Character Formulas for \boldsymbol{q}-Rook Monoid Algebras

MOMAR DIENG** momar@math.ucdavis.edu
Department of Mathematics, University of California, Davis, CA 95616, USA
TOM HALVERSON ${ }^{\dagger}$ halverson@macalester.edu
Department of Mathematics and Computer Science, Macalester College, Saint Paul, Minnesota 55105, USA
VAHE POLADIAN vahe.poladian@cs.cmu.edu
Department of Computer Science, Carnegie Mellon University, Pittsburg, PA 15231, USA

Received March 5, 2002; Revised August 19, 2002

Abstract

The q-rook monoid $R_{n}(q)$ is a semisimple $\mathbb{C}(q)$-algebra that specializes when $q \rightarrow 1$ to $\mathbb{C}\left[R_{n}\right]$, where R_{n} is the monoid of $n \times n$ matrices with entries from $\{0,1\}$ and at most one nonzero entry in each row and column. We use a Schur-Weyl duality between $R_{n}(q)$ and the quantum general linear group $U_{q} \mathfrak{g l}(r)$ to compute a Frobenius formula, in the ring of symmetric functions, for the irreducible characters of $R_{n}(q)$. We then derive a recursive Murnaghan-Nakayama rule for these characters, and we use Robinson-Schensted-Knuth insertion to derive a Roichman rule for these characters. We also define a class of standard elements on which it is sufficient to compute characters. The results for $R_{n}(q)$ specialize when $q=1$ to analogous results for R_{n}.

Keywords: rook monoid, character, Hecke algebra, symmetric functions

0. Introduction

The rook monoid R_{n} is the monoid of $n \times n$ matrices with entries from $\{0,1\}$ and at most one nonzero entry in each row and column (these correspond with the possible placements of nonattacking rooks on an $n \times n$ chessboard). It contains an isomorphic copy of the symmetric group S_{n} as the rank n (permutation) matrices. The q-rook monoid $R_{n}(q)$ is an "IwahoriHecke algebra" of R_{n}. It is a semisimple $\mathbb{C}(q)$-algebra so that when $q \rightarrow 1, R_{n}(q)$ specializes to the complex monoid algebra $\mathbb{C}\left[R_{n}\right]$. Recently, the representation theory of $R_{n}(q)$ was analyzed. Solomon [20] found a faithful action of $R_{n}(q)$ on tensor space. Halverson [10] showed that $R_{n}(q)$ and the quantum general linear group are in Schur-Weyl duality and found explicit combinatorial constructions for the irreducible $R_{n}(q)$-representations.
In this paper we study the combinatorics of $R_{n}(q)$-characters. First, we use Schur-Weyl duality to prove the following identity in the ring of symmetric functions

$$
\begin{equation*}
q_{\mu}\left(1, x_{1}, \ldots, x_{r} ; q\right)=\sum_{k=0}^{n} \sum_{\lambda \vdash k} \chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right) . \tag{0.1}
\end{equation*}
$$

[^0]Here q_{μ} is a q-analog of the power sum symmetric function p_{μ}, s_{λ} is the Schur function, and $\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)$ is the irreducible character of $R_{n}(q)$ indexed by λ and evalauated at a certain element T_{μ}. This is a generalization of the Frobenius formula of Ram [15] for the IwahoriHecke algebra $H_{n}(q)$ of the symmetric group S_{n}, which in turn is a generalization of Frobenius' [5] original formula from 1900,

$$
\begin{equation*}
p_{\mu}\left(x_{1}, \ldots, x_{r}\right)=\sum_{\lambda \vdash n} \chi_{S_{n}}^{\lambda}(\mu) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right) . \tag{0.2}
\end{equation*}
$$

Here $\chi_{S_{n}}^{\lambda}(\mu)$ is the irreducible character of S_{n} indexed by λ and evaluated on the conjugacy class with cycle type μ.

We use our Frobenius formula to derive two combinatorial methods for computing $\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right):$
(1) We give a recursive rule for computing $\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)$ by removing broken border strips from λ. This rule is an analog of the Murnaghan-Nakayama rule for S_{n} characters, which was generalized to $H_{n}(q)$-characters in [15].
(2) We give a rule for computing $\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)$ as weighted sums of standard tableaux. This rule is a generalization of Roichman's rule [17] for the irreducible characters of $H_{n}(q)$.

We use our Frobenius formula to show that the character table of $R_{n}(q)$, denoted $\Xi_{R_{n}(q)}$, is of the form

$$
\Xi_{R_{n}(q)}=\begin{array}{|c|c|}
\hline \Xi_{R_{n-1}(q)} & 0 \tag{0.3}\\
\hline * & \Xi_{H_{n}(q)} \\
\hline
\end{array}
$$

where $\Xi_{R_{n-1}(q)}$ is the character table of $R_{n-1}(q)$ and $\Xi_{H_{n}(q)}$ is the character table of $H_{n}(q)$. The elements in $*$ are explicitly determined by either our Murnaghan-Nakayama rule or our Roichman rule.

The characters of the rook monoid $R_{n}(q=1)$ were originally studied in the 1950 s by Munn [14], who writes R_{n} characters in terms of S_{k} characters with $0 \leq k \leq n$. As an example, Munn produces the character table of R_{4}. In the Appendix we produce the character table of $R_{4}(q)$. Setting $q=1$ in our table gives Munn's table, exactly. Munn also determines a "cycle-link" type for the elements of R_{n}, and he shows that R_{n} characters are constant on cycle-link classes. In Section 5, we show that the irreducible $R_{n}(q)$-characters are completely determined by their values on the set of standard elements $T_{\mu}, \mu \vdash k, 0 \leq k \leq n$. Our element T_{μ} specializes at $q=1$ to a rook element with "cycle-link" type μ, and we show how to use "rook diagrams" determine cycle-link type.

Solomon [19] determined yet another way to compute $R_{n}(q=1)$ characters. He writes the R_{n} character table as a product $A Y=Y B$ where Y is a block diagonal matrix whose
blocks are the characters of the symmetric groups $S_{k}, 0 \leq k \leq n$, and A and B are matrices that can be computed combinatorially.

The q-rook monoid was first introduced by Solomon [18] as an analog of the IwahoriHecke algebra for the finite algebraic monoid $\mathrm{M}_{n}\left(\mathbb{F}_{q}\right)$ of $n \times n$ matrices over a finite field with q elements with respect to its "Borel subgroup" of invertible upper triangular matrices. In [20], Solomon gives a presentation of $R_{n}(q)$ and defines a faithful action of $R_{n}(q)$ on tensor space. In [8], Halverson and A. Ram show that $R_{n}(q)$ is a quotient of the Iwahori-Hecke algebra of type B_{n} and prove that $R_{n}(q)$ is semisimple over \mathbb{C} whenever $[n]!\neq 0$, where $[n]!=[n][n-1] \cdots[1]$ and $[k]=q^{k-1}+q^{k-2}$ $+\cdots+1$.

1. q-Rook monoid algebras

1.1. The rook monoid

Let S_{n} denote the group of permutations of the set $\{1,2, \ldots, n\}$. Identify $\sigma \in S_{n}$ with the matrix having a 1 in the (i, j)-position if $\sigma(i)=j$. For $1 \leq i \leq n-1$, let $s_{i} \in S_{n}$ be the transposition of i and $i+1$.

The rook monoid R_{n} is the monoid of $n \times n$ matrices having entries from $\{0,1\}$ with at most one nonzero entry in each row and column. There are $\binom{n}{k}^{2} k$! matrices in R_{n} having rank k, and thus

$$
\begin{equation*}
\left|R_{n}\right|=\sum_{k=0}^{n}\binom{n}{k}^{2} k!. \tag{1.1}
\end{equation*}
$$

We have $S_{n} \subseteq R_{n}$ as the rank n matrices.
Let $E_{i, j}$ be the $n \times n$ matrix unit with a 1 in the (i, j)-position and 0 s everywhere else. In R_{n}, define

$$
\begin{align*}
\nu & =E_{1,2}+E_{2,3}+\cdots+E_{n-1, n}, & & \\
\pi_{j} & =E_{j+1, j+1}+E_{j+2, j+2}+\cdots+E_{n, n}, & & 1 \leq j \leq n-1 \tag{1.2}\\
\varepsilon_{j} & =I_{n}-E_{j, j}, & & 1 \leq j \leq n,
\end{align*}
$$

where I_{n} is the identity matrix. Let π_{n} be the zero matrix, and note that $\pi_{1}=\varepsilon_{1}$. Munn [14] shows that the complex monoid algebra

$$
\mathbb{C}\left[R_{n}\right]=\left\{\sum_{x \in R_{n}} \alpha_{x} x \mid \alpha_{x} \in \mathbb{C}\right\}
$$

is semisimple. Note that π_{n} is the zero matrix but it is not the zero element in $\mathbb{C}\left[R_{n}\right]$ (the zero element in $\mathbb{C}\left[R_{n}\right]$ is the linear combination with $\alpha_{x}=0$ for all x).

1.2. The q-rook monoid

Let q be an indeterminate. For $n \geq 2$, define the q-rook monoid $R_{n}(q)$ to be the associative $\mathbb{C}(q)$-algebra with generators $1, T_{1}, \ldots, T_{n-1}, P_{1}, \ldots, P_{n}$ and defining relations
(A1) $T_{i}^{2}=q \cdot 1+(q-1) T_{i}, \quad$ for $1 \leq i \leq n-1$,
(A2) $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad$ for $1 \leq i \leq n-2$,
(A3) $\quad T_{i} T_{j}=T_{j} T_{i}, \quad$ when $|i-j| \geq 2$,
(A4) $T_{i} P_{j}=P_{j} T_{i}=q P_{j}, \quad$ for $1 \leq i<j \leq n$,
(A5) $\quad T_{i} P_{j}=P_{j} T_{i}, \quad$ for $1 \leq j<i \leq n-1$,
(A6) $P_{i}^{2}=P_{i}, \quad$ for $1 \leq i \leq n$,
(A7) $\quad P_{i+1}=q P_{i} T_{i}^{-1} P_{i}, \quad$ for $2 \leq i \leq n$.
Define $R_{0}(q)=\mathbb{C}(q)$ and define $R_{1}(q)$ to be the associative $\mathbb{C}(q)$-algebra spanned by 1 and P_{1} subject to $P_{1}^{2}=P_{1}$. The subalgebra of $R_{n}(q)$ generated by T_{1}, \ldots, T_{n-1} is isomorphic to the Iwahori-Hecke algebra of type $H_{n}(q)$ of type A_{n-1} (see [20] or [10] for a proof that they can be identified).

Solomon defined $R_{n}(q)$ in [18] and gave it a presentation in [20]. The presentation (1.3) is proved in [10]. Solomon [18, 20] shows that $R_{n}(q)$ is semisimple with dimension

$$
\begin{equation*}
\operatorname{dim}\left(R_{n}(q)\right)=\sum_{k=0}^{n}\binom{n}{k}^{2} k!. \tag{1.4}
\end{equation*}
$$

When $q \rightarrow 1, R_{n}(q)$ specializes to $\mathbb{C}\left[R_{n}\right]$. Under this specialization, we have $T_{i} \rightarrow s_{i}$ and $P_{i} \rightarrow \pi_{i}$.

1.3. Partitions and tableaux

We use the notation of [12] for partitions and compositions. A composition λ of the positive integer n, denoted $\lambda \models n$, is a sequence of nonnegative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)$ such that $|\lambda|=\lambda_{1}+\cdots+\lambda_{t}=n$. The composition λ is a partition, denoted $\lambda \vdash n$, if $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{t}$. The length $\ell(\lambda)$ is the number of nonzero parts of λ. The Young diagram of a partition λ is the left-justified array of boxes with λ_{i} boxes in the i th row. We let $m_{i}(\lambda)$ be the number of parts of λ equal to i, and we sometimes write $\lambda=\left(1^{m_{1}(\lambda)}, 2^{m_{2}(\lambda)}, \ldots\right)$. For example,

$$
\text { if } \lambda=(5,5,3,1)=\left(1,3,5^{2}\right)=\begin{array}{|l|l|l|l|l}
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline & & &
\end{array} \quad \text { then }|\lambda|=14 \text { and } \ell(\lambda)=4
$$

If λ is a partition with $0 \leq|\lambda| \leq n$, then we say that an n-standard tableau of shape λ is a filling of the diagram of λ with numbers from $\{1,2, \ldots, n\}$ such that
(1) each number from $\{1,2, \ldots, n\}$ appears in λ at most once,
(2) the rows of λ increase from left to right, and
(3) the columns of λ increase from top to bottom.

Similarly, an n-column strict tableaux of shape λ is the same as an n-standard tableau except that we allow the rows to weakly increase. Thus,

$$
\begin{array}{|l|l|l|l|}
\hline 2 & 3 & 9 & 10 \\
\hline 5 & 7 & 12 & 15 \\
\hline 6 & 11 & 13 & \\
\hline
\end{array} \quad \text { is a 16-standard tableau of shape }(4,4,3)
$$

\[

\]

1.4. Irreducible representations

The irreducible representations of $R_{n}(q)$ and $\mathbb{C}\left[R_{n}\right]$ are indexed by partitions in the set

$$
\begin{equation*}
\Lambda_{n}=\{\lambda \vdash k \mid 0 \leq k \leq n\} . \tag{1.5}
\end{equation*}
$$

For $\lambda \in \Lambda_{n}$, we let M^{λ} be the irreducible $\mathbb{C}\left[R_{n}\right]$-module indexed by λ and let $\chi_{R_{n}}^{\lambda}$ be its character, and we let M_{q}^{λ} be the irreducible $\mathbb{C}\left[R_{n}\right]$-module indexed by λ and let $\chi_{R_{n}(q)}^{\lambda}$ be its character. The dimensions of M^{λ} and M_{q}^{λ} are given by

$$
\begin{equation*}
\operatorname{dim}\left(M^{\lambda}\right)=\operatorname{dim}\left(M_{q}^{\lambda}\right)=\#(n \text {-standard tableaux of shape } \lambda)=\binom{n}{|\lambda|} f_{\lambda}, \tag{1.6}
\end{equation*}
$$

where f_{λ} is the number of $|\lambda|$-standard tableaux of shape λ given by the hook formula (see [21], Theorem 3.10.2).

The R_{n}-module M^{λ} is studied in [6, 14, 19]. In [6], C. Grood determines the analog of Young's natural basis for M^{λ}. In [10], analogs of Young's seminormal bases of both M_{q}^{λ} and M^{λ} are constructed, and the action of the generators of $R_{n}(q)$ and R_{n} on this basis are described explicitly.

1.5. Standard elements

Define $\gamma_{1}=T_{\gamma_{1}}=1$ and

$$
\begin{align*}
\gamma_{t} & =s_{1} s_{2} \cdots s_{t-1} \tag{1.7}\\
T_{\gamma_{t}} & =T_{1} T_{2} \cdots T_{t-1}
\end{align*}
$$

For a composition $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\ell}\right)$ with $|\mu|=k$ and $0 \leq k \leq n$, define

$$
\begin{align*}
\gamma_{\mu} & =\gamma_{\mu_{1}} \otimes \gamma_{\mu_{2}} \otimes \cdots \otimes \gamma_{\mu_{\ell}} \\
T_{\gamma_{\mu}} & =T_{\gamma_{\mu_{1}}} \otimes T_{\gamma_{\mu_{2}}} \otimes \cdots \otimes T_{\gamma_{\mu_{\ell}}} \tag{1.8}
\end{align*}
$$

and

$$
\begin{align*}
& d_{\mu}=\pi_{n-k} \otimes \gamma_{\mu} \\
& T_{\mu}=P_{n-k} \otimes T_{\gamma_{\mu}} \tag{1.9}
\end{align*}
$$

where we view $T_{\mu}=P_{k} \otimes T_{\gamma_{\mu_{1}}} \otimes \cdots \otimes T_{\gamma_{\mu_{\ell}}} \in R_{k}(q) \otimes R_{\mu_{1}}(q) \otimes \cdots \otimes R_{\mu_{\ell}}(q) \subseteq R_{n}(q)$. For example, if $n=15$ and $\mu=(5,3,2,2)$, then

$$
T_{\mu}=P_{3}\left(T_{4} T_{5} T_{6} T_{7}\right)\left(T_{9} T_{10}\right)\left(T_{12}\right)\left(T_{14}\right)
$$

In [15] it is shown that $H_{n}(q)$-characters are completely determined by their value on $T_{\gamma_{\mu}}$. In Section 5 we show that characters of $R_{n}(q)$ and $\mathbb{C}\left[R_{n}\right]$ are completely determined by their values on T_{μ} and d_{μ}. Since both the irreducible representations and the standard elements are indexed by Λ_{n}, we see that the character table is square with these labels.

When $q \rightarrow 1$, we have $R_{n}(q) \rightarrow \mathbb{C}\left[R_{n}\right]$ with $T_{\mu} \rightarrow d_{\mu}$. Furthermore, in [10], we construct M_{q}^{λ} so that $M_{1}^{\lambda}=M^{\lambda}$, and the action of T_{μ} specializes at $q=1$ to the action of d_{μ}. It follows that the characters also specialize upon setting $q=1$,

$$
\begin{equation*}
\left.\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)\right|_{q=1}=\chi_{R_{n}}^{\lambda}\left(d_{\mu}\right) . \tag{1.10}
\end{equation*}
$$

2. A Frobenius formula for the \boldsymbol{q}-rook monoid

In this section, we use the Schur-Weyl duality between $R_{n}(q)$ and the quantum general linear group $U_{q} \mathfrak{g l}(r)$ to derive a Frobenius formula for the irreducible characters of $R_{n}(q)$.

We define $U_{q} \mathfrak{g l}(r)$ as in Jimbo [11], except with his parameter q replaced by $q^{1 / 2}$. Let $U_{q} \mathfrak{g l}(r)$ be the $\mathbb{C}\left(q^{1 / 4}\right)$-algebra given by generators

$$
e_{i}, f_{i}(1 \leq i<r) \quad \text { and } \quad q^{ \pm \varepsilon_{i} / 2}(1 \leq i \leq n)
$$

with relations

$$
\begin{aligned}
q^{\varepsilon_{i} / 2} q^{\varepsilon_{j} / 2} & =q^{\varepsilon_{j} / 2} q^{\varepsilon_{i} / 2}, \quad q^{\varepsilon_{i} / 2} q^{-\varepsilon_{i} / 2}=q^{-\varepsilon_{i} / 2} q^{\varepsilon_{i} / 2}=1, \\
q^{\varepsilon_{i} / 2} e_{j} q^{-\varepsilon_{i} / 2} & =\left\{\begin{array}{ll}
q^{-\frac{1}{2}} e_{j}, & \text { if } j=i-1, \\
q^{\frac{1}{2}} e_{j}, & \text { if } j=i, \\
e_{j}, & \text { otherwise, },
\end{array} \quad q^{\varepsilon_{i} / 2} f_{j} q^{-\varepsilon_{i} / 2}= \begin{cases}q^{\frac{1}{2}} f_{j}, & \text { if } j=i-1, \\
q^{-\frac{1}{2}} f_{j}, & \text { if } j=i, \\
f_{j}, & \text { otherwise },\end{cases} \right. \\
e_{i} f_{j}-f_{j} e_{i} & =\delta_{i j} \frac{q^{\frac{1}{2}\left(\varepsilon_{i}-\varepsilon_{i+1}\right)}-q^{-\frac{1}{2}\left(\varepsilon_{i}-\varepsilon_{i+1}\right)}}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}},
\end{aligned}
$$

$$
\begin{aligned}
& e_{i \pm 1} e_{i}^{2}-\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right) e_{i} e_{i \pm 1} e_{i}+e_{i}^{2} e_{i \pm 1}=0 \\
& f_{i \pm 1} f_{i}^{2}-\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right) f_{i} f_{i \pm 1} f_{i}+f_{i}^{2} f_{i \pm 1}=0, \\
& e_{i} e_{j}=e_{j} e_{i}, \quad f_{i} f_{j}=f_{j} f_{i}, \quad \text { if }|i-j|>1
\end{aligned}
$$

Define

$$
t_{i}=q^{\frac{\varepsilon_{i}}{4}}(1 \leq i \leq r) \quad k_{i}=t_{i} t_{i+1}^{-1} \quad(1 \leq i \leq r-1)
$$

There is a Hopf algebra structure (see [11], p. 248) on $U_{q} \mathfrak{g l}(r)$ with comultiplication Δ and counit u given by

$$
\begin{align*}
& \Delta\left(e_{i}\right)=e_{i} \otimes k_{i}^{-1}+k_{i} \otimes e_{i}, \quad u\left(e_{i}\right)=0, \\
& \Delta\left(f_{i}\right)=f_{i} \otimes k_{i}^{-1}+k_{i} \otimes f_{i}, \quad u\left(f_{i}\right)=0, \tag{2.1}\\
& \Delta\left(t_{i}\right)=t_{i} \otimes t_{i}, \quad u\left(t_{i}\right)=1 .
\end{align*}
$$

2.1. Representations and characters of $U_{q} \mathfrak{g l}(r)$

Let \mathfrak{h} be a Cartan subalgebra of the Lie algebra $\mathfrak{g l}(r)$, and let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be an orthonormal basis for \mathfrak{h}^{*} with respect to an inner product (,). The weight lattice is $L=\sum_{i=1}^{r} \mathbb{Z} \varepsilon_{i}$, and the dominant integral weights are of the form

$$
\lambda=m_{1} \varepsilon_{1}+\cdots+m_{r} \varepsilon_{r}, \quad m_{i} \in \mathbb{Z}, m_{1} \geq m_{2} \geq \cdots \geq m_{r}
$$

We identify the dominant weight λ with the sequence $\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, and we let $V_{q}(\lambda)$ denote the irreducible $U_{q} \mathfrak{g l}(r)$-module with dominant weight λ (see [2], Section 10.1, for example).

Any finite dimensional $U_{q} \mathfrak{g l}(r)$-module V has a basis B consisting of weight vectors, where, for each $b \in B$, there exists $\operatorname{wt}(b) \in L$ such that

$$
t_{i} b=q^{\frac{1}{4}\left(\varepsilon_{i}, \mathrm{wt}(b)\right)} b, \quad 1 \leq i \leq r
$$

Let x_{1}, \ldots, x_{r} be indeterminates, and define the character of V to be

$$
\begin{equation*}
\operatorname{ch}(V)=\sum_{b \in B} x^{\mathrm{wt}(b)} \tag{2.2}
\end{equation*}
$$

where if $\mathrm{wt}(b)=a_{1} \varepsilon_{1}+\cdots+a_{r} \varepsilon_{r}$, then $x^{\mathrm{wt}(b)}=x_{1}^{a_{1}} \cdots x_{r}^{a_{r}}$. It is known (see [2], Proposition 10.1.5) that $\operatorname{ch}\left(V_{q}(\lambda)\right)$ is the same as the corresponding character of $\mathfrak{g l}(r)$, and so it is given by the Weyl denominator formula. Thus, when λ is a partition, the character of $V_{q}(\lambda)$ is given by the Schur function,

$$
\begin{equation*}
\operatorname{ch}\left(V_{q}(\lambda)\right)=s_{\lambda}\left(x_{1}, \ldots, x_{r}\right)=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+r-j}\right)}{\operatorname{det}\left(x_{i}^{r-j}\right)} \tag{2.3}
\end{equation*}
$$

2.2. The bitrace

If V is a finite-dimensional $U_{q} \mathfrak{g l}(r)$-module and $Z=E n d_{U_{q} \mathfrak{g l}(r)}(V)$ is its centralizer algebra, then define, for each $\phi \in Z$,

$$
\begin{equation*}
\operatorname{btr}(\phi)=\sum_{b \in B} x^{\mathrm{wt}(b)}\left(\left.\phi b\right|_{b}\right), \tag{2.4}
\end{equation*}
$$

where B is a weight basis of V (a basis consisting of weight vectors) and $\left.\phi b\right|_{b}$ is the coefficient of b in ϕb. For $\mu \in L$, let V_{μ} denote the μ-weight space of V. Then, since Z commutes with $U_{q} \mathfrak{g l}(r)$, we know that Z preserves weight spaces, and so by summing over weight spaces we get

$$
\operatorname{btr}(\phi)=\sum_{\mu \in L} \operatorname{dim}\left(V_{\mu}\right) x^{\mu} \operatorname{tr}_{V_{\mu}}(\phi)
$$

where $\operatorname{tr}_{V_{\mu}}(\phi)$ is the trace of ϕ on V_{μ}. In particular $b \operatorname{tr}(\phi)$ is a weighted sum of usual traces, and it satisfies the trace property, $\operatorname{btr}\left(\phi_{1} \phi_{2}\right)=\operatorname{btr}\left(\phi_{2} \phi_{1}\right)$ for all $\phi_{1}, \phi_{2} \in Z$.

Now, by double centralizer theory (see for example [3], Section 3D), we have a decomposition of the form

$$
V \cong \bigoplus_{\lambda} V_{q}(\lambda) \otimes Z^{\lambda}
$$

where Z^{λ} is an irreducible Z-module and the sum is over the highest weights λ for which $V_{q}(\lambda)$ is a constituent of V. For each module $V_{q}(\lambda) \otimes Z^{\lambda}$ we choose a basis $\left\{b_{i}^{\lambda} \otimes z_{j}^{\lambda}\right\}$, where $B_{\lambda}=\left\{b_{i}\right\}$ is a weight basis of $V_{q}(\lambda)$ and $\left\{z_{j}^{\lambda}\right\}$ is a basis of Z^{λ}. The bitrace becomes

$$
\begin{equation*}
\operatorname{btr}(\phi)=\left.\sum_{\lambda} \sum_{b \in B_{\lambda}} x^{\mathrm{wt}(b)} \sum_{j} \phi z_{j}^{\lambda}\right|_{z_{j}^{\lambda}}=\sum_{\lambda} \operatorname{ch}\left(V_{q}(\lambda)\right) \chi_{Z}^{\lambda}(\phi) \tag{2.5}
\end{equation*}
$$

Here $\left.\phi z_{j}^{\lambda}\right|_{z_{j}^{\lambda}}$ is the coefficient of z_{j}^{λ} in ϕz_{j}^{λ}, and $\chi_{Z}^{\lambda}(\phi)=\left.\sum_{j} \phi z_{j}^{\lambda}\right|_{z_{j}^{\lambda}}$ is the character of Z^{λ} evaluated at ϕ. We thank Arun Ram for suggesting this derivation of (2.5).

2.3. Schur-Weyl duality

The "fundamental" r-dimensional $U_{q} \mathfrak{g l}(r)$-module $V=V_{q}((1))=V_{q}\left(\omega_{1}\right)$ is the vector space

$$
V=\mathbb{C}\left(q^{1 / 4}\right)-\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}
$$

(so that the symbols v_{i} form a basis of V) with $U_{q} \mathfrak{g l}(r)$-action given by (see [11], Proposition 1)

$$
e_{i} v_{j}=\left\{\begin{array}{ll}
v_{j+1}, & \text { if } j=i, \\
0, & \text { if } j \neq i,
\end{array} \quad f_{i} v_{j}= \begin{cases}v_{j-1}, & \text { if } j=i+1, \\
0, & \text { if } j \neq i+1,\end{cases}\right.
$$

and

$$
t_{i} v_{j}= \begin{cases}q^{1 / 4} v_{j}, & \text { if } j=i \\ v_{j}, & \text { if } j \neq i\end{cases}
$$

The "trivial" 1-dimensional $U_{q} \mathfrak{g l}(r)$-module $W=V_{q}(\emptyset)$ is the vector space

$$
W=\mathbb{C}\left(q^{1 / 4}\right)-\operatorname{span}\left\{v_{0}\right\}
$$

(so that the symbol v_{0} is a basis of W) with $U_{q} \mathfrak{g l}(r)$-action given by the counit u

$$
e_{i} v_{0}=f_{i} v_{0}=0 \quad \text { and } \quad t_{i} v_{0}=v_{0}
$$

Let $U=V \oplus W$ so that U has basis $v_{0}, v_{1}, \ldots, v_{r}$. The coproduct on $U_{q} \mathfrak{g l}(r)$ is coassociative, so we can form the n-fold tensor product representation $U^{\otimes n}$. The simple tensors $v_{i_{1}} \otimes \cdots \otimes v_{i_{n}}$ form a basis for $U^{\otimes n}$, i.e.,

$$
U^{\otimes n}=\mathbb{C}(q)-\operatorname{span}\left\{v_{i_{1}} \otimes \cdots \otimes v_{i_{n}} \mid 0 \leq i_{j} \leq n\right\} .
$$

Define an action of $R_{n}(q)$ on $U^{\otimes n}$ as follows. The action of a generator $T_{k}, 1 \leq k \leq n-1$, and $P_{j}, 1 \leq j \leq n$, on a simple tensor $\mathbf{v}=v_{i_{1}} \otimes \cdots \otimes v_{i_{n}}$ in $U^{\otimes n}$ is given by

$$
\begin{align*}
& T_{k} \mathbf{v}= \begin{cases}q \mathbf{v}, & \text { if } i_{k}=i_{k+1} \\
(q-1) \mathbf{v}+q^{1 / 2} s_{k} \mathbf{v}, & \text { if } i_{k}<i_{k+1} \\
q^{1 / 2} s_{k} \mathbf{v}, & \text { if } i_{k}>i_{k+1}\end{cases} \tag{2.6}\\
& P_{j} \mathbf{v}= \begin{cases}\mathbf{v}, & \text { if } i_{1}=i_{2}=\cdots=i_{j}=0 \\
0, & \text { otherwise }\end{cases}
\end{align*}
$$

where s_{k} acts on \mathbf{v} by place permutation,

$$
s_{k}\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}} \otimes v_{i_{k+1}} \otimes \cdots \otimes v_{i_{n}}\right)=v_{i_{1}} \otimes \cdots \otimes v_{i_{k+1}} \otimes v_{i_{k}} \otimes \cdots \otimes v_{i_{n}} .
$$

Solomon [20] first proved that (2.6) extends to an action of $R_{n}(q)$ on tensor space, although he used a different generator N in place of the P_{i}, and he proved that the action is faithful when $r \geq n$.

Halverson [10] proved that $R_{n}(q)$ commutes with $U_{q} \mathfrak{g l}(r)$ on $U^{\otimes n}$, and so if $r \geq n$,
 irreducibles as

$$
\begin{equation*}
U^{\otimes n} \cong \bigoplus_{k=0}^{n} \bigoplus_{\lambda \vdash k} V_{q}(\lambda) \otimes M_{q}^{\lambda} \tag{2.7}
\end{equation*}
$$

as a bimodule for $U_{q} \mathfrak{g l}(r) \otimes R_{n}(q)$. Here, $V_{q}(\lambda)$ is the irreducible $U_{q} \mathfrak{g l}(r)$-module of highest weight λ, and M_{q}^{λ} is the irreducible $R_{n}(q)$-module corresponding to λ.

2.4. A Frobenius formula

Putting together (2.3), (2.5) and (2.7), proves
Proposition 2.1 For all $h \in R_{n}(q)$, we have

$$
\operatorname{btr}(h)=\sum_{k=0}^{n} \cdot \sum_{\lambda \vdash k} s_{\lambda}\left(x_{1}, \ldots, x_{r}\right) \chi_{R_{n}(q)}^{\lambda}(h),
$$

where $\chi_{R_{n}(q)}^{\lambda}$ is the irreducible $R_{n}(q)$ character labeled by λ.
Let $n=n_{1}+n_{2}, d_{1} \in R_{n_{1}}(q)$, and $d_{2} \in R_{n_{2}}(q)$. Then the bitrace of $d_{1} \otimes d_{2} \in R_{n}(q)$ on $U^{\otimes n}$ satisfies $\operatorname{btr}\left(d_{1} \otimes d_{2}\right)=\operatorname{btr}\left(d_{1}\right) \operatorname{btr}\left(d_{2}\right)$, where $\operatorname{btr}\left(d_{i}\right)$ is the bitrace of d_{i} on $U^{\otimes n_{i}}$ (the proof is identitical to that in [7] Section 5, since d_{1} acts on the first n_{1} tensor slots and d_{2} acts on the last n_{2} tensor slots). Thus if $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ is a composition with $0 \leq|\mu| \leq n$, and T_{μ} is defined as in (1.9), then

$$
\begin{equation*}
\operatorname{btr}\left(T_{\mu}\right)=\operatorname{btr}\left(P_{n-k}\right) \operatorname{btr}\left(T_{\mu_{1}}\right) \cdots \operatorname{btr}\left(T_{\mu_{\ell}}\right) \tag{2.8}
\end{equation*}
$$

As in [15], let $q_{0}\left(x_{0}, x_{1}, \ldots, x_{r} ; q\right)=1$, and for a positive integer k define

$$
\begin{equation*}
q_{k}\left(x_{0}, x_{1}, \ldots, x_{r} ; q\right)=\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} q^{e(I)}(q-1)^{\ell(I)} x_{i_{1}} \cdots x_{i_{k}} \tag{2.9}
\end{equation*}
$$

where the sum is over all weakly increasing sequences $I=\left(0 \leq i_{1} \leq \cdots \leq i_{k} \leq r\right), e(I)$ is the number of $i_{j} \in I$ such that $i_{j}=i_{j+1}$, and $\ell(I)$ is the number of $i_{j} \in I$ such that $i_{j}<i_{j+1}$. For a composition $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\ell}\right)$, define

$$
\begin{equation*}
q_{\mu}=q_{\mu_{1}} q_{\mu_{2}} \cdots q_{\mu_{\ell}} \tag{2.10}
\end{equation*}
$$

Proposition 2.2

(a) The bitrace of $T_{\gamma_{k}}$ on $U^{\otimes k}$ is $\operatorname{btr}\left(T_{\gamma_{k}}\right)=q_{k}\left(x_{0}, x_{1}, \ldots, x_{r} ; q\right)$.
(b) The bitrace of P_{k} on $U^{\otimes k}$ is $\operatorname{btr}\left(P_{k}\right)=1$.
(c) For a composition μ with $0 \leq|\mu| \leq n$, the bitrace of T_{μ} on $U^{\otimes n}$ is

$$
\operatorname{btr}\left(T_{\mu}\right)=q_{\mu}\left(x_{0}, \ldots, x_{r} ; q\right)
$$

Proof: Recall from Section 2.3, that $t_{i} v_{0}=v_{0}$, and for $1 \leq j \leq r, t_{j} v_{j}=q^{\frac{1}{4}} v_{j}$ and $t_{i} v_{j}=v_{j}$ if $i \neq j$. Let $x_{0}=1$. Then

$$
x^{\mathrm{wt}\left(v_{0}\right)}=1=x_{0} \quad \text { and } \quad x^{\mathrm{wt}\left(v_{j}\right)}=x^{\varepsilon_{j}}=x_{j}, \quad 1 \leq j \leq r
$$

so the simple tensors $v_{i_{1}} \otimes \cdots \otimes v_{i_{n}}$ form a weight basis of $U^{\otimes n}$ satisfying

$$
x^{\operatorname{wt}\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{n}}\right)}=x_{i_{1}} \cdots x_{i_{n}} .
$$

Now, the proof of (a) is exactly as the proof of [15], Theorem 4.1. For (b), we have $P_{k}\left(v_{i_{1}} \cdots v_{i_{k}}\right)=0$ unless $i_{1}=\cdots=i_{n}=0$, and $P_{k}\left(v_{0} \cdots v_{0}\right)=v_{0} \cdots v_{0}$. Part (c) follows from (a), (b), and (2.8).

Combining Propositions 2.1 and 2.2(c), we have the following Frobenius formula for $R_{n}(q)$.

Theorem 2.3 Let μ be a composition with $0 \leq|\mu| \leq n$. Then

$$
q_{\mu}\left(1, x_{1}, \ldots, x_{r} ; q\right)=\sum_{k=0}^{n} \sum_{\lambda \vdash k} \chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right)
$$

where T_{μ} is defined in (1.9) and $\chi_{R_{n}(q)}^{\lambda}$ is the irreducible $R_{n}(q)$-character labeled by λ.
We saw in (1.10) that upon setting $q=1$ we have $\left.\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)\right|_{q=1}=\chi_{R_{n}}^{\lambda}\left(d_{\mu}\right)$. Furthermore, it is easy to see that $q_{\mu}\left(x_{0}, x_{1}, \ldots, x_{r} ; 1\right)=p_{\mu}\left(x_{0}, x_{1}, \ldots, x_{r}\right)$, since when $q=1$ in (2.9) we must have $i_{1}=i_{2}=\cdots=i_{k}$. Thus, setting $q=1$ in Theorem 2.3, gives

Theorem 2.4 Let μ be a composition with $0 \leq|\mu| \leq n$. Then

$$
p_{\mu}\left(1, x_{1}, \ldots, x_{r}\right)=\sum_{k=0}^{n} \sum_{\lambda \vdash k} \chi_{R_{n}}^{\lambda}\left(d_{\mu}\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right),
$$

where d_{μ} is defined in (1.9) and $\chi_{R_{n}}^{\lambda}$ is the irreducible R_{n}-character indexed by λ.

The next corollary (of Theorem 2.3) tells us that the character table of $R_{n}(q)$ has the form shown in (0.3).

Corollary 2.5 Let $\lambda \in \Lambda_{n}$ and let μ be a composition with $0 \leq|\mu| \leq n$, then
(a) if $|\lambda|>|\mu|$, then $\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)=0$.
(b) if $|\lambda| \leq|\mu|$, then $\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)=\chi_{R_{|\mu|}(q)}^{\lambda}\left(T_{\gamma_{\mu}}\right)$.

Proof: From Theorem 2.3, we see that

$$
\sum_{k=0}^{n} \sum_{\lambda \vdash k} \chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right)=\sum_{k=0}^{|\mu|} \sum_{\lambda \vdash k} \chi_{R_{|\mu|}(q)}^{\lambda}\left(T_{\gamma_{\mu}}\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right),
$$

since each side of this equation equals $q_{\mu}\left(x_{0}, x_{1}, \ldots, x_{r} ; q\right)$. This is an identity in the ring of symmetric functions, and the Schur functions are linearly independent, so the corollary follows from equating the coefficient of s_{λ} on both sides. In particular, when $|\lambda|>|\mu|$ the coefficient of s_{λ} on the right side is 0 , proving part (a).

3. Murnaghan-Nakayama rules

If λ and μ are partitions, we say that $\mu \subseteq \lambda$ if $\mu_{i} \leq \lambda_{i}$ for each i. The skew shape λ / v consists of the boxes that are in λ and not in μ. Two boxes in λ / μ are adjacent if they share a common edge, and λ / ν is connected if you can travel from any box to any other via a path of adjacent boxes. A skew shape λ / v is a broken border strip (bbs) if it does not contain any 2×2 blocks of boxes, and a broken border strip is a border strip if it is a single connected component. Each broken border strip λ / v contains $c c(\lambda / \nu)$ connected components (border strips).

The width and height of a border strip b are defined, respectively, by

$$
\begin{align*}
& w(b)=(\text { the number of columns that } b \text { occupies })-1, \\
& h(b)=(\text { the number of rows that } b \text { occupies })-1 \tag{3.1}
\end{align*}
$$

For a skew shape λ / ν, we define

$$
w t_{\lambda / v}(q)= \begin{cases}(q-1)^{c c(\lambda / v)-1} \prod_{b} q^{w(b)}(-1)^{h(b)}, & \text { if } \lambda / v \text { is a bbs } \tag{3.2}\\ 0, & \text { otherwise }\end{cases}
$$

where the product is over the connected components (border strips) b in λ / ν. For example

is a broken border strip consisting of two connected components b_{1} and b_{2} with $w\left(b_{1}\right)=$ $2, h\left(b_{1}\right)=1$ and $w\left(b_{2}\right)=3, h\left(b_{2}\right)=2$. Thus its weight is $(q-1) q^{2}(-1) q^{3}(-1)^{2}=$ $-(q-1) q^{5}$.

A key step in proving the Murnaghan-Nakayama rule for $H_{n}(q)$ is the following proposition [15] (see also [7]), which is a q-analog of [12], Section 3, Example 11(2),

Proposition 3.1 (Ram [15]) If $v \vdash(n-k)$, then

$$
q_{k}\left(x_{1}, \ldots, x_{r} ; q\right) s_{v}\left(x_{1}, \ldots, x_{r}\right)=\sum_{\lambda \vdash n} w t_{\lambda / v}(q) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right),
$$

where q_{k} is defined in (2.9), s_{v} is the Schur function, and the sum is over all partitions λ such that λ / v is a broken border strip of size k.

To extend this result to our setting, we first expand $q_{t}\left(1, x_{1}, x_{2}, \ldots, x_{r} ; q\right)$ in terms of $q_{k}\left(x_{1}, x_{2}, \ldots, x_{r} ; q\right)$.

Lemma 3.2 For $t \geq 0$, we have

$$
q_{t}\left(1, x_{1}, \ldots, x_{r} ; q\right)=\sum_{k=0}^{t} f_{k, t}(q) q_{k}\left(x_{1}, \ldots, x_{r} ; q\right)
$$

where

$$
f_{k, t}(q)= \begin{cases}q^{t-1}, & \text { if } k=0 \tag{3.3}\\ (q-1) q^{t-k-1}, & \text { if } 0<k<t \\ 1, & \text { if } k=t\end{cases}
$$

Proof: By definition $q_{t}\left(1, x_{1}, \ldots, x_{r} ; q\right)=\sum_{I} q^{e(I)}(q-1)^{\ell(I)} x_{i_{1}}, \ldots, x_{i_{k}}$, where the sum is over all sequences $I=\left(i_{1}, \ldots, i_{t}\right)$ of the form $0 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{t} \leq r$. We let K represent the subsequence of I containing all the strictly positive terms in I, and let $k=|K|$.

Now we sum the terms in $q_{t}\left(1, x_{1}, \ldots, x_{r} ; q\right)$ according to k. The terms with $k=t$ contribute

$$
\sum_{K=\left(i_{1}, \ldots, i_{t}\right)} q^{e(K)}(q-1)^{\ell(K)} x_{i_{1}}, \ldots, x_{i_{t}}=q_{t}\left(x_{1}, \ldots, x_{r} ; q\right)
$$

since $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{t} \leq r$. The terms with $0<k<t$ each have $t-k-1$ equalities between 0 s and one jump from a 0 subscript to a nonzero subscript. Thus, they contribute

$$
\begin{aligned}
& (q-1) \sum_{k=1}^{t-1} q^{t-k-1} \sum_{K=\left(i_{t-k+1}, \ldots, i_{t}\right)} q^{e(K)}(q-1)^{\ell(K)} x_{i_{t-k+1}}, \ldots, x_{i_{t}} \\
& \quad=(q-1) \sum_{k=1}^{t-1} q^{t-k-1} q_{k}\left(x_{1}, \ldots, x_{r} ; q\right) .
\end{aligned}
$$

Finally, there is one term with $k=0$. It has the form

$$
q^{t-1} x_{0}, \ldots, x_{0}=q^{t-1} q_{0}\left(x_{1}, \ldots, x_{r} ; q\right)
$$

Summing these three cases gives the desired result.
Proposition 3.3 If $v \in \Lambda_{n-t}$, then

$$
q_{t}\left(1, x_{1}, \ldots, x_{r} ; q\right) s_{v}\left(x_{1}, \ldots, x_{r}\right)=\sum_{\lambda \in \Lambda_{n}} f_{|\lambda / v|, t}(q) w t_{\lambda / v}(q) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right)
$$

where the nonzero terms in this sum are over the partitions $\lambda \in \Lambda_{n}$ such that λ / v is a broken border strip with $0 \leq|\lambda / \nu| \leq t$.

Proof: By Proposition 3.1 and Lemma 3.2, if $v \in \Lambda_{n-t}$, we have

$$
\begin{aligned}
q_{t}\left(1, x_{1}, \ldots, x_{r} ; q\right) s_{v}\left(x_{1}, \ldots, x_{r}\right) & =\sum_{k=0}^{t} f_{k, t}(q) q_{k}\left(x_{1}, \ldots, x_{r} ; q\right) s_{v}\left(x_{1}, \ldots, x_{r}\right) \\
& =\sum_{k=0}^{n} f_{k, t}(q) \sum_{\lambda \vdash(|v|+k)} w t_{\lambda / v}(q) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right) .
\end{aligned}
$$

We now are ready to derive a Murnaghan-Nakayama rule for computing the irreducible characters of $R_{n}(q)$.

Theorem 3.4 Let $\lambda \in \Lambda_{n}$ and let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ be a composition with $0 \leq|\mu| \leq n$. Let $\mu_{\ell}=t$ and $\bar{\mu}=\left(\mu_{1}, \ldots, \mu_{\ell-1}\right)$. Then

$$
\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)=\sum_{\nu \in \Lambda_{n-t}} f_{|\lambda / \nu|, t}(q) w t_{\lambda / v}(q) \chi_{R_{n-t}(q)}^{v}\left(T_{\bar{\mu}}\right)
$$

where $w t_{\lambda / v}(q)$ is defined in (3.2) and $f_{k, t}(q)$ is defined in (3.3). The nonzero terms in this sum correspond to partitions $v \in \Lambda_{n-t}$ such that λ / v is a broken border strip with $0 \leq|\lambda / \mu| \leq t$.

Proof: From Theorem 2.3 and Proposition 3.3, we have

$$
\begin{aligned}
& \sum_{\lambda \in \Lambda_{n}} \chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right) \\
& \quad=q_{\mu}\left(1, x_{1}, \ldots, x_{r} ; q\right) \\
& \quad=q_{\bar{\mu}}\left(1, x_{1}, \ldots, x_{r} ; q\right) q_{t}\left(1, x_{1}, \ldots, x_{r} ; q\right) \\
& \quad=\sum_{\nu \in \Lambda_{n-t}} \chi_{R_{n-t}(q)}^{\nu}\left(T_{\bar{\mu}}\right) s_{v}\left(x_{1}, \ldots, x_{r}\right) q_{t}\left(1, x_{1}, \ldots, x_{r} ; q\right) \\
& \quad=\sum_{\nu \in \Lambda_{n-t}} \chi_{R_{n-t}(q)}^{v}\left(T_{\bar{\mu}}\right) \sum_{\lambda \in \Lambda_{n}} f_{|\lambda / \nu|, t}(q) w t_{\lambda / v}(q) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right) \\
& \quad=\sum_{\lambda \in \Lambda_{n}}\left(\sum_{v \in \Lambda_{n-t}} \chi_{R_{n-t}(q)}^{\nu}\left(T_{\bar{\mu}}\right) f_{|\lambda / v|, t}(q) w t_{\lambda / v}(q)\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right) .
\end{aligned}
$$

Now compare coefficients of the s_{λ}, which are a basis in the ring of symmetric functions.

When $q=1$, definitions (3.3) and (3.2) become

$$
f_{k, t}(1)= \begin{cases}1, & \text { if } k=0 \text { or } k=t \tag{3.4}\\ 0, & \text { otherwise }\end{cases}
$$

$$
w t_{\lambda / v}(1)= \begin{cases}(-1)^{h(\lambda / v)}, & \text { if } \lambda / v \text { is a border strip } \tag{3.5}\\ 0, & \text { otherwise }\end{cases}
$$

It follows that the Murnaghan-Nakayama rule for the rook monoid is
Theorem 3.5 Let $\lambda \in \Lambda_{n}$ and let $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ be a composition with $0 \leq|\mu| \leq n$. Let $\mu_{\ell}=t$ and $\bar{\mu}=\left(\mu_{1}, \ldots, \mu_{\ell-1}\right)$. Then

$$
\chi_{R_{n}}^{\lambda}\left(d_{\mu}\right)=\sum_{\nu \in \Lambda_{n-t}}(-1)^{h(\lambda / \nu)} \chi_{R_{n-t}}^{v}\left(d_{\bar{\mu}}\right),
$$

where the sum is over partitions $v \in \Lambda_{n-t}$ such that either $v=\lambda$ or λ / v is a border strip of size t.

4. Robinson-Schensted-Knuth insertion and Roichman weights

Fix $r \geq n$. For a partition $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right) \in \Lambda_{n}$ define $B(\mu)$ to be the set of partial sums of μ so that

$$
\begin{equation*}
B(\mu)=\left\{\mu_{1}, \mu_{1}+\mu_{2}, \ldots, \mu_{1}+\cdots+\mu_{\ell}\right\} \tag{4.1}
\end{equation*}
$$

For $\mu \vdash k$, define the μ-weight of $x_{i_{1}}, \ldots, x_{i_{k}}$, with $0 \leq i_{j} \leq r$, to be

$$
\begin{equation*}
w t_{\mu}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)=\prod_{\substack{j=1 \\ j \notin B(\mu)}}^{k} \phi_{\mu}\left(j, x_{i_{1}}, \ldots, x_{i_{n}}\right), \tag{4.2}
\end{equation*}
$$

where

$$
\phi_{\mu}\left(j, x_{i_{1}}, \ldots, x_{i_{k}}\right)=\left\{\begin{array}{ll}
-1 & \text { if } i_{j}<i_{j+1} \\
0, & \text { if } i_{j} \geq i_{j+1} \\
q, & \text { otherwise }
\end{array} \text { and } i_{j+1}<i_{j+2} \text { and } i_{j+1} \notin B(\mu),\right.
$$

Proposition 4.1 ([16]) We have $q_{\emptyset}=1$, and for $\mu \vdash k$ with $1 \leq k \leq n$, we have

$$
q_{\mu}\left(x_{0}, x_{1}, \ldots, x_{r} ; q\right)=\sum_{x_{i_{1}}, \ldots, x_{i_{k}}} w t_{\mu}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) x_{i_{1}}, \ldots, x_{i_{k}}
$$

where the sum is over all words $x_{i_{1}}, \ldots, x_{i_{k}}$ with $0 \leq i_{j} \leq r$.
Let $\lambda \in \Lambda_{n}$ and recall our definition, in Section 1.3, of an n-standard tableau Q_{λ} of shape λ. In this section we will place the numbers that are missing from Q_{λ} in a standard tableau
of shape $(n-|\lambda|)$ to the right of λ. Thus, our example from Section 1.3 becomes,

$$
Q_{\lambda}=\left(\begin{array}{|c|c|c|c|}
\hline 2 & 3 & 9 & 10 \\
\hline 5 & 7 & 12 & 15 \\
\hline 6 & 11 & 13 \\
\hline
\end{array}, \begin{array}{ll|l|l|l|l}
\hline 1 & 4 & 8 & 14 & 16 \\
\hline
\end{array}\right) \text { is a 16-standard tableau of shape }(4,4,3) .
$$

In this way we identify n-standard tableaux with ordered pairs of standard tableaux, such that the second tableau is a single row, and there is a total of n boxes. We write $Q_{\lambda}=\left(Q_{\lambda}^{(1)}, Q_{\lambda}^{(2)}\right)$ where $Q_{\lambda}^{(1)}$ is the original tableau and $Q_{\lambda}^{(2)}$ is the single row of "missing" entries.

In a similar fashion we identify n-column strict tableau P_{λ} with an ordered pair of columnstrict tableau, but such that the second tableau is a single row of length $n-|\lambda|$ containing all 0s. Thus, our example from Section 1.3 becomes

$$
P_{\lambda}=\left(\begin{array}{l|l|l|l|l|l|l|l|l}
\hline 1 & 1 & 3 & 4 \\
\hline 3 & 3 & 8 & 8 \\
\hline 8 & 8 & 9 & & & \left.\begin{array}{ll}
0 & 0
\end{array}\right) & & & \\
\hline
\end{array}\right.
$$

We write $P_{\lambda}=\left(P_{\lambda}^{(1)}, P_{\lambda}^{(2)}\right)$ where $P_{\lambda}^{(1)}$ is the original tableau and $P_{\lambda}^{(2)}$ is the single row of 0 s . The Schur function can be written as

$$
\begin{equation*}
s_{\lambda}\left(x_{1}, \ldots, x_{r}\right)=\sum_{P_{\lambda}} x_{1}^{m_{1}\left(P_{\lambda}\right)} x_{2}^{m_{2}\left(P_{\lambda}\right)}, \ldots, x_{r}^{m_{r}\left(P_{\lambda}\right)} \tag{4.3}
\end{equation*}
$$

where the sum is over all r-column strict tableaux of shape λ and $m_{i}\left(P_{\lambda}\right)$ is the number of times that i appears in P_{λ}.

For an n-standard tableau Q_{λ} of shape λ define

$$
\begin{equation*}
w t_{\mu}\left(Q_{\lambda}\right)=\prod_{\substack{j=1 \\ j \notin B(\mu)}}^{k} \psi_{\mu}\left(j, Q_{\lambda}\right) \tag{4.4}
\end{equation*}
$$

where $B(\mu)$ is as defined in (4.1) and

$$
\psi_{\mu}\left(j, Q_{\lambda}\right)= \begin{cases}-1, & \text { if } j+1 \text { is southwest of } j \text { in } Q_{\lambda}, \\ 0, & \text { if } j+1 \text { is northeast of } j \text { in } Q_{\lambda} \text { and } j+2 \text { is } \\ \quad \text { southwest of } j+1 \text { in } Q_{\lambda} \text { and } j+1 \notin B(\mu), \\ q, & \text { otherwise. }\end{cases}
$$

Here, by "southwest" we mean south (below) and/or west (left), by "northeast" we mean north (above) and/or east (right) or both. Furthermore, we consider the entries of $Q_{\lambda}^{(1)}$ to be southwest of those in $Q_{\lambda}^{(2)}$. Notice that $j+1$ cannot be south and east of j in a standard tableau. For example, in the standard tableau Q_{λ} above, 2 is southwest of 1,3 is northeast of 2,4 is northeast of 3,5 is southwest of 4 , etc.

The Robinson-Schensted-Knuth (RSK) correspondence (see [21], Section 3.2) is an algorithm which gives a bijection between sequences $x_{i_{1}}, \ldots, x_{i_{n}}$, with $1 \leq i_{j} \leq m$, and pairs (P, Q) where P is a column-strict tableaux, Q is a standard tableau, and P and Q have shape λ for some partition λ with n boxes. The RSK algorithm constructs the pair of tableaux (P, Q) iteratively,

$$
(\emptyset, \emptyset)=\left(P_{0}, Q_{0}\right),\left(P_{1}, Q_{1}\right), \ldots,\left(P_{n}, Q_{n}\right)=(P, Q)
$$

in such a way that
(1) P_{j} is a column strict tableau that contains j boxes, and Q_{j} is a standard tableau that has the same shape as P_{j},
(2) P_{j} is obtained from P_{j-1} by column inserting i_{j} into P_{j-1}, denoted $P_{j}=P_{j-1} \leftarrow i_{j}$, as follows
(a) Insert i_{j} into the first column of P_{j-1} by displacing the smallest number $\geq i_{j}$; if every number is $<i_{j}$, add i_{j} to the bottom of the first column,
(b) If i_{j} displaces x from the first column, insert x into the second column using the rules of (a),
(c) Repeat for each subsequent column until a number is added to the bottom of some (possibly empty) column,
(3) Q_{j} is obtained from Q_{j-1} by putting j in the newly added box (i.e., the box created in going from P_{j-1} to P_{j}).

The standard tableau Q is called the recording tableau.
We modify RSK insertion to work for n-standard and n-column strict tableaux. Given a sequence $x_{i_{1}}, \ldots, x_{i_{n}}$ with $0 \leq i_{j} \leq r$, our insertion scheme constructs a sequence $(\emptyset, \emptyset)=\left(P_{0}, Q_{0}\right), \ldots,\left(P_{n}, Q_{n}\right)=(P, Q)$, where $P_{i}=\left(P_{i}^{(1)}, P_{i}^{(2)}\right)$ is an i-semistandard tableaux, $Q_{i}=\left(Q_{i}^{(0)}, Q_{i}^{(1)}\right)$ is an i-standard tableaux, and P_{i} and Q_{i} have the same shape. Our insertion rule uses usual column insertion in one of the components according to the following rule:

$$
\left(P_{j-1}^{(1)}, P_{j-1}^{(2)}\right) \leftarrow i_{j}= \begin{cases}\left(P_{j-1}^{(1)} \leftarrow i_{j}, P_{j-1}^{(2)}\right), & \text { if } i_{j}>0 \\ \left(P_{j-1}^{(1)}, P_{j-1}^{(2)} \leftarrow i_{j}\right), & \text { if } i_{j}=0\end{cases}
$$

That is, insert 0 s into the second tableau and insert nonzero numbers into the first tableau, using usual column insertion in both cases. Again, we construct Q_{i} from Q_{i-1} by putting i into the new box added in the i th step. For example, the result of inserting $x_{2}, x_{1}, x_{0}, x_{2}, x_{0}$ is

Two well-known properties of RSK insertion are
(4) If $i_{j}<i_{j+1}$ and $P_{j+1}=\left(P_{j-1} \leftarrow i_{j}\right) \leftarrow i_{j+1}$, then $j+1$ is southwest of j in Q_{j+1},
(5) If $i_{j} \geq i_{j+1}$ and $P_{j+1}=\left(P_{j-1} \leftarrow i_{j}\right) \leftarrow i_{j+1}$, then $j+1$ is southwest of j in Q_{j+1},

In our modified insertion, we always keep the 0 s to the right (northeast) of the nonzero numbers, so properties (1) and (2) still hold. By property (2), the second tableau in our insertion will always be a single row. Thus, our insertion establishes a bijection between sequences $x_{i_{1}}, \ldots, x_{i_{n}}$, with $0 \leq i_{j} \leq r$, and pairs (P, Q), where P is an n-column strict tableau, and Q is an n-standard tableau, each having shape $\lambda \vdash k$ with $0 \leq k \leq n$ (note that k is the number of nonzero subscripts in $x_{i_{1}}, \ldots, x_{i_{n}}$). Furthermore, it follows from (4.2), (4.4), and properties (4) and (5) of RSK insertion that this bijection is weight preserving, i.e., for all $\mu \in \Lambda_{n}$,

$$
\begin{align*}
& \text { if }(P, Q) \text { results from inserting } x_{i_{1}}, \ldots, x_{i_{n}} \text {, then } \\
& w t_{\mu}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)=w t_{\mu}(Q) \text { and } x^{P}=x_{i_{1}}, \ldots, x_{i_{n}} \text {. } \tag{4.5}
\end{align*}
$$

Proposition 4.2 For each $\mu \in \Lambda_{n}$, we have

$$
q_{\mu}\left(x_{0}, \ldots, x_{r} ; q\right)=\sum_{\lambda \in \Lambda_{n}}\left(\sum_{Q_{\lambda}} w t_{\mu}\left(Q_{\lambda}\right)\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right)
$$

where the inner sum is over all n-standard tableaux of shape λ.
Proof: Using (4.5) and Proposition 4.1, we have

$$
\begin{aligned}
q_{\mu}\left(x_{0}, \ldots, x_{r} ; q\right) & =\sum_{x_{i_{1}}, \ldots, x_{i_{n}}} w t_{\mu}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) x_{i_{1}}, \ldots, x_{i_{n}} \\
& =\sum_{\lambda \in \Lambda_{n}} \sum_{P_{\lambda}, Q_{\lambda}} w t_{\mu}\left(Q_{\lambda}\right) x^{P_{\lambda}} \\
& =\sum_{\lambda \in \Lambda_{n}}\left(\sum_{Q_{\lambda}} w t_{\mu}\left(Q_{\lambda}\right)\right)\left(\sum_{P_{\lambda}} x^{P_{\lambda}}\right) \\
& =\sum_{\lambda \in \Lambda_{n}}\left(\sum_{Q_{\lambda}} w t_{\mu}\left(Q_{\lambda}\right)\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right),
\end{aligned}
$$

where the sums are over all n-column strict tableaux P_{λ} of shape λ and all n-standard tableaux Q_{λ} of shape λ.

By comparing coefficients of the s_{λ}, which are linearly independent in the ring of symmetric functions, in Theorem 2.3 and Proposition 4.2, we get the following theorem. It is a generalization of Roichman's rule [17] for $H_{n}(q)$.

Theorem 4.3 For $\mu, \lambda \in \Lambda_{n}$, we have

$$
\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)=\sum_{Q_{\lambda}} w t_{\mu}\left(Q_{\lambda}\right),
$$

where the sum is over all n-standard tableaux of shape λ.
All of our calculations work when $q=1$, and so we have
Corollary 4.4 Let $\mu \in \Lambda_{n}$. Then
(1) $p_{\mu}\left(1, x_{1}, \ldots, x_{r}\right)=\sum_{\lambda \in \Lambda_{n}}\left(\sum_{Q_{\lambda}} w t_{\mu}\left(Q_{\lambda}\right)\right) s_{\lambda}\left(x_{1}, \ldots, x_{r}\right)$,
(2) For each $\lambda \in \Lambda_{n}, \chi_{R_{n}}^{\lambda}\left(d_{\mu}\right)=\sum_{Q_{\lambda}} w t_{\mu}\left(Q_{\lambda}\right)$,
where in each case Q_{λ} varies over all n-standard tableaux of shape λ and $w t_{\mu}$ is computed as in (4.4) with $q=1$.

5. Standard elements

We now show that $R_{n}(q)$-characters are completely determined by their values on the standard elements T_{μ}. In doing so, we show that $R_{n}(q)$ satisfies a basic construction similar to the partition algebra [9]. In Section 5.2, we define rook diagrams and use them to show how to explicitly "conjugate" elements of R_{n} to get standard elements d_{μ}.

5.1. Standard elements in $R_{n}(q)$

The elements s_{1}, \ldots, s_{n-1} generate S_{n}, and a reduced word for $w \in S_{n}$ is a product $w=$ $s_{i_{1}}, \ldots, s_{i_{k}}$ with k minimal. Given a reduced word $w=s_{i_{1}} s_{i_{2}}, \ldots, s_{i_{k}} \in S_{n}$, let $T_{w}=$ $T_{i_{1}} T_{i_{2}}, \ldots, T_{i_{k}} \in H_{n}(q)$. The element T_{w} is well-defined (independent of choice of the reduced word for w), and the elements $T_{w}, w \in S_{n}$, form a basis of $H_{n}(q)$. Furthermore,

Theorem 5.1 (Ram [15]) The characters of $H_{n}(q)$ are completely determined by their values on the set $\left\{T_{\gamma_{\mu}} \mid \mu \vdash n\right\}$.

The proof in [15] of Theorem 5.1 shows that for any $w \in S_{n}$ there exists $a_{w \mu} \in \mathbb{Z}[q]$ such that $T_{w}=\sum_{\mu \vdash n} a_{w \mu} T_{\gamma_{\mu}}$ In [7] we give a new basis $\left\{L_{w} \mid w \in S_{n}\right\}$ for $H_{n}(q)$ such that for any character χ, we have $\chi\left(L_{w}\right)=\chi\left(T_{\gamma_{\mu}}\right)$, where μ is the cycle type of the permutation w.

For $1 \leq i \leq n$, define $T_{i, i}=1$, and define

$$
T_{i, j}=T_{j-1} T_{j-2}, \ldots, T_{i}, \quad \text { for } 1 \leq i<j \leq n .
$$

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq\{1,2, \ldots, n\}$, and assume that $a_{1}<a_{2}<\cdots<a_{k}$. Define

$$
T_{A}=T_{1, a_{1}} T_{2, a_{2}}, \ldots, T_{k, a_{k}}
$$

Now for $0 \leq k \leq n$, define,

$$
\Omega_{k}=\left\{\begin{array}{l|l}
(A, B, w) & \begin{array}{l}
A, B \subseteq\{1,2, \ldots, n\},|A|=|B|=k, \\
w \in S_{\{k+1, \ldots, n\}},
\end{array}
\end{array}\right\}
$$

where $S_{\{k+1, \ldots, n\}}$ is the symmetric group of permutations of $\{k+1, \ldots, n\}$. Define

$$
T_{(A, B, w)}=T_{A} T_{w} P_{k} T_{B}^{-1}, \quad(A, B, w) \in \Omega_{k}
$$

Then let $\Omega=\bigcup_{k=0}^{n} \Omega_{k}$, and we have
Theorem 5.2 ([10]) The set $\left\{T_{(A, B, w)} \mid(A, B, w) \in \Omega\right\}$ is a $\mathbb{C}(q)$-basis of $R_{n}(q)$.
The following relations are easy to verify in $R_{n}(q)$

$$
\begin{align*}
T_{i}^{-1} & =q^{-1} T_{i}+\left(q^{-1}-1\right) \cdot 1, \tag{5.1}\\
\left(T_{1} T_{2}, \ldots, T_{\ell}\right) T_{j} & =T_{j+1}\left(T_{1} T_{2}, \ldots, T_{\ell}\right), 1 \leq j<\ell . \tag{5.2}\\
P_{i} P_{j} & =P_{\max (i, j)} \tag{5.3}\\
P_{i+1} & =P_{i} T_{i} P_{i}-(q-1) P_{i} . \tag{5.4}
\end{align*}
$$

Lemma 5.3 Let A_{n-1} be the subalgebra of $R_{n}(q)$ generated by $T_{2}, \ldots, T_{n-1}, P_{2}, \ldots, P_{n}$. Then for each $b \in R_{n}(q)$ there exists $a \in A_{n-1}$ such that $P_{1} b P_{1}=a P_{1}=P_{1} a$.

Proof: First note that P_{1} commutes with $a \in A_{n-1}$ by (A4) in (1.3) and by (5.3). It is sufficient to prove the statement for $b=g_{1} g_{2}, \ldots, g_{k}$ where for each i, we have $g_{i} \in$ $\left\{T_{1}, \ldots, T_{n-1}, P_{1}, \ldots, P_{n}\right\}$. We show that $P_{1} g_{1} g_{2}, \ldots, g_{k} P_{1}=a P_{1}, a \in A_{n-1}$ by induction on k. When $k=1$, we have $P_{1} g_{1} P_{1}=g_{1} P_{1}$ if $g_{1} \neq T_{1}, P_{1}$. Furthermore, $P_{1} P_{1} P_{1}=P_{1} \cdot 1$, and by (5.4),

$$
P_{1} T_{1} P_{1}=P_{2}+(q-1) P_{1}=\left(P_{2}+(q-1) \cdot 1\right) P_{1}
$$

When $k>1$, we can assume $g_{1} \notin A_{n-1}$, otherwise $P_{1}\left(g_{1}, \ldots, g_{k}\right) P_{1}=g_{1} P_{1}\left(g_{2}, \ldots, g_{k}\right)$ P_{1}, and we can apply induction to $P_{1}\left(g_{2}, \ldots, g_{k}\right) P_{1}$. If $g_{1}=P_{1}$ we have $P_{1}\left(g_{1} g_{2}, \ldots, g_{k}\right) P_{1}$ $=P_{1}\left(g_{2}, \ldots, g_{k}\right) P_{1}$, and we can again apply induction. Thus, we assume that $g_{1}=T_{1}$. First we see that,

$$
P_{1}\left(T_{1} T_{2}, \ldots, T_{k}\right) P_{1}=P_{1} T_{1} P_{1}\left(T_{2}, \ldots, T_{k}\right)=\left(P_{2}+(q-1) \cdot 1\right)\left(T_{2}, \ldots, T_{k}\right) P_{1}
$$

Now assume that for some $\ell \geq 1, b=T_{1}, \ldots, T_{\ell} g_{\ell+1}, \ldots, g_{k}, g_{\ell+1} \neq T_{\ell+1}$, and consider the possibilities for $g_{\ell+1}$. If $g_{\ell+1}=T_{\ell}$, then we can use relation (A1) in (1.3) to write $P_{1} b P_{1}=q P_{1} b^{\prime} P_{1}+(q-1) P_{1} b^{\prime \prime} P_{1}$, where b^{\prime} and $b^{\prime \prime}$ are both shorter words than b, so we can apply induction to each term. If $g_{\ell+1}=T_{j}$ with $j>\ell+1$, then T_{j} commutes with all the elements to its left, and so it can be factored out making the word shorter. If $g_{\ell+1}=T_{j}$ with $j<\ell$, then by (5.2), $P_{1}\left(T_{1}, \ldots, T_{\ell}\right) T_{j}=T_{j+1} P_{1}\left(T_{1}, \ldots, T_{\ell}\right)$ and again induction can
be applied. If $g_{\ell+1}=P_{j}$, then by (5.4) and induction, $P_{1}\left(T_{1}, \ldots, T_{\ell}\right) P_{j}\left(g_{\ell+2}, \ldots, g_{k}\right) P_{1}=$ $P_{1}\left(T_{1}, \ldots, T_{\ell}\right) P_{1} P_{j} P_{1}\left(g_{\ell+2}, \ldots, g_{k}\right) P_{1}=a_{1} P_{1} P_{j} a_{2} P_{1}=a_{1} P_{j} a_{2} P_{1}$ for some $a_{1}, a_{2} \in$ A_{n-1}.

Proposition 5.4 The map $\rho: R_{n-1}(q) \rightarrow P_{1} R_{n}(q) P_{1}$ defined by

$$
\begin{array}{ll}
\rho\left(T_{i}\right)=P_{1} T_{i+1}=T_{i+1} P_{1}, & 1 \leq i \leq n-2, \\
\rho\left(P_{i}\right)=P_{i+1}, & 1 \leq i \leq n-1 .
\end{array}
$$

is an isomorphism.
Proof: Lemma 5.3 tells us that $P_{1} R_{n}(q) P_{1}=P_{1} A_{n-1}=A_{n-1} P_{1}$, and since A_{n-1} is generated by $T_{i}, 2 \leq i \leq n-1$, and $P_{i}, 2 \leq i \leq n$, we see that ρ maps $R_{n-1}(q)$ onto $P_{1} R_{n}(q) P_{1}$. Since P_{1} commutes with A_{n-1}, it is easy to check that $\rho\left(T_{i}\right)$ and $\rho\left(P_{i}\right)$ satisfy the same relations (1.3) as T_{i} and P_{i}, and thus ρ is a homomorphism. To see that it is one-to-one, we compare dimensions. When we specialize $q=1$ in $P_{1} R_{n}(q) P_{1}$, the specialized algebra is the \mathbb{C}-span of the rook matrices of the form $\pi_{1} d \pi_{1}$, where $d \in R_{n}$. These are all the matrices in R_{n} having their first row and first column equal to 0 . There are $\left|R_{n-1}\right|=\operatorname{dim}\left(R_{n-1}(q)\right)$ such matrices. Furthermore, under such a specialization, the dimension cannot go up. This is because $P_{1} R_{n}(q) P_{1}$ is generated by elements $P_{1} T_{i} P_{1}, P_{1} P_{k} P_{1}$ whose structure constants are well-defined (no poles) at $q=1$ (see [4], Section 68.A).

Theorem 5.5 If χ is an irreducible character of $R_{n}(q)$, then χ is completely determined by its values on $T_{\mu}, \mu \vdash k, 0 \leq k \leq n$.

Proof: The proof is by induction on n with the cases $n=0,1$ being trivial. Let $n>$ 1 and let χ be a character of $R_{n}(q)$. It is sufficient to compute χ on a basis element $T_{(A, B, w)},(A, B, w) \in \Omega$. If $|A|=|B|=0$, then $T_{(A, B, w)}=T_{w} \in H_{n}(q)$ and by Theorem 5.1, $\chi\left(T_{w}\right)$ can be written in terms of the values $\chi\left(T_{\gamma_{\mu}}\right), \mu \vdash n$. If $|A|=|B|>0$, then we use the trace property of χ and (5.3) to get

$$
\chi\left(T_{A} T_{w} P_{k} T_{B}^{-1}\right)=\chi\left(T_{B}^{-1} T_{A} T_{w} P_{k}\right)=\chi\left(T_{B}^{-1} T_{A} T_{w} P_{k} P_{1}^{2}\right)=\chi\left(P_{1} T_{B}^{-1} T_{A} T_{w} P_{k} P_{1}\right)
$$

Since $|A|=|B|>0$, we have $P_{1} T_{B}^{-1} T_{A} T_{w} P_{k} P_{1} \in P_{1} A_{n-1} P_{1} \cong R_{n-1}(q)$. By induction, $\chi\left(P_{1} T_{B}^{-1} T_{A} T_{w} P_{k} P_{1}\right)$ can be written in terms of $\chi\left(\rho\left(T_{\mu}\right)\right)$ where T_{μ} is a standard element in $R_{n-1}(q)$. Since ρ increases the subscripts of T_{i} and P_{k} by one and then multiplies by $P_{1}, \rho\left(T_{\mu}\right)$ is a standard element of $R_{n}(q)$.

5.2. Rook diagrams

We say that a rook diagram is a graph on two rows of n vertices, having k edges with $0 \leq k \leq n$ such that each edge is adjacent to one vertex in each row, and each vertex is incident to at most one edge. We multiply two rook diagrams d_{1} and d_{2} by placing d_{1} above
d_{2} and identifying the vertices in the bottom row of d_{1} with the corresponding vertices in the top row of d_{2}. For example,

$=0.00 \cdot 0$

If we assign to each rook diagram d the $n \times n, 0-1$ matrix having a 1 in row i and column j if and only if the i th vertex in the top row of d is connected to the j th vertex in the bottom row, then this identification is an isomorphism with the rook monoid. Under this identification, we have, for $1 \leq i \leq n-1$ and $1 \leq j \leq n$,

Let $\gamma_{1}=1$ and let ν_{1} be the diagram consisting of a single column of vertices with no edges. For $t>1$, let

For a rook diagram d we compute the cycle and link type of d as follows: connect each vertex in the top row with the vertex directly below it by a dotted line. We call the connected components of this new diagram blocks. Each block is one of the following
(a) A t-cycle $\left(i_{1}, i_{2}, \ldots, i_{t}, i_{1}\right)$, with $1 \leq t \leq n$, where i_{1} maps to i_{2}, i_{2} maps to i_{3}, and so on until i_{t-1} maps to i_{t} and i_{t} maps to i_{1}.
(b) A t-link $\left[i_{1}, i_{2}, \ldots, i_{t}\right]$, with $1 \leq t \leq n$, where i_{1} maps to i_{2}, i_{2} maps to i_{3}, and so on until i_{t-1} maps to i_{t}. By definition, we let v_{1} be the $1-l i n k$ (a single column of vertices with no edges).

The sizes of the cycles in d form a partition μ called the cycle type of d, and the sizes of the links form a partition τ called the link type of d. They satisfy $|\tau|+|\rho|=n$. For example, the diagram d_{2} from (5.5) has cycle type (2) and link type (5, 1).

Two elements d_{1} and d_{2} of R_{n} are conjugate, written $d_{1} \sim d_{2}$ if there exists $\pi \in S_{n}$ so that $\pi d_{1} \pi^{-1}=d_{2}$. Notice that if d is a rook diagram, then $\pi d \pi^{-1}$ is the rook diagram given by rearranging the vertices of d, in both the top and bottom row, according to π. If d_{1} and d_{2} are rook diagrams in $R_{n_{1}}$ and $R_{n_{2}}$, respectively, then $d_{1} \otimes d_{2}$ is the rook diagram in $R_{n_{1}+n_{2}}$ obtained by placing d_{2} to the right of d_{1}. It is easy to check that
(1) $\pi d \pi^{-1}$ has the same cycle-link type as d.
(2) $d \sim b_{1} \otimes b_{2} \otimes \cdots \otimes b_{k}$ where each b_{i} is a single block.
(3) $b_{1} \otimes b_{2} \sim b_{2} \otimes b_{1}$
(4) Each t-cycle is conjugate to γ_{t} and each t-link is conjugate to ν_{t}.

It follows that if d has cycle type $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ and link type $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$, then

$$
\begin{equation*}
d \sim v_{\tau_{1}} \otimes v_{\tau_{2}} \otimes \cdots \otimes v_{\tau_{m}} \otimes \gamma_{\mu_{1}} \otimes \gamma_{\mu_{2}} \otimes \cdots \otimes \gamma_{\mu_{\ell}} . \tag{5.6}
\end{equation*}
$$

For a composition $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ with $0 \leq|\mu| \leq n$, define

$$
\begin{align*}
\gamma_{\mu} & =\gamma_{\mu_{1}} \otimes \gamma_{\mu_{2}} \otimes \cdots \otimes \gamma_{\mu_{\ell}}, \text { and } \tag{5.7}\\
d_{\mu} & =\pi_{n-|\mu|} \otimes \gamma_{\mu} .
\end{align*}
$$

For example, if $\mu=(4,4,2,1) \vdash 11$ and $n=14$, then

This is the $q \rightarrow 1$ specialization of the element T_{μ} defined in (3.3). Using rook diagrams, we now provide a more streamlined proof to a result found in Munn [14].

Proposition 5.6 ([14]) If χ is any character of $R_{n}(q)$, and d is a rook diagram with cycle type μ, then

$$
\chi(d)=\chi\left(d_{\mu}\right)
$$

Proof: From (5.6) we know that $\chi(d)=\chi\left(d^{\prime}\right)$ where $d^{\prime}=v_{\tau_{1}} \otimes \cdots \otimes v_{\tau_{m}} \otimes \gamma_{\mu}$. If d^{\prime} has an isolated vertex (a vertex adjacent to no edges) in the k th position of the top row that is part of a link v_{t} with $t>1$, then

$$
d^{\prime}=\varepsilon_{k} d^{\prime} \quad \text { and } \quad d \varepsilon_{k}=d^{\prime \prime}
$$

where in $d^{\prime \prime}$ the link v_{t} is replaced by $v_{t-1} \otimes v_{1}$. Furthermore, by the trace property χ, we have $\chi\left(d^{\prime}\right)=\chi\left(\varepsilon_{k} d^{\prime}\right)=\chi\left(d^{\prime} \varepsilon_{k}\right)=\chi\left(d^{\prime \prime}\right)$. Recursive application of this process, replaces all the t-links with the t-fold tensor product of ν_{1}, and the result is proved.

Appendix: Character table of $\boldsymbol{R}_{\mathbf{4}}(\boldsymbol{q})$

We index the rows of the character table for $R_{n}(q)$ by the irreducible representations and the columns by the standard elements. Thus, for $\lambda, \mu \in \Lambda_{n}$, we let the entry in the row indexed by λ and the column indexed by μ be $\chi_{R_{n}(q)}^{\lambda}\left(T_{\mu}\right)$. Below, we give the character
table of $R_{4}(q)$. It contains the character tables of $R_{3}(q), R_{2}(q), R_{1}(q)$, and $R_{0}(q)$ as well as $H_{4}(q), H_{3}(q), H_{2}(q), H_{1}(q)$, and $H_{0}(q)$ on the diagonal (see $\left.(0.3)\right)$. Upon setting $q=1$ we obtain the character table of R_{n} first given in [14].

Character table of $R_{4}(q)$					
	$\left(1^{4}\right)$	$\left(21^{3}\right)$	$\left(2^{2}\right)$	(31)	(4)
$\left(1^{4}\right)$	1	-1	1	1	-1
$\left(21^{3}\right)$	3	$q-2$	$1-2 q$	$1-q$	q
$\left(2^{2}\right)$	2	$q-1$	$q^{2}+1$	$-q$	0
(31)	3	$2 q-1$	$q(q-2)$	$q(q-1)$	$-q^{2}$
(4)	1	q	q^{2}	q^{2}	q^{3}
$\left(1^{3}\right)$	4	$q-3$	$2(1-q)$	$2-q$	$q-1$
(21)	8	$4(q-1)$	$2(q-1)^{2}$	$1-3 q+q^{2}$	$q(1-q)$
(3)	4	$3 q-1$	$2 q(q-1)$	$q(2 q-1)$	$q^{2}(q-1)$
$\left(1^{2}\right)$	6	$3(q-1)$	$1-4 q+q^{2}$	$(q-1)^{2}$	$q(1-q)$
(2)	6	$2(2 q-1)$	$1-2 q+3 q^{2}$	$2 q(q-1)$	$q^{2}(q-1)$
(1)	4	$3 q-1$	$2 q(q-1)$	$q(2 q-1)$	$q^{2}(q-1)$
\emptyset	1	q	q^{2}	q^{2}	q^{3}

	$\left(1^{3}\right)$	(21)	(3)	$\left(1^{2}\right)$	(2)	(1)	\emptyset
$\left(1^{4}\right)$	0	0	0	0	0	0	0
$\left(21^{3}\right)$	0	0	0	0	0	0	0
$\left(2^{2}\right)$	0	0	0	0	0	0	0
(31)	0	0	0	0	0	0	0
(4)	0	0	0	0	0	0	0
$\left(1^{3}\right)$	1	-1	1	0	0	0	0
(21)	2	$q-1$	$-q$	0	0	0	0
(3)	1	q	q^{2}	0	0	0	0
$\left(1^{2}\right)$	3	$q-2$	$1-q$	1	-1	0	0
(2)	3	$2 q-1$	$q(q-1)$	1	q	0	0
(1)	3	$2 q-1$	$q(q-1)$	2	$q-1$	1	0
\emptyset	1	q	q^{2}	1	q	1	1

Acknowledgments

We thank Arun Ram for many helpful discussions and suggestions, especially for the proof of formula (2.5). We also thank Andy Cantrell and Brian Miller, whose work on a Roichman formula for the cyclotomic Hecke algebras [1] pointed us toward the results in Section 4, and we thank the referee for suggesting a number of improvements.

References

1. A. Cantrell, T. Halverson, and B. Miller, "Robinson-Schensted-Knuth insertion and characters of cyclotomic Hecke algebras," J. Combinatorial Theory, A 99 (2002), 17-31.
2. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, 1994.
3. C. Curtis and I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, Vol. I, Wiley, New York, 1981.
4. C. Curtis and I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, Vol. II, Wiley, New York, 1987.
5. F.G. Frobenius, Über die Charaktere der symmetrischen Gruppe, Sitzungberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1900), 516-534 (Ges. Abhandlungen 3, 335-348).
6. C. Grood, "A Spect module analog for the rook monoid," Electronic J. Combinatorics 9(1) (2002).
7. T. Halverson and A. Ram, "Characters of algebras containing a Jones basic construction: The Temperley-Lieb, Okada, Brauer, and Birman-Wenzl algebras," Adv. Math. 116 (1995), 263-321.
8. T. Halverson and A. Ram, " q-rook monoid algebras, Hecke algebras, and Schur-Weyl duality," Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001), 224-250.
9. T. Halverson, "Characters of the partition algebras," J. Algebra 238 (2001), 502-533.
10. T. Halverson, "Representations of the q-rook monoid," J. Algebra, in press.
11. M. Jimbo, "A q-analog of $U(g l(N+1))$, Hecke algebra, and the Yang-Baxter equation," Lett. Math. Phus. 11 (1986), 247-252.
12. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press, New York, 1995.
13. W.D. Munn, "Matrix representations of semigroups," Proc. Cambridge Philos. Soc. 53 (1957), 5-12.
14. W.D. Munn, "The characters of the symmetric inverse semigroup," Proc. Cambridge Philos. Soc. 53 (1957), 13-18.
15. A. Ram, "A Frobenius formula for the characters of the Hecke Algebras," Invent. Math. 106 (1991), 461-488.
16. A. Ram, "An elementary proof of Roichman's rule for irreducible characters of Iwahori-Hecke algebras of type A," Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA, 1996), pp. 335-342, Progr. Math., 161, Birkhuser Boston, Boston, MA, 1998.
17. Y. Roichman, "A recursive rule for Kazhdan-Lusztig characters," Adv. Math. 129 (1997), 25-45.
18. L. Solomon, "The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field," Geom. Dedicata 36 (1990), 15-49.
19. L. Solomon, "Representations of the rook monoid," J. Algebra, 256 (2002), 309-342.
20. L. Solomon, "The Iwahori algebra of $\mathbf{M}_{n}\left(\mathbb{F}_{q}\right)$, a presentation and a representation on tensor space," J. Algebra, in press.
21. B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer-Verlag, New York, 2001.
22. H. Wenzl, "On the structure of Brauer's centralizer algebras," Ann. Math. 128 (1988), 173-193.

[^0]: *Supported in part by National Science Foundation grant DMS-9800851.
 ${ }^{\dagger}$ Supported in part by National Science Foundation grant DMS-9800851 and by the Institute for Advanced Study under National Science Foundation grant DMS-9729992.

