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Abstract. In 1982 Richard P. Stanley conjectured that any finitely generated Z
n-graded module M over a

finitely generated N
n-graded K-algebra R can be decomposed as a direct sum M = ⊕t

i=1 νi Si of finitely many
free modules νi Si which have to satisfy some additional conditions. Besides homogeneity conditions the most
important restriction is that the Si have to be subalgebras of R of dimension at least depth M .

We will study this conjecture for modules M = R/I , where R is a polynomial ring and I a monomial ideal.
In particular, we will prove that Stanley’s Conjecture holds for the quotient modulo any generic monomial ideal,
the quotient modulo any monomial ideal in at most three variables, and for any cogeneric Cohen-Macaulay ring.
Finally, we will give an outlook to Stanley decompositions of arbitrary graded polynomial modules. In particular,
we obtain a more general result in the 3-variate case.
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1. Introduction

This is the second of two articles studying some aspects of a conjecture formulated by
Richard P. Stanley ([14], 5.1), see also ([1], Conjecture 1). In the context of the special case
studied in this paper Stanley’s Conjecture reads as follows. For the definition of the Stanley
depth Sdepth M of a module M we refer to ([1], Definition 1).

Conjecture 1 ([14]) Let R = K[X ] be a polynomial ring in the variables X = {x1, . . . , xn}
over a field K. Then for any monomial ideal I ⊂ R,

Sdepth R/I ≥ depth R/I . (1)

That is, there exists a finite decomposition (called Stanley decomposition throughout this
paper) of R/I of the following type

R/I =
k⊕

i=1

uiK[Zi ], (2)

where the ui are residue classes of (monic) monomials modulo I , Zi ⊆ X and |Zi | ≥
depth (XR, R/I ) = depth R/I for all i = 1, . . . , k.
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In this paper we will ask for classes of modules M = R/I for which there exist decom-
positions (2) satisfying the condition

|Zi | ≥ min
p∈Ass M

dim R/p. (3)

In the most interesting case of Cohen-Macaulay rings M this condition is equivalent to
condition (1). However, in general, condition (1) is weaker than (3), and it is not surprising
that we will meet ideals, such as in Example 1, where condition (3) fails.

After declaring some notions and notations in Section 2 and deriving a trivial upper
bound on the Stanley depth in Section 3 we prove the inequality Sdepth R/I ≤
Sdepth R/

√
I for arbitrary monomial ideals I (Theorem 1) in Section 4. Theorem 2 in

Section 5 shows that Stanley’s Conjecture holds for R/I whenever I is in a certain sense
‘algebraic shellable’. The strong connection between the described algebraic property and
shellable simplicial complexes becomes apparent in the squarefree case studied in Section 7
(Corollary 4). The application of Theorem 2 to Borel-fixed and one-dimensional quotients,
two cases where the validity of Stanley’s Conjecture is well-known, is demonstrated in
Section 6.

Subsequently, we apply Theorem 2 in order to show that Stanley’s Conjecture holds
for the quotient R/I in the following cases: I is a generic monomial ideal (Section 8), I
is a monomial ideal in at most three variables (Section 9), or I is a cogeneric monomial
Cohen-Macaulay ideal (Section 10).

Finally, we will give an outlook to the general case of arbitrary graded polynomial
modules in Section 11 and generalize our results in the 3-variate case.

2. Notation

First we will introduce some notions and notations used throughout this paper. |A| denotes
the number of elements of a finite set A.

By R we denote the polynomial ring K[x1, . . . , xn] and by T the set of all (monic)
monomials xi1

1 . . . xin
n in 〈x1, . . . , xn〉. supp u = {x j : 1 ≤ j ≤ n, i j > 0} denotes the

support of the monomial u = xi1
1 . . . xin

n ∈ T .
By a minimal monomial t of a set A ⊂ R we will always mean t ∈ A ∩ T and t

x /∈ A for
all x ∈ supp t.

Consider a nonzero monomial ideal I ⊂ R with irredundant primary decomposition
I = q1 ∩ q2 ∩ · · · ∩ qk , that is, q1, . . . , qk are pairwise distinct primary ideals and I �⊆
qi for all i ∈ {1, . . . , k}. Note, frequently the additional assumption that the associated
prime ideals pi of the primary components qi have to be pairwise distinct is subsumed
by the notion irredundant primary decomposition. We neglect this additional assumption
since for monomial ideals it is often much more convenient to work with the (up to the
order of components uniquely determined) irredundant decomposition in irreducible ideals,
i.e. primary ideals generated only by powers of variables. As usual we denote the set of
associated primes of M = R/I by Ass M = {p1, . . . , pk}, where pi belongs to the primary
ideal qi , i ∈ {1, . . . , k}.
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A set of variables Y ⊆ X is called an algebraically independent set of I if and only if
I ∩ K[Y ] = {0}. If, in addition, no set of variables properly containing Y is an independent
set of I then Y is called a maximal algebraically independent set of I . A monomial prime
ideal1 p possesses exactly one maximal algebraically independent set, namely the set
Y = {x ∈ X | x /∈ p}. Any p-primary ideal q has the same uniquely determined max-
imal algebraically independent set Y as p, |Y | is called the (Krull-)dimension of R/p and
denoted by dim R/p. Throughout this paper the notation Yi will always refer to the maxi-
mal algebraically independent set of the associated prime pi corresponding to the primary
component qi of I , 1 ≤ i ≤ k. A set Y is algebraically independent for I if and only
if it is algebraically independent for some associated prime ideal of M and it is maxi-
mal algebraically independent for I if and only if it is maximal algebraically independent
for some minimal associated prime ideal of M . Accordingly, the dimension of M is de-
fined by dim M = maxpi ∈Ass M dim R/pi . In this paper we will need to refer frequently to
minpi ∈Ass M dim R/pi which is an upper bound for the depth of M , c.f. [6, 15]. An ideal
I satisfying dim M = minpi ∈Ass M dim R/pi is called pure dimensional or simply pure.
Cohen-Macaulay rings M are defined by the condition dim M = depth M in which case
we call I a Cohen-Macaulay ideal. From the previous observations it follows immediately
that any Cohen-Macaulay ideal is pure.

Finally, we will need the notions of generic and cogeneric monomial ideals introduced
by Bayer et al. [3] and refined by Miller et al. [9]. A monomial ideal I is called generic
if for any two distinct minimal generators m and m ′ which have the same degree in some
variable x ∈ X , there is a third minimal generator m ′′ which strictly divides lcm(m, m ′),
i.e. supp lcm(m, m′) = supp lcm(m,m′)

m′′ .
Generic monomial ideals I allow a simple characterization for R/I being a Cohen-

Macaulay ring, which is the case if and only if I is pure dimensional if and only if I has
no embedded primary components [9, Theorem 2.5]. If I is generic and p is an arbitrary
monomial prime ideal then the ideal I(p) obtained by localization of I at p is generic, too
[9, Remark 2.1].

A monomial ideal I is called cogeneric if whenever two distinct irreducible components qi

and q j of I have a minimal generator in common then there exists an irreducible component
qm of I which is contained in the ideal sum qi +q j and has no minimal generator in common
with this sum. Various characterizations of cogeneric Cohen-Macaulay monomial ideals
were given in [9, Theorem 4.9]. In this paper we will make use of one of them, which after
a mild reformulation says:

Lemma 1 ([9], Theorem 4.9c) A cogeneric monomial ideal I with irredundant decom-
position I = q1 ∩ q2 ∩ · · · ∩ qk into irreducible components is Cohen-Macaulay iff I is
pure dimensional and for any irreducible components qi and q j such that codim(pi + pj) >

codim I + 1 there exists an irreducible component ql of I satisfying l �∈ {i, j} and ql ⊂
qi + q j .

It is easy to observe that we have the following analogue to the generic case. If I is cogeneric
and p is an arbitrary monomial prime ideal then the ideal I(p) obtained by localization of I
at p is cogeneric, too.
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3. An upper bound for the Stanley depth

Let m1, . . . , ml denote the minimal generators of I . We introduce the notion S = {u ∈
T | ∀i ∈ {1, . . . , l} : mi � u} for the set of all standard monomials modulo I . The residue
classes of S modulo I form a K-vector space basis of M . In the following we will freely
identify M and span

K
S. Decomposition (2) has to satisfy uiv ∈ S for all monic monomials

v ∈ K[Zi ], i = 1, . . . , k. In particular, for arbitrary i ∈ {1, . . . , k} and w ∈ uiK[Zi ] the set
Zi has to be algebraically independent for the ideal quotient I : (w) and, consequently,

Sdepth M ≤ min
w∈S

dim R/(I : (w)) = min
pi ∈Ass M

dim R/pi (4)

which shows that depth M and Sdepth M share the upper bound on the right hand side. Let
us start with a simple example illustrating that the above inequality can be strict.

Example 1 Consider the ideal I = (xz, yz, xu, yu) = (x, y) ∩ (z, u) ⊂ R = K[x, y, z, u].
There are two possibilities for two-dimensional subalgebras of R which can appear in a
direct summand containing the monomial 1, namely either K[z, u] or K[x, y]. Choosing
K[z, u] there will be no way to find two-dimensional subalgebras for the direct summands
containing the standard monomials x and y. Avoiding this problem by choosing K[x, y]
will only shift the problem to the standard monomials z and u. Hence, Sdepth R/I ≤
1 < minpi ∈Ass M dim R/pi = 2. In fact, we have equality at the very left because R/I =
K[x, y] ⊕ zK[z, u] ⊕ uK[u] is an example for a decomposition of type (2). Moreover, this
is already a Stanley decomposition since depth R/I = 1.

From

I : (u) =
k⋂

i=1

(qi : (u)) and qi : (u) =




qi : if u /∈ pi

q′
i : if u ∈ pi\qi

R: if u ∈ qi

,

where q′
i is a pi -primary ideal properly containing qi , we deduce that the maximal alge-

braically independent sets of I : (u) are exactly the maximal algebraically independent sets
Yi of the associated primes pi ∈ Ass R/I which satisfy u ∈ (

⋂
p j ⊂pi

q j )\qi .
Now, we can describe the problem we met in Example 1 as follows. Let I be a pure

dimensional monomial ideal with irredundant decomposition I = q1 ∩ q2 in maximal
primary ideals. Assume, there are two elements v, w ∈ q1\q2 and two elements v′, w′ ∈
q2\q1 such that gcd(v, w) = gcd(v′, w′) =: m. Then it follows m /∈ q1 ∪ q2. We will
show that under certain conditions we have Sdepth R/I < dim R/I . Recall, our notation
Yi for the maximal algebraically independent set of qi , i = 1, 2. In the case lcm(v,w)

gcd(v,w) ∈
〈Y2〉 it will follow vK[Y2] ∩ wK[Y2] �= {0}. Hence, in case Sdepth R/I = dim R/I the
Stanley decomposition must contain a direct summand uK[Y2] containing both v and w

and, therefore, also m. Now suppose, we have also lcm(v′,w′)
gcd(v′,w′) ∈ 〈Y1〉. Then application of

the same arguments shows that the Stanley decomposition must contain a second direct
summand u′K[Y1] containing v′, w′ and m. Obviously, this is impossible simultaneously.

In some sense this is the typical scenario for monomial ideals I with the property
Sdepth R/I < minpi ∈Ass M dim R/pi . This behavior is always caused by contradicting
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requirements posed by a set of standard monomials modulo I to the direct summand which
should contain their greatest common divisor.

4. Stanley depth of the radical

We will study the relationship between the Stanley depth of the residue class ring modulo
an arbitrary monomial ideal and the residue class ring modulo its radical. Although our
subsequent studies do not rely on the following theorem we decided to include it in the
paper since it seems to be an interesting result on its own.

Theorem 1 Let I ⊂ R be a monomial ideal and M = R/I . Furthermore, let
√

I =⋂
p∈Ass M p be the radical of I and M̃ = R/

√
I . Then Sdepth M ≤ Sdepth M̃.

Proof: Let S denote the set of standard monomials modulo I and S̃ the set of stan-
dard monomials modulo

√
I . Recall the identifications M = span

K
S and M̃ = span

K
S̃.

Consider an arbitrary Stanley decomposition M = ⊕m
i=1 tiK[Wi ] of M . For each mono-

mial u ∈ M̃ we define Zu := Wi , where i ∈ {1, . . . , m} is the uniquely determined
index such that uν ∈ tiK[Wi ] for all sufficiently large integers ν. Note, supp u ⊆ Zu for
the so-defined sets Zu and, therefore, M̃ ⊇ ∑

u∈M̃ uK[Zu]. The other inclusion holds by
construction.

Finally, we have to show that any two summands uK[Zu] and vK[Zv] either intersect
trivially or are contained in the summand gcd(u, v)K[Zgcd(u,v)]. By construction there exist
uniquely determined i, j ∈ {1, . . . , m} such that ur ∈ tiK[Wi ] and vs ∈ t jK[W j ] for large
enough exponents r and s. Moreover, Zu = Wi and Zv = W j . Since the summands originate
from a Stanley decomposition either we have i = j or t jK[W j ] ∩ tiK[Wi ] = {0}. In the
latter case it follows vsK[Zv] ∩ ur K[Zu] = {0} and, hence, vK[Zv] ∩ uK[Zu] = {0}. In
the remaining case i = j we have ur , vs ∈ tiK[Wi ] for all sufficiently large integers r and
s. Hence, also gcd(u, v)r = gcd(ur , vr ) ∈ tiK[Wi ] for all sufficiently large exponents r . By
construction Zgcd(u,v) = Wi and, consequently, uK[Zu] + vK[Zv] ⊆ gcd(u, v)K[Zgcd(u,v)].
In conclusion, removing all redundant summands leads to a decomposition M̃ = ⊕l

i=1
viK[Zvi ] which proves Sdepth M̃ ≥ minl

i=1 |Zvi | ≥ Sdepth M . �

Of course, there are ideals I for which the inequality is proper. For instance, equality
can never hold in the case that I has embedded components and Sdepth M̃ = dim M̃ .
The following example illustrates that we need not to have equality even in the pure
case.

Example 2 Consider the monomial ideal I = (x2
1 , x2

2 , x3) ∩ (x2, x3, x4) ∩ (x3, x2
4 , x5) =

(x3, x2
2 x5, x2

2 x2
4 , x2

1 x4x5, x2
1 x2

4 , x2
1 x2x5) and its radical

√
I = (x1, x2, x3) ∩ (x2, x3, x4) ∩

(x3, x4, x5). Application of Corollary 4 (see page 65) gives M̃ = K[x4, x5]⊕ x1K[x1, x5]⊕
x2K[x1, x2]. However, Sdepth M < 2 since there is an unresolvable conflict between the
elements x2

1 x4 and x2
2 x4 on the one hand side and the elements x2

4 and x4x5 on the other hand
side. While the first two elements require a direct summand containing x4K[x1, x2] the other
require x4K[x4, x5], a contradiction. A Stanley decomposition of M is M = K[x4, x5]⊕
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x1K[x1, x5] ⊕ x2K[x1, x2] ⊕ x1x4K[x4, x5] ⊕ x2x4K[x4, x5] ⊕ x2x5K[x5]⊕x1x2x4K[x4,x5]
⊕ x1x2x5K[x5] ⊕ x2

1 x4K[x1, x2] ⊕ x2
2 x4K[x2] ⊕ x1x2

2 x4K[x2].

The next example demonstrates a situation where the Stanley dimensions of M and M̃
coincide.

Example 3 Let us consider the generic monomial Cohen-Macaulay ideal I = (x, y3z2u)
⊂ K[x, y, z, u]. I has the irredundant decomposition in irreducible components I =
(x, y3)∩(x, z2)∩(x, u) and M = K[z, u]⊕yK[z, u]⊕y2K[z, u]⊕y3K[y, u]⊕y3zK[y, u] ⊕
y3z2K[y, z] is a Stanley decomposition of M = R/I according to Theorem 2. Application of
the proof of Theorem 1 yields the decomposition M̃ = K[z, u] ⊕ yK[y, u] ⊕ yzK[y, z] of
the quotient modulo the radical

√
I = (x, yzu) = (x, y) ∩ (x, z) ∩ (x, u). Since the Stanley

dimension of M̃ cannot exceed the dimension of M̃ this is already a Stanley decomposition.
In this example we can go also in the opposite direction, i.e. we can complete the above

Stanley decomposition of M̃ to a Stanley decomposition M = K[z, u] ⊕ yK[y, u] ⊕
yzK[y, z] ⊕ yzuK[z, u] ⊕ y2zuK[z, u] of M .

Let us discuss the usefulness and the limits of the methods applied in the proof of Theorem 1.
Given a Stanley decomposition of M we can decompose M̃ and we have some guaranteed
quality of the resulting decomposition, i.e. it is not worse than that of M . However if
Sdepth M < Sdepth M̃ then we will not obtain a Stanley decomposition of M̃ , in general.
For instance, replacing the first direct summand in the Stanley decomposition of M in
Example 2 according to K[x4, x5] = K[x4] ⊕ x5K[x5] ⊕ x4x5K[x4, x5] will maintain the
Stanley decomposition property for M but lifting the new decomposition to a decomposition
of M̃ will not provide a Stanley decomposition anymore. This is of course not surprising
but what one really would like to have is the opposite construction which could be applied
successfully in both Examples 2 and 3, namely to complete a given Stanley decomposition
of M̃ to a Stanley decomposition of M by adding some direct summands. There seems to
be a good chance that this is always possible. However, this question remains open.

5. Main theorem

In this section we will prove a statement which will turn out to be fundamental for the
verification of Stanley’s Conjecture for large classes of monomial quotient rings in the
subsequent sections.

Theorem 2 Let I be a monomial ideal with irredundant primary decomposition I =
q1 ∩ · · · ∩ qk . For i = 1, . . . , k let pi denote the associated prime ideal and Yi the maximal
independent variable set of qi . Further, let J1 := R and Ji+1 := q1 ∩ · · · ∩ qi for i ∈
{1, . . . , k − 1}. Finally, for each i ∈ {1, . . . , k} define Ti to be the set of all monomials
t ∈ Ji\qi such that t

x /∈ Ji for all variables x ∈ (supp t) ∩ Yi.
If any two distinct monomials belonging to the same set Ti differ in the degree of at least

one variable x ∈ pi , i ∈ {1, . . . , k}, then it holds Sdepth M = minpi ∈Ass M dim R/pi and
M = ⊕k

i=1

⊕
t∈Ti

tK[Yi ] is a Stanley decomposition of M.
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Proof: The inclusion M ⊇ ∑k
i=1

∑
t∈Ti

tK[Yi ] follows immediately from tK[Yi ] ∩ qi =
{0} for all t ∈ Ti . Now, let s be a standard monomial modulo I and i ∈ {1, . . . , k − 1} be
the uniquely determined integer such that s ∈ Ji\Ji+1. Then there exists t ∈ Ti such that
s ∈ tK[Yi ]. This proves also the other inclusion M ⊆ ∑k

i=1

∑
t∈Ti

tK[Yi ].
It remains to show that all sums are direct. Each inner sum is direct since any two distinct

monomials t, t ′ ∈ Ti , i ∈ {1, . . . , k}, differ in the degree of at least one variable x ∈ pi and,
consequently, we have even either tK[Yi ] ∩ t ′K[X ] = {0} or tK[X ] ∩ t ′K[Yi ] = {0}.

Next, consider two monomials t ∈ Ti , t ′ ∈ Tj for distinct integers i, j ∈ {1, . . . , k}.
W.l.o.g. assume i < j . Then by construction t ′ ∈ qi and tK[Yi ] ∩ qi = {0}. This implies
t ′K[Y j ] ⊆ qi and, hence, tK[Yi ] ∩ t ′K[Y j ] = {0} proving that also the outer sum is direct.

In conclusion, Sdepth M ≥ minpi ∈Ass M dim R/pi which has to be equality in view of
inequality (4). �

Corollary 1 Let I ⊂ R be a monomial ideal which possesses an irredundant primary
decomposition I = q1 ∩ · · · ∩ qk such that, for all i = 2, . . . , k, qi contains all but one of
the minimal generators of the monomial ideal Ji := q1 ∩ · · · ∩ qi−1.

Then Sdepth M = minpi ∈Ass M dim R/pi , where M = R/I . Moreover, a Stanley decom-
position of M can be obtained by removing all redundant summands from the inner sums
of

M =
k⊕

i=1

∑
t∈Ji \qi

tK[Yi ], (5)

where J1 := R.

Proof: Consider t, t ′ ∈ Ji\qi , i ∈ {1, . . . , k}, such that t
x /∈ Ji for all x ∈ (supp t)∩Yi and

t ′
x /∈ Ji for all x ∈ (supp t′) ∩ Yi. Let ti denote the uniquely determined minimal generator of
Ji which is not contained in qi . Then we have ti | gcd(t, t ′) and degx ti = degx t = degx t ′

for all variables x ∈ Yi . Hence, either t = t ′ or degy t �= degy t ′ for at least one variable
y ∈ pi .

Now, apply Theorem 2 and the assertion will follow. �

Example 4 Consider the generic monomial Cohen-Macaulay ideal I = (x2, y2z2, yzw,

w2) = (x2, y, w2) ∩ (x2, z, w2) ∩ (x2, y2, w) ∩ (x2, z2, w) of R = K[x, y, z, w].
With the notation of Corollary 1 the monomials t1 = 1, t2 = y, t3 = yz, t4 = y2z are the

unique minimal generators of Ji which do not belong to qi , i = 1, 2, 3, 4.
Hence, M = K[z] ⊕ yK[y] ⊕ yzK[z] ⊕ y2zK[y] ⊕ xK[z] ⊕ wK[z] ⊕ xwK[z] ⊕

ywK[y] ⊕ xyK[y] ⊕ xywK[y] ⊕ xyzK[z] ⊕ xy2zK[y] is a Stanley decomposition of
M = R/I .

However, the corollary will not be applicable to the irredundant decomposition I =
(x2, y2, w2, yw) ∩ (x2, z2, w2, zw) in maximal primary ideals.

The above example demonstrates that it is sometimes better to work with irreducible rather
than with maximal primary ideals and this will become even more apparent in the next
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sections. However, it should be mentioned that there are also situations where the use
of maximal primary ideals is preferable. Consider, for instance, the simple case that I
is a primary ideal. While application of Corollary 1 to the primary decomposition I = q

immediately yield Sdepth R/I = dim R/I and a Stanley decomposition of R/I it may happen
that no permutation of the irreducible components of I allows the application of Theorem 2,
a simple example showing this behavior is I = (x2, y2, z, u) ∩ (x, y, z2, u2).

6. Borel-fixed and one-dimensional quotients

Next, we will show how Theorem 2 can be applied in order to confirm Stanley’s conjecture
in two particular cases where the validity is well-known.

Corollary 2 Stanley’s Conjecture holds for all modules M = R/I, where I is a Borel-fixed
ideal.

Proof: If the irreducible components q1, . . . , qk of I are enumerated according to decreas-
ing dimension of R/qi then for any l ∈ {2, . . . , k} we have the inclusion p1 ∪ · · · ∪ pl−1 ⊆ pl

for the associated prime ideals according to [6, Corollary 15.25]. Hence, we can apply
Theorem 2. �

This reflects the well-known fact that Stanley’s Conjecture holds for Z-graded R-modules
M over N-graded K-algebras R and, hence, also for Zν-graded modules M = R/I over
Nν-graded K-algebras R when I is in generic coordinates. Under the additional assumption
of an infinite field K such a decomposition was given by [10]. For arbitrary K a suitable
decomposition is due to [2]. For an algorithmic construction of such decompositions we
refer to [16].

Corollary 3 Let I ⊂ R be a monomial ideal and M = R/I . If dim M ≤ 1 then
Sdepth M = minp∈Ass M dim R/p.

Proof: Let I = q1 ∩ · · · ∩ qk be an irredundant decomposition in irreducible components
and consider an arbitrary fixed l ∈ {2, . . . , k}. Since dim R/ql ≤ dim R/I ≤ 1 any two
monomials of (q1 ∩ · · · ∩ ql−1) \ql which coincide in the degree of all variables belonging
to pl can differ only in the degree of at most one variable. Therefore, one is a multiple of
the other. Now, the assertion follows from Theorem 2. �

7. Quotients modulo squarefree monomial ideals

Let us consider the particular case of squarefree monomial ideals I in a little more detail.
Then all primary components qi , i = 1, . . . , k, of I are even prime, i.e. qi = pi , and I has
no embedded components. Equation (5) of Corollary 1 can be simplified in the squarefree
case and one easily observes:
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Corollary 4 Let I ⊂ R be a squarefree monomial ideal. If the associated primes of the
module M = R/I can be ordered in such a way that for each i = 2, . . . , k the set p1 ∩ · · ·∩
pi−1\pi contains exactly one minimal monomial ti then Sdepth M = minpi ∈Ass M dim R/pi .
Moreover, setting t1 = 1 we obtain the Stanley decomposition

M =
k⊕

i=1

tiK[Yi ]. (6)

The next example illustrates that, in general, a suitable order of primary components need
not exist.

Example 5 ([11], Remark 3) Consider Reisner’s example I = (x1x2x3, x1x2x4, x1x3x5,

x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6) ⊂ K[x1, x2, x3, x4, x5, x6] of a
monomial ideal which is Cohen-Macaulay if and only if the characteristic of K is not 2.
Localization at the prime ideal p = (x1, x2, x3, x4, x5) yields I(p) = (x1x4, x1x5, x2x3, x2x5,

x3x4). The associated primes of the module M(p) = R(p)/I(p) are p1 = (x1, x2, x3), p2 = (x1,

x2, x4), p3 = (x1, x3, x5), p4 = (x2, x4, x5), p5 = (x3, x4, x5). Application of Corollary 4
yields M(p) = K[x4, x5] ⊕ x3K[x3, x5] ⊕ x2K[x2, x4] ⊕ x1K[x1, x3] ⊕ x1x2K[x1, x2].

Now, we ask for a Stanley decomposition of the quotient M = R/I . Since no confusion is
possible we will denote the associated prime ideal pi ∩ R, i = 1, . . . , 5, by the same symbol
pi . The missing associated primes of I containing x6 are p6 = (x1, x4, x6), p7 = (x1, x5, x6),
p8 = (x2, x3, x6), p9 = (x2, x5, x6), and p10 = (x3, x4, x6). One easily observes that the
sequence p1, p2, p3, p4, p5 cannot be extended by appending one of the primes p6, . . . , p10

towards a sequence allowing the application of Corollary 4. Moreover, we checked using a
computer program that the corollary is not applicable to the intersection of any more than
5 associated prime ideals of M .

Nevertheless, it holds Sdepth M = dim M since M = K[x4, x5, x6] ⊕ x3K[x3, x5, x6] ⊕
x2K[x2, x3, x5] ⊕ x1K[x1, x3, x6] ⊕ x1x2K[x1, x2, x5] ⊕ x1x4K[x1, x3, x4] ⊕ x1x5K[x1, x4,

x5]⊕ x2x4K[x2, x4, x6]⊕ x2x6K[x1, x2, x6]⊕ x3x4K[x2, x3, x4] is a Stanley decomposition
of M .

There is a strong relationship between Corollary 4 and shellable nonpure simplicial com-
plexes in the sense of [5]. In fact, our assumptions turn out to be an algebraic translation
of Björner’s and Wachs’ notion in terms of the corresponding Stanley-Reisner ring. Our
decompositions are directly related to Formula 2.2 of [5] rather than to the decompositions
of Stanley-Reisner rings investigated in Section 12 of the second part of their studies. In
the pure case the connection can be found also in [14], where it is shown that shellabil-
ity of the Stanley-Reisner complex implies the Cohen-Macaulay property of the Stanley-
Reisner ring independent on the field characteristic. Therefore, the attempt to treat Reisner’s
Example 5 by Corollary 4 must have failed. Note, that there is also an algebraic counterpart
to partitionable complexes [14] which could be applied successfully to the computation
of the Stanley decomposition in Example 5. The interested reader might wish to consult
Proposition 2 or its nonsquarefree generalization Theorem 2 in (MSRI Preprint 2001-009)
for details.
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Corollary 4 provides a Stanley decomposition whose summands are in bijection with the
associated primes of I . The following proposition shows that in case of pure dimensional
squarefree ideals I every Stanley decomposition of R/I has this nice structure.

Proposition 1 Let I ⊂ R = K[X ] be a pure squarefree monomial ideal such that Sdepth
M = dim M, where M = R/I . Then the direct summands of an arbitrary Stanley decompo-
sition are in a natural bijection with the associated primes p1, . . . , pk of M, more precisely,
each Stanley decomposition of M has the form

M =
k⊕

i=1

tiK[Yi ]. (7)

Proof: Consider an arbitrary Stanley decomposition

M =
m⊕

i=1

siK[Zi ].

From Sdepth M = dim M we deduce |Zi | ≥ dim M and, therefore, Zi ∈ {Y1, . . . , Yk} for
all i = 1, . . . , m. Let 1 ≤ j ≤ k and consider a monomial t ∈ M which belongs to all
but the j-th associated prime of M . Furthermore, let i be such that t ∈ siK[Zi ]. Then we
must have Zi = Y j since, otherwise, siK[Zi ] ∩ I ⊇ tK[Zi ] ∩ I �= {0}. Hence, for each
associated prime p j the Stanley decomposition contains at least one direct summand such
that Zi = Y j .

Now, consider two direct summands siK[Zi ] and slK[Zl] satisfying Zi = Zl = Y j

for some j ∈ {1, . . . , k}. It follows supp si ⊆ Yj and supp sl ⊆ Yj since, otherwise,
(siK[Zi ] + slK[Zl]) ∩ I �= {0}. Hence lcm(si , sl) ∈ siK[Zi ] ∩ slK[Zl], which implies
i = l because the sum is direct. �

In the nonpure squarefree case the number of summands of a Stanley decomposition may
exceed the number of prime components even in case Sdepth R/I = min

p∈Ass R/I dim R/p

as the following simple example shows.

Example 6 Two Stanley decompositions of M = R/I , where I = (x, y) ∩ (y, z, u) ⊂
K[x, y, z, u], are M = K[z, u] ⊕ xK[x] and M = K[z] ⊕ uK[u] ⊕ zuK[z, u] ⊕ xK[x].

8. Quotients modulo generic monomial ideals

The central result of this section consists of the following theorem.

Theorem 3 Let I ⊂ R be a generic monomial ideal and M = R/I . Then Sdepth M =
minp∈Ass M dim R/p.

Before, we are able to prove the theorem we need to show some preliminary facts.
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Remark 1 Let I ⊂ K[x1, . . . , xn] be a monomial ideal and m1, . . . , ml its minimal
generators ordered in such a way that degx1

mi ≤ degx1
mi+1 for all i ∈ {1, . . . , l − 1}.

Furthermore, let r ∈ {1, . . . , l} be such that degx1
mr−1 < degx1

mr and set d := degx1
mr .

Then the overideal Id ⊇ I generated by {xd
1 , m1|x1=1, . . . , mr−1|x1=1}, where mi |x1=1 is

obtained from mi by setting x1 = 1 (1 ≤ i < r ), has the following properties:

1. if I is generic, then so is Id ,
2. each irreducible component of I which has xd

1 as a minimal generator is also an irre-
ducible component of Id ,

3. xd
1 is a minimal generator of each irreducible component of Id .

The given generating set of Id need not be minimal, nevertheless, the first and the third
property are obvious. The second property follows immediately by repeated application of
the well-known formula

(ts)R + J = (tR + J ) ∩ (sR + J ), (8)

which is valid for arbitrary monomial ideals J and arbitrary monomials t and s such that
gcd(t, s) = 1. The statement of the remark extends to the ideal I∞ := (m1|x1=1, . . . ,

ml |x1=1). In this case the second condition has to be understood as: each irreducible com-
ponent of I whose associated prime ideal does not contain x1 is an irreducible component
of I∞. The third condition reads as x1 /∈ p for all associated primes of R/I∞. Obviously,
I∞ can be identified with I(x2,...,xn ), the localization of I at the prime ideal (x2, . . . , xn), in
a natural way. In this sense Remark 1 generalizes Remark 2.1 from [9].

In the following we will frequently need a certain order between irreducible ideals. We
will say that the irreducible ideal q is lexicographically smaller than the irreducible ideal q′

(notation q ≺ q′) if there exists i ∈ {1, . . . , n} such that {xa
j | 1 ≤ j < i, a ≥ 0} ∩ q =

{xa
j | 1 ≤ j < i, a ≥ 0} ∩ q′ and xb

i ∈ q\q′ for a suitable nonnegative integer b.

Lemma 2 Let the monomial ideal I ⊂ K[x1, . . . , xn] be generic with irredundant de-
composition I = q1 ∩ · · · ∩ qk in irreducible components, where qk ≺ qk−1 ≺ · · · ≺ q1.
Furthermore, let d be a positive integer such that xd

1 /∈ I but xd
1 is a minimal generator

for some irreducible component of I, and let l ∈ {2, . . . , k} be minimal satisfying xd
1 ∈ ql .

Define Ĩ := ⋂l−1
i=1 qi as the intersection of all irreducible components which do not contain

xd
1 . Then the set Ĩ\q, where q is an arbitrary irreducible component of I having xd

1 as a
minimal generator, contains exactly one minimal monomial t . Moreover, xd

1 t is a minimal
generator of I .

Proof: Recall by construction q = ql is one possible choice, but there may be others.
Consider two minimal monomials t and t ′ of Ĩ\q. By construction it follows immediately

τ, τ ′ ∈ I , where τ := lcm(xd
1 , t) = xd

1 t and τ ′ := lcm(xd
1 , t ′) = xd

1 t ′. Let m and m ′ be
minimal generators of I such that m | τ and m ′ | τ ′. Since τ

x1
, τ ′

x1
/∈ q we have degx1

m =
degx1

m ′ = d . By minimality of t and t ′ it follows τ
xi

/∈ I for all xi ∈ supp t and τ ′
xi

/∈ I for
all xi ∈ supp t′. Hence, τ = m and τ ′ = m ′.
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If m = m ′ then it will follow also t = t ′ since two minimal monomials of Ĩ\q cannot
differ only in the degree of x1. So let us assume m �= m ′. Then by genericity of I there
exists a minimal generator m ′′ of I which satisfies degxi

m ′′ < max(degxi
m, degxi

m ′) for
all xi ∈ supp m′′. Hence, degx1

m ′′ < d and, consequently, m ′′|x1=1 ∈ q. But since m ′′ divides
lcm(τ, τ ′) we have also that m ′′|x1=1 divides lcm(t, t ′). This implies lcm(t, t ′) ∈ q and since
q is irreducible we must have t ∈ q or t ′ ∈ q, a contradiction.

In summary, we observed that Ĩ\q contains exactly one minimal monomial t and that
xd

1 t is a minimal generator of I . �

Proposition 2 Let I be a generic monomial ideal and I = q1 ∩ · · · ∩ qk its irredundant
decomposition into irreducible components, where qk ≺ qk−1 ≺ · · · ≺ q1. Then for each
l ∈ {2, . . . , k} the set (q1 ∩ · · · ∩ ql−1) \ql contains exactly one minimal monomial.

Proof: We proceed by induction on the number of variables n. The initial case n = 1 is
trivial. So let us assume that the statement holds for (n − 1) variables. In particular, the
statement holds for the localization I∞ and for each ideal Id introduced in Remark 1, in the
latter case just consider the quotient Id/(x1) and lift the result.

Fix an arbitrary l ∈ {2, . . . , k} and consider the set D = (q1 ∩ · · · ∩ ql−1)\ql . If x1 /∈ pl

then the assertion follows immediately by the corresponding property of I∞. So, consider
the case that xd

1 is a minimal generator of ql for some positive integer d. If xd
1 /∈ ql−1 the

assertion follows from Lemma 2. So, finally, it remains to consider the case xd
1 ∈ ql−1. Let

r ∈ {1, . . . , l − 1} be the minimal index such that xd
1 ∈ qr . If r = 1 then the assertion

follows immediately by the corresponding property of Id . Suppose, 1 < r < l. Then it
follows the existence of a uniquely determined minimal monomial t ∈ (q1 ∩ · · · ∩ qr−1)\ql

from Lemma 2. According to Remark 1 Id has the form Id = Ĩ ∩ qr ∩ · · · ∩ ql ′ , where
l ′ ∈ {l, . . . , k} is the maximal index such that xd−1

1 /∈ ql ′ and Ĩ is a certain monomial
overideal of q1 ∩ · · · ∩ qr−1 with the property that xd

1 is a minimal generator for all its
irreducible components. Applying the induction assumption to Id it follows the existence
of a uniquely determined minimal monomial s ∈ ( Ĩ ∩ qr ∩ · · · ∩ ql−1)\ql . Since q1 ∩ · · · ∩
qr−1 ∩ ( Ĩ ∩ qr ∩ · · · ∩ ql−1) = q1 ∩ · · · ∩ ql−1 any element of D must be a multiple of
lcm(t, s). The simple observation lcm(t, s) ∈ D finishes the proof. �

Proof of Theorem 3: The assertion is an immediate consequence of Proposition 2 and
Corollary 1. �

9. The 3-variate case

Another class of modules M = R/I for which the validity of Stanley’s Conjecture can
be proved using Theorem 2 are the quotients modulo monomials ideals in at most three
variables.

Proposition 3 Let I ⊂ R = K[x1, x2, x3] be a monomial ideal with irredundant de-
composition I = q1 ∩ · · · ∩ qk into irreducible components, where dim R/qi ≥ dim R/q j

for all integers i and j such that 1 ≤ i < j ≤ k. For all l ∈ {2, . . . , k} set Dl :=



ON A CONJECTURE OF R.P. STANLEY; PART II 69

(q1 ∩ · · · ∩ ql−1) \ql and define Tl := {t ∈ Dl : t is a monomial and ∀x ∈ supp t\pl : t
x /∈

Dl}.
Then for any l ∈ {2, . . . , k} and any t, t ′ ∈ Tl either it holds t = t ′ or there exists x ∈ pl

such that degx t �= degx t ′.

Proof: Assume, there exists an ideal I = q1 ∩ · · · ∩ qk ∈ K[x1, x2, x3] which violates the
assertion. Let l ∈ {2, . . . , k} be minimal such that Tl contains two distinct monomials t and
t ′ which coincide in the degree in all variables belonging to pl . Such monomials must differ
in the degrees in at least two variables belonging to Yl , hence, it follows dim R/ql ≥ 2.
Taking into account the order of irreducible components and the fact that we are in the
3-variate case we can deduce dim R/q1 = · · · = dim R/ql = 2. Hence, q1 ∩ · · · ∩ ql−1 is a
principal ideal, obviously this refutes the existence of monomials t and t ′ with the assumed
properties. �

Theorem 4 Let I ⊂ R = K[x1, x2, x3] be a monomial ideal and M = R/I . Then it holds
Sdepth M = minp∈Ass M dim R/p.

Proof: The assertion is an immediate consequence of Theorem 2 and Proposition 3. �

At the end of this section we present an example which demonstrates that already in four
variables we may have Sdepth R/I < dim R/I even for pure dimensional monomial ideals
which are connected in codimension 1.

Example 7 Consider the cogeneric monomial ideal I = (x, y3) ∩ (u2, y2) ∩ (y, z) ∩
(u, z2) ⊂ K[x, y, z, u]. The two monomials y2u, y2z2 belong to all but the first irreducible
component, hence, they require a direct summand containing y2K[z, u]. A similar argument
shows that y3, xy2 require a direct summand containing y2K[x, y]. Obviously, both direct
summands must be equal and since any module tK[Y ] satisfying y2K[z, u] + y2K[x, y] ⊆
tK[Y ] will have a nontrivial intersection with I , we have an unresolvable conflict proving
Sdepth R/I < dim R/I .

10. Quotients modulo cogeneric Cohen-Macaulay monomial ideals

Example 7 shows that there is no hope to prove a result for cogeneric monomial ideals
which is similarly nice as Theorem 3. However, at least in the Cohen-Macaulay case we
will be successful.

Theorem 5 For any cogeneric Cohen-Macaulay monomial ideal I ⊂ R it holds Sdepth
R/I = dim R/I .

For the proof we will need the following corollary to Lemma 1.

Corollary 5 Let I be a cogeneric Cohen-Macaulay monomial ideal I with irredundant
decomposition I = q1 ∩ · · · ∩ qk in irreducible components. Furthermore, let qi and q j
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be irreducible components such that codim(pi + pj) > codim I + 1. Then there exists an
irreducible component qm of I such that
1. qm ⊂ qi + q j ,
2. codim (pi + pm) ≤ codim I + 1,

3. qi and qm have no minimal generator in common,

4. xd
r /∈ qm for all minimal generators xd

r of qi such that xd−1
r /∈ q j .

Proof: Lemma 1 yields the existence of ql ′ such that ql ′ ⊂ qi + qj. Moreover, taking into
account the cogenerity of I we can arrange that ql′ does not contain any of the common
minimal generators of qj and qi +qj. If codim (pi + pl′ ) > codim I+1 we repeat this process
and after finitely many iterations we obtain an irreducible componentql such thatql ⊂ qi + qj

and codim (pi + pl) < codim (pi + pj). By induction on codim (pi + pj) we can even assume
codim (pi + pl) ≤ codim I+1. Now, suppose qi and ql have a minimal generator in common.
Then by definition of cogeneric monomial ideals there exists qm ′ ⊂ qi +ql ⊆ qi +q j having
no minimal generator in common with qi + ql . If qi and qm ′ still have common minimal
generators we repeat the argument with l = m ′. Since qi cannot share any of its minimal
generators with more than one of the intermediate components appearing in this process,
eventually, we obtain qm satisfying the first three conditions of the corollary. Finally, the
validity of the fourth condition is an immediate consequence of the validity of the first and
the third condition. �

Proposition 4 Let I be a cogeneric Cohen-Macaulay monomial ideal and I = q1 ∩ · · · ∩
qk its irredundant decomposition in irreducible components, where the components are
enumerated according to lexicographically descending order.

For each l ∈ {2, . . . , k} set Dl := (q1 ∩ · · · ∩ ql−1) \ql and define Tl := {t ∈ Dl : t is a
monomial and ∀xi ∈ supp t\pl : t

xi
/∈ Dl}.

Then for all l ∈ {2, . . . , k} and all t, t ′ ∈ Tl either it holds t = t ′ or there exists xi ∈ pl

such that degxi
t �= degxi

t ′.

Proof: In analogy to the proof of Proposition 2 we proceed by induction on the number
of variables n. Again the initial case n = 1 is trivial. So let us assume that the statement
holds for (n − 1) variables.

Suppose there exists l ∈ {2, . . . , k} such that Tl contains two distinct elements t and
t ′ which have the same degree in all variables belonging to pl . Let t̂ and t̂ ′ denote the
monomials obtained by setting all variables of pl equal to 1 in t and t ′, respectively. By
construction we have lcm(s, t̂) = t and lcm(s, t̂ ′) = t ′, where s := gcd(t, t ′) is the greatest
common divisor of t and t ′. From t, t ′ ∈ q1 ∩ · · · ∩ ql−1 we conclude that any irreducible
component q j , 1 ≤ j < l, which does not contain s has to contain both t̂ and t̂ ′ but cannot
contain gcd(t̂, t̂ ′). In conclusion,

∀ j ∈ {1, . . . , l − 1} : s /∈ q j ⇒ codim (pj + pl) ≥ codim I + 2. (9)

To have s ∈ q1 ∩ · · · ∩ ql−1 is impossible by construction of Tl . Hence, there exists j ∈
{1, . . . , l − 1} such that s /∈ q j . Application of Corollary 5 yields the existence of an
irreducible component qm with the following three properties: (i) qm ⊂ ql + q j , (ii)
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codim (pm + pl) ≤ codim I + 1, and (iii) xa
r /∈ qm for all minimal generators xa

r of ql

such that xa−1
r /∈ q j . I∞ as a localization of I at a monomial prime ideal is cogeneric.

Hence, application of the induction hypothesis to I∞ shows x1 ∈ pl . Therefore, ql pos-
sesses a minimal generator of the form xd

1 and by the assumption on the order of the
irreducible components of I this implies xd−1

1 /∈ q j and, therefore, xd
1 /∈ qm according to

(iii). Consequently, m < l and in view of (9) and (ii) we obtain s ∈ qm . Application of (i)
yields s ∈ qm ⊂ q j + ql , in contradiction to s /∈ q j and s /∈ ql . In summary, the supposition
that Tl contains distinct elements t, t ′ which have the same degree in all variables belonging
to pl must have been wrong. �

Proof of Theorem 5: The assertion follows immediately from the above proposition and
Theorem 2. �

11. Outlook to graded polynomial modules

Finally, let us generalize our investigations in two directions. As before, let R = K[X ] be
a polynomial ring but equipped with a Nν-grading for some ν ∈ {1, . . . , n}. Furthermore,
let F be a free R-module with basis {e1, . . . , em} and equipped with a Zν-grading which
extends the Nν-grading of R in the sense that deg

Zν ue j = deg
Nν u + deg

Zν e j for arbitrary
homogeneous elements u ∈ R and 1 ≤ j ≤ m. Finally, assume

∑ν
i=1 di = 1 for all x ∈ X ,

where deg
Nν x = (d1, . . . , dν). Throughout this section we will always assume that the field

K is infinite.
We consider modules M = F /N , where N is a Zν-graded submodule of F . In the particular

case that N is monomial, what here should mean, that N is generated by elements of the
form ue j , where u ∈ R is a monomial and 1 ≤ j ≤ m, the previous results extend easily.
We subdivide the set B of minimal generators of N in m pairwise disjoint (not necessarily
nonempty) sets B1, . . . , Bm , where Bi consists of all minimal generators of the form uei ,
1 ≤ i ≤ m. Let Ii , i ∈ {1, . . . , m}, denote the monomial ideal of R generated by the set
{u : uei ∈ Bi }. Since, depth (A⊕B) = min(depth A, depth B) for arbitrary R-modules A and
B we can construct a Stanley decomposition for M by plugging in Stanley decompositions
for each module R/Ii in the direct sum decomposition M = ⊕m

i=1 (R/Ii ) ei .
Now, let N be an arbitrary Zν-graded submodule of F and consider an admissible term

order ≺ of F refining the Zν-grading, i.e. for any monic Zν-homogeneous elements a, b ∈ F
such that deg

Zν a < deg
Zν b it holds in≺ a ≺ in≺ b. As usual, in≺ a denotes the initial term of

a ∈ F with respect to≺. The modules F /in≺ N and F /N are isomorphic graded K-spaces via
the linear mapping induced by the assignment a + in≺ N �→ a+N for all module monomials
a = uei . In view of this isomorphism any Stanley decomposition of in≺ M := F/in≺ N
is also a Stanley decomposition of M = F /N whenever it holds depth M ≤ depth in≺ M .
Gräbe proved the inequality depth M ≥ depth in≺ M for arbitrary homogeneous M and
there are examples where the inequality is proper ([7], Theorem 4.1). But we have the
additional freedom of applying two preparatory transformations before we fix the order ≺
and the corresponding initial module in≺ M . First, we can apply a variable transformation
which has to respect the Nν-grading of R. Second, we can transform the basis of F in a
Zν-grading respecting way. There are examples where both transformations are necessary,
but it is open if they are also sufficient.
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Remark 2 Let K be infinite. Suppose that the following two questions have a positive
answer:

1. Does Conjecture 1 hold for arbitrary monomial ideals I ⊂ R?
2. Given an arbitrary Zν-graded module M = F /N . Does there exist grading respecting

transformations of R and F and an admissible term order ≺ of the transformed module
monomials such that depth M = depth in≺ M?

Then Stanley’s Conjecture holds for arbitrary Zν-graded polynomial modules M .

The proof is an immediate consequence of our above observations. This article is a step
towards the solution of the first question. Similar to generic and cogeneric monomial ide-
als also the initial ideals of toric ideals have a well-studied decomposition in irreducible
components [8]. This makes them a next promising candidate for investigating Stanley’s
Conjecture using our methods.

In the case ν = 1 and F = R a positive answer to the second question was given by
Bayer and Stillman who proved that the equality depth M = depth in≺ M holds when ≺
is a reverse lexicographical term order and M is in generic coordinates ([4], Theorem 2.4),
see also ([6], Section 15.7). In the extremal case F = R and ν = n the second question has
obviously a positive answer since M = in≺ M even without application of a preparatory
transformation. This gives reason to the hope that question 2 has a general positive answer
in the case F = R, when each group of variables of some fixed Nν-degree is transformed
generically and an admissible term order ≺ is used which acts as a reverse lexicographical
term order on each set of transformed variables of a fixed Nν-degree. Note, if the variables are
enumerated in such a way that variables of the same Nν-degree have consecutive numbers
then the variable transformations which respect the Nν-grading of R correspond to the
subgroup of GL(n, K) formed by all block-diagonal matrices with blocks corresponding
to groups of variables of common Nν-degree. In the 3-variate case it is easy to generalize
Theorem 4 in this way.

Theorem 6 Let K be an infinite field and R = K[x1, x2, x3] a Nν-graded polynomial ring
over K, where ν ∈ {1, 2, 3}. Assume that for each of the variables x1, x2, x3 the sum of the
coordinates of its Nν-degree is 1.

Then Sdepth R/I = minp∈Ass R/I dim R/p for any Nν-homogeneous ideal I of R.

Proof: The assertion follows from [4, Theorem 2.4] in case ν = 1 and from Theorem 4
in case ν = 3. So it remains to consider only the case ν = 2, where we can assume
without loss of generality that deg

Nν x1 = (1, 0) and deg
Nν x2 = deg

Nν x3 = (0, 1). Using
exactly the same arguments as in [6, Ch. 15] one can show that there is a linear variable
transformation fixing x1 and mapping x2 and x3 to linearly independent linear combinations
of them such that the initial ideal of the transformed ideal with respect to an arbitrary
degree compatible admissible term order satisfying x3 ≺ x2 possesses a minimal generator
xα

1 xβ

2 which has strictly larger x2-degree than any other minimal generator and which
has minimal x1-degree among all minimal generators. In fact, concentrating only on the
transformation of x2 and x3 there is a Zariski open subset of GL(2, K) describing suitable
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transformations. Further, according to [6, Proposition 15.15] it suffices to check the equality
depth R/I = depth R/in≺ I for the case that each variable occurs in some minimal generator
of in≺ I . In this case one easily observes depth R/I ≤ 1. Hence, it remains to prove that
whenever in≺ I possesses a trivial irreducible component then also I possesses a trivial
primary component (i.e. (x1, x2, x3) ∈ Ass R/I ).

Now, assume that (xa
1 , xb

2 , xc
3) is an irreducible component of in≺ I and let G denote the

reduced Gröbner basis of I with respect to ≺. By homogeneity of I each element of G can be
written in the form xα′

1 (xβ ′
2 + p(x2, x3))xγ ′

3 , where p(x2, x3) is a homogeneous polynomial in
x2 and x3 of N-degreeβ ′ without xβ ′

2 -term. By J we denote the ideal generated by all elements
g|x1=1 which are obtained by substituting 1 for x1 in the Gröbner basis elements g ∈ G which
satisfy degx1

in≺ g < a and degx3
in≺ g < c. The preparatory transformation ensures that

J contains a homogeneous element whose initial term is a power of x2. Moreover, for any
homogeneous element h ∈ J we have degx2

in≺ h ≥ b or degx3
in≺ h ≥ c since, otherwise,

there must be a nonnegative integer a′ < a such that xa′
h ∈ I which is impossible because

of xa′
in≺ h /∈ (xa

1 , xb
2 , xc

3) ⊇ in≺ I . (xa
1 , xc

3) + J is a (x1, x2, x3)-primary ideal containing I
and by the above observations I is not contained in any higher dimensional primary subideal
of (xa

1 , xc
3) + J . Hence, (x1, x2, x3) ∈ Ass R/I and we are through. �

Finally, let us demonstrate the additional problems arising in the case rank F > 1 using
two examples.

Example 8 Consider R = K[x1, x2, x3] with an arbitrary Nν-grading. Further, let
rank F = 3 and deg

Zν e1 = deg
Zν e2 = deg

Zν e3 = (0, . . . , 0). Assume char K �= 2 and
let M = F /N , where N = (x1e1 + x1e2, x2e1 + x2e3, x3e2 + x3e3). Then the elements
x1e1, x2e1, x3e2, x1x2e2, x1x2x3e3 generate the initial module in≺ M = F/in≺ N , where
≺ is an arbitrary admissible term order such that e3 ≺ e2 ≺ e1. Hence, depth in≺ M =
1 < depth M and by symmetry reasons the same is true for any admissible term order
≺. However, after an obvious basis transformation we obtain N = (x1ê1, x2ê2, x3ê3) and,
hence, depth in≺ M = depth M = 2.

Example 9 Consider R = K[x1, . . . , xn] with respect to an arbitrary Nν-grading. Fur-
thermore, let rank F = n + 1 and deg

Zν e1 = (0, . . . , 0), deg
Zν ei = deg

Nν xi−1 (i =
2, . . . , n + 1) the degrees of the free generators of F . Then the module M = F /N , where
N is generated by the elements xi e1 + ei+1, i = 1, . . . , n, is free of rank 1 and has depth n.

If two module monomials uei and ve j have the same Zν-degree we have to break ties by
the order ≺. If ties are broken by uei ≺ ve j ⇔ i < j then we obtain in≺ N = (e2, . . . , en+1)
and depth in≺ M = n = depth M . However, depth in≺ M = 0 < depth M if we break ties
according to uei ≺ ve j ⇔ i > j .
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