degx w < degx a = degx u and (3)

degy w ≤ degy a = degy u = degy vy − 1 for all y ∈ X \ Yu . (4)
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a
u belongs to the monoid 〈Yu〉, i.e. a ∈ Mu , because of (4). Moreover u �= w according to
(3). Consequently, x must be an M-nonmultiplier of w since, otherwise, a ∈ Mw ∩ Mu in
contradiction to the assumption that U is a (minimal)M-involutive basis of I . Nevertheless,
at least we have a ∈ Mu ∩ wT which in view of the properties of M implies u � w and
vy � u � w taking into account also the witness property of vy . Now, if some M-
nonmultiplier y of u would be an M-multiplier of w then we had y a

x ∈ Mw ∩ vy T . This is
again a contradiction since neither w � vy nor Mvy ⊆ Mw are possible.

In conclusion, a ∈ x I would imply Idim Mw ≤ Idim Mu − 1 in contradiction to the
construction of u.

Corollary 1 Let I ⊂ R be a monomial ideal. If there exist an M-involutive basis U of
I , an element u ∈ U of minimal involutive dimension with respect to M, an M-multiplier
x ∈ Yu of u, and a strong witness set W (u) for u such that degx u > degx vy for all
vy ∈ W (u) then it holds depth I ≤ Sdepth I .

Proof: From [7, Theorem 127] we deduce

depth (X R, I ) ≤ depth ((X \ Yu)R + x R, I ) + |Yu \ {x}|
= depth ((X \ Yu)R + x R, I ) + Idim Mu − 1.

Since x is a non-zero-divisor on I and x ∈ Yu we have

depth ((X \ Yu)R + x R, I ) = depth ((X \ Yu)R, I/x I ) + 1.

The ideal (X \ Yu)R does not contain non-zero-divisors on I/x I according to Lemma 1,
consequently, depth ((X \ Yu)R, I/x I ) = 0. Combining these relations and taking into
account Remark 1, finally, yields

depth (X R, I ) ≤ Idim Mu = Idim MU ≤ Idim I ≤ Sdepth I.

In particular, Conjecture 2 holds for any monomial ideal I satisfying the assumptions of
Corollary 1. Let us illustrate the statements of the lemma and its corollary by some examples.

Example 2 Any Borel-fixed monomial ideal I ⊂ K[x1, . . . , xn] possesses an involutive
basis satisfying the assumptions of Corollary 1 and, hence, satisfies Sdepth I ≥ Idim I ≥
depth I .

Let t denote the largest index such that xt divides a minimal generator of I . Using [4,
Theorem 15.23b] it is easy to show that the monomial ideal I possesses a minimal generator
of the form mi = xαi

1 xβi
i , where βi > 0, for each i ∈ {1, . . . , t}.

Now, consider an arbitrary M-involutive basis U of I , where M is admissible for (U, �)
with respect to an order � which is compatible with the pure lexicographical order ≺
extending xn ≺ · · · ≺ x1 and U (for the compatibility notion see Definition 7). Obviously,
{m1, . . . , mt } ⊆ U and mt � mt−1 � · · · � m1. This implies Mm1 ∩ mi T = ∅ for all
i ∈ {2, . . . , t} and, consequently, each xi , i ∈ {2, . . . , t}, must be an M-nonmultiplier of
m1. Hence, Idim MU ≤ Idim Mm1 ≤ n − t + 1. The maximal admissibility of M for
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(U, �) ensures that all variables x j , t < j ≤ n, are M-multipliers for each element of U .
Moreover, x1 ∈ Yu for all u ∈ U according to the forthcoming Lemma 4, condition 1. In
summary we obtain Idim MU = Idim Mm1 = n − t + 1.

Finally, apply Corollary 1 with u = m1 and x = x1 and the first statement of the example
follows.

The above example refers to a well-known classical situation. Conjecture 1 is known to be
true in the particular case n = 1 [13], where decompositions due to [9] or [2] can be used.
It is the nature of Borel-fixed ideals that the identity map can serve as the linear variable
transformation occurring in Rees’ method. So the decomposition obtained for the N-grading
satisfies even the stronger conditions posed by the Nn-grading. We remark, that in general
Rees’ approach requires an infinite field K, but in the particular situation of Borel-fixed
ideals it will work even for arbitrary fields K.

Example 3 Let us consider once more the ideal I = (xyz, x2, y2, z2) ⊂ K[x, y, z] from
Example 1. An involutive basis of I is {z2, y2z, x2 yz, x2z, y2, x2 y, x2, xyz}, where the
elements are in increasing order with respect to � and the involutive division is defined by
the multiplier sets Yz2 = {x, y, z}, Yy2z = Yy2 = {x, y}, Yx2 yz = Yx2z = Yx2 y = Yx2 = {x},
and Yxyz = ∅. Corollary 1 is not applicable to this involutive basis since Idim M(xyz) = 0.

Recall the involutive basis {z2, y2z, xyz, x2z, y2, x2 y, x2} of I discussed in parts 2 and
4 of Example 1. Consider u = x2z and its strong witness set W (x2z) = {xyz, z2}. Since
x2z has larger degree in its M-multiplier x than both witnesses we can apply Corollary 1.
Therefore, depth I = 1 and I = z2K[x, y, z] ⊕ y2zK[x, y] ⊕ y2K[x, y] ⊕ xyzK[x] ⊕
x2zK[x] ⊕ x2 yK[x] ⊕ x2K[x] is a Stanley decomposition.

The decomposition I = z2K[x, z]⊕ yz2K[z]⊕ xyzK[x, y, z]⊕ y2K[y, z]⊕ xy2K[y]⊕
x2K[x, y] ⊕ x2zK[x] illustrated in figure 5 is a Stanley decomposition of I , too. While the
methods developed in this paper do not apply to such decompositions the next two examples
will show their importance in view of Stanley’s Conjecture.

Example 4 Consider the ideal I = (yu, xu, yz, xz) ⊂ K[x, y, z, u]. Based on the reverse
lexicographical order extending u � z � y � x the minimal basis is already an M-
involutive basis, where Yyu = {x, y, z, u}, Yxu = {x, z, u}, Yyz = {x, y, z}, and Yxz = {x, z}
are the sets of multipliers. xz has minimal involutive dimension but neither its degree in x
nor in z is strictly larger than those of both witnesses yz and xu. Note, yu cannot be used
as a witness since it has higher degree in both nonmultipliers of xz. Hence, Corollary 1 is
not applicable. It is easy to see that the minimal basis is the only (minimal) involutive basis
of I . Considering all 24 possible linear orders of the 4 elements we obtain different sets of
multipliers. Each time the minimal involutive dimension is 2 and none of the settings fulfills
the assumptions of Corollary 1. Since depth I = 2 the decomposition I = yuK[x, y, z, u]⊕
xuK[x, z, u] ⊕ yzK[x, y, z] ⊕ xzK[x, z] satisfies Stanley’s conditions. However, also I =
xyzuK[x, y, z, u]⊕ yuK[x, y, u]⊕xuK[x, z, u]⊕ yzK[y, z, u]⊕xzK[x, y, z] is a Stanley
decomposition of I and, hence, Sdepth I = 3 > Idim I = 2.

Note, the different natures of Examples 3 and 4. In both cases involutive bases proved to be
suitable to construct a decomposition satisfying Stanley’s Conjecture. But, while in the first
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example the decomposition comes along with a proof that it is of Stanley’s type this is not
so obvious in the second example. One could say, involutive bases are not optimal but still
sufficient, i.e. depth I ≤ Idim I , in Example 4. The next example will show the existence
of monomial ideals where depth I > Idim I .

Example 5 [10, Remark 3] Consider I = (yvw, xvw, zuw, xuw, yzw, zuv, yuv, xzv,

xyu, xyz) ⊂ K[x, y, z, u, v, w]. For any order � the largest minimal generator of I will
have only three multipliers, namely, the three variables occurring in this generator. Hence no
involutive basis can provide an involutive dimension higher than 3. An involutive basis yield-
ing exactly 3 can be obtained e.g. by adding the elements xuvw, yuvw and zuvw to the min-
imal basis and ordering using the reverse lexicographical order extending w � · · · � x . We
obtain the decomposition I = xyzK[x, y, z] ⊕ xyuK[x, y, z, u] ⊕ xzvK[x, y, z, v] ⊕ yuv

K[x, y, u, v] ⊕ zuvK[x, y, z, u, v]⊕ yzwK[x, y, z, w]⊕xuwK[x, y, u, w]⊕zuwK[x, y,

z, u, w]⊕xvwK[x, z, v, w]⊕yvwK[x, y, z, v, w]⊕xuvwK[x, u, v, w]⊕yuvwK[x, y, u,

v, w] ⊕ zuvwK[x, y, z, u, v, w].
However, depth I = 4 > Idim I = 3. But the decomposition I = xyzK[x, y, z, w] ⊕ xyu

K[x, y, z, u]⊕xzvK[x, y, z, v]⊕ yuvK[x, y, u, v]⊕zuvK[y, z, u, v]⊕ yzwK[y, z, v, w]
⊕ xuwK[x, y, u, w]⊕ zuwK[x, z, u, w]⊕xvwK[x, z, v, w]⊕ yvwK[x, y, v, w]⊕xuvw

K[x, u, v, w] ⊕ yuvwK[y, u, v, w] ⊕ zuvwK[z, u, v, w] ⊕ yzuwK[y, z, u, w] ⊕ xzuv

K[x, z, u, v] ⊕ xzuvwK[x, z, u, v, w] ⊕ xyuvwK[x, y, u, v, w] ⊕ yzuvwK[x, y, z, u, v,

w] illustrates the equality Sdepth I = 4 = depth I and Stanley’s Conjecture holds.

Example 5 shows that there is no hope to prove Stanley’s Conjecture only by means of
involutive bases (in the sense of [1]). However, there are at least some interesting subclasses
of monomial ideals for which the validity of Stanley’s Conjecture follows from Corollary 1.
Such situations will be studied now.

4. Ideals of small depth (depth I ≤ 2)

We will prove Stanley’s Conjecture for monomial ideals of small depth. First of all, we
want to prove that any monomial ideal has an involutive basis such that each basis element
has at least one multiplier. In fact, Example 3 shows that not all involutive bases have this
property but at least for any reverse lexicographical order � this will turn out to be true.

Lemma 2 Let I ⊂ K[X ] be a monomial ideal, � a reverse lexicographical order, and U
an M-involutive basis of I , where M is admissible for (U, �). Then all sets Yu, u ∈ U ,

are non-empty.

Proof: Assume, there exists u ∈ U such that Yu = ∅. By maximality of M there exists a
x-witness vx for u, where x is the maximal element of X (w.r.t. �). The witness property
yields on the one hand degx u < degx vx and degy u ≥ degy vx for all y �= x . But on the
other hand it also requires vx � u, i.e. degz u < degz vx for the smallest variable z ∈ X
(w.r.t. �) for which the degrees of u and vx are different. This implies x = z and u | vx , a
contradiction to the witness property.

Corollary 2 Any monomial ideal I of depth 1 possesses a Stanley decomposition.
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Definition 6 A monomial ideal I is called involutively irreducible if for any involutive
division M and any M-involutive basis U of I the maximal element u of U (w.r.t. the
underlying order � of M) satisfies Idim Mu ≤ Idim I .

Let b ∈ B be a minimal generator of I . For any involutive divisionM and anyM-involutive
basis U of I such that b is the maximal element of the minimal generating set B (and, hence,
also of the full involutive basis U ) with respect to � we have Idim Mb ≤ dim Ab, where Ab

denotes the ideal (B \ {b}) : (b) and dim Ab the Krull-dimension of R/Ab [1, Theorem 3.1].
An immediate consequence is

Idim I ≤ max
b∈B

dim Ab (5)

and equality holds if and only if I is involutively irreducible. Moreover, we have

Idim I ≤ max
b∈B ′

dim A′
b (6)

for each subset B ′ ⊆ B containing at least two elements, where A′
b := (B ′ \ {b}) : (b). This

fact follows easily since the elements of B ′ have to be placed in some relative order by �.

Lemma 3 Any monomial ideal I can be decomposed in a direct sum

I = J ⊕
(

t⊕
i=1

uiK[Yi ]

)
, (7)

where J is an involutively irreducible ideal, t is a non-negative integer, and |Yi | > Idim I
for all i = 1, . . . , t .

Proof: For involutively irreducible I the setting J := I and t := 0 fulfills the assertion.
So assume, that there exists an M-involutive basis U of I such that Idim Mv ≥ Idim I

for all v ∈ U and the inequality is strict for the maximal element u = max� U . Recall that
the maximal element of anyM-involutive basis U of I is always a minimal generator of I . I
can be written as a direct sum (U \ {u})R ⊕ uK[Yu]. If the ideal (U \ {u})R is involutively
irreducible we are done. Otherwise, we proceed to decompose I ′ := (U \ {u})R in the
above way.

There remain two questions. At first we have to show Idim I ′ ≥ Idim I . But this is obvious,
because U \ {u} is an M-involutive basis of I ′ since Mu ∩ vT = ∅ for all v ∈ U \ {u}. At
second we have to show that the process terminates. However, all monomials contained in
an involutive basis of I divide the least common multiple of the minimal generators of I .
Therefore, the number of iterations is bounded by the number of monomials dividing this
least common multiple.

The ideals considered in Examples 3–5 are involutively irreducible.

Example 6 Consider the ideal I ⊂ K[x, y, z, u] generated by the set B = {yx2, y2, xyz2,

u2, xyzu, yz2u}. While inequality (5) yields Idim I ≤ maxb∈B dim Ab = dim Au2 =
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dim(yx2, y2, xyz, yz2) = 3 the better bound Idim I ≤ maxb∈B ′ dim A′
b = dim A′

y2 =
dim(x2, xz2, xzu, z2u) = 2 can be obtained by application of inequality (6) to the subset
B ′ = {yx2, y2, xyz2, xyzu, yz2u}. Hence, I is not involutively irreducible and by the algo-
rithm in the proof of Lemma 3 we get after one step I = (yx2, y2, xyz2, yu2, xyzu, yz2u)⊕
u2K[x, z, u]. Note, that the first summand is not simply the ideal generated by B ′ but that
yu2 had to be added to the generators. The best bound we can get using (5) and (6) for
J = (yx2, y2, xyz2, yu2, xyzu, yz2u) is Idim J ≤ 2

Suppose, Idim J = 2. y2 is the only candidate for the largest (w.r.t. �) element of an
involutive basis of J of involutive dimension 2. In addition, J ′ = (yx2, xy2, uy2, xyz2, yu2,

xyzu, yz2u) has to satisfy Idim J ′ = 2. But, Idim J ′ ≤ 1 by (5), a contradiction.
Therefore, we have Idim I = Idim J = 1 and J is still not involutively irreducible. Fi-

nally, I = (yx2, xy2, uy2, xyz2, yu2, xyzu, yz2u)⊕y2K[y, z]⊕u2K[x, z, u] is a decompo-
sition of type (7).

The importance of reverse lexicographical orders for the theory of involutive bases has
been demonstrated in [1]. But, in view of Lemma 1 reverse lexicographical orders have
a serious drawback. They do not provide any control to put elements of high degree in a
certain variable at the top of an involutive basis. For this purpose we would prefer to use
a pure lexicographical order �. However, if a monoid well-order � of T is applied then
admissible involutive divisions, and hence involutive bases, will not exist in most cases.
We will introduce a special class of linear orders on finite monomial sets which carry the
advantages and avoid the drawbacks of the above two order types.

Definition 7 Let U ⊂ T be a finite set of monomials and ≺ a monoid well-order of T . A
linear order � on U is called compatible with ≺ and U iff it satisfies the following three
conditions

1. u ≺ v ⇐⇒ u � v for all elements u, v ∈ U such that U contains no proper divisor of
either of them,

2. u � v for all proper divisors v ∈ U of u ∈ U ,
3. whenever u � v and v ≺ u holds for two elements u, v ∈ U such that v � u then there

exists w ∈ U such that w | u, w ≺ v, and w � v.

In what follows by using the symbol �x for a linear order on a finite set U ⊂ T we will
indicate that this order is compatible with some pure lexicographical order (always denoted
by ≺x in this context) with largest variable x ∈ X and the set U . Note, according to this
convention the ordered set (V, �x ) is not obtained as the restriction of the ordered set
(U, �x ) for a proper subset V of U . But since the corresponding set will be always clear
from the context we use this short cut symbol for the sake of simplicity.

Lemma 4 Let U be anM-involutive basis of the monomial ideal I , whereM is admissible
on (U, �x ). Then the following three conditions hold:
1. x ∈ Yv for all v ∈ U ,

2. degx u ≤ degx v for all u, v ∈ U such that u �x v,

3. degx u = degx v for all u, v ∈ U such that v | u.
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Proof:

Condition 1. Suppose there exists u ∈ U such that x /∈ Yu and assume that u is minimal
with respect to �x among all monomials of U having this property. By maximality of
the involutive division M there exists a x-witness v ∈ U for u. Hence, v �x u and
degx u < degx v. The properties of �x imply the existence of w ∈ U such that w | v,
w ≺x u, and w �x u. We deduce degx w ≤ degx u < degx v and, therefore, v

x ∈ I . Since
U is an M-involutive basis there exists t ∈ U such that v

x ∈ Mt . We must have x /∈ Yt

since, otherwise, v ∈ Mt in contradiction to the minimality of the M-involutive basis U .
By construction of u this implies u �x t . Consequently, w �x t and v

x ∈ Mt ∩ wT in
contradiction to the admissibility of M on (U, �x ).
Condition 2. Suppose there are monomials u, v ∈ U such that u �x v and degx u > degx v.
By the properties of �x it follows v ≺x u and the existence of w ∈ U such that w divides u
and w ≺x v. We deduce degx w ≤ degx v < degx u and, hence, u

x ∈ I . Consequently, there
exists t ∈ U such that u

x ∈ Mt . We have x ∈ Yt according to 1 and, therefore, u ∈ Mt , a
contradiction to the minimality of the M-involutive basis U .
Condition 3. v | u implies u �x v and, hence, degx u ≤ degx v according to 2. Now, the
assertion follows immediately.

Lemma 5 Let I be an involutively irreducible monomial ideal I ⊂ R of Idim I = 1. If
U is an M-involutive basis of I , where M is admissible on (U, �x ), then the maximal
variable x = max≺x X is the only M-multiplier of the maximal element u = max�x U .
Moreover, for each variable y �= x there exists a y-witness vy for u which is a minimal
generator of I and has a strictly smaller degree in x than u.

Proof: Suppose, degx vy = degx u for all minimal generators vy ∈ B which are a y-
witness for u and consider an arbitrary y-witness vy ∈ B for u which has maximal degree
in y.2 Then no minimal generator v ∈ B \ {vy} can satisfy lcm (vy ,v)

vy
∈ 〈x, y〉. Consequently,

{x, y} is an algebraically independent set for the ideal quotient Avy := (B \ {vy}) : (vy).
Hence, dim Avy ≥ 2 in contradiction to I being involutively irreducible.

Lemma 5 brings us close to Corollary 1. But there is still a gap, namely, we have not proved
yet that there are enough strong witnesses for u.

Lemma 6 Let I ⊂ K[x1, . . . , xn] be an involutively irreducible monomial ideal. Further,
let Idim I = 1 and U an M-involutive basis of I, where M is admissible on (U, �x1 ). Then
U contains an element u whose only M-multiplier is x1 and which for each i ∈ {2, . . . , n}
possesses a strong xi -witness vi satisfying degx1

u > degx1
vi .

Proof: First of all, x1 ∈ Yv for all v ∈ U according to Lemma 4, condition 1. Let u ∈ U
be the minimal (w.r.t. �x1 ) element such that for all i ∈ {2, . . . , n} there exists a xi -witness
vi for u which has the property degx1

u > degx1
vi . In addition, for each i ∈ {2, . . . , n}

let the xi -degree of the witness vi be minimal among all possible choices. According to
Lemma 5 such elements u and vi exist.
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Suppose, k := degxi
vi − degxi

u > 1 for some i ∈ {2, . . . , n} and consider the element
w ∈ U such that uxk−1

i ∈ Mw. From Mw ∩ uT �= ∅we obtainw � u. Further, we deducew � u
and degxi

vi > degxi
w > degxi

u. We must have degx1
w = degx1

u since in case degx1
w <

degx1
u one observes easily that w would be a xi -witness of u which contradicts the choice

of vi . Moreover, v j �x1 w for all j ∈ {2, . . . , n} according to Lemma 4, condition 2.
By admissibility of M we must have Mw ∩ v j T = ∅ for all j = 2, . . . , n. In particular,
no variable x j , j = 2, . . . , n, can be an M-multiplier of w since otherwise, uxk−1

i xl
j ∈

Mw ∩ v j T , where l is the positive integer originating from the equation lcm (u, v j ) = uxl
j .

Since uxk−1
i ∈ Mw requires degx j

u = degx j
w for all M-nonmultipliers x j �= xi of w, we

can deduce that all v j , j = 2, . . . , n, are also x j -witnesses for w in contradiction to the
choice of u.

In conclusion, we proved degxi
vi = degxi

u + 1 for all i ∈ {2, . . . , n} for the chosen u
and vi , i ∈ {2, . . . , n}.

Corollary 3 Any monomial ideal I ⊂ K[X ] of depth I ≥ 2 has at least involutive
dimension 2.

Proof: Assume the contrary, i.e. Idim I = 1 for some ideal of depth at least 2. Decompose
I in a direct sum I = J ⊕ (

⊕t
i=1 uiK[Yi ]) according to Lemma 3 and apply Lemma 6 to

the involutively irreducible part J . This yields an N -involutive basis V of J satisfying the
assumptions of Lemma 1. There is an obvious involutive division M such that the union
U = V ∪ {u1, . . . , ut } becomes an M-involutive basis of the ideal I which satisfies the
assumptions of Lemma 1, too. Hence, by Corollary 1 we deduce depth I ≤ 1 in contradiction
to our assumptions on I .

5. The 3-variate case

Applying our results from the previous section it is now an easy exercise to prove
Conjecture 2 for the first non-trivial case n = 3.

Theorem 1 Let R = K[x1, x2, x3] be a three-variate polynomial ring over a field K. Then
for any non-zero monomial ideal I ⊂ R we have

Sdepth I ≥ Idim I ≥ depth I =: d,

i.e. there exist an involutive division M generated by a family Y = (Yt )t∈T and an M-
involutive basis U of I such that |Yu | ≥ d for all u ∈ U. Moreover, I = ⊕

u∈U uK[Yu] is
a Stanley decomposition of I .

Proof: The only possible values for d are 1, 2 or 3. For d = 1 and d = 2 the assertion
follows from Corollary 2 and Corollary 3, respectively. The case d = 3 is trivial, since I
has to be a principal ideal for which each M-involutive basis is a singleton.

For the most interesting case of monomial ideals I in three variables, i.e. depth I = 2, we
only proved the existence of a “good” involutive decomposition. But since the given proof
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is indirect and not at all constructive, unless we have further a-priori information we are left
with the brute force algorithm which consists in applying Algorithm ([1], figure 4) using
different strategies and orders until an involutive basis of involutive dimension greater or
equal 2 or allowing the application of Corollary 1 is found. At least, termination of this
method is clear since there is only a finite number of involutive bases of I .

6. Generic monomial ideals and more

Definition 8 Let I ⊂ K[X ] be a monomial ideal with minimal generators m1, . . . , ml .
I is called generic if the following condition holds: if two distinct minimal generators mi

and m j have the same positive degree in some variable x ∈ X , there is a third minimal
generator mk which strictly divides lcm (mi , m j ), i.e. degy mk ≤ degy lcm (mi , m j ) for all
y ∈ X and the inequality is strict for all variables y such that degy lcm (mi , m j ) > 0.

Here, we follow the notion of generic monomial ideals due to [8] which refines the original
notion introduced in [3]. Typically, the so-defined generic monomial ideals are far from
being (their own) generic initial ideals [4]. The latter are covered by our Example 2.

Lemma 7 Let U be anM-involutive basis of the monomial ideal I , whereM is admissible
on (U, �x ). Furthermore, assume that I has the following property: for any two distinct
minimal generators mi and m j such that degx mi = degx m j =: d there is a third minimal
generator mk which divides lcm (mi , m j ) and satisfies degx mk < d.

Then the minimal element u ∈ U with respect to �x which satisfies Idim Mu = Idim MU
possesses a strong set of witness W (u) such that degx u > degx vy for all vy ∈ W (u).

Proof: First of all, we will show that for each M-nonmultiplier y of u there exists a
y-witnesses vy for u which has smaller x-degree than u. According to Lemma 4, condition 2
we have degx vy ≤ degx u for all M-nonmultipliers y and all y-witnesses vy for u.

Consider an arbitrary y-witness vy for u and assume degx vy = degx u. Then there
exist minimal generators mi , m j of I such that mi | u and m j | vy . According to Lemma 4,
condition 3 we have degx mi = degx m j = degx vy = degx u =: dx . The assumptions
on I ensure the existence of a minimal generator mk of I which divides lcm (mi , m j )
and satisfies degx mk < dx . From Lemma 4, condition 2 we deduce mk �x u. Moreover,
degz mk ≤ degz lcm (mi , m j ) ≤ degz lcm (u, vy) = degz u for all M-nonmultipliers z �= y
of u. Furthermore, degy u < degy mk since, otherwise, Mu ∩ mk T �= ∅. In summary, we
deduce that mk is a y-witness for u whose x-degree is smaller than that of u.

Hence, for each M-nonmultiplier y of u there exists a y-witness vy for u such that
degx u > degx vy . What remains to show is that there is even a strong one. Let W (u) be a
set of witness for u which for each M-nonmultiplier y of u contains a y-witness vy for u
satisfying degx u > degx vy and having minimal y-degree among all these y-witnesses.

Suppose, r := degy vy − degy u > 1 for some vy ∈ W (u). Let t ∈ 〈Yu〉 be an arbitrary
monomial such that degξ ut ≥ degξ vz for all M-multipliers ξ ∈ Yu of u and all witnesses
vz ∈ W (u) and consider w ∈ U such that utyr−1 ∈ Mw. From Mw ∩ uT �= ∅ we deduce
w �x u. Moreover, degy w > degy u since, otherwise, Mu ∩wT �= ∅. Hence, the case w | u
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is impossible. Next, we will show that the supposition w � u leads to a contradiction as well.
In this case w would be a y-witness for u and, therefore, degx w = degx u by the choice
of vy . Application of Lemma 4, condition 2 yields vz �x w for all M-nonmultipliers z of
u. No M-nonmultiplier z of u can be an M-multiplier of w since, otherwise, we had the
contradiction Mw ∩vz T �= ∅. Therefore, Idim Mw ≤ Idim Mu and w �x u in contradiction
to the construction of u.
In conclusion, we observed degy vy − degy u = 1 for all vy ∈ W (u).

Theorem 2 Let I ⊂ K[X ] be a monomial ideal. Furthermore, assume that for some vari-
able x ∈ X the ideal I has the following property: for any two distinct minimal generators
mi and m j such that degx mi = degx m j =: d there is a third minimal generator mk which
divides lcm (mi , m j ) and satisfies degx mk < d.

Then it holds depth I ≤ Idim I ≤ Sdepth I .

Proof: Immediate consequence of Corollary 1 and Lemma 7.

In particular, the statement of this theorem applies to all generic monomial ideals. Let
us draw the attention to a surprising fact. We never had to assume that U has maximal
involutive dimension. Hence, any ordered M-involutive basis (U, �x ) of a monomial ideal
I which is generic with respect to the variable x ∈ X provides a Stanley decomposition of
I . So, in spite of our purely existential proofs, we are in a very comfortable position when
the algorithmic construction of Stanley decompositions is concerned. We just need to run
Algorithm [1, figure 4] once by ordering the intermediate bases always by an order �x which
is compatible with a reverse lexicographical term order ≺x in the sense of Definition 7.
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11. C.H. Riquir, Les systémes d’equations aux dérivées partielles, Gauthier-Villars, Paris, 1910.
12. R.P. Stanley, “Balanced Cohen-Macaulay complexes,” Trans. Amer. Math. Soc. 249 (1979), 139–157.
13. R.P. Stanley, “Linear Diophantine equations and local cohomology,” Invent. Math. 68 (1982), 175–193.
14. J.M. Thomas, “Riquier’s existence theorems,” Ann. Math. 30(2) (1929), 285–310.


