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Abstract. The q-rook monoid Rn(q) is a semisimple C(q)-algebra that specializes when q → 1 to C[Rn],
where Rn is the monoid of n × n matrices with entries from {0, 1} and at most one nonzero entry in each row and
column. We use a Schur-Weyl duality between Rn(q) and the quantum general linear group Uqgl(r ) to compute
a Frobenius formula, in the ring of symmetric functions, for the irreducible characters of Rn(q). We then derive
a recursive Murnaghan-Nakayama rule for these characters, and we use Robinson-Schensted-Knuth insertion to
derive a Roichman rule for these characters. We also define a class of standard elements on which it is sufficient
to compute characters. The results for Rn(q) specialize when q = 1 to analogous results for Rn .
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0. Introduction

The rook monoid Rn is the monoid of n×n matrices with entries from {0, 1} and at most one
nonzero entry in each row and column (these correspond with the possible placements of
nonattacking rooks on an n×n chessboard). It contains an isomorphic copy of the symmetric
group Sn as the rank n (permutation) matrices. The q-rook monoid Rn(q) is an “Iwahori-
Hecke algebra” of Rn . It is a semisimple C(q)-algebra so that when q → 1, Rn(q) specializes
to the complex monoid algebra C[Rn]. Recently, the representation theory of Rn(q) was
analyzed. Solomon [20] found a faithful action of Rn(q) on tensor space. Halverson [10]
showed that Rn(q) and the quantum general linear group are in Schur-Weyl duality and
found explicit combinatorial constructions for the irreducible Rn(q)-representations.

In this paper we study the combinatorics of Rn(q)-characters. First, we use Schur-Weyl
duality to prove the following identity in the ring of symmetric functions

qµ(1, x1, . . . , xr ; q) =
n∑

k=0

∑
λ�k

χλ
Rn (q)(Tµ)sλ(x1, . . . , xr ). (0.1)
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Here qµ is a q-analog of the power sum symmetric function pµ, sλ is the Schur function,
and χλ

Rn (q)(Tµ) is the irreducible character of Rn(q) indexed by λ and evalauated at a certain
element Tµ. This is a generalization of the Frobenius formula of Ram [15] for the Iwahori-
Hecke algebra Hn(q) of the symmetric group Sn , which in turn is a generalization of
Frobenius’ [5] original formula from 1900,

pµ(x1, . . . , xr ) =
∑
λ�n

χλ
Sn

(µ)sλ(x1, . . . , xr ). (0.2)

Here χλ
Sn

(µ) is the irreducible character of Sn indexed by λ and evaluated on the conjugacy
class with cycle type µ.

We use our Frobenius formula to derive two combinatorial methods for computing
χλ

Rn (q)(Tµ):

(1) We give a recursive rule for computing χλ
Rn (q)(Tµ) by removing broken border strips

from λ. This rule is an analog of the Murnaghan-Nakayama rule for Sn characters,
which was generalized to Hn(q)-characters in [15].

(2) We give a rule for computing χλ
Rn (q)(Tµ) as weighted sums of standard tableaux.

This rule is a generalization of Roichman’s rule [17] for the irreducible characters of
Hn(q).

We use our Frobenius formula to show that the character table of Rn(q), denoted �Rn (q),
is of the form

�Rn (q) = �Rn−1(q)

∗
0

�Hn (q)
, (0.3)

where �Rn−1(q) is the character table of Rn−1(q) and �Hn (q) is the character table of Hn(q).
The elements in ∗ are explicitly determined by either our Murnaghan-Nakayama rule or
our Roichman rule.

The characters of the rook monoid Rn (q = 1) were originally studied in the 1950s
by Munn [14], who writes Rn characters in terms of Sk characters with 0 ≤ k ≤ n.
As an example, Munn produces the character table of R4. In the Appendix we produce
the character table of R4(q). Setting q = 1 in our table gives Munn’s table, exactly.
Munn also determines a “cycle-link” type for the elements of Rn , and he shows that Rn-
characters are constant on cycle-link classes. In Section 5, we show that the irreducible
Rn(q)-characters are completely determined by their values on the set of standard ele-
ments Tµ, µ � k, 0 ≤ k ≤ n. Our element Tµ specializes at q = 1 to a rook element
with “cycle-link” type µ, and we show how to use “rook diagrams” determine cycle-link
type.

Solomon [19] determined yet another way to compute Rn(q = 1) characters. He writes
the Rn character table as a product AY = YB where Y is a block diagonal matrix whose
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blocks are the characters of the symmetric groups Sk, 0 ≤ k ≤ n, and A and B are matrices
that can be computed combinatorially.

The q-rook monoid was first introduced by Solomon [18] as an analog of the Iwahori-
Hecke algebra for the finite algebraic monoid Mn(Fq ) of n × n matrices over a finite
field with q elements with respect to its “Borel subgroup” of invertible upper triangular
matrices. In [20], Solomon gives a presentation of Rn(q) and defines a faithful action
of Rn(q) on tensor space. In [8], Halverson and A. Ram show that Rn(q) is a quo-
tient of the Iwahori-Hecke algebra of type Bn and prove that Rn(q) is semisimple
over C whenever [n]! 	= 0, where [n]! = [n][n − 1] · · · [1] and [k] = qk−1 + qk−2

+ · · · + 1.

1. q-Rook monoid algebras

1.1. The rook monoid

Let Sn denote the group of permutations of the set {1, 2, . . . , n}. Identify σ ∈ Sn with the
matrix having a 1 in the (i, j)-position if σ (i) = j . For 1 ≤ i ≤ n − 1, let si ∈ Sn be the
transposition of i and i + 1.

The rook monoid Rn is the monoid of n × n matrices having entries from {0,1} with at
most one nonzero entry in each row and column. There are ( n

k )2k! matrices in Rn having
rank k, and thus

|Rn| =
n∑

k=0

(
n

k

)2

k!. (1.1)

We have Sn ⊆ Rn as the rank n matrices.
Let Ei, j be the n × n matrix unit with a 1 in the (i, j)-position and 0s everywhere else.

In Rn , define

ν = E1,2 + E2,3 + · · · + En−1,n,

π j = E j+1, j+1 + E j+2, j+2 + · · · + En,n, 1 ≤ j ≤ n − 1 (1.2)

ε j = In − E j, j , 1 ≤ j ≤ n,

where In is the identity matrix. Let πn be the zero matrix, and note that π1 = ε1. Munn [14]
shows that the complex monoid algebra

C[Rn] =
{ ∑

x∈Rn

αx x | αx ∈ C

}

is semisimple. Note that πn is the zero matrix but it is not the zero element in C[Rn] (the
zero element in C[Rn] is the linear combination with αx = 0 for all x).
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1.2. The q-rook monoid

Let q be an indeterminate. For n ≥ 2, define the q-rook monoid Rn(q) to be the associative
C(q)-algebra with generators 1, T1, . . . , Tn−1, P1, . . . , Pn and defining relations

(A1) T 2
i = q · 1 + (q − 1)Ti , for 1 ≤ i ≤ n − 1,

(A2) Ti Ti+1Ti = Ti+1Ti Ti+1, for 1 ≤ i ≤ n − 2,

(A3) Ti Tj = Tj Ti , when |i − j | ≥ 2,

(A4) Ti Pj = Pj Ti = qP j , for 1 ≤ i < j ≤ n,

(A5) Ti Pj = Pj Ti , for 1 ≤ j < i ≤ n − 1,

(A6) P2
i = Pi , for 1 ≤ i ≤ n,

(A7) Pi+1 = qPi T
−1

i Pi , for 2 ≤ i ≤ n.

(1.3)

Define R0(q) = C(q) and define R1(q) to be the associative C(q)-algebra spanned by 1 and
P1 subject to P2

1 = P1. The subalgebra of Rn(q) generated by T1, . . . , Tn−1 is isomorphic
to the Iwahori-Hecke algebra of type Hn(q) of type An−1 (see [20] or [10] for a proof that
they can be identified).

Solomon defined Rn(q) in [18] and gave it a presentation in [20]. The presentation (1.3)
is proved in [10]. Solomon [18, 20] shows that Rn(q) is semisimple with dimension

dim(Rn(q)) =
n∑

k=0

(
n

k

)2

k!. (1.4)

When q → 1, Rn(q) specializes to C[Rn]. Under this specialization, we have Ti → si and
Pi → πi .

1.3. Partitions and tableaux

We use the notation of [12] for partitions and compositions. A composition λ of the positive
integer n, denoted λ |= n, is a sequence of nonnegative integers λ = (λ1, λ2, . . . , λt )
such that |λ| = λ1 + · · · + λt = n. The composition λ is a partition, denoted λ � n, if
λ1 ≥ λ2 ≥ · · · ≥ λt . The length �(λ) is the number of nonzero parts of λ. The Young diagram
of a partition λ is the left-justified array of boxes with λi boxes in the i th row. We let mi (λ)
be the number of parts of λ equal to i , and we sometimes write λ = (1m1(λ), 2m2(λ), . . .). For
example,

if λ = (5, 5, 3, 1) = (1, 3, 52) = , then |λ| = 14 and �(λ) = 4.

If λ is a partition with 0 ≤ |λ| ≤ n, then we say that an n-standard tableau of shape λ is
a filling of the diagram of λ with numbers from {1, 2, . . . , n} such that
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(1) each number from {1, 2, . . . , n} appears in λ at most once,
(2) the rows of λ increase from left to right, and
(3) the columns of λ increase from top to bottom.

Similarly, an n-column strict tableaux of shape λ is the same as an n-standard tableau except
that we allow the rows to weakly increase. Thus,

2 3 9 10
5 7 12 15
6 11 13

is a 16-standard tableau of shape (4, 4, 3)

1 1 3 4
3 3 8 8
8 8 9

is a 16-column strict tableau of shape (4, 4, 3).

1.4. Irreducible representations

The irreducible representations of Rn(q) and C[Rn] are indexed by partitions in the set

�n = {λ � k | 0 ≤ k ≤ n}. (1.5)

For λ ∈ �n , we let Mλ be the irreducible C[Rn]-module indexed by λ and let χλ
Rn

be its
character, and we let Mλ

q be the irreducible C[Rn]-module indexed by λ and let
χλ

Rn (q) be its character. The dimensions of Mλ and Mλ
q are given by

dim(Mλ) = dim
(
Mλ

q

) = #(n-standard tableaux of shape λ) =
(

n

|λ|
)

fλ, (1.6)

where fλ is the number of |λ|-standard tableaux of shape λ given by the hook formula (see
[21], Theorem 3.10.2).

The Rn-module Mλ is studied in [6, 14, 19]. In [6], C. Grood determines the analog of
Young’s natural basis for Mλ. In [10], analogs of Young’s seminormal bases of both Mλ

q

and Mλ are constructed, and the action of the generators of Rn(q) and Rn on this basis are
described explicitly.

1.5. Standard elements

Define γ1 = Tγ1 = 1 and

γt = s1s2 · · · st−1,
for 2 ≤ t ≤ n. (1.7)

Tγt = T1T2 · · · Tt−1,
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For a composition µ = (µ1, µ2, . . . , µ�) with |µ| = k and 0 ≤ k ≤ n, define

γµ = γµ1 ⊗ γµ2 ⊗ · · · ⊗ γµ�
,

Tγµ
= Tγµ1

⊗ Tγµ2
⊗ · · · ⊗ Tγµ�

, (1.8)

and

dµ = πn−k ⊗ γµ,

Tµ = Pn−k ⊗ Tγµ
, (1.9)

where we view Tµ = Pk ⊗ Tγµ1
⊗ · · · ⊗ Tγµ�

∈ Rk(q) ⊗ Rµ1 (q) ⊗ · · · ⊗ Rµ�
(q) ⊆ Rn(q).

For example, if n = 15 and µ = (5, 3, 2, 2), then

Tµ = P3(T4T5T6T7)(T9T10)(T12)(T14).

In [15] it is shown that Hn(q)-characters are completely determined by their value on
Tγµ

. In Section 5 we show that characters of Rn(q) and C[Rn] are completely determined
by their values on Tµ and dµ. Since both the irreducible representations and the standard
elements are indexed by �n , we see that the character table is square with these labels.

When q → 1, we have Rn(q) → C[Rn] with Tµ → dµ. Furthermore, in [10], we construct
Mλ

q so that Mλ
1 = Mλ, and the action of Tµ specializes at q = 1 to the action of dµ. It

follows that the characters also specialize upon setting q = 1,

χλ
Rn (q)(Tµ)|q=1 = χλ

Rn
(dµ). (1.10)

2. A Frobenius formula for the q-rook monoid

In this section, we use the Schur-Weyl duality between Rn(q) and the quantum general
linear group Uqgl(r ) to derive a Frobenius formula for the irreducible characters of Rn(q).

We define Uqgl(r ) as in Jimbo [11], except with his parameter q replaced by q1/2. Let
Uqgl(r ) be the C(q1/4)-algebra given by generators

ei , fi (1 ≤ i < r ) and q±εi /2 (1 ≤ i ≤ n),

with relations

qεi /2qε j /2 = qε j /2qεi /2, qεi /2q−εi /2 = q−εi /2qεi /2 = 1,

qεi /2e j q−εi /2 =




q− 1
2 e j , if j = i − 1,

q
1
2 e j , if j = i,

e j , otherwise,

qεi /2 f j q−εi /2 =




q
1
2 f j , if j = i − 1,

q− 1
2 f j , if j = i,

f j , otherwise,

ei f j − f j ei = δi j
q

1
2 (εi −εi+1) − q− 1

2 (εi −εi+1)

q
1
2 − q− 1

2

,
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ei±1e2
i − (

q
1
2 + q− 1

2
)
ei ei±1ei + e2

i ei±1 = 0,

fi±1 f 2
i − (

q
1
2 + q− 1

2
)

fi fi±1 fi + f 2
i fi±1 = 0,

ei e j = e j ei , fi f j = f j fi , if |i − j | > 1.

Define

ti = q
εi
4 (1 ≤ i ≤ r ) ki = ti t−1

i+1 (1 ≤ i ≤ r − 1).

There is a Hopf algebra structure (see [11], p. 248) on Uqgl(r ) with comultiplication � and
counit u given by

�(ei ) = ei ⊗ k−1
i + ki ⊗ ei , u(ei ) = 0,

�( fi ) = fi ⊗ k−1
i + ki ⊗ fi , u( fi ) = 0, (2.1)

�(ti ) = ti ⊗ ti , u(ti ) = 1.

2.1. Representations and characters of Uqgl(r )

Let h be a Cartan subalgebra of the Lie algebra gl(r ), and let ε1, . . . , εr be an orthonormal
basis for h

∗ with respect to an inner product ( , ). The weight lattice is L = ∑r
i=1 Zεi , and

the dominant integral weights are of the form

λ = m1ε1 + · · · + mrεr , mi ∈ Z, m1 ≥ m2 ≥ · · · ≥ mr .

We identify the dominant weight λ with the sequence (λ1, . . . , λr ), and we let Vq (λ) denote
the irreducible Uqgl(r )-module with dominant weight λ (see [2], Section 10.1, for example).

Any finite dimensional Uqgl(r )-module V has a basis B consisting of weight vectors,
where, for each b ∈ B, there exists wt(b) ∈ L such that

ti b = q
1
4 (εi ,wt(b))b, 1 ≤ i ≤ r.

Let x1, . . . , xr be indeterminates, and define the character of V to be

ch(V ) =
∑
b∈B

xwt(b), (2.2)

where if wt(b) = a1ε1 + · · · + arεr , then xwt(b) = xa1
1 · · · xar

r . It is known (see [2],
Proposition 10.1.5) that ch(Vq (λ)) is the same as the corresponding character of gl(r ), and
so it is given by the Weyl denominator formula. Thus, when λ is a partition, the character
of Vq (λ) is given by the Schur function,

ch(Vq (λ)) = sλ(x1, . . . , xr ) = det
(
xλ j +r− j

i

)
det

(
xr− j

i

) . (2.3)
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2.2. The bitrace

If V is a finite-dimensional Uqgl(r )-module and Z = EndUq gl(r )(V ) is its centralizer algebra,
then define, for each φ ∈ Z ,

btr(φ) =
∑
b∈B

xwt(b)(φb|b), (2.4)

where B is a weight basis of V (a basis consisting of weight vectors) and φb|b is the
coefficient of b in φb. For µ ∈ L , let Vµ denote the µ-weight space of V . Then, since Z
commutes with Uqgl(r ), we know that Z preserves weight spaces, and so by summing over
weight spaces we get

btr(φ) =
∑
µ∈L

dim(Vµ)xµtrVµ
(φ).

where trVµ
(φ) is the trace of φ on Vµ. In particular btr(φ) is a weighted sum of usual traces,

and it satisfies the trace property, btr(φ1φ2) = btr(φ2φ1) for all φ1, φ2 ∈ Z .
Now, by double centralizer theory (see for example [3], Section 3D), we have a decom-

position of the form

V ∼=
⊕

λ

Vq (λ) ⊗ Zλ

where Zλ is an irreducible Z -module and the sum is over the highest weights λ for which
Vq (λ) is a constituent of V . For each module Vq (λ) ⊗ Zλ we choose a basis {bλ

i ⊗ zλ
j }, where

Bλ = {bi } is a weight basis of Vq (λ) and {zλ
j } is a basis of Zλ. The bitrace becomes

btr(φ) =
∑

λ

∑
b∈Bλ

xwt(b)
∑

j

φzλ
j |zλ

j
=

∑
λ

ch(Vq (λ))χλ
Z (φ). (2.5)

Here φzλ
j |zλ

j
is the coefficient of zλ

j in φzλ
j , and χλ

Z (φ) = ∑
j φzλ

j |zλ
j

is the character of Zλ

evaluated at φ. We thank Arun Ram for suggesting this derivation of (2.5).

2.3. Schur-Weyl duality

The “fundamental” r -dimensional Uqgl(r )-module V = Vq ((1)) = Vq (ω1) is the vector
space

V = C(q1/4)-span{v1, . . . , vr }

(so that the symbols vi form a basis of V ) with Uqgl(r )-action given by (see [11],
Proposition 1)

eiv j =
{
v j+1, if j = i,

0, if j 	= i,
fiv j =

{
v j−1, if j = i + 1,

0, if j 	= i + 1,
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and

tiv j =
{

q1/4v j , if j = i,

v j , if j 	= i.

The “trivial” 1-dimensional Uqgl(r )-module W = Vq (∅) is the vector space

W = C(q1/4)-span{v0}

(so that the symbol v0 is a basis of W ) with Uqgl(r )-action given by the counit u

eiv0 = fiv0 = 0 and tiv0 = v0.

Let U = V ⊕ W so that U has basis v0, v1, . . . , vr . The coproduct on Uqgl(r ) is coasso-
ciative, so we can form the n-fold tensor product representation U⊗n . The simple tensors
vi1 ⊗ · · · ⊗ vin form a basis for U⊗n , i.e.,

U⊗n = C(q)-span
{
vi1 ⊗ · · · ⊗ vin

∣∣ 0 ≤ i j ≤ n
}
.

Define an action of Rn(q) on U⊗n as follows. The action of a generator Tk, 1 ≤ k ≤ n−1,
and Pj , 1 ≤ j ≤ n, on a simple tensor v = vi1 ⊗ · · · ⊗ vin in U⊗n is given by

Tkv =




qv, if ik = ik+1,

(q − 1)v + q1/2skv, if ik < ik+1,

q1/2skv, if ik > ik+1.
(2.6)

Pj v =
{

v, if i1 = i2 = · · · = i j = 0,

0, otherwise.

where sk acts on v by place permutation,

sk
(
vi1 ⊗ · · · ⊗ vik ⊗ vik+1 ⊗ · · · ⊗ vin

) = vi1 ⊗ · · · ⊗ vik+1 ⊗ vik ⊗ · · · ⊗ vin .

Solomon [20] first proved that (2.6) extends to an action of Rn(q) on tensor space, although
he used a different generator N in place of the Pi , and he proved that the action is faithful
when r ≥ n.

Halverson [10] proved that Rn(q) commutes with Uqgl(r ) on U⊗n , and so if r ≥ n,
we have Rn(q) ∼= EndUq gl(r )(U⊗n). Furthermore, [10] shows that U⊗n decomposes into
irreducibles as

U⊗n ∼=
n⊕

k=0

⊕
λ�k

Vq (λ) ⊗ Mλ
q (2.7)

as a bimodule for Uqgl(r )⊗ Rn(q). Here, Vq (λ) is the irreducible Uqgl(r )-module of highest
weight λ, and Mλ

q is the irreducible Rn(q)-module corresponding to λ.
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2.4. A Frobenius formula

Putting together (2.3), (2.5) and (2.7), proves

Proposition 2.1 For all h ∈ Rn(q), we have

btr(h) =
n∑

k=0

·
∑
λ�k

sλ(x1, . . . , xr )χλ
Rn (q)(h),

where χλ
Rn (q) is the irreducible Rn(q) character labeled by λ.

Let n = n1 + n2, d1 ∈ Rn1 (q), and d2 ∈ Rn2 (q). Then the bitrace of d1 ⊗ d2 ∈ Rn(q) on
U⊗n satisfies btr(d1 ⊗ d2) = btr(d1)btr(d2), where btr(di ) is the bitrace of di on U⊗ni (the
proof is identitical to that in [7] Section 5, since d1 acts on the first n1 tensor slots and d2 acts
on the last n2 tensor slots). Thus if µ = (µ1, . . . , µ�) is a composition with 0 ≤ |µ| ≤ n,
and Tµ is defined as in (1.9), then

btr(Tµ) = btr(Pn−k)btr
(
Tµ1

) · · · btr
(
Tµ�

)
. (2.8)

As in [15], let q0(x0, x1, . . . , xr ; q) = 1, and for a positive integer k define

qk(x0, x1, . . . , xr ; q) =
∑

I=(i1,...,ik )

qe(I )(q − 1)�(I )xi1 · · · xik , (2.9)

where the sum is over all weakly increasing sequences I = (0 ≤ i1 ≤ · · · ≤ ik ≤ r ), e(I )
is the number of i j ∈ I such that i j = i j+1, and �(I ) is the number of i j ∈ I such that
i j < i j+1. For a composition µ = (µ1, µ2, . . . , µ�), define

qµ = qµ1 qµ2 · · · qµ�
. (2.10)

Proposition 2.2
(a) The bitrace of Tγk on U⊗k is btr(Tγk ) = qk(x0, x1, . . . , xr ; q).
(b) The bitrace of Pk on U⊗k is btr(Pk) = 1.
(c) For a composition µ with 0 ≤ |µ| ≤ n, the bitrace of Tµ on U⊗n is

btr(Tµ) = qµ(x0, . . . , xr ; q).

Proof: Recall from Section 2.3, that tiv0 = v0, and for 1 ≤ j ≤ r, t jv j = q
1
4 v j and

tiv j = v j if i 	= j . Let x0 = 1. Then

xwt(v0) = 1 = x0 and xwt(v j ) = xε j = x j , 1 ≤ j ≤ r,

so the simple tensors vi1 ⊗ · · · ⊗ vin form a weight basis of U⊗n satisfying

xwt(vi1 ⊗···⊗vin ) = xi1 · · · xin .
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Now, the proof of (a) is exactly as the proof of [15], Theorem 4.1. For (b), we have
Pk(vi1 · · · vik ) = 0 unless i1 = · · · = in = 0, and Pk(v0 · · · v0) = v0 · · · v0. Part (c)
follows from (a), (b), and (2.8).

Combining Propositions 2.1 and 2.2(c), we have the following Frobenius formula for
Rn(q).

Theorem 2.3 Let µ be a composition with 0 ≤ |µ| ≤ n. Then

qµ(1, x1, . . . , xr ; q) =
n∑

k=0

∑
λ�k

χλ
Rn (q)(Tµ)sλ(x1, . . . , xr )

where Tµ is defined in (1.9) and χλ
Rn (q) is the irreducible Rn(q)-character labeled by λ.

We saw in (1.10) that upon setting q = 1 we have χλ
Rn (q)(Tµ)|q=1 = χλ

Rn
(dµ). Furthermore,

it is easy to see that qµ(x0, x1, . . . , xr ; 1) = pµ(x0, x1, . . . , xr ), since when q = 1 in (2.9)
we must have i1 = i2 = · · · = ik . Thus, setting q = 1 in Theorem 2.3, gives

Theorem 2.4 Let µ be a composition with 0 ≤ |µ| ≤ n. Then

pµ(1, x1, . . . , xr ) =
n∑

k=0

∑
λ�k

χλ
Rn

(dµ)sλ(x1, . . . , xr ),

where dµ is defined in (1.9) and χλ
Rn

is the irreducible Rn-character indexed by λ.

The next corollary (of Theorem 2.3) tells us that the character table of Rn(q) has the form
shown in (0.3).

Corollary 2.5 Let λ ∈ �n and let µ be a composition with 0 ≤ |µ| ≤ n, then
(a) if |λ| > |µ|, then χλ

Rn (q)(Tµ) = 0.

(b) if |λ| ≤ |µ|, then χλ
Rn (q)(Tµ) = χλ

R|µ|(q)(Tγµ
).

Proof: From Theorem 2.3, we see that

n∑
k=0

∑
λ�k

χλ
Rn (q)(Tµ)sλ(x1, . . . , xr ) =

|µ|∑
k=0

∑
λ�k

χλ
R|µ|(q)

(
Tγµ

)
sλ(x1, . . . , xr ),

since each side of this equation equals qµ(x0, x1, . . . , xr ; q). This is an identity in the ring
of symmetric functions, and the Schur functions are linearly independent, so the corollary
follows from equating the coefficient of sλ on both sides. In particular, when |λ| > |µ| the
coefficient of sλ on the right side is 0, proving part (a).



110 DIENG, HALVERSON AND POLADIAN

3. Murnaghan-Nakayama rules

If λ and µ are partitions, we say that µ ⊆ λ if µi ≤ λi for each i . The skew shape λ/ν

consists of the boxes that are in λ and not in µ. Two boxes in λ/µ are adjacent if they share
a common edge, and λ/ν is connected if you can travel from any box to any other via a path
of adjacent boxes. A skew shape λ/ν is a broken border strip (bbs) if it does not contain any
2 × 2 blocks of boxes, and a broken border strip is a border strip if it is a single connected
component. Each broken border strip λ/ν contains cc(λ/ν) connected components (border
strips).

The width and height of a border strip b are defined, respectively, by

w(b) = (the number of columns that b occupies) − 1,
(3.1)

h(b) = (the number of rows that b occupies) − 1.

For a skew shape λ/ν, we define

wtλ/ν(q) =
{

(q − 1)cc(λ/ν)−1
∏

b

qw(b)(−1)h(b), if λ/ν is a bbs,

0, otherwise;
(3.2)

where the product is over the connected components (border strips) b in λ/ν. For example

(7, 5, 5, 3, 2)/(4, 4, 3, 1) =

is a broken border strip consisting of two connected components b1 and b2 with w(b1) =
2, h(b1) = 1 and w(b2) = 3, h(b2) = 2. Thus its weight is (q − 1)q2(−1)q3(−1)2 =
−(q − 1)q5.

A key step in proving the Murnaghan-Nakayama rule for Hn(q) is the following propo-
sition [15] (see also [7]), which is a q-analog of [12], Section 3, Example 11(2),

Proposition 3.1 (Ram [15]) If ν � (n − k), then

qk(x1, . . . , xr ; q)sν(x1, . . . , xr ) =
∑
λ�n

wtλ/ν(q)sλ(x1, . . . , xr ),

where qk is defined in (2.9), sν is the Schur function, and the sum is over all partitions λ

such that λ/ν is a broken border strip of size k.

To extend this result to our setting, we first expand qt (1, x1, x2, . . . , xr ; q) in terms of
qk(x1, x2, . . . , xr ; q).
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Lemma 3.2 For t ≥ 0, we have

qt (1, x1, . . . , xr ; q) =
t∑

k=0

fk,t (q)qk(x1, . . . , xr ; q),

where

fk,t (q) =




qt−1, if k = 0,

(q − 1)qt−k−1, if 0 < k < t,

1, if k = t.

(3.3)

Proof: By definition qt (1, x1, . . . , xr ; q) = ∑
I qe(I )(q −1)�(I )xi1 , . . . , xik , where the sum

is over all sequences I = (i1, . . . , it ) of the form 0 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ r . We let K
represent the subsequence of I containing all the strictly positive terms in I , and let k = |K |.

Now we sum the terms in qt (1, x1, . . . , xr ; q) according to k. The terms with k = t
contribute

∑
K=(i1,...,it )

qe(K )(q − 1)�(K )xi1 , . . . , xit = qt (x1, . . . , xr ; q),

since 1 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ r . The terms with 0 < k < t each have t − k − 1 equalities
between 0s and one jump from a 0 subscript to a nonzero subscript. Thus, they contribute

(q − 1)
t−1∑
k=1

qt−k−1
∑

K=(it−k+1,...,it )

qe(K )(q − 1)�(K )xit−k+1 , . . . , xit

= (q − 1)
t−1∑
k=1

qt−k−1qk(x1, . . . , xr ; q).

Finally, there is one term with k = 0. It has the form

qt−1x0, . . . , x0 = qt−1q0(x1, . . . , xr ; q).

Summing these three cases gives the desired result.

Proposition 3.3 If ν ∈ �n−t , then

qt (1, x1, . . . , xr ; q)sν(x1, . . . , xr ) =
∑
λ∈�n

f|λ/ν|,t (q)wtλ/ν(q)sλ(x1, . . . , xr ),

where the nonzero terms in this sum are over the partitions λ ∈ �n such that λ/ν is a broken
border strip with 0 ≤ |λ/ν| ≤ t .
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Proof: By Proposition 3.1 and Lemma 3.2, if ν ∈ �n−t , we have

qt (1, x1, . . . , xr ; q)sν(x1, . . . , xr ) =
t∑

k=0

fk,t (q)qk(x1, . . . , xr ; q)sν(x1, . . . , xr )

=
n∑

k=0

fk,t (q)
∑

λ�(|ν|+k)

wtλ/ν(q)sλ(x1, . . . , xr ).

We now are ready to derive a Murnaghan-Nakayama rule for computing the irreducible
characters of Rn(q).

Theorem 3.4 Let λ ∈ �n and let µ = (µ1, . . . , µ�) be a composition with 0 ≤ |µ| ≤ n.
Let µ� = t and µ̄ = (µ1, . . . , µ�−1). Then

χλ
Rn (q)(Tµ) =

∑
ν∈�n−t

f|λ/ν|,t (q)wtλ/ν(q)χν
Rn−t (q)(Tµ̄),

where wtλ/ν(q) is defined in (3.2) and fk,t (q) is defined in (3.3). The nonzero terms in
this sum correspond to partitions ν ∈ �n−t such that λ/ν is a broken border strip with
0 ≤ |λ/µ| ≤ t .

Proof: From Theorem 2.3 and Proposition 3.3, we have∑
λ∈�n

χλ
Rn (q)(Tµ)sλ(x1, . . . , xr )

= qµ(1, x1, . . . , xr ; q)

= qµ̄(1, x1, . . . , xr ; q)qt (1, x1, . . . , xr ; q)

=
∑

ν∈�n−t

χν
Rn−t (q)(Tµ̄)sν(x1, . . . , xr )qt (1, x1, . . . , xr ; q)

=
∑

ν∈�n−t

χν
Rn−t (q)(Tµ̄)

∑
λ∈�n

f|λ/ν|,t (q)wtλ/ν(q)sλ(x1, . . . , xr )

=
∑
λ∈�n

( ∑
ν∈�n−t

χν
Rn−t (q)(Tµ̄) f|λ/ν|,t (q)wtλ/ν(q)

)
sλ(x1, . . . , xr ).

Now compare coefficients of the sλ, which are a basis in the ring of symmetric fun-
ctions.

When q = 1, definitions (3.3) and (3.2) become

fk,t (1) =
{

1, if k = 0 or k = t,

0, otherwise,
(3.4)
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wtλ/ν(1) =
{

(−1)h(λ/ν), if λ/ν is a border strip,

0, otherwise.
(3.5)

It follows that the Murnaghan-Nakayama rule for the rook monoid is

Theorem 3.5 Let λ ∈ �n and let µ = (µ1, . . . , µ�) be a composition with 0 ≤ |µ| ≤ n.
Let µ� = t and µ̄ = (µ1, . . . , µ�−1). Then

χλ
Rn

(dµ) =
∑

ν∈�n−t

(−1)h(λ/ν)χν
Rn−t

(dµ̄),

where the sum is over partitions ν ∈ �n−t such that either ν = λ or λ/ν is a border strip
of size t .

4. Robinson-Schensted-Knuth insertion and Roichman weights

Fix r ≥ n. For a partition µ = (µ1, . . . , µ�) ∈ �n define B(µ) to be the set of partial sums
of µ so that

B(µ) = {µ1, µ1 + µ2, . . . , µ1 + · · · + µ�}. (4.1)

For µ � k, define the µ-weight of xi1 , . . . , xik , with 0 ≤ i j ≤ r , to be

wtµ
(
xi1 , . . . , xik

) =
k∏

j=1
j /∈B(µ)

φµ

(
j, xi1 , . . . , xin

)
, (4.2)

where

φµ

(
j, xi1 , . . . , xik

) =




−1 if i j < i j+1,

0, if i j ≥ i j+1 and i j+1 < i j+2 and i j+1 /∈ B(µ),

q, otherwise.

Proposition 4.1 ([16]) We have q∅ = 1, and for µ � k with 1 ≤ k ≤ n, we have

qµ(x0, x1, . . . , xr ; q) =
∑

xi1 ,...,xik

wtµ
(
xi1 , . . . , xik

)
xi1 , . . . , xik ,

where the sum is over all words xi1 , . . . , xik with 0 ≤ i j ≤ r .

Let λ ∈ �n and recall our definition, in Section 1.3, of an n-standard tableau Qλ of shape
λ. In this section we will place the numbers that are missing from Qλ in a standard tableau
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of shape (n − |λ|) to the right of λ. Thus, our example from Section 1.3 becomes,

Qλ =


 2 3 9 10

5 7 12 15
6 11 13

,
1 4 8 14 16


 is a 16-standard tableau of shape (4, 4, 3).

In this way we identify n-standard tableaux with ordered pairs of standard tableaux, such that
the second tableau is a single row, and there is a total of n boxes. We write Qλ = (Q(1)

λ , Q(2)
λ )

where Q(1)
λ is the original tableau and Q(2)

λ is the single row of “missing” entries.
In a similar fashion we identify n-column strict tableau Pλ with an ordered pair of column-

strict tableau, but such that the second tableau is a single row of length n − |λ| containing
all 0s. Thus, our example from Section 1.3 becomes

Pλ =


 1 1 3 4

3 3 8 8
8 8 9

,
0 0 0 0 0


 is a 16-column strict tableau of shape (4, 4, 3).

We write Pλ = (P (1)
λ , P (2)

λ ) where P (1)
λ is the original tableau and P (2)

λ is the single row of
0s. The Schur function can be written as

sλ(x1, . . . , xr ) =
∑

Pλ

xm1(Pλ)
1 xm2(Pλ)

2 , . . . , xmr (Pλ)
r , (4.3)

where the sum is over all r -column strict tableaux of shape λ and mi (Pλ) is the number of
times that i appears in Pλ.

For an n-standard tableau Qλ of shape λ define

wtµ(Qλ) =
k∏

j=1
j /∈B(µ)

ψµ( j, Qλ), (4.4)

where B(µ) is as defined in (4.1) and

ψµ( j, Qλ) =




−1, if j + 1 is southwest of j in Qλ,

0, if j + 1 is northeast of j in Qλ and j + 2 is
southwest of j + 1 in Qλ and j + 1 /∈ B(µ),

q, otherwise.

Here, by “southwest” we mean south (below) and/or west (left), by “northeast” we mean
north (above) and/or east (right) or both. Furthermore, we consider the entries of Q(1)

λ to be
southwest of those in Q(2)

λ . Notice that j + 1 cannot be south and east of j in a standard
tableau. For example, in the standard tableau Qλ above, 2 is southwest of 1, 3 is northeast
of 2, 4 is northeast of 3, 5 is southwest of 4, etc.
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The Robinson-Schensted-Knuth (RSK) correspondence (see [21], Section 3.2) is an al-
gorithm which gives a bijection between sequences xi1 , . . . , xin , with 1 ≤ i j ≤ m, and
pairs (P, Q) where P is a column-strict tableaux, Q is a standard tableau, and P and Q
have shape λ for some partition λ with n boxes. The RSK algorithm constructs the pair of
tableaux (P, Q) iteratively,

(∅, ∅) = (P0, Q0), (P1, Q1), . . . , (Pn, Qn) = (P, Q),

in such a way that

(1) Pj is a column strict tableau that contains j boxes, and Q j is a standard tableau that
has the same shape as Pj ,

(2) Pj is obtained from Pj−1 by column inserting i j into Pj−1, denoted Pj = Pj−1 ← i j ,
as follows

(a) Insert i j into the first column of Pj−1 by displacing the smallest number ≥i j ; if
every number is <i j , add i j to the bottom of the first column,

(b) If i j displaces x from the first column, insert x into the second column using the
rules of (a),

(c) Repeat for each subsequent column until a number is added to the bottom of some
(possibly empty) column,

(3) Q j is obtained from Q j−1 by putting j in the newly added box (i.e., the box created in
going from Pj−1 to Pj ).

The standard tableau Q is called the recording tableau.
We modify RSK insertion to work for n-standard and n-column strict tableaux. Given

a sequence xi1 , . . . , xin with 0 ≤ i j ≤ r , our insertion scheme constructs a sequence
(∅, ∅) = (P0, Q0), . . . , (Pn, Qn) = (P, Q), where Pi = (P (1)

i , P (2)
i ) is an i-semistandard

tableaux, Qi = (Q(0)
i , Q(1)

i ) is an i-standard tableaux, and Pi and Qi have the same shape.
Our insertion rule uses usual column insertion in one of the components according to the
following rule:

(
P (1)

j−1, P (2)
j−1

) ← i j =
{(

P (1)
j−1 ← i j , P (2)

j−1

)
, if i j > 0,(

P (1)
j−1, P (2)

j−1 ← i j
)
, if i j = 0.

That is, insert 0s into the second tableau and insert nonzero numbers into the first tableau,
using usual column insertion in both cases. Again, we construct Qi from Qi−1 by putting i
into the new box added in the i th step. For example, the result of inserting x2, x1, x0, x2, x0 is

Pi : (∅, ∅),
(

2 , ∅
)
,
(

1 2 , ∅
)
,
(

1 2 , 0
)
,

(
1 2
2

, 0
)
,

(
1 2
2

, 0 0
)

Qi : (∅, ∅),
(

1 , ∅
)
,
(

1 2 , ∅
)
,
(

1 2 , 3
)
,

(
1 2
4

, 3
)
,

(
1 2
4

, 3 5
)
.
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Two well-known properties of RSK insertion are

(4) If i j < i j+1 and Pj+1 = (Pj−1 ← i j ) ← i j+1, then j + 1 is southwest of j in Q j+1,
(5) If i j ≥ i j+1 and Pj+1 = (Pj−1 ← i j ) ← i j+1, then j + 1 is southwest of j in Q j+1,

In our modified insertion, we always keep the 0s to the right (northeast) of the nonzero
numbers, so properties (1) and (2) still hold. By property (2), the second tableau in our
insertion will always be a single row. Thus, our insertion establishes a bijection between
sequences xi1 , . . . , xin , with 0 ≤ i j ≤ r , and pairs (P, Q), where P is an n-column strict
tableau, and Q is an n-standard tableau, each having shape λ � k with 0 ≤ k ≤ n (note that
k is the number of nonzero subscripts in xi1 , . . . , xin ). Furthermore, it follows from (4.2),
(4.4), and properties (4) and (5) of RSK insertion that this bijection is weight preserving,
i.e., for all µ ∈ �n ,

if (P, Q) results from inserting xi1 , . . . , xin , then
(4.5)

wtµ
(
xi1 , . . . , xin

) = wtµ(Q) and x P = xi1 , . . . , xin .

Proposition 4.2 For each µ ∈ �n, we have

qµ(x0, . . . , xr ; q) =
∑
λ∈�n

( ∑
Qλ

wtµ(Qλ)

)
sλ(x1, . . . , xr )

where the inner sum is over all n-standard tableaux of shape λ.

Proof: Using (4.5) and Proposition 4.1, we have

qµ(x0, . . . , xr ; q) =
∑

xi1 ,...,xin

wtµ
(
xi1 , . . . , xin

)
xi1 , . . . , xin

=
∑
λ∈�n

∑
Pλ,Qλ

wtµ(Qλ)x Pλ

=
∑
λ∈�n

( ∑
Qλ

wtµ(Qλ)

)( ∑
Pλ

x Pλ

)

=
∑
λ∈�n

( ∑
Qλ

wtµ(Qλ)

)
sλ(x1, . . . , xr ),

where the sums are over all n-column strict tableaux Pλ of shape λ and all n-standard
tableaux Qλ of shape λ.

By comparing coefficients of the sλ, which are linearly independent in the ring of sym-
metric functions, in Theorem 2.3 and Proposition 4.2, we get the following theorem. It is a
generalization of Roichman’s rule [17] for Hn(q).
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Theorem 4.3 For µ, λ ∈ �n, we have

χλ
Rn (q)(Tµ) =

∑
Qλ

wtµ(Qλ),

where the sum is over all n-standard tableaux of shape λ.

All of our calculations work when q = 1, and so we have

Corollary 4.4 Let µ ∈ �n. Then
(1) pµ(1, x1, . . . , xr ) = ∑

λ∈�n
(
∑

Qλ
wtµ(Qλ))sλ(x1, . . . , xr ),

(2) For each λ ∈ �n, χλ
Rn

(dµ) = ∑
Qλ

wtµ(Qλ),

where in each case Qλ varies over all n-standard tableaux of shape λ and wtµ is computed
as in (4.4) with q = 1.

5. Standard elements

We now show that Rn(q)-characters are completely determined by their values on the
standard elements Tµ. In doing so, we show that Rn(q) satisfies a basic construction similar
to the partition algebra [9]. In Section 5.2, we define rook diagrams and use them to show
how to explicitly “conjugate” elements of Rn to get standard elements dµ.

5.1. Standard elements in Rn(q)

The elements s1, . . . , sn−1 generate Sn , and a reduced word for w ∈ Sn is a product w =
si1 , . . . , sik with k minimal. Given a reduced word w = si1 si2 , . . . , sik ∈ Sn , let Tw =
Ti1 Ti2 , . . . , Tik ∈ Hn(q). The element Tw is well-defined (independent of choice of the
reduced word for w), and the elements Tw, w ∈ Sn , form a basis of Hn(q). Furthermore,

Theorem 5.1 (Ram [15]) The characters of Hn(q) are completely determined by their
values on the set {Tγµ

| µ � n}.

The proof in [15] of Theorem 5.1 shows that for any w ∈ Sn there exists awµ ∈ Z[q]
such that Tw = ∑

µ�n awµTγµ
In [7] we give a new basis {Lw | w ∈ Sn} for Hn(q) such that

for any character χ , we have χ (Lw) = χ (Tγµ
), where µ is the cycle type of the permuta-

tion w.
For 1 ≤ i ≤ n, define Ti,i = 1, and define

Ti, j = Tj−1Tj−2, . . . , Ti , for 1 ≤ i < j ≤ n.

Let A = {a1, a2, . . . , ak} ⊆ {1, 2, . . . , n}, and assume that a1 < a2 < · · · < ak . Define

TA = T1,a1 T2,a2 , . . . , Tk,ak .
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Now for 0 ≤ k ≤ n, define,

�k =
{

(A, B, w)

∣∣∣∣ A, B ⊆ {1, 2, . . . , n}, |A| = |B| = k,

w ∈ S{k+1,...,n},

}

where S{k+1,...,n} is the symmetric group of permutations of {k + 1, . . . , n}. Define

T(A,B,w) = TATw Pk T −1
B , (A, B, w) ∈ �k .

Then let � = ⋃n
k=0 �k , and we have

Theorem 5.2 ([10]) The set {T(A,B,w) | (A, B, w) ∈ �} is a C(q)-basis of Rn(q).

The following relations are easy to verify in Rn(q)

T −1
i = q−1Ti + (q−1 − 1) · 1, (5.1)

(T1T2, . . . , T�)Tj = Tj+1(T1T2, . . . , T�), 1 ≤ j < �. (5.2)

Pi Pj = Pmax(i, j), (5.3)

Pi+1 = Pi Ti Pi − (q − 1)Pi . (5.4)

Lemma 5.3 Let An−1 be the subalgebra of Rn(q) generated by T2, . . . , Tn−1, P2, . . . , Pn.
Then for each b ∈ Rn(q) there exists a ∈ An−1 such that P1bP1 = aP1 = P1a.

Proof: First note that P1 commutes with a ∈ An−1 by (A4) in (1.3) and by (5.3). It
is sufficient to prove the statement for b = g1g2, . . . , gk where for each i , we have gi ∈
{T1, . . . , Tn−1, P1, . . . , Pn}. We show that P1g1g2, . . . , gk P1 = aP1, a ∈ An−1 by induction
on k. When k = 1, we have P1g1 P1 = g1 P1 if g1 	= T1, P1. Furthermore, P1 P1 P1 = P1 · 1,
and by (5.4),

P1T1 P1 = P2 + (q − 1)P1 = (P2 + (q − 1) · 1)P1.

When k > 1, we can assume g1 /∈ An−1, otherwise P1(g1, . . . , gk)P1 = g1 P1(g2, . . . , gk)
P1, and we can apply induction to P1(g2, . . . , gk)P1. If g1 = P1 we have P1(g1g2, . . . , gk)P1

= P1(g2, . . . , gk)P1, and we can again apply induction. Thus, we assume that g1 = T1.
First we see that,

P1(T1T2, . . . , Tk)P1 = P1T1 P1(T2, . . . , Tk) = (P2 + (q − 1) · 1)(T2, . . . , Tk)P1.

Now assume that for some � ≥ 1, b = T1, . . . , T�g�+1, . . . , gk, g�+1 	= T�+1, and consider
the possibilities for g�+1. If g�+1 = T�, then we can use relation (A1) in (1.3) to write
P1bP1 = qP1b′ P1 + (q − 1)P1b′′ P1, where b′ and b′′ are both shorter words than b, so we
can apply induction to each term. If g�+1 = Tj with j > � + 1, then Tj commutes with all
the elements to its left, and so it can be factored out making the word shorter. If g�+1 = Tj

with j < �, then by (5.2), P1(T1, . . . , T�)Tj = Tj+1 P1(T1, . . . , T�) and again induction can
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be applied. If g�+1 = Pj , then by (5.4) and induction, P1(T1, . . . , T�)Pj (g�+2, . . . , gk)P1 =
P1(T1, . . . , T�)P1 Pj P1(g�+2, . . . , gk)P1 = a1 P1 Pj a2 P1 = a1 Pj a2 P1 for some a1, a2 ∈
An−1.

Proposition 5.4 The map ρ : Rn−1(q) → P1 Rn(q)P1 defined by

ρ(Ti ) = P1Ti+1 = Ti+1 P1, 1 ≤ i ≤ n − 2,

ρ(Pi ) = Pi+1, 1 ≤ i ≤ n − 1.

is an isomorphism.

Proof: Lemma 5.3 tells us that P1 Rn(q)P1 = P1 An−1 = An−1 P1, and since An−1 is
generated by Ti , 2 ≤ i ≤ n − 1, and Pi , 2 ≤ i ≤ n, we see that ρ maps Rn−1(q) onto
P1 Rn(q)P1. Since P1 commutes with An−1, it is easy to check that ρ(Ti ) and ρ(Pi ) satisfy the
same relations (1.3) as Ti and Pi , and thus ρ is a homomorphism. To see that it is one-to-one,
we compare dimensions. When we specialize q = 1 in P1 Rn(q)P1, the specialized algebra is
the C-span of the rook matrices of the form π1dπ1, where d ∈ Rn . These are all the matrices
in Rn having their first row and first column equal to 0. There are |Rn−1| = dim(Rn−1(q))
such matrices. Furthermore, under such a specialization, the dimension cannot go up. This
is because P1 Rn(q)P1 is generated by elements P1Ti P1, P1 Pk P1 whose structure constants
are well-defined (no poles) at q = 1 (see [4], Section 68.A).

Theorem 5.5 If χ is an irreducible character of Rn(q), then χ is completely determined
by its values on Tµ, µ � k, 0 ≤ k ≤ n.

Proof: The proof is by induction on n with the cases n = 0, 1 being trivial. Let n >

1 and let χ be a character of Rn(q). It is sufficient to compute χ on a basis element
T(A,B,w), (A, B, w) ∈ �. If |A| = |B| = 0, then T(A,B,w) = Tw ∈ Hn(q) and by Theorem 5.1,
χ (Tw) can be written in terms of the values χ (Tγµ

), µ � n. If |A| = |B| > 0, then we use
the trace property of χ and (5.3) to get

χ
(
TATw Pk T −1

B

) = χ
(
T −1

B TATw Pk
) = χ

(
T −1

B TATw Pk P2
1

) = χ
(
P1T −1

B TATw Pk P1).

Since |A| = |B| > 0, we have P1T −1
B TATw Pk P1 ∈ P1 An−1 P1

∼= Rn−1(q). By induction,
χ (P1T −1

B TATw Pk P1) can be written in terms of χ (ρ(Tµ)) where Tµ is a standard element
in Rn−1(q). Since ρ increases the subscripts of Ti and Pk by one and then multiplies by
P1, ρ(Tµ) is a standard element of Rn(q).

5.2. Rook diagrams

We say that a rook diagram is a graph on two rows of n vertices, having k edges with
0 ≤ k ≤ n such that each edge is adjacent to one vertex in each row, and each vertex is
incident to at most one edge. We multiply two rook diagrams d1 and d2 by placing d1 above
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d2 and identifying the vertices in the bottom row of d1 with the corresponding vertices in
the top row of d2. For example,

(5.5)

If we assign to each rook diagram d the n × n, 0-1 matrix having a 1 in row i and column
j if and only if the i th vertex in the top row of d is connected to the j th vertex in the
bottom row, then this identification is an isomorphism with the rook monoid. Under this
identification, we have, for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n,

Let γ1 = 1 and let ν1 be the diagram consisting of a single column of vertices with no edges.
For t > 1, let

For a rook diagram d we compute the cycle and link type of d as follows: connect each
vertex in the top row with the vertex directly below it by a dotted line. We call the connected
components of this new diagram blocks. Each block is one of the following

(a) A t-cycle (i1, i2, . . . , it , i1), with 1 ≤ t ≤ n, where i1 maps to i2, i2 maps to i3, and so
on until it−1 maps to it and it maps to i1.

(b) A t-link [i1, i2, . . . , it ], with 1 ≤ t ≤ n, where i1 maps to i2, i2 maps to i3, and so on
until it−1 maps to it . By definition, we let ν1 be the 1-link (a single column of vertices
with no edges).

The sizes of the cycles in d form a partition µ called the cycle type of d, and the sizes of the
links form a partition τ called the link type of d. They satisfy |τ | + |ρ| = n. For example,
the diagram d2 from (5.5) has cycle type (2) and link type (5, 1).

Two elements d1 and d2 of Rn are conjugate, written d1 ∼ d2 if there exists π ∈ Sn so
that πd1π

−1 = d2. Notice that if d is a rook diagram, then πdπ−1 is the rook diagram
given by rearranging the vertices of d, in both the top and bottom row, according to π . If
d1 and d2 are rook diagrams in Rn1 and Rn2 , respectively, then d1 ⊗ d2 is the rook diagram
in Rn1+n2 obtained by placing d2 to the right of d1. It is easy to check that
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(1) πdπ−1 has the same cycle-link type as d.
(2) d ∼ b1 ⊗ b2 ⊗ · · · ⊗ bk where each bi is a single block.
(3) b1 ⊗ b2 ∼ b2 ⊗ b1

(4) Each t-cycle is conjugate to γt and each t-link is conjugate to νt .

It follows that if d has cycle type µ = (µ1, . . . , µ�) and link type τ = (τ1, . . . , τm), then

d ∼ ντ1 ⊗ ντ2 ⊗ · · · ⊗ ντm ⊗ γµ1 ⊗ γµ2 ⊗ · · · ⊗ γµ�
. (5.6)

For a composition µ = (µ1, . . . , µ�) with 0 ≤ |µ| ≤ n, define

γµ = γµ1 ⊗ γµ2 ⊗ · · · ⊗ γµ�
, and

(5.7)
dµ = πn−|µ| ⊗ γµ.

For example, if µ = (4, 4, 2, 1) � 11 and n = 14, then

This is the q → 1 specialization of the element Tµ defined in (3.3). Using rook diagrams,
we now provide a more streamlined proof to a result found in Munn [14].

Proposition 5.6 ([14]) If χ is any character of Rn(q), and d is a rook diagram with cycle
type µ, then

χ (d) = χ (dµ).

Proof: From (5.6) we know that χ (d) = χ (d ′) where d ′ = ντ1 ⊗ · · · ⊗ ντm ⊗ γµ. If d ′ has
an isolated vertex (a vertex adjacent to no edges) in the kth position of the top row that is
part of a link νt with t > 1, then

d ′ = εkd ′ and dεk = d ′′.

where in d ′′ the link νt is replaced by νt−1 ⊗ ν1. Furthermore, by the trace property χ , we
have χ (d ′) = χ (εkd ′) = χ (d ′εk) = χ (d ′′). Recursive application of this process, replaces
all the t-links with the t-fold tensor product of ν1, and the result is proved.

Appendix: Character table of R4(q)

We index the rows of the character table for Rn(q) by the irreducible representations and
the columns by the standard elements. Thus, for λ, µ ∈ �n , we let the entry in the row
indexed by λ and the column indexed by µ be χλ

Rn (q)(Tµ). Below, we give the character
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table of R4(q). It contains the character tables of R3(q), R2(q), R1(q), and R0(q) as well as
H4(q), H3(q), H2(q), H1(q), and H0(q) on the diagonal (see (0.3)). Upon setting q = 1 we
obtain the character table of Rn first given in [14].

Character table of R4(q)

(14) (213) (22) (31) (4)

(14) 1 −1 1 1 −1

(213) 3 q − 2 1 − 2q 1 − q q

(22) 2 q − 1 q2 + 1 −q 0

(31) 3 2q − 1 q(q − 2) q(q − 1) −q2

(4) 1 q q2 q2 q3

(13) 4 q − 3 2(1 − q) 2 − q q − 1

(21) 8 4(q − 1) 2(q − 1)2 1 − 3q + q2 q(1 − q)

(3) 4 3q − 1 2q(q − 1) q(2q − 1) q2(q − 1)

(12) 6 3(q − 1) 1 − 4q + q2 (q − 1)2 q(1 − q)

(2) 6 2(2q − 1) 1 − 2q + 3q2 2q(q − 1) q2(q − 1)

(1) 4 3q − 1 2q(q − 1) q(2q − 1) q2(q − 1)

∅ 1 q q2 q2 q3

(13) (21) (3) (12) (2) (1) ∅

(14) 0 0 0 0 0 0 0

(213) 0 0 0 0 0 0 0

(22) 0 0 0 0 0 0 0

(31) 0 0 0 0 0 0 0

(4) 0 0 0 0 0 0 0

(13) 1 −1 1 0 0 0 0

(21) 2 q − 1 −q 0 0 0 0

(3) 1 q q2 0 0 0 0

(12) 3 q − 2 1 − q 1 −1 0 0

(2) 3 2q − 1 q(q − 1) 1 q 0 0

(1) 3 2q − 1 q(q − 1) 2 q − 1 1 0

∅ 1 q q2 1 q 1 1
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