On Even Generalized Table Algebras
Z. Arad
, Y. Erez
and M. Muzychuk
DOI: 10.1023/A:1022930714277
Abstract
Generalized table algebras were introduced in Arad, Fisman and Muzychuk ( Israel J. Math. 114 (1999), 29-60) as an axiomatic closure of some algebraic properties of the Bose-Mesner algebras of association schemes. In this note we show that if all non-trivial degrees of a generalized integral table algebra are even, then the number of real basic elements of the algebra is bounded from below (Theorem 2.2). As a consequence we obtain some interesting facts about association schemes the non-trivial valencies of which are even. For example, we proved that if all non-identical relations of an association scheme have the same valency which is even, then the scheme is symmetric.
Pages: 163–170
Keywords: generalized table algebras; association schemes
Full Text: PDF
References
1. Z. Arad and H.I. Blau, “On table algebras and their applications to finite group theory,” J. of Algebra 138 (1991), 137-185.
2. Z. Arad, E. Fisman, and M. Muzychuk, “Generalized table algebras,” Israel J. Math. 114 (1999), 29-60.
3. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, CA, 1984.
4. H.I. Blau, “Integral table algebras, affine diagrams, and the analysis of degree two,” J. of Algebra 178 (1995), 872-918.
5. H.I. Blau and B. Xu, “On homogeneous table algebras,” J. Algebra 199 (1998), 393-408.
6. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, 1989.
7. M. Muzychuk and P.-H. Zieschang, Association Schemes with Fixed-Point-Free Automorphism of Prime Order, unpublished manuscript, 1996, p. 13.
8. P.H. Zieschang, An Algebraic Approach to Association Schemes, LNM, Vol. 1628, Springer.
2. Z. Arad, E. Fisman, and M. Muzychuk, “Generalized table algebras,” Israel J. Math. 114 (1999), 29-60.
3. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park, CA, 1984.
4. H.I. Blau, “Integral table algebras, affine diagrams, and the analysis of degree two,” J. of Algebra 178 (1995), 872-918.
5. H.I. Blau and B. Xu, “On homogeneous table algebras,” J. Algebra 199 (1998), 393-408.
6. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, 1989.
7. M. Muzychuk and P.-H. Zieschang, Association Schemes with Fixed-Point-Free Automorphism of Prime Order, unpublished manuscript, 1996, p. 13.
8. P.H. Zieschang, An Algebraic Approach to Association Schemes, LNM, Vol. 1628, Springer.