Association Schemes of Quadratic Forms and Symmetric Bilinear Forms*

YANGXIAN WANG
CHUNSEN WANG
CHANGLI MA
Department of Mathematics, Hebei Teachers University, Shijiazhuang 050091, People's Republic of China
JIANMIN MA
ma@math.colostate.edu
Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA

Received November 22, 1999; Revised May 6, 2002

Abstract

Let X_{n} and Y_{n} be the sets of quadratic forms and symmetric bilinear forms on an n-dimensional vector space V over \mathbb{F}_{q}, respectively. The orbits of $G L_{n}\left(\mathbb{F}_{q}\right)$ on $X_{n} \times X_{n}$ define an association scheme $\mathrm{Qua}(n, q)$. The orbits of $G L_{n}\left(\mathbb{F}_{q}\right)$ on $Y_{n} \times Y_{n}$ also define an association scheme $\operatorname{Sym}(n, q)$. Our main results are: Qua (n, q) and $\operatorname{Sym}(n, q)$ are formally dual. When q is odd, $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$ are isomorphic; $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$ are primitive and self-dual. Next we assume that q is even. $\operatorname{Qua}(n, q)$ is imprimitive; when $(n, q) \neq(2,2)$, all subschemes of $\operatorname{Qua}(n, q)$ are trivial, i.e., of class one, and the quotient scheme is isomorphic to $\operatorname{Alt}(n, q)$, the association scheme of alternating forms on V. The dual statements hold for $\operatorname{Sym}(n, q)$.

Keywords: association scheme, quadratic form, symmetric bilinear form

1. Introduction

The association schemes of sesquilinear (bilinear, alternating, and Hermitian) forms are all self-dual and primitive [1, 2]. They are important families of P-polynomial schemes, or equivalently, distance regular graphs. Now we consider two families of association schemes defined on quadratic forms and symmetric bilinear forms, respectively. Let $V=V_{n}\left(\mathbb{F}_{q}\right)$ be an n-dimensional vector space over \mathbb{F}_{q}. Let X_{n} be the set of quadratic forms on V. The general linear group $G L_{n}\left(\mathbb{F}_{q}\right)$ acts on X_{n} as follows: for $Q \in X_{n}$ and $g \in G L_{n}\left(\mathbb{F}_{q}\right), Q^{g}(\boldsymbol{x})=$ $Q\left(\boldsymbol{x}^{g}\right)$, for all $\boldsymbol{x} \in V$. Let $C_{0}=\{0\}, C_{1}, \ldots, C_{d}$ be the orbits. We define an association scheme on X_{n} using the orbits C_{i} : for $Q_{1}, Q_{2} \in X_{n},\left(Q_{1}, Q_{2}\right) \in R_{i}$ if $Q_{1}-Q_{2} \in C_{i}$. Then $\left(X_{n},\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ is indeed an association scheme, and we denote this scheme by $\operatorname{Qua}(n, q)$ (the notation $\operatorname{Quad}(n, q)$ is used for the Egawa scheme of quadratic forms in literature. $\operatorname{Quad}(n, q)$ is also defined on X_{n} but with $\left(Q_{1}, Q_{2}\right) \in R_{i}$ if $\operatorname{rank}\left(Q_{1}-Q_{2}\right)=2 i-1$ or $2 i$.)

Similarly we can define a family of association schemes on symmetric bilinear forms. Let Y_{n} be the set of symmetric bilinear forms $V . G L_{n}\left(\mathbb{F}_{q}\right)$ acts on Y_{n} as follows: for $B \in Y_{n}$ and $g \in G L_{n}\left(\mathbb{F}_{q}\right), B^{g}(\boldsymbol{x}, \boldsymbol{y})=B\left(\boldsymbol{x}^{g}, \boldsymbol{y}^{g}\right)$, where $\boldsymbol{x}, \boldsymbol{y} \in V$. We define an association scheme on Y_{n} using the $G L_{n}\left(\mathbb{F}_{q}\right)$-orbits in the same way. We use $\operatorname{Sym}(n, q)$ to represent this scheme.
*Research supported by the NSF of China (No. 19571024).

Each quadratic form Q has an associated symmetric bilinear form define by $B_{Q}(\boldsymbol{x}, \boldsymbol{y})=$ $Q(\boldsymbol{x}+\boldsymbol{y})-Q(\boldsymbol{x})-Q(\boldsymbol{y})$. For q odd, Q can be defined by B_{Q}, and vice versa. For q even, B_{Q} is alternating. We define, for any given symmetric bilinear B,

$$
\begin{equation*}
\mathrm{Q}_{B}=\left\{Q \in X_{n} \mid B_{Q}=B\right\} . \tag{1.1}
\end{equation*}
$$

In particular, we use Q_{0} to denote Q_{B} defined by the zero bilinear form 0 [4].
The association scheme $\operatorname{Alt}(n, q)$ of alternating forms is defined on the set K_{n} of alternating forms on V, where, for $A_{1}, A_{2} \in K_{n},\left(A_{1}, A_{2}\right) \in R_{i}$ if $\operatorname{rank}\left(A_{1}-A_{2}\right)=2 i$. $\operatorname{Qua}(n, q)$ was introduced in [4, 14] and $\operatorname{Sym}(n, q)$ in $[8,9,13]$. These two families are not P-polynomial schemes in general, but nevertheless they are closely related to two well known families of association schemes: $\operatorname{Alt}(n, q)$ and $\operatorname{Quad}(n, q)$. For example, $\operatorname{Alt}(n, q)$ appears as the quotient schemes of $\operatorname{Qua}(n, q)$ (see the main theorem), as an association subscheme [13] and a fusion scheme of $\operatorname{Sym}(n, q)$ [11]. $\operatorname{Quad}(n, q)$ is a fusion scheme of $\operatorname{Qua}(n, q)$ by definition. $\operatorname{Quad}(n, q)$ can be also constructed from $\operatorname{Alt}(n, q)$ for q even [11]. A fusion scheme is an association scheme which is obtained by fusing some classes of another association scheme.

Further study of Qua (n, q) and $\operatorname{Sym}(n, q)$ will contribute to the understanding of distance regular graphs on forms and dual polar graphs. In the present paper, we develop a systematic approach for further studying the association schemes of forms. We are also interested in Qua (n, q) and $\operatorname{Sym}(n, q)$ in their own rights. For instance, what are the fusion schemes in Qua (n, q) or $\operatorname{Sym}(n, q)$? New families of distance regular graphs might arise from the fusion schemes. In the present paper, we will prove the following theorem:

Main Theorem

(1) $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$ are formally dual.
(2) When q is odd, $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$ are isomorphic, thus they are self-dual.
(3) When q is odd, $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$ are primitive.
(4) Suppose q is even. Qua (n, q) is imprimitive. When $(n, q) \neq(2,2)$, all subschemes of $\operatorname{Qua}(n, q)$ are given by $\mathrm{Q}_{B}\left(B \in K_{n}\right)$ and they are trivial. The quotient scheme is isomorphic to $\operatorname{Alt}(n, q)$. Dually, $\operatorname{Sym}(n, q)$ is imprimitive; all the subschemes of $\operatorname{Sym}(n, q)$ are isomorphic to $\operatorname{Alt}(n, q)$, and the quotient scheme is trivial.
(5) Suppose $(n, q)=(2,2)$. $\mathrm{Qua}(2,2)$ and $\operatorname{Sym}(2,2)$ are isomorphic to the cube graph, which is bipartite and antipodal.

The paper is organized as follows. Section 2 reviews some concepts of association schemes, and defines $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$ in terms of matrices. In Section 3, we prove assertions (1) and (2) of the main theorem (see Propositions 3.4 and 3.5). In Section 4, the eigenmatrices of $\operatorname{Qua}(2, q)$ are computed when q is even. In Section 5, we discuss the primitivity of $\operatorname{Qua}(n, q)$ for odd q, and the imprimitivity of $\operatorname{Qua}(n, q)$ for even q. We prove assertions (4) and (5) of the main theorem (see Proposition 5.4).

The authors would like to thank A. Munemasa for Remark 1, and an anonymous referee for Remark 2. We also thank R.A. Liebler for his helpful conversation and the referees for improving the exposition of Proposition 3.4.

2. Definitions

A d-class commutative association scheme is a pair $\mathrm{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$, where X is a finite set, each R_{i} is a nonempty subset of $X \times X$ satisfying the following:
(a) $R_{0}=\{(x, x) \mid x \in X\}$.
(b) $X \times X=R_{0} \cup R_{1} \cdots R_{d}, R_{i} \cap R_{j}=\emptyset$ if $i \neq j$.
(c) $R_{i}^{\mathrm{T}}=R_{j}$ for some $j, 0 \leq j \leq d$, where $R_{i}^{\mathrm{T}}=\left\{(y, x) \mid(x, y) \in R_{i}\right\}$.
(d) There exist integers $p_{i j}^{k}$ such that for all $x, y \in X$ with $(x, y) \in R_{k}$,

$$
p_{i j}^{k}=\left|\left\{z \in X \mid(x, z) \in R_{i},(z, y) \in R_{j}\right\}\right|,
$$

and further, $p_{i j}^{k}=p_{j i}^{k}$.
X is referred as the vertex set of X , and the $p_{i j}^{k}$ as the intersection numbers of X . In addition, if
(e) $R_{i}^{\mathrm{T}}=R_{i}$ for all i,
then we say that X is symmetric.
Let $\mathrm{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ be a commutative association scheme. The i-th adjacency matrix A_{i} is defined to be the adjacency matrix of the digraph $\left(X, R_{i}\right)$. By the Bose-Mesner algebra of X we mean the algebra A generated by the adjacency matrices $A_{0}, A_{1}, \ldots, A_{d}$ over the complex numbers \mathbb{C}. Since A consists of commutative normal matrices, there is a second basis consisting of the primitive idempotents $E_{0}, E_{1}, \ldots, E_{d}$. The Krein parameters $q_{i j}^{k}$'s are the structure constants of E_{i} 's with respect to entry-wise matrix multiplication: $E_{i} \circ E_{j}=\sum_{k=0}^{d} q_{i j}^{k} E_{k}$. Let

$$
A_{j}=\sum_{i=0}^{d} p_{j}(i) E_{i}, \quad E_{j}=\frac{1}{|X|} \sum_{i=0}^{d} q_{j}(i) A_{i}
$$

and let P and Q be the $(d+1) \times(d+1)$ matrices the (i, j)-entries of which are $p_{j}(i)$ and $q_{j}(i)$, respectively. The matrices P and Q are called the first and second eigenmatrix of X, respectively. We use $k_{j}=p_{j}(0)$ and let m_{j} denote the rank of matrix E_{j}. The numbers k_{i} are called valencies and m_{i} multiplicities. We refer the readers [1,2] for the theory of association schemes.
Two association schemes are said to be formally dual if the P matrix of one is the Q matrix of the other possibly with a reordering of the rows and columns of Q, or equivalently, the Krein parameters of one are the intersection numbers of the other. If an association scheme has the property that its P matrix is equal to its Q matrix possibly with a reordering of its primitive idempotents, then it is said to be self-dual. The Hamming and the Johnson schemes are two such well known examples.

An association scheme $\mathrm{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ is primitive if all the digraphs $\left(X, R_{i}\right)(1 \leq$ $i \leq d)$ are connected, and otherwise it is imprimitive. For an imprimitive association scheme, its association subschemes and quotient schemes are defined [1].

We introduce the association scheme of quadratic forms in terms of matrices. Let \mathbb{F}_{q} be a finite field of q elements and $n \geq 2$ be an integer. We use $M_{n, n}\left(\mathbb{F}_{q}\right)$ to denote the set of all $n \times n$ matrices over $\mathbb{F}_{q} . M_{n, n}\left(\mathbb{F}_{q}\right)$ is an algebra and we are mainly interested in its additive group structure. Let K_{n} be the set of alternating matrices in $M_{n, n}\left(\mathbb{F}_{q}\right)$ (recall the matrix $\left(a_{i j}\right)$ is alternating if $a_{i j}=-a_{j i}(i \neq j)$ and $\left.a_{i i}=0\right)$. K_{n} is an additive subgroup of $M_{n, n}\left(\mathbb{F}_{q}\right)$. Let X_{n} be the collection of the K_{n}-cosets in $M_{n, n}\left(\mathbb{F}_{q}\right)$, for A in $M_{n, n}\left(\mathbb{F}_{q}\right)$, $[A]$ is the coset which contains A. The quadratic form $f=\sum_{i \leq j} a_{i j} x_{i} x_{j}$ in x_{1}, \ldots, x_{n} over \mathbb{F}_{q} corresponds to [A], where $A=\left(a_{i j}\right)$ is upper triangular. This correspondence is one-to-one. So X_{n} can be identified with the set of quadratic forms over \mathbb{F}_{q}.

The general linear group $G L_{n}\left(\mathbb{F}_{q}\right)$ acts on X_{n} as follows: for $T \in G L_{n}\left(\mathbb{F}_{q}\right)$ and $[X] \in X_{n}$,

$$
\begin{align*}
G L_{n}\left(\mathbb{F}_{q}\right) \times X_{n} & \rightarrow X_{n} \tag{2.1}\\
(T,[X]) & \rightarrow T[X] T^{\mathrm{T}}:=\left[T X T^{\mathrm{T}}\right] .
\end{align*}
$$

It is easy to see that this action is well-defined. Two $n \times n$ matrices A and B are said to be cogredient if there is a $T \in G L_{n}\left(\mathbb{F}_{q}\right)$ such that $T A T^{\mathrm{T}} \equiv B\left(\bmod K_{n}\right)$. It is not hard to see that this is an equivalence relation which partitions $M_{n, n}\left(\mathbb{F}_{q}\right)$ into equivalence classes. X_{n} is the collection of classes of cogredient matrices. Let $G_{1}=G L_{n}\left(\mathbb{F}_{q}\right) \cdot X_{n}$, the semidirect product of $G L_{n}\left(\mathbb{F}_{q}\right)$ with $X_{n} . G_{1}$ acts on X_{n} transitively: for $(T,[A]) \in G_{1}$ and $[X] \in X_{n}$,

$$
\begin{align*}
G_{1} \times X_{n} & \rightarrow X_{n} \\
((T,[A]),[X]) & \rightarrow\left[T X T^{\mathrm{T}}\right]+[A] . \tag{2.2}
\end{align*}
$$

Thus this action determines the association scheme of quadratic forms, denoted by Qua (n, q). Two pairs of quadratic forms $([A],[B])$ and $([C],[D])$ are in the same class of Qua (n, q) if and only if, there exists a $T \in G L_{n}\left(\mathbb{F}_{q}\right)$ such that $T(A-B) T^{\mathrm{T}} \equiv C-D\left(\bmod K_{n}\right)$.

We now define the association scheme of symmetric matrices (or symmetric bilinear forms). Let Y_{n} be the set of all $n \times n$ symmetric matrices over \mathbb{F}_{q} and $G_{2}=G L_{n}\left(\mathbb{F}_{q}\right) \cdot Y_{n}$ the semidirect product of $G L_{n}\left(\mathbb{F}_{q}\right)$ with $Y_{n} . G_{2}$ acts transitively on Y_{n} as follows: for $(T, A) \in G_{2}$ and $X \in Y_{n}$,

$$
\begin{align*}
G_{2} \times Y_{n} & \rightarrow Y_{n} \tag{2.3}\\
((T, A), X) & \rightarrow T X T^{\mathrm{T}}+A .
\end{align*}
$$

This action also determines an association scheme, denoted by $\operatorname{Sym}(n, q)$. For $A, B \in Y_{n}$, if there is a $T \in G L_{n}\left(\mathbb{F}_{q}\right)$ such that $T A T^{\mathrm{T}}=B$, we also say that A and B are cogredient. By counting the incogredient norm forms (see [12]) of symmetric matrices (quadratic forms), we know that when q is odd, $\operatorname{Sym}(n, q)$ and $\operatorname{Qua}(n, q)$ have $2 n+1$ classes, and when q is even, $\operatorname{Sym}(n, q)$ and $\operatorname{Qua}(n, q)$ have $n+\lfloor n / 2\rfloor+1$ classes. Moreover, when q is even or $q \equiv 1(\bmod 4), \operatorname{Sym}(n, q)$ is symmetric; when $q \equiv 3(\bmod 4), \operatorname{Sym}(n, q)$ is not symmetric yet commutative [8].

3. The duality between $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$

We will prove assertions (1) and (2) of the main theorem in this section. As in Section 2, X_{n} and Y_{n} are the additive groups of the quadratic forms and the $n \times n$ symmetric matrices over \mathbb{F}_{q}, respectively. Now we give a map between Y_{n} and the character group X_{n}^{*} of X_{n}. Let χ be a fixed non-trivial complex character of \mathbb{F}_{q} as an additive group. For a symmetric matrix $A=\left(a_{i j}\right) \in Y_{n}$, we define a map ϕ_{A} from X_{n} to \mathbb{C} by

$$
\phi_{A}([X])=\chi\left(\sum_{i, j=1}^{n} a_{i j} x_{i j}\right), \quad \text { for all }[X] \in X_{n},
$$

where $X=\left(x_{i j}\right)$ is a representative of $[X]$. Note this map is well defined. It is also easy to see that ϕ_{A} is a character of X_{n} and $\phi_{A+B}=\phi_{A} \phi_{B}$.

Proposition $3.1 \phi_{A}=\phi_{B}$ if and only if $A=B$; the mapping $A \mapsto \phi_{A}$ is an isomorphism between Y_{n} and X_{n}^{*}.

Proof: We prove the necessity of the first assertion, since the sufficiency is trivial. Suppose $\phi_{A}=\phi_{B}$ with $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$. So

$$
\phi_{A}([X])=\phi_{B}([X]), \quad \text { for any }[X] \in X_{n},
$$

i.e.,

$$
\chi\left(\sum_{i, j=n}^{n} a_{i j} x_{i j}\right)=\chi\left(\sum_{i, j=n}^{n} b_{i j} x_{i j}\right), \quad \text { for any } x_{i j} \in \mathbb{F}_{q} .
$$

For i, j take $x_{k l}=0, k \neq i, j \neq l$, and then $\chi\left(a_{i j} x_{i j}\right)=\chi\left(b_{i j} x_{i j}\right)$, for any $x_{i j} \in \mathbb{F}_{q}$. So

$$
\chi\left(\left(a_{i j}-b_{i j}\right) x_{i j}\right)=1
$$

Since χ is a non-trivial character, we have $a_{i j}=b_{i j}(i, j=1, \ldots, n)$ and thus $A=B$.
The second assertion follows from $\phi_{A+B}=\phi_{A} \phi_{B}$, and that X_{n}^{*} and Y_{n} have the same cardinality.

The following theorem says that the actions of $G L_{n}\left(\mathbb{F}_{q}\right)$ on Y_{n} and X_{n}^{*} are compatible under the map $A \mapsto \phi_{A}$.

Proposition 3.2 For $A \in Y_{n},[X] \in X_{n}, T \in G L_{n}\left(\mathbb{F}_{q}\right), \phi_{T A T^{\mathrm{T}}}([X])=\phi_{A}\left(T^{\mathrm{T}}[X] T\right)$.
Proof: Let $T A T^{\mathrm{T}}=\left(a_{i j}^{*}\right)$, and $a_{i j}^{*}=\sum_{k, l=1}^{n} t_{i k} a_{k l} t_{j l}, a_{i j}^{*}=a_{j i}^{*}$. Pick a representative X of $[X], X=\left(x_{i j}\right)$.

$$
\begin{aligned}
\phi_{T A T^{\mathrm{T}}}([X]) & =\chi\left(\sum_{i, j=1}^{n} a_{i j}^{*} x_{i j}\right) \\
& =\chi\left(\sum_{i, j=1}^{n} \sum_{k, l=1}^{n} t_{i k} a_{k l} t_{j l} x_{i j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\chi\left(\sum_{k, l=1}^{n} a_{k l} \sum_{i, j=1}^{n} t_{i k} x_{i j} t_{j l}\right) \\
& =\phi_{A}\left(\left[T^{\mathrm{T}} X T\right]\right) \\
& =\phi_{A}\left(T^{\mathrm{T}}[X] T\right)
\end{aligned}
$$

For a quadratic form $[X] \in X_{n}$, we define a map from Y_{n} to \mathbb{C} by

$$
\psi_{[X]}(A)=\phi_{A}([X]), \quad \text { for all } A \in Y_{n}
$$

Then since the character group $\left(X_{n}^{*}\right)^{*}$ of X_{n}^{*} is canonically identified with X_{n}, it follows from Proposition 3.1 that $\psi_{[X]}$ is an irreducible character of Y_{n}, and $[X] \mapsto \psi_{[X]}$ is an isomorphism between X_{n} and the character group Y_{n}^{*} of Y_{n}. Thus we can regard X_{n} as the character group of Y_{n} and further by Proposition 3.2 we have

$$
\psi_{T[X] T^{\mathrm{T}}}(A)=\phi_{A}\left(T[X] T^{\mathrm{T}}\right), \quad \text { for all } A \in Y_{n}
$$

Before we prove assertion (1) of the main theorem, let us introduce S-rings ($\left[1\right.$, Section II.6]). Let G be a finite abelian group, and let $G_{0}=\{0\}, G_{1}, \ldots, G_{d}$ be a partition of G with the following properties:
(a) Let $G_{i}^{-1}=\left\{a \in G \mid-a \in G_{i}\right\}$. Then $G_{i}^{-1}=G_{i^{\prime}}$ for some i^{\prime}.
(b) $\mathbb{G}_{i} \mathbb{G}_{j}=\sum_{k=0}^{d} c_{i j}^{k} \mathbb{G}_{k}$, where \mathbb{G}_{i} is the element $\sum_{x \in G_{i}} x$ in the group ring $\mathbb{C} G$.

The subalgebra S of $\mathbb{C} G$ spanned by $\mathbb{G}_{0}, \mathbb{G}_{1}, \ldots, \mathbb{G}_{d}$ is called an S-ring. Now we define an association scheme on G by defining the relations on G as follows:

$$
(x, y) \in R_{i} \quad \text { if } y-x \in G_{i}
$$

Then $\mathrm{X}(G)=\left(G,\left\{G_{i}\right\}_{0 \leq i \leq d}\right)$ is a commutative association scheme whose Bose-Mesner algebra is isomorphic to the S-ring by the correspondence of A_{i} to \mathbb{G}_{i}, where A_{i} is the adjacency matrix of the digraph $\left(X, R_{i}\right)$.

Theorem 3.3 ([1, II.6.3]) Let S be an S-ring over a finite abelian group X and let Y be the character group of G. Let \sim be the equivalence relation on Y defined by $\delta_{\alpha} \sim \delta_{\beta}$ if and only if the restriction of δ_{α} and δ_{β} to X coincide. Let $Y_{0}, Y_{1}, \ldots, Y_{d}$ be the equivalence classes, and let $\mathbb{Y}_{i}=\sum_{\delta_{\alpha} \in Y_{i}} \delta_{\beta}$. Then the subalgebra $\mathrm{S}^{*}($ of $\mathbb{C}[Y])$ spanned by $\mathbb{Y}_{0}, \mathbb{Y}_{1}, \ldots, \mathbb{Y}_{d}$ becomes an S-ring with the property that $\operatorname{dim} \mathrm{S}=\operatorname{dim} \mathrm{S}^{*}$ and the intersection number of $\mathrm{X}\left(S^{*}\right)$ are the Krein parameters of $\mathrm{X}(S)$.

Proposition 3.4 Assertion (1) of the main theorem holds.
Proof: Let $\mathrm{R}=\left\{R_{i} \mid 0 \leq i \leq d\right\}$ be the classes of $\operatorname{Qua}(n, q)$, where $d=2 n$ or $n+\lfloor n / 2\rfloor$ depends on q being odd or even. Fix the quadratic form 0 , and let

$$
R_{i}(0)=\left\{[X] \in X_{n} \mid(0,[X]) \in R_{i}\right\}, \quad 0 \leq i \leq d .
$$

Then $C=\left\{R_{i}(0) \mid 0 \leq i \leq d\right\}$ is a partition of X_{n}, and in fact they are the cogredience classes of X_{n}. So

$$
R_{i}(0)=\left\{T[X] T^{\mathrm{T}} \mid T \in G L_{n}\left(\mathbb{F}_{q}\right)\right\} \quad \text { for some }[X] \in R_{i}(0) .
$$

The partition C induces a partition C^{*} on Y_{n}. For $A, B \in Y_{n}, A$ and B are in the same cell of C^{*} if

$$
\sum_{[X] \in R_{i}(0)} \phi_{A}([X])=\sum_{[X] \in R_{i}(0)} \phi_{B}([X]) \quad \text { for all } i, 0 \leq i \leq d .
$$

If A and B are cogredient, then A and B are in the same cell of C^{*} by Proposition 3.2. So each cell of C^{*} is the union of cogredience classes of X_{n}^{*}. On the other hand, $\left|C^{*}\right|=|C|$ by Theorem 3.3, and $|C|$ is the number of cogredience classes of X_{n}, which is equal to the number of cogredience classes of Y_{n}. Consequently, C^{*} coincides with the family of cogredience classes of Y_{n}. Therefore $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$ are formally dual by Theorem 3.3.

Proposition 3.5 Assertion (2) of the main theorem holds.

When \mathbb{F}_{q} is of odd characteristic, quadratic forms have a representation in terms of symmetric matrices. It is well known that $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$ are isomorphic when q is odd. Thus assertion (2) follows. But when q is even, $\operatorname{Qua}(n, q)$ and $\operatorname{Sym}(n, q)$ are not isomorphic in general (see next section.)

Remark 1 In characteristic $2, X_{n}$ can be identified with the dual space of Y_{n} in a way compatible with the action of $G L_{n}\left(\mathbb{F}_{q}\right)$. When represented with respect to appropriate \mathbb{F}_{2}-bases, the actions of $G L_{n}\left(\mathbb{F}_{q}\right)$ on X_{n} and Y_{n} are contragredient, that is, their matrices are transpose of each other. Thus $\operatorname{Sym}(n, q)$ and Qua (n, q) fit Example II.6.5 of [1].

4. The eigenmatrices of $\operatorname{Qua}(2, q)(q$ even $)$

Throughout this section, we assume that q is even. $\mathrm{Qua}(2, q)$ is distance regular and thus we could compute the eigenmatrices of $\mathrm{Qua}(2, q)$ using its intersection numbers. The purpose of this section is to show how duality can help the calculation. We remark this can done in general, which has been in [10].

We take the upper triangular matrices as the representatives of the quadratic forms. X_{2} has four cogredience classes, and we may take their representatives as follows (see Lemma 5.2):

$$
A_{0}=O, \quad A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A_{2^{+}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad A_{2^{-}}=\left(\begin{array}{cc}
\alpha & 1 \\
0 & \alpha
\end{array}\right),
$$

where $\alpha \in \mathbb{F}_{q}$ is a fixed element such that $\alpha \notin N=\left\{x^{2}+x \mid x \in \mathbb{F}_{q}\right\}$. Let C_{i} be the cogredience class with representative $A_{i}\left(i=0,1,2^{+}, 2^{-}\right)$. Then we have

$$
\begin{aligned}
C_{0}=\{O\}, \quad C_{1} & =\left\{\left.\left(\begin{array}{ll}
x & 0 \\
0 & z
\end{array}\right) \right\rvert\, x \text { and } z \text { are not both zero }\right\}, \\
C_{2^{+}} & =\left\{\left.\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right) \right\rvert\, y \neq 0, y^{-2} x z \in N\right\}, \\
C_{2^{-}} & =\left\{\left.\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right) \right\rvert\, y \neq 0, y^{-2} x z \notin N\right\},
\end{aligned}
$$

We denote C_{2+} and C_{2-} by C_{2} and C_{3}. It is easy to compute the valencies of $\mathrm{Qua}(2, q)$.

$$
\begin{aligned}
& k_{0}=\left|C_{0}\right|=1, \quad k_{1}=\left|C_{1}\right|=q^{2}-1, \quad k_{2}=\left|C_{2^{+}}\right|=\frac{1}{2} q\left(q^{2}-1\right), \\
& k_{3}=\left|C_{2^{-}}\right|=\frac{1}{2} q(q-1)^{2} .
\end{aligned}
$$

For the cogredience classes of Y_{2}, we may take their representatives as follows (see [12, 13]):

$$
S_{0}=O, \quad S_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad S_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad S_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Let $\phi_{i}:=\phi_{S_{i}}, i=0,1,2,3$. Note $\phi_{0}=1$, the trivial character. Then $\phi_{i}(i=0,1,2,3)$ is a set of representatives of cogredient classes of the character group X_{2}^{*} of X_{2}. Then the P matrix of $\operatorname{Qua}(2, q)$ is given by $P=\left(\phi_{j}\left(C_{i}\right)\right)$ (see [7, Lemma 12.9.2]), where

$$
\phi_{j}\left(C_{i}\right)=\sum_{X \in C_{i}} \phi_{j}(X)
$$

is the (i, j)-entry of P. Now we compute $\phi_{j}\left(C_{i}\right)$'s, which will use the fact $|N|=q / 2$ and the following identity:

$$
\sum_{x \in \mathbb{F}_{q}} \chi(x)=0
$$

It is easy to see that

$$
\begin{aligned}
\phi_{j}\left(C_{0}\right) & =1, \quad j=0,1,2,3 . \\
\phi_{0}\left(C_{i}\right) & =k_{i}, \quad j=0,1,2,3 . \\
\phi_{1}\left(C_{1}\right) & =\sum_{X \in C_{1}} \phi_{1}(X)=\sum_{(x, z) \neq(0,0,)} \chi(x)=(q-1) \sum_{x \in \mathbb{F}_{q}} \chi(x)+\sum_{x \in \mathbb{F}_{q}^{*}} \chi(x)=-1,
\end{aligned}
$$

$$
\begin{aligned}
\phi_{1}\left(C_{3}\right) & =\sum_{X \in C_{3}} \phi_{1}(X)=\sum_{\substack{y \neq 0 \\
x z \notin y^{2} N}} \chi(x)=\sum_{x \neq 0} \chi(x)[q(q-1) / 2]=-\frac{1}{2} q(q-1), \\
\phi_{1}\left(C_{2}\right) & =\sum_{X \in C_{2}} \phi_{1}(X)=\sum_{\substack{y \neq 0 \\
x z \in y^{2} N}} \chi(x)=\sum_{\substack{y \neq 0 \\
x=0 \\
z \in \mathbb{F}_{q}}} 1+\sum_{\substack{y \neq 0 \\
x \neq 0 \\
z \in x^{-1} y^{2} N}} \chi(x) \\
& =q(q-1)+\frac{1}{2} q(q-1) \sum_{x \neq 0} \chi(x)=q(q-1)-\frac{1}{2} q(q-1)=\frac{1}{2} q(q-1) .
\end{aligned}
$$

Similarly, we can get

$$
\begin{aligned}
& \phi_{2}\left(C_{1}\right)=-1, \quad \phi_{2}\left(C_{2}\right)=-\frac{1}{2} q, \quad \phi_{2}\left(C_{3}\right)=\frac{1}{2} q \\
& \phi_{3}\left(C_{1}\right)=q^{2}-1, \quad \phi_{3}\left(C_{2}\right)=-\frac{1}{2} q(q+1), \quad \phi_{3}\left(C_{3}\right)=-\frac{1}{2} q(q-1)
\end{aligned}
$$

We get

$$
P=\left(\begin{array}{cccc}
1 & q^{2}-1 & \frac{1}{2} q\left(q^{2}-1\right) & \frac{1}{2} q(q-1)^{2} \\
1 & -1 & \frac{1}{2} q(q-1) & -\frac{1}{2} q(q-1) \\
1 & -1 & -\frac{1}{2} q & \frac{1}{2} q \\
1 & q^{2}-1 & -\frac{1}{2} q(q+1) & -\frac{1}{2} q(q-1)
\end{array}\right)
$$

The second eigenmatrix of $\operatorname{Qua}(2, q)$ is

$$
Q=q^{3} P^{-1}=\left(\begin{array}{cccc}
1 & q^{2}-1 & (q-1)\left(q^{2}-1\right) & q-1 \\
1 & -1 & -(q-1) & q-1 \\
1 & q-1 & -(q-1) & -1 \\
1 & -(q+1) & q+1 & -1
\end{array}\right)
$$

Note that P can not be obtained from Q by switching the rows and columns of Q when $q \neq 2$. So when $q \neq 2$, $\operatorname{Qua}(2, q)$ is not self-dual. Since $\operatorname{Sym}(2, q)$ has Q as its first eigenmatrix ([11]), $\mathrm{Qua}(2, q)$ and $\operatorname{Sym}(2, q)$ are not isomorphic. $\operatorname{Qua}(2, q)$ and $\operatorname{Sym}(2, q)$ are isomorphic to the cube graph if $q=2$.

5. The primitivity and impritivity

The scheme $\mathrm{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ is said to primitive if if all the digraphs $\left(X, R_{i}\right)(1 \leq i \leq d)$ are connected, and otherwise it is imprimitive. We will consider the connectivity of (X_{n}, R_{i}) for q even. For q odd, one can argue that each $\left(X_{n}, R_{i}\right)_{i \neq 0}$ is connected. We state the result for Qua (n, q) for q odd without proof.

Proposition 5.1 If q is odd, all the digraphs $\left(X_{n}, R_{i}\right)_{i \neq 0}$ are connected. Thus assertion (3) of the main theorem holds.

Throughout the rest of this section, we assume that q is even. Since we will use the norm forms for the quadratic forms, we give the following lemma.

Lemma 5.2 ([12]) Suppose q is even. Any $n \times n$ matrix over \mathbb{F}_{q} is cogredient to a matrix of one and only one of the following norm forms

$$
\left(\begin{array}{ccc}
0 & I^{(\nu)} & \\
& 0 & \\
& & 0
\end{array}\right),\left(\begin{array}{ccccc}
0 & I^{(\nu)} & & & \\
& 0 & & & \\
& & \alpha & 1 & \\
& & & \alpha & \\
& & & & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & I^{(\nu)} & & \\
& 0 & & \\
& & 1 & \\
& & & 0
\end{array}\right)
$$

where α is a fixed element of \mathbb{F}_{q} not in $N=\left\{x^{2}+x \mid x \in \mathbb{F}_{q}\right\}$.
The three matrices in the lemma above have 'rank' $2 v, 2 v+2$, and $2 v+1$, respectively. We further distinguish the norm form of even rank by their types. We say that the first matrix has ' + ' type and the second one ' -' type. The rank and type of a quadratic form determine its norm form. Both rank and type are invariants under cogredience. To be brief, we say the first two matrices have types $(2 v)^{+},(2 v+2)^{-}$, respectively, and the third one $2 v+1$.

For any quadratic form Q, the associated symmetric bilinear $B_{Q}(\boldsymbol{x}, \boldsymbol{y})=Q(\boldsymbol{x}+\boldsymbol{y})-$ $Q(\boldsymbol{x})-Q(\boldsymbol{y})$. Since q is even, B_{Q} is alternating. For any alternating matrix $B \in K_{n}$, we define

$$
\mathrm{Q}_{B}=\left\{Q \in K_{n} \mid B_{Q}=B\right\}
$$

For the alternating $n \times n$ matrix $B=\left(b_{i j}\right)$, one can obtain Q_{B} by taking the upper triangular part of B and then adding the main diagonal.

$$
\mathrm{Q}_{B}=\left\{\left.\left[\left(\begin{array}{ccccc}
a_{1} & b_{12} & b_{13} & \cdots & b_{1 n} \\
& a_{2} & b_{23} & \cdots & b_{2 n} \\
& & \ddots & \ddots & \vdots \\
& & & a_{n-1} & b_{n-1 n} \\
& & & & a_{n}
\end{array}\right)\right] \right\rvert\, a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}\right\}
$$

In particular, Q_{0} consists of all quadratic forms of rank ≤ 1 and is an additive subgroup of X_{n}.

For the digraphs of $\operatorname{Qua}(n, q)$, we have the following theorem
Theorem 5.3 Suppose q is even and $(n, q) \neq(2,2)$. The digraphs $\left(X_{n}, R_{i}\right)$ are connected for $i \neq 0,1 .\left(X_{n}, R_{1}\right)$ is disconnected with connected components $\mathrm{Q}_{B}\left(B \in K_{n}\right)$.

Proof: Let $\Gamma_{i}=\left(X_{n}, R_{i}\right)$ be the graph on X_{n} with edge set R_{i}.
(a) Consider $\Gamma_{1}=\left(X_{n}, R_{1}\right)$. The connected component containing the zero quadratic form 0 is the set of all quadratic forms of rank ≤ 1, i.e., Q_{0}, which is a maximal clique in Γ_{1}. Thus Γ_{1} is a union of maximal cliques, and there are $q^{n(n-1) / 2}$ such cliques. All clique are $\mathrm{Q}_{B}\left(B \in K_{n}\right)$.
(b) Consider $\Gamma_{2^{+}}=\left(X_{n}, R_{2^{+}}\right)$. We want to show that $\Gamma_{2^{+}}$is connected. It suffices to show that there exists a path between any quadratic form and the zero quadratic form 0 , which holds if and only if any quadratic form can be written as a sum of quadratic forms of type 2^{+}.

Let $f=\sum_{i \leq j} a_{i j} x_{i} x_{j}$. Let $f_{i j}=a_{i j} x_{i} x_{j}$ when $a_{i j} \neq 0$. Then $f_{i j}$ has type 2^{+}for $i \neq j$. We can write the quadratic form $f_{i i}$ as sum of two quadratic forms of type 2^{+}(for instance, $f_{11}=\left(a_{11} x^{2}+x_{1} x_{2}\right)+\left(x_{1} x_{2}\right)$, where $a_{11} x^{2}+x_{1} x_{2}$ and $x_{1} x_{2}$ are of type 2^{+}.) Therefore, we can write f as a sum of quadratic forms of type 2^{+}. So $\Gamma_{2^{+}}$is connected.
(c) Suppose $n \geq 3$. Consider the graph $\Gamma_{i}\left(i \neq 1,2^{+}, 2^{-}\right)$. We want to prove that Γ_{i} is connected. Again, it suffices to show that there exists a path between any quadratic form f and the zero quadratic form 0 . By the connectedness of $\Gamma_{2^{+}}$, there exists a path from 0 to f in $\Gamma_{2^{+}}$. Let $\left(f_{j}, f_{j+1}\right)$ be any edge on this path. Then $f_{j}-f_{j+1}$ has type 2^{+}. If we can show that the intersection number $p_{i}^{2^{+}} \neq 0$, then a path exists between f_{j} and f_{j+1} in Γ_{i}. It follows that there is a path in Γ_{i} from 0 to f.

Let $f=x_{1} x_{n}$, which has type 2^{+}. We choose g with following matrix representation

$$
\left(\begin{array}{llll}
0^{(v)} & I^{(v)} & & \\
& 0^{(\nu)} & & \\
& & \Delta & \\
& & & 0^{(n-2 v-d)}
\end{array}\right)
$$

where Δ is chosen according to $i=(2 v)^{+}, 2 v+1$, or $(2 v+2)^{-}$. Then $v \geq 1$, and both g and $g+f$ have type i. So $p_{i i}^{2+} \neq 0$. Hence Γ_{i} is connected.
(d) The only case left is $i=2^{-}$. Now we consider $\Gamma_{2^{-}}$.

Let's consider the case when $n=2$ first. Using the second eigenmatrix Q in Section 4 and the formula

$$
p_{i j}^{k}=\frac{k_{i} k_{j}}{\left|X_{2}\right|} \sum_{\nu=0}^{d} q_{\nu}(i) q_{\nu}(j) q_{v}(k) / m_{v}^{2},
$$

we obtain that $p_{2^{-} 2^{-}}^{2^{+}}=q(q-1)(q-2) / 4$. When $q \neq 2, p_{2^{-} 2^{-}}^{2^{+}} \neq 0$. Similarly as in case (c) above, we can show that $\Gamma_{2^{-}}$is connected.

Now we consider the case when $n \geq 3$. When $q>2$, we can embed any 2×2 matrix into a $n \times n$ matrix by putting it at the upper-left corner and zero else where. As in the case $n=2$, we can show that $p_{2^{-} 2^{-}}^{2^{+}} \neq 0$. When $q=2$, we may take $f=x_{1} x_{3}+x_{3}^{2}$ and $g=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$. Then f has type 2^{+}, and both g and $g+f$ have type 2^{-}. So we also have $p_{2^{-}}^{2^{-}} \neq 0$. Therefore $\Gamma_{2^{-}}$is connected. We complete the proof of this theorem.

From the above theorem, we deduce the Assertion (4) of the main theorem.

Proposition 5.4 Assertion (4) of the main theorem holds.

Proof: Since Γ_{1} is not connected, $\mathrm{Qua}(n, q)$ is not primitive. All connected component $\mathrm{Q}_{B}\left(B \in K_{n}\right)$ with $\left\{R_{0}, R_{1}\right\}$ are trivial subschemes. And they are all isomorphic. All subschemes of $\operatorname{Qua}(n, q)$ arise in this way, since Γ_{1} is its only disconnected digraph.

Next we show that the quotient scheme of $\operatorname{Qua}(n, q)$ is isomorphic to $\operatorname{Alt}(n, q)$. We construct a map from X_{n} to K_{n} by $\gamma([X])=X-X^{\mathrm{T}}$. It is not hard to see that γ is well defined and γ is a surjective homomorphism.

What about the $\operatorname{kernel}(\gamma)$? It turns out that $\operatorname{kernel}(\gamma)=\mathrm{Q}_{0}$. For $Q=\sum_{i \leq j} a_{i j} x_{i} x_{j}$, $\gamma(Q)=\left(a_{i j}\right)$ is alternating. If $\gamma(g)=0$, then $a_{i j}=0(i \neq j)$ and thus $Q \in \mathrm{Q}_{0}$. Therefore, $\operatorname{kernel}(\gamma)=\mathrm{Q}_{0}$.
$\overline{X_{n}}$ is the system of imprimitivity. The homomorphism γ induces an isomorphism $\bar{\gamma}$ on the quotient group $\overline{X_{n}}$. The action of $G_{1}=G L_{n}\left(\mathbb{F}_{q}\right) \cdot X_{n}$ on X_{n} induces an action on $\overline{X_{n}}$. It is not hard to see the kernel of this action is the subgroup $\left\{\left(I_{n}, X\right) \mid X \in \mathrm{Q}_{0}\right\}$. Let $\overline{G_{1}}$ be the quotient group of G_{1} modulo $\left\{\left(I_{n}, X\right) \mid X \in \mathrm{Q}_{0}\right\}$. Then $\overline{G_{1}}$ acts faithfully on $\overline{X_{n}} \cdot \overline{G_{1}}$ can actually be identified with the semidirect product $G L_{n}\left(\mathbb{F}_{q}\right) \cdot \overline{X_{n}}$. The quotient scheme Qua $(n, q) / \mathrm{Q}_{0}$ is determined by the action of $\overline{G_{1}}$ on $\overline{X_{n}}$ ([1, Example II.9.5].

Now we want to show that $\operatorname{Qua}(n, q) / \mathrm{Q}_{0}$ is isomorphic to $\operatorname{Alt}(n, q)$. Let $G_{3}=G L_{n}\left(\mathbb{F}_{q}\right)$. K_{n}, the semidirect product of $G L_{n}\left(\mathbb{F}_{q}\right)$ and $K_{n} . G_{3}$ acts on K_{n} in a similar way as in (2.3). Then this action determines an association scheme. Thus, in oder to show that $\mathrm{Qua}(n, q) / \mathrm{Q}_{0}$ is isomorphic to $\operatorname{Alt}(n, q)$, it suffices to show that the action of $\overline{G_{1}}$ on $\overline{X_{n}}$ is equivalent to that of G_{3} on K_{n}.

We define an isomorphism σ between $\overline{G_{1}}$ and G_{3} by $\sigma \overline{(T, A)}=\left(T, A-A^{\mathrm{T}}\right)$. We have the following commutative diagram:

$$
\begin{gathered}
\overline{[X]} \stackrel{\bar{r}}{\rightarrow} X-X^{\mathrm{T}} \\
(T, A) \downarrow \\
\overline{\left[T X T^{\mathrm{T}}+A\right]} \xrightarrow{\bar{r}} T\left(T, A-A^{\mathrm{T}}\right)=\sigma(T, A) \\
\overline{\mathrm{T}}\left(X-X^{\mathrm{T}}\right) T^{\mathrm{T}}+\left(A-A^{\mathrm{T}}\right)
\end{gathered}
$$

So we complete the proof.

If $(n, q)=(2,2), \operatorname{Qua}(2,2)$ and $\operatorname{Sym}(2,2)$ are isomorphic to the cube graph, which is bipartite and antipodal. Besides the association subschemes $\left(\mathrm{Q}_{B},\left\{R_{0}, R_{1}\right\}\right)\left(B \in K_{2}\right)$, Qua(2,2) has 4 isomorphic subschemes given by the antipodal pairs. Thus the assertion (5) of the main theorem follows.

Here we assume that q is even. $\operatorname{Sym}(n, q)$ is not distance regular for $n>2$. As pointed out in [3], $\operatorname{Sym}(2, q)$ is distance regular and $\operatorname{Sym}(3, q)$ contains a distance regular graph coming from a fusion scheme. The dual statements hold for $\mathrm{Qua}(n, q)$.

Remark 2 When assuming $G L(n, q)$ as an automorphism group, Propositions 5.1 and 5.4 follow from the representation theory of $G L(n, q)$.

References

1. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings Lecture Note Series, Vol. 58, London, 1984.
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, 1989.
3. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Corrections and Additions to the book Distanc-Regular Graphs.
4. P.J. Cameron and J.J. Seidel, "Quadratic forms over GF(2)," Indag. Math. 35 (1973), 1-8.
5. L.E. Dickson, Linear Groups with Exposition of Galois Field Theory, Teubner, Leipig, 1900 and Dover, 1958.
6. Y. Egawa, "Association schemes of quadratic forms," J. Combin. Th.(A) 38 (1981), 1-14.
7. C.D. Godsil, Algebraic Combinatorics, Chapman \& Hall, 1993.
8. Y. Huo and Z. Wan, "Non-symmetric association schemes of symmetric matrices," Acta Math. Appl. Sinica 9 (1993), 236-255.
9. Y. Huo and X. Zhu, "Association schemes with several classes of symmetric matrices," Acta. Math. Appl. Sinica 10 (1987), 257-268.
10. J. Ma, "Fusion schemes of quadratic forms," unpublished.
11. A. Munemasa, "An alternative construction of the graphs of quadratic forms in characteristic 2," Algebra Colloquium 2(3) (1995), 275-287.
12. Z. Wan, Geometry of Classical Groups over Finite Fields, Studentlitteratur, Lund, 1993.
13. Y. Wang and J. Ma, "Association schemes of symmetric matrices over a finite field of characteristic two," J. Statis. Plan and Infer. 51 (1996), 351-371.
14. Y. Wang, C. Wang, and C. Ma, "Association schemes of quadratic forms over a finite field of characteristic two," Chinese Science Bulletin 43(23) (1998), 1965-1968.
