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Abstract. Let � denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3, and distinct
eigenvalues θ0 > θ1 > · · · > θD . Let M denote the Bose-Mesner algebra of �. For 0 ≤ i ≤ D, let Ei denote the
primitive idempotent of M associated with θi . We refer to E0 and ED as the trivial idempotents of M . Let E, F
denote primitive idempotents of M . We say the pair E, F is taut whenever (i) E, F are nontrivial, and (ii) the
entry-wise product E ◦ F is a linear combination of two distinct primitive idempotents of M . We show the pair
E, F is taut if and only if there exist real scalars α, β such that

σi+1ρi+1 − σi−1ρi−1 = ασi (ρi+1 − ρi−1) + βρi (σi+1 − σi−1) (1 ≤ i ≤ D − 1),

where σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote the cosine sequences of E, F , respectively. We define � to be
taut whenever � has at least one taut pair of primitive idempotents but � is not 2-homogeneous in the sense of
Nomura and Curtin. Assume � is taut and D is odd, and assume the pair E, F is taut. We show

σi+1 − ασi

σσi − σi−1
= βρi − ρi−1

ρρi − ρi−1
,

ρi+1 − βρi

ρρi − ρi−1
= ασi − σi−1

σσi − σi−1

for 1 ≤ i ≤ D − 1, where σ = σ1, ρ = ρ1. Using these equations, we recursively obtain σ0, σ1, . . . , σD and
ρ0, ρ1, . . . , ρD in terms of the four real scalars σ, ρ, α, β. From this we obtain all intersection numbers of � in
terms of σ, ρ, α, β. We showed in an earlier paper that the pair E1, Ed is taut, where d = (D − 1)/2. Applying
our results to this pair, we obtain the intersection numbers of � in terms of k, µ, θ1, θd , where µ denotes the
intersection number c2. We show that if � is taut and D is odd, then � is an antipodal 2-cover.
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1. Introduction

Let � denote a distance-regular graph with diameter D ≥ 4 and valency k ≥ 3. Let M
denote the Bose-Mesner algebra of �. It is well-known that M has a basis consisting of
primitive idempotents; we refer to these as the primitive idempotents of �. M is closed under
the entry-wise product, so given primitive idempotents E, F of �, the entry-wise product
E ◦ F is a linear combination of the primitive idempotents of �. The coefficients in this
linear combination are the Krein parameters of �. We are interested in the case where many
of these coefficients are zero, so E ◦ F is a linear combination of a small number of primitive
idempotents. For example, suppose � is Q-polynomial relative to E . Then E ◦ F is a linear
combination of at most three primitive idempotents of �. For a related example, suppose
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the above Q-polynomial structure is dual bipartite in the sense of Dickie and Terwilliger
[4]. Then E ◦ F is a linear combination of at most two primitive idempotents of �.

Motivated by these examples, we study those pairs E, F where E ◦ F is a linear com-
bination of at most two primitive idempotents of �. We summarize what is known so far.
To do this, we use the following notation. Let k = θ0 > θ1 > · · · > θD denote the distinct
eigenvalues of �, and for 0 ≤ i ≤ D, let Ei denote the primitive idempotent of � associated
with θi . A primitive idempotent of � will be called trivial whenever it has rank 1. If � is
not bipartite, then E0 is the unique trivial primitive idempotent of �. If � is bipartite, then
E0, ED are the only trivial primitive idempotents of �. Let E, F denote primitive idempo-
tents of �. By [1, Props. II.3.7, II.3.8], E ◦ F is not zero, so E ◦ F is a linear combination
of at least one primitive idempotent of �. In some cases, E ◦ F is a scalar multiple of a
primitive idempotent of �. For example, suppose at least one of E, F is trivial. Then E ◦ F
is a scalar multiple of a primitive idempotent of �. We say the pair E, F is tight whenever
(i) E, F are nontrivial, and (ii) E ◦ F is a scalar multiple of a primitive idempotent of �. In
[11], Jurišić, Koolen and Terwilliger introduce the notion of a tight distance-regular graph.
Pascasio proves in [18, Theorem 1.3] that � is tight if and only if � has at least one tight
pair of primitive idempotents. In this paper, we define � to be tight whenever � has at least
one tight pair of primitive idempotents.

Suppose � is tight. Then by a result of Pascasio [18], � is not bipartite. Moreover, the
pair E, F is tight if and only if E, F is a permutation of E1, ED . See [10, 11] for a detailed
discussion of the tight graphs. For related papers, see [6–9, 15–19].

Now we consider the case where E ◦ F is a linear combination of two distinct primitive
idempotents of �. To keep things simple, we restrict our attention to the case where � is
bipartite. For the rest of this introduction, assume � is bipartite. We define the pair E, F
to be taut whenever (i) E, F are nontrivial, and (ii) E ◦ F is a linear combination of two
distinct primitive idempotents of �. There are a few ways a pair of primitive idempotents
can be taut.

Suppose � is 2-homogeneous in the sense of Nomura [13] and Curtin [3]. In this case,
we showed in [12] that the pair E, F is taut if and only if E, F are nontrivial with at least
one equal to E1 or ED−1.

We define � to be taut whenever � is not 2-homogeneous and there exists at least one taut
pair of primitive idempotents of�. Suppose� is taut and D is odd. In [12], we showed the pair
E, F is taut if and only if the set {E, F} is one of {E1, Ed}, {E1, Ed+1}, {ED−1, Ed}, {ED−1,

Ed+1}, where d = (D − 1)/2. Now suppose � is taut and D is even. In [12], we showed
the pair E, F is taut if and only if the set {E, F} is one of {E1, Ed}, {ED−1, Ed}, where
d = D/2.

We now summarize our results in the present paper. Let � denote a bipartite distance-
regular graph with diameter D ≥ 4, valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · >

θD . Let E, F denote nontrivial primitive idempotents of �, and let σ0, σ1, . . . , σD and
ρ0, ρ1, . . . , ρD denote the corresponding cosine sequences. We show the following are
equivalent: (i) the pair E, F is taut, and (ii) there exist complex scalars α, β such that

σi+1ρi+1 − σi−1ρi−1 = ασi (ρi+1 − ρi−1) + βρi (σi+1 − σi−1) (1)

for 1 ≤ i ≤ D − 1. Moreover, if (i), (ii) hold, then α, β are real.
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We now suppose � is taut and D is odd. Further suppose the pair E, F is taut. Using (1),
we show

σi+1 − ασi

σσi − σi−1
= βρi − ρi−1

ρρi − ρi−1
, (2)

ρi+1 − βρi

ρρi − ρi−1
= ασi − σi−1

σσi − σi−1
(3)

for 1 ≤ i ≤ D − 1, where α, β are from (1), and where σ = σ1, ρ = ρ1. Using (2), (3),
we recursively obtain σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD in terms of the four real scalars
σ, ρ, α, β. From this we obtain all intersection numbers of � in terms of σ, ρ, α, β. Applying
this result to the taut pair E1, Ed , we obtain the intersection numbers of � in terms of the
four parameters k, µ, θ1, θd , where µ denotes the intersection number c2.

Finally, we show that if � is taut and D is odd, then � is an antipodal 2-cover.

2. Preliminaries

In this section, we set our notation and review some basic definitions and results. For more
information, the reader may consult the books of Bannai and Ito [1], Brouwer et al. [2], and
Godsil [5].

Throughout this paper, let � denote a distance-regular graph with vertex set X and
diameter D. As usual, we let ph

i j (0 ≤ h, i, j ≤ D) denote the intersection numbers of �. It
is conventional to abbreviate ci := pi

1i−1 (1 ≤ i ≤ D), ai := pi
1i (0 ≤ i ≤ D), bi := pi

1i+1
(0 ≤ i ≤ D − 1), ki := p0

i i (0 ≤ i ≤ D), and to define c0 := 0, bD := 0. For convenience,
we write µ := c2. By [2, p. 127] we have

ki = b0b1b2 · · · bi−1

c1c2 · · · ci
(0 ≤ i ≤ D). (4)

We let A0, A1, . . . , AD ∈ MatX ( lC) denote the distance matrices of �. The matrix A1 is
the adjacency matrix of �; we frequently abbreviate A := A1. We let M denote the Bose-
Mesner algebra of �, which is the subalgebra of MatX ( lC) generated by A. It is well-known
that the distance matrices form a basis for M . We let E0, E1, . . . , ED denote the primitive
idempotents of M (we frequently refer to these matrices as the primitive idempotents of �),
where E0 is a scalar multiple of the all 1’s matrix. The primitive idempotents E0, E1, . . . , ED

also form a basis for M . For 0 ≤ i ≤ D, we let mi := rank(Ei ) denote the multiplicity of
Ei .

There exist distinct real numbers θ0, θ1, . . . , θD such that A = ∑D
i=0 θi Ei . We say that

θi is the eigenvalue of � associated with Ei . One can show θ0 = k and −k ≤ θi ≤ k for
0 ≤ i ≤ D [1, Thm. III.1.3].

Let E denote a primitive idempotent of �, and let m denote the multiplicity of E . By [1,
Section II.3], there exist real scalars σ0, σ1, . . . , σD such that σ0 = 1 and

E = |X |−1m
D∑

i=0

σi Ai . (5)
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The sequence σ0, σ1, . . . , σD is called the cosine sequence of � associated with E . We
abbreviate σ := σ1 and refer to σ as the first cosine of E . Let θ0 > θ1 > · · · > θD denote
the eigenvalues of �, and let σ0, σ1, . . . , σD denote the cosine sequence associated with θ1.
Then by [5, Section 13, Lemma 2.1],

σ0 > σ1 > · · · > σD. (6)

Since each entry in the distance matrices is either 0 or 1, we have

Ai ◦ A j = δi j Ai (0 ≤ i, j ≤ D), (7)

where ◦ denotes the entry-wise matrix product. It follows that M is closed under ◦. In
particular, there exist scalars qh

i j ∈ lC such that

Ei ◦ E j = |X |−1
D∑

h=0

qh
i j Eh (0 ≤ i, j ≤ D). (8)

The scalars qh
i j are known as the Krein parameters of �. The Krein parameters are real and

nonnegative [2, Theorem 2.3.2]. From [2, Lemma 2.3.1], we have

q0
i j = δi j mi (0 ≤ i, j ≤ D). (9)

In this paper we will be considering pairs of primitive idempotents Ei , E j such that
Ei ◦ E j is a linear combination of one or two primitive idempotents. Observe the existence
of such a pair Ei , E j implies that a number of the Krein parameters are zero.

For the rest of this section, we recall some facts about bipartite distance-regular graphs.
Let � denote a bipartite distance-regular graph with diameter D, valency k, and eigenvalues
θ0 > θ1 > · · · > θD . It is well-known that ai = 0 (0 ≤ i ≤ D), and so ci + bi = k
(0 ≤ i ≤ D) [2, Prop. 4.2.2]. Furthermore, one can show

θD−i = −θi (0 ≤ i ≤ D). (10)

Lemma 2.1 ([2, p. 128]) Let � denote a bipartite distance-regular graph with diameter
D ≥ 3. For any complex scalars σ0, σ1, . . . , σD, the following are equivalent.
(i) σ0, σ1, . . . , σD is a cosine sequence of �.

(ii) σ0 = 1, σD−1 = σσD, and

ci (σi−1 − σi+1) = k(σσi − σi+1) (1 ≤ i ≤ D − 1). (11)

(iii) σ0 = 1, σD−1 = σσD, and

bi (σi+1 − σi−1) = k(σσi − σi−1) (1 ≤ i ≤ D − 1). (12)

Furthermore, suppose (i)–(iii) hold. Then θ = kσ is the eigenvalue of � associated with
the cosine sequence σ0, σ1, . . . , σD.
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Corollary 2.2 Let � denote a bipartite distance-regular graph with diameter D ≥ 3, and
let σ0, σ1, . . . , σD denote a cosine sequence of �. Then for any integer i (1 ≤ i ≤ D − 1),
the following are equivalent.

(i) σi+1 = σi−1.
(ii) σσi = σi−1.

(iii) σσi = σi+1.

Corollary 2.3 Let � denote a bipartite distance-regular graph with diameter D ≥ 3. Let
σ0, σ1, . . . , σD denote a cosine sequence of �. Then (i), (ii) hold below.
(i) σi = 0 or σi+1 = 0 (0 ≤ i ≤ D − 1).

(ii) σD = 0.

Lemma 2.4 Let � denote a bipartite distance-regular graph with diameter D ≥ 3.
Let E, F denote primitive idempotents of � with cosine sequences σ0, σ1, . . . , σD and
ρ0, ρ1, . . . , ρD, respectively. Then for all integers i (1 ≤ i ≤ D − 1),

σi+1ρi−1 − σi−1ρi+1 = σσi (ρi−1 − ρi+1) − ρρi (σi−1 − σi+1). (13)

Proof: Observe

(σσi − σi+1)(ρi−1 − ρi+1) = (ρρi − ρi+1)(σi−1 − σi+1) (14)

since both sides equal ci (ρi−1 − ρi+1)(σi−1 − σi+1)/k in view of (11). Multiplying out (14)
and cancelling terms, we obtain (13).

Definition 2.5 Let � denote a bipartite distance-regular graph. Let E, F denote primitive
idempotents of �, and let θ, θ ′ denote the corresponding eigenvalues. We say E and F are
opposites whenever θ ′ = −θ .

Lemma 2.6 Let � denote a bipartite distance-regular graph with diameter D ≥ 3.
Let E, F denote primitive idempotents of � with cosine sequences σ0, σ1, . . . , σD and
ρ0, ρ1, . . . , ρD, respectively. Then the following are equivalent:

(i) E and F are opposites.
(ii) ρ = −σ.

(iii) ρi = (−1)iσi (0 ≤ i ≤ D).

Proof: Routine using Lemma 2.1.

Lemma 2.7 [2, Prop. 4.4.7] Let � denote a bipartite distance-regular graph with diameter
D ≥ 3 and eigenvalues θ0 > θ1 > · · · > θD. Let E denote a primitive idempotent of �

with cosine sequence σ0, σ1, . . . , σD.
(i) Suppose E = E0. Then σi = 1 (0 ≤ i ≤ D).

(ii) Suppose E = ED. Then σi = (−1)i (0 ≤ i ≤ D).
(iii) Suppose E is one of E1, E2, . . . , ED−1. Then −1 < σi < 1 (1 ≤ i ≤ D − 1).
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Definition 2.8 Let � denote a bipartite distance-regular graph with valency k. We say
that an eigenvalue θ of � is trivial whenever θ = k or θ = −k. We say that a primitive
idempotent E of � is trivial whenever the associated eigenvalue is trivial. One can show
that a primitive idempotent E is trivial if and only if rank(E)= 1.

The following result appears in [18], although parts (i), (ii) of this result are from the
folklore of the subject of distance-regular graphs.

Lemma 2.9 Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and
eigenvalues θ0 > θ1 > · · · > θD. Then (i)–(iii) hold below.

(i) E0 ◦ Ei = |X |−1 Ei (0 ≤ i ≤ D).
(ii) ED ◦ Ei = |X |−1 ED−i (0 ≤ i ≤ D).

(iii) Let E, F denote primitive idempotents of � other than E0 and ED. Then E ◦ F is not
a scalar multiple of a primitive idempotent of �.

Lemma 2.10 Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and
eigenvalues θ0 > θ1 > · · · > θD. Then

qh
i j = q D−h

D−i, j = q D−h
i, D− j = qh

D−i, D− j (0 ≤ h, i, j ≤ D). (15)

Proof: To get the equation on the left, we take the entry-wise product of both sides
of (8) with ED and apply Lemma 2.9(ii). The second equation follows since qh

i j = qh
ji

(0 ≤ h, i, j ≤ D), and the third equation is a routine consequence of the first one.

Corollary 2.11 Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and
eigenvalues θ0 > θ1 > · · · > θD. Then

q D
i j = δi D− j mi (0 ≤ i, j ≤ D). (16)

Let � denote a bipartite distance-regular graph with diameter D ≥ 4 and valency k ≥ 3.
Let E, F denote primitive idempotents of �. We mentioned the entry-wise product E ◦ F is
nonzero, so E ◦ F is a linear combination of at least one primitive idempotent of �. Recall
by Lemma 2.9 that E ◦ F is a scalar multiple of a single primitive idempotent of � if and
only if at least one of E, F is trivial. Suppose E, F are nontrivial, so E ◦ F is a linear
combination of at least two distinct primitive idempotents of �. It is natural to consider
when E ◦ F is a linear combination of two distinct primitive idempotents of �. This is the
situation we consider in the following definition.

Definition 2.12 Let � denote a bipartite distance-regular graph with diameter D ≥ 4
and valency k ≥ 3. We introduce a binary symmetric relation on the set of all primi-
tive idempotents of �. We call this the taut relation. Let E, F denote primitive idempo-
tents of �. We say the pair E, F is taut whenever (i) E, F are nontrivial, and (ii) the
entry-wise product E ◦ F is a linear combination of two distinct primitive idempotents
of �.
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We now recall a class of bipartite distance-regular graphs that contain taut pairs of
primitive idempotents.

Definition 2.13 Let � denote a bipartite distance-regular graph with diameter D ≥ 3,
valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · > θD . Let θ denote a nontrivial eigenvalue
of �. In [3], Curtin shows

(µ − 1)θ2 ≤ (k − µ)(k − 2) (17)

and that the set of nontrivial eigenvalues θ of � for which equality holds in (17) is either
(i) empty, or (ii) {θ1, θD−1}. � is said to be 2-homogeneous if (ii) occurs.

Nomura obtains a classification of the 2-homogeneous bipartite distance-regular graphs
in [14]. Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and valency
k ≥ 3. Nomura shows that if � is 2-homogeneous and D > 5, then � is the D-cube.
Furthermore, Curtin proves in [3] that the following are equivalent: (i) � is 2-homogeneous,
(ii) � is an antipodal 2-cover and Q-polynomial, (iii) � has a dual bipartite Q-polynomial
structure.

Theorem 2.14 ([12]) Let � denote a 2-homogeneous bipartite distance-regular graph
with diameter D ≥ 4, valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · > θD. Let E, F
denote nontrivial primitive idempotents of �. Then the pair E, F is taut if and only if at
least one of E, F is equal to E1 or ED−1.

Definition 2.15 Let � denote a bipartite distance-regular graph with diameter D ≥ 4 and
valency k ≥ 3. We define � to be taut whenever � is not 2-homogeneous and � has at least
one taut pair of primitive idempotents.

Taut distance-regular graphs with odd diameter and taut distance-regular graphs with even
diameter appear to be fundamentally different objects, and we will handle them separately.
In this paper, we will focus on taut distance-regular graphs with odd diameter. Of these,
there are three known sporadic examples, each with diameter 5, and one infinite family.
The sporadic examples are the Double Hoffman-Singleton graph [2, Section 13.1], Double
Gewirtz graph [2, Section 11.4G], and Double 77-graph [2, p. 418]. The infinite family is
given below.

Example 2.16 Given an integer k ≥ 3, let � denote the graph 2.Ok , the double cover of
the Odd graph Ok (see [2, Section 9.1D]). Recall � is a bipartite distance-regular graph
with valency k and diameter D = 2k − 1. The intersection numbers of � are given by

c2i = c2i−1 = i (1 ≤ i ≤ k − 1). (18)

The distinct eigenvalues of � are ±1, ±2, . . . ,±k [2, p. 414]. Moreover, the graph � is
taut. We will verify this in Example 5.14.
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Theorem 2.17 ([12]) Let � denote a taut bipartite distance-regular graph with diameter
D ≥ 4, valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · > θD. Let E, F denote nontrivial
primitive idempotents of �.
(i) Suppose D is odd, and let d = (D − 1)/2. Then the pair E, F is taut if and only if the

set {E, F} is one of {E1, Ed}, {E1, Ed+1}, {ED−1, Ed}, {ED−1, Ed+1}.
(ii) Suppose D is even, and let d = D/2. Then the pair E, F is taut if and only if the set

{E, F} is one of {E1, Ed}, {ED−1, Ed}.

We end this chapter with two results concerning 2-homogeneous bipartite distance-regular
graphs.

Theorem 2.18 ([3]) Let � denote a bipartite distance-regular graph with diameter D ≥ 3,

valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · > θD. Let θ denote a nontrivial eigenvalue
of �, and let σ0, σ1, . . . , σD denote the associated cosine sequence. Then the following are
equivalent:

(i) � is 2-homogeneous and θ ∈ {θ1, θD−1}.
(ii) There exists a complex scalar λ such that

σi−1 − λσi + σi+1 = 0 (1 ≤ i ≤ D − 1). (19)

(iii) There exists a complex scalar λ such that

σi−1 − λσi + σi+1 = 0 (1 ≤ i ≤ 2). (20)

Furthermore, suppose (i)–(iii) hold. Then λ is real.

Lemma 2.19 ([3, 12]) Let � denote a bipartite distance-regular graph with diameter
D ≥ 4 and valency k ≥ 3. Set

� := (k − 2)(c3 − 1) − (µ − 1)p2
22. (21)

Then � ≥ 0. Moreover, � is 2-homogeneous if and only if � = 0 and � has at least one
taut pair of primitive idempotents.

3. The Christoffel-Darboux formula

Lemma 3.1 (Christoffel-Darboux formula) [1, Theorem III.1.3] Let � denote a dist-
ance-regular graph with diameter D ≥ 3. Let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote
cosine sequences of �. Then

k(σ − ρ)
i∑

h=0

khσhρh = ki bi (σi+1ρi − σiρi+1) (0 ≤ i ≤ D), (22)

where σD+1, ρD+1 are indeterminates.
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Corollary 3.2 Let� denote a distance-regular graph with diameter D ≥ 3. Letσ0, σ1, . . . ,

σD denote a cosine sequence of �. Then

k(σ − 1)
i∑

h=0

khσh = ki bi (σi+1 − σi ) (0 ≤ i ≤ D), (23)

where σD+1 is indeterminate.

Proof: By Lemma 2.7(i), the cosine sequence associated with E0 is 1, 1, . . . , 1. Let ρ j =
1 (0 ≤ j ≤ D) in (22) to obtain the desired result.

We now obtain an equation similar in form to the Christoffel-Darboux formula; this
equation is for bipartite distance-regular graphs.

Lemma 3.3 Let � denote a bipartite distance-regular graph with diameter D ≥ 4. Let
σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote cosine sequences of �. For 0 ≤ i ≤ D,

k2(σ 2 − ρ2)
∑

0≤h≤i−1
i−h odd

khσhρh = ki ci bi (σi+1ρi−1 − σi−1ρi+1), (24)

where σ−1, ρ−1, σD+1, ρD+1 are indeterminates.

Proof: Repeatedly applying (11) and using the fact that b j = k − c j (0 ≤ j ≤ D), we
find that for 0 ≤ h ≤ D − 1,

k2σ 2σh = chch−1σh−2 + (chbh−1 + bhch+1)σh + bhbh+1σh+2, (25)

where we define c−1 := b−1 := 0, and where σ−2 is indeterminate. Similarly,

k2ρ2ρh = chch−1ρh−2 + (chbh−1 + bhch+1)ρh + bhbh+1ρh+2, (26)

where ρ−2 is indeterminate.
Subtracting khσh times (26) from khρh times (25) and using (4), we find

k2(σ 2 − ρ2)khσhρh = kh+1ch+1bh+1(σh+2ρh − σhρh+2)

− kh−1ch−1bh−1(σhρh−2 − σh−2ρh) (27)

for 0 ≤ h ≤ D − 1, where we define k−1 := 0. Fix an integer i (0 ≤ i ≤ D). Summing
(27) over all h such that 0 ≤ h ≤ i − 1 and such that i − h is odd, we obtain (24).

Corollary 3.4 Let � denote a bipartite distance-regular graph with diameter D ≥ 4. Let
σ0, σ1, . . . , σD denote a cosine sequence of �. For 0 ≤ i ≤ D,

k2(σ 2 − 1)
∑

0≤h≤i−1
i−h odd

khσh = ki ci bi (σi+1 − σi−1), (28)

where σ−1, σD+1 are indeterminates.
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Proof: By Lemma 2.7(i), the cosine sequence associated with E0 is 1, 1, . . . , 1. Letting
ρ j = 1 (0 ≤ j ≤ D) in (24), we obtain the desired result.

4. Some equations involving cosine sequences

Definition 4.1 Throughout this section, we let � denote a bipartite distance-regular graph
with diameter D ≥ 4 and valency k ≥ 3. Let θ0 > θ1 > · · · > θD denote the distinct
eigenvalues of �. Furthermore, we let E and F denote nontrivial primitive idempotents of
�. We let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote the corresponding cosine sequences. We
let G and H denote distinct primitive idempotents of � with cosine sequences γ0, γ1, . . . , γD

and ε0, ε1, . . . , εD , respectively.

Lemma 4.2 With reference to Definition 4.1, the following are equivalent:
(i) E ◦ F ∈ span{G, H}.

(ii) There exist complex scalars a, b such that for 0 ≤ i ≤ D,

σiρi = aγi + bεi . (29)

Suppose (i), (ii) hold. Then a, b are given by

a = σρ − ε

γ − ε
, b = γ − σρ

γ − ε
. (30)

Moreover, a, b are nonzero and real.

Proof: Let mσ , mρ , mγ , mε denote the multiplicities of E, F, G, H , respectively. Recall

E = |X |−1mσ

D∑
i=0

σi Ai , F = |X |−1mρ

D∑
i=0

ρi Ai , (31)

G = |X |−1mγ

D∑
i=0

γi Ai , H = |X |−1mε

D∑
i=0

εi Ai . (32)

(i)⇒(ii) By assumption, there exist complex scalars ψ, φ such that

E ◦ F = ψG + φH. (33)

Eliminating E, F, G, H in (33) using (31), (32), and evaluating the result using (7), we
obtain

mσ mρσiρi = |X |(ψmγ γi + φmεεi ) (0 ≤ i ≤ D).

Apparently (29) holds with

a = |X |ψmγ

mσ mρ

, b = |X |φmε

mσ mρ

. (34)
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(ii)⇒(i) By (31), (7), (29), and (32), we have

E ◦ F = |X |−2mσ mρ

D∑
i=0

σiρi Ai

= |X |−2mσ mρ

(
a

D∑
i=0

γi Ai + b
D∑

i=0

εi Ai

)

= |X |−1mσ mρ

(
a

mγ

G + b

mε

H

)
,

proving (i).
Now suppose (i), (ii) hold. To obtain (30), set i = 0, 1 in (29) and solve the resulting

linear equations for a and b. To show a, b are real and nonzero, we refer to the proof of
(i)⇒(ii) above. One may show ψ, φ are real and nonzero using Lemma 2.9(iii) and the fact
that Krein parameters are real. Now a, b are real and nonzero by (34).

With reference to Definition 4.1, suppose for the moment that E, F, G, H satisfy (i), (ii)
in Lemma 4.2. In the following lemma, we consider the case when one of G, H is trivial.

Lemma 4.3 With reference to Definition 4.1, suppose (i), (ii) hold in Lemma 4.2. Then
(i) E = F if and only if one of G, H is equal to E0.

(ii) E, F are opposites if and only if one of G, H is equal to ED.

Furthermore, suppose E = F. Then � is 2-homogeneous, and E ∈ {E1, ED−1}. Now
suppose E, F are opposites. Then � is 2-homogeneous, and E, F is a permutation of
E1, ED−1.

Proof:

(i) Routine consequence of (8), (9), and the linear independence of the primitive idem-
potents.

(ii) By Definition 2.5 and (10), E, F are opposites if and only if there exists an integer i
(0 ≤ i ≤ D) such that E = Ei , F = ED−i . The result is now a routine consequence
of (8), (16), and the linear independence of the primitive idempotents.

Now suppose (i) or (ii) holds. By Lemma 4.2(i) and since E, F are nontrivial, we find the
pair E, F is taut. Observe � is not taut since Theorem 2.17(i), (ii) do not hold; thus � is
2-homogeneous by Definition 2.15. If (i) holds, then E ∈ {E1, ED−1} by Theorem 2.14. If
(ii) holds, then E, F is a permutation of E1, ED−1 by Theorem 2.14.

Lemma 4.4 With reference to Definition 4.1, suppose (i), (ii) hold in Lemma 4.2 and that
E, F are distinct. Then for any integer i (0 ≤ i ≤ D − 1),

σi+1ρi − σiρi+1

σ − ρ
= a

γi+1 − γi

γ − 1
+ b

εi+1 − εi

ε − 1
, (35)
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where a, b are from (30). Observe the denominators in (35) are nonzero by Lemma 2.7 and
Lemma 4.3.

Proof: Using (22), (29), and (23), we observe

ki bi

k

σi+1ρi − σiρi+1

σ − ρ
=

i∑
h=0

khσhρh

= a
i∑

h=0

khγh + b
i∑

h=0

khεh

= ki bi

k

(
a

γi+1 − γi

γ − 1
+ b

εi+1 − εi

ε − 1

)
,

and the result follows.

Lemma 4.5 With reference to Definition 4.1, suppose (i), (ii) hold in Lemma 4.2 and that
E, F are neither equal nor opposites. Then for any integer i (1 ≤ i ≤ D − 1),

σi+1ρi−1 − σi−1ρi+1

σ 2 − ρ2
= a

γi+1 − γi−1

γ 2 − 1
+ b

εi+1 − εi−1

ε2 − 1
, (36)

where a, b are from (30). Observe the denominators in (36) are nonzero by Lemma 2.6,

Lemma 2.7, and Lemma 4.3.

Proof: By (24), (29), and (28), we observe

ki ci bi

k2

σi+1ρi−1 − σi−1ρi+1

σ 2 − ρ2
=

∑
0≤h≤i−1

i−h odd

khσhρh

= a
∑

0≤h≤i−1
i−h odd

khγh + b
∑

0≤h≤i−1
i−h odd

khεh

= ki ci bi

k2

(
a

γi+1 − γi−1

γ 2 − 1
+ b

εi+1 − εi−1

ε2 − 1

)
,

and the result follows.

5. The main results

In the following theorem, we consider the equation

σi+1ρi+1 − σi−1ρi−1 = ασi (ρi+1 − ρi−1) + βρi (σi+1 − σi−1). (37)
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Theorem 5.1 Let � denote a bipartite distance-regular graph with diameter D ≥ 4 and
valency k ≥ 3. Let E and F denote nontrivial primitive idempotents of � with cosine se-
quences σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD, respectively. Then the following are equivalent:

(i) E, F is a taut pair.
(ii) There exist complex scalars α, β such that equality holds in (37) for all integers

i (1 ≤ i ≤ D − 1).
(iii) There exist complex scalars α, β such that equality holds in (37) for i = 1, 2, 3.

Proof: Let θ0 > θ1 > · · · > θD denote the distinct eigenvalues of �.
(i)⇒(ii) First assume E = F , so ρ j = σ j for 0 ≤ j ≤ D. By Lemma 4.3, we find � is
2-homogeneous, and that E is one of E1, ED−1. By Theorem 2.18, there exists a complex
scalar λ such that

σi+1 + σi−1 = λσi (1 ≤ i ≤ D − 1). (38)

Using (38) and the fact that ρ j = σ j (0 ≤ j ≤ D), we find that if we set α = λ, β = 0,
then (37) holds for 1 ≤ i ≤ D − 1.

Now assume E, F are opposites. By Lemma 2.6, ρ j = (−1) jσ j for 0 ≤ j ≤ D. Applying
Lemma 4.3, we find � is 2-homogeneous, and E, F is a permutation of E1, ED−1. By
Theorem 2.18, there exists a complex scalar λ such that

σi+1 + σi−1 = λσi (1 ≤ i ≤ D − 1). (39)

Using (39) and the fact that ρ j = (−1) jσ j (0 ≤ j ≤ D), we find that if we set α = λ, β = 0,
then (37) holds for 1 ≤ i ≤ D − 1.

Now assume E and F are not equal nor opposites. By assumption E ◦ F is a linear combi-
nation of two distinct primitive idempotents, which we denote by G, H . Let γ0, γ1, . . . , γD

and ε0, ε1, . . . , εD denote the cosine sequences for G and H , respectively. To obtain (37), we
will combine (13), (29), (35), and (36) as follows. Fix an integer i (1 ≤ i ≤ D − 1). By (29),

σi+1ρi+1 − σi−1ρi−1 = a(γi+1 − γi−1) + b(εi+1 − εi−1), (40)

where a, b are from (30). Adding (35) at i to (35) at i − 1, we obtain

σi (ρi−1 − ρi+1)

σ − ρ
− ρi (σi−1 − σi+1)

σ − ρ
= a(γi+1 − γi−1)

γ − 1
+ b(εi+1 − εi−1)

ε − 1
. (41)

Evaluating the left-hand side of (36) using (13), we find

σσi (ρi−1 − ρi+1)

σ 2 − ρ2
− ρρi (σi−1 − σi+1)

σ 2 − ρ2
= a(γi+1 − γi−1)

γ 2 − 1
+ b(εi+1 − εi−1)

ε2 − 1
. (42)

Consider the equation Eq which is (40) minus the product of u with (41) plus the product
of v with (42), where

u = ε + γ, v = (1 + ε)(1 + γ ).
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In the equation Eq, the right-hand side is 0, since

1 − u

γ − 1
+ v

γ 2 − 1
= 0, 1 − u

ε − 1
+ v

ε2 − 1
= 0.

Evaluating the left-hand side of the equation Eq, we obtain (37), where

α = u

ρ − σ
− vσ

ρ2 − σ 2
, β = u

σ − ρ
− vρ

σ 2 − ρ2
.

(ii)⇒(iii) Immediate.
(iii)⇒(i) First assume ρ = ±σ . Consider the matrix

B :=




σ2ρ2 − 1 σ (ρ2 − 1) ρ(σ2 − 1)

σ3ρ3 − σρ σ2(ρ3 − ρ) ρ2(σ3 − σ )

σ4ρ4 − σ2ρ2 σ3(ρ4 − ρ2) ρ3(σ4 − σ2)


 .

On one hand, B is singular, so det(B) = 0. On the other hand, recursively eliminating
σ2, σ3, σ4, ρ2, ρ3, ρ4 in the entries of B using (12), one may verify that det(B) is equal to

k5b−6
1 b−4

2 b−2
3 (σ 2 − 1)2(ρ2 − 1)2(ρ2 − σ 2) (43)

times

f σ 2ρ2 + g(σ 2 + ρ2) + h, (44)

where

f = k4µ(� + c3 − µ),

g = −k2b2
2(c3 − 1),

h = b2
2(b2(c3 − 1) + µb3(k − 2)),

and where � is from (21). (To do this, we must use the fact that p2
22 = µ−1(b2(c3 − 1) +

µ(k − 2)) [2, Lemma 4.1.7]). Observe factor (43) is not zero, since we assume σ 2 = ρ2

and since σ 2 = 1, ρ2 = 1 by Lemma 2.7(iii). Apparently factor (44) is zero. Applying [12,
Corollary 3.11], we find E, F is a taut pair.

Now assume ρ = ±σ . If ρ = σ , then ρ j = σ j for 0 ≤ j ≤ D. If ρ = −σ , then
ρ j = (−1) jσ j for 0 ≤ j ≤ D by Lemma 2.6. We assume (37) holds for 1 ≤ i ≤ 3;
evaluating these equations using ρ j = σ j or ρ j = (−1) jσ j as appropriate, we find

σ 2
i+1 − σ 2

i−1 = λσi (σi+1 − σi−1) (1 ≤ i ≤ 3), (45)

where λ = α + β if ρ = σ and λ = α − β if ρ = −σ . Letting i = 1, 2 in (45), we obtain

σ 2
2 − 1 = λσ (σ2 − 1), (46)

σ 2
3 − σ 2 = λσ2(σ3 − σ ). (47)
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Observe σ2 = ±1 by Lemma 2.7(iii). Dividing both sides of (46) by σ2 − 1, we obtain

σ2 + 1 = λσ. (48)

Since σ2 = −1, we see σ = 0 in view of (48). We mentioned σ2 = 1, so σ3 = σ by (12).
Dividing both sides of (47) by σ3 − σ , we obtain

σ3 + σ = λσ2. (49)

By (48) and (49), we find condition Theorem 2.18(iii) holds. Applying this theorem, we
find � is 2-homogeneous and E ∈ {E1, ED−1}. Now E, F is a taut pair by Theorem 2.14.

Let � denote a bipartite distance-regular graph with diameter D ≥ 4 and valency k ≥ 3.
Assume � has at least one taut pair of primitive idempotents. By Definition 2.15, one
of the following holds: (i) � is 2-homogeneous, (ii) � is taut and D is even, (iii) � is
taut and D is odd. Case (i) has already been explored by Curtin in [3] and Nomura in
[14], so we will not discuss it further here. Cases (ii) and (iii) appear to be fundamentally
different, and we will handle them separately. For the rest of this paper, we will focus on
case (iii).

Let � denote a taut bipartite distance-regular graph with odd diameter D ≥ 5 and valency
k ≥ 3. Let E, F denote a taut pair of primitive idempotents of �. Let θ, θ ′ denote the corre-
sponding eigenvalues, and let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote the corresponding
cosine sequences. Let α, β denote complex scalars satisfying (37) for 1 ≤ i ≤ D − 1. We
use (37) to solve for α, β in terms of k, µ, σ, ρ. Since σ = θ/k, ρ = θ ′/k, this gives α, β

in terms of k, µ, θ, θ ′. Our result is the following.

Corollary 5.2 Let � denote a taut bipartite distance-regular graph with odd diameter
D ≥ 5 and valency k ≥ 3. Let E, F denote a taut pair of primitive idempotents of �.
Let θ, θ ′ denote the corresponding eigenvalues, and let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD

denote the corresponding cosine sequences. Let α, β denote complex scalars satisfying (37)
for 1 ≤ i ≤ D − 1. Then

α = θ

k
+ θ (k2 − θ2)(b2(k − 2) − θ ′2(µ − 1))

k(θ2 − θ ′2)b1b2
, (50)

β = θ ′

k
+ θ ′(k2 − θ ′2)(b2(k − 2) − θ2(µ − 1))

k(θ ′2 − θ2)b1b2
. (51)

In particular, α, β are real and are uniquely determined by k, µ, θ, θ ′.

Proof: Setting i = 1, 2 in (37), we obtain the equations

σ2ρ2 − 1 = ασ (ρ2 − 1) + βρ(σ2 − 1), (52)

σ3ρ3 − σρ = ασ2(ρ3 − ρ) + βρ2(σ3 − σ ), (53)
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where σ = σ1, ρ = ρ1. Observe these equations are linear in α, β. Recursively eliminating
σ2, σ3, ρ2, ρ3 in these equations using (12) and recalling σ = θ/k, ρ = θ ′/k, we routinely
find that the system (52), (53) has a unique solution for α, β which satisfies (50), (51).

Definition 5.3 Let � denote a taut bipartite distance-regular graph with odd diameter
D ≥ 5, valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · > θD . Let d = (D − 1)/2, and
consider the set consisting of the following four eigenvalues:

θ1, θd , θd+1, θD−1. (54)

Recall θD−1 = −θ1 and θd+1 = −θd . Let θ denote an eigenvalue in (54), and let E denote
the corresponding primitive idempotent. By the weight of θ (or E), we mean the real scalar

θ

k
+ θ (k2 − θ2)(b2(k − 2) − θ ′2(µ − 1))

k(θ2 − θ ′2)b1b2
, (55)

where θ ′ is any eigenvalue in (54) other than θ, −θ .

We introduced the notion of a weight in Definition 5.3 so that we may easily discuss the
scalars α, β appearing in (37). To clarify how we use this notation, we give the following
corollary.

Corollary 5.4 Let � denote a taut bipartite distance-regular graph with odd diameter
D ≥ 5 and valency k ≥ 3. Let E, F denote a taut pair of primitive idempotents with
cosine sequences σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD, respectively. Let α, β denote complex
scalars. Then the following are equivalent:
(i) The scalars α, β satisfy (37) for 1 ≤ i ≤ D − 1.

(ii) The scalars α, β are the weights of E, F, respectively.

Proof: Immediate using Theorem 2.17(i), Corollary 5.2, and Definition 5.3.

Lemma 5.5 Let � denote a taut bipartite distance-regular graph with odd diameter D ≥
5, valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · > θD. Let d = (D − 1)/2, and let E
denote one of E1, Ed , Ed+1, ED−1. Let α denote the weight of E, and let σ denote the first
cosine of E. Then (i), (ii) hold below.
(i) Suppose E = E1 or E = Ed+1. Then α > σ .

(ii) Suppose E = Ed or E = ED−1. Then α < σ .

Proof: Let θ denote the eigenvalue associated with E , and let θ ′ denote one of θ1, θd , θd+1,

θD−1 not equal to θ or −θ . Recalling θ = kσ and using Definition 5.3, we find α−σ equals

(k2 − θ2)(b2(k − 2) − θ ′2(µ − 1))k−1b−1
1 b−1

2 (56)

times θ (θ2 − θ ′2)−1. In (56) the factor on the left is positive since θ < k. The factor in
the middle is positive by (17) and since � is not 2-homogeneous. The remaining factors in
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(56) are also positive, so (56) is positive. Using θ1 > θd > θd+1 > θD−1 and θ1 = −θD−1,
θd = −θd+1, we find θ (θ2 − θ ′2)−1 is positive in case (i) and negative in case (ii). The result
follows.

Lemma 5.6 Let � denote a taut bipartite distance-regular graph with odd diameter D ≥
5, valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · > θD. Let d = (D − 1)/2, and let
σ0, σ1, . . . , σD denote the cosine sequence associated with any one of θ1, θd , θd+1, θD−1.
Then the expressions

σi+1 − σi−1, σσi − σi−1, σσi − σi+1

are nonzero for 1 ≤ i ≤ D − 1.

Proof: By Corollary 2.2, it suffices to show σi+1 − σi−1 is nonzero. Let θ denote the
eigenvalue associated with the cosine sequence σ0, σ1, . . . , σD . The result is true for θ = θ1

and θ = θD−1 by (6) and Lemma 2.6. Now assume θ is one of θd , θd+1. Fix an integer i (1 ≤
i ≤ D − 1) and assume σi+1 = σi−1. We obtain a contradiction. To do this, we first observe
by Corollary 2.2 that σi−1, σi+1, σσi are equal. Let E denote the primitive idempotent of �

associated with θ . Let F denote the primitive idempotent of � associated with θ1, and let
ρ0, ρ1, . . . , ρD denote the corresponding cosine sequence. By Theorem 2.17(i), E, F is a
taut pair. Applying Corollary 5.4, we find

σi+1ρi+1 − σi−1ρi−1 = ασi (ρi+1 − ρi−1) + βρi (σi+1 − σi−1), (57)

where α, β denote the weights of E, F , respectively. Setting σi+1 = σσi , σi−1 = σσi in
(57), we find

(σ − α)σi (ρi+1 − ρi−1) = 0. (58)

If σi = 0 then σi+1 = 0, violating Corollary 2.3(i); thus σi = 0. Recall ρ0, ρ1, . . . , ρD is
the cosine sequence for θ1, so ρi+1 = ρi−1 by (6). Thus σ = α, contradicting Lemma 5.5.
We conclude σi+1 − σi−1 is nonzero, as desired.

Theorem 5.7 Let � denote a taut bipartite distance-regular graph with odd diameter D ≥
5 and valency k ≥ 3. Let E, F denote a taut pair of primitive idempotents. Let σ0, σ1, . . . , σD

and ρ0, ρ1, . . . , ρD denote the corresponding cosine sequences, respectively, and let α, β

denote the corresponding weights. Then

σi+1 − ασi

σσi − σi−1
= βρi − ρi−1

ρρi − ρi−1
(1 ≤ i ≤ D − 1), (59)

ρi+1 − βρi

ρρi − ρi−1
= ασi − σi−1

σσi − σi−1
(1 ≤ i ≤ D − 1). (60)

Observe the denominators in (59), (60) are nonzero by Lemma 5.6.
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Proof: Multiplying (37) by σσi − σi−1, multiplying (13) by σi+1 − ασi , and taking the
difference between the two products, we find σi−1 − σi+1 times

(σi+1 − ασi )(ρρi − ρi−1) − (βρi − ρi−1)(σσi − σi−1) (61)

is zero. Observe σi−1 − σi+1 is nonzero by Lemma 5.6, so (61) is zero. Line (59) follows.
We obtain (60) by interchanging the roles of σ j , ρ j (0 ≤ j ≤ D) and the roles of α, β in

the above argument.

Theorem 5.8 Let � denote a taut bipartite distance-regular graph with odd diameter
D ≥ 5 and valency k ≥ 3. Let E, F denote a taut pair of primitive idempotents. Let σ, ρ

denote the corresponding first cosines, respectively, and let α, β denote the corresponding
weights. Then the intersection numbers of � are determined by the four scalars σ, ρ, α, β.

Proof: Given the scalars σ, ρ, α, β, we may use (59), (60) to recursively obtain σi and ρi

for 2 ≤ i ≤ D. Using this information and Lemma 5.6, we set i = 1 and c1 = 1 in (11)
to obtain k. Using (11) and Lemma 5.6, we find c2, c3, . . . , cD−1. Using bi = k − ci (1 ≤
i ≤ D − 1), we find b1, b2, . . . , bD−1.

Corollary 5.9 Let � denote a taut bipartite distance-regular graph with odd diameter
D ≥ 5, valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · > θD. Let d = (D − 1)/2. Then the
intersection numbers of � are determined by the four scalars k, µ, θ1, θd .

Proof: Recall E1, Ed is a taut pair of primitive idempotents. Let σ, ρ denote the corre-
sponding first cosines, and let α, β denote the corresponding weights. By Theorem 5.8, we
obtain the intersection numbers in terms of σ, ρ, α, β. Using σ = θ1/k, ρ = θd/k, and
Corollary 5.2 (with θ = θ1, θ

′ = θd ), we obtain σ, ρ, α, β in terms of k, µ, θ1, θd .

In the following lemmas, we obtain some other equations involving the cosines of a taut
distance-regular graph of odd diameter.

Lemma 5.10 Let � denote a taut bipartite distance-regular graph with odd diameter D ≥
5 and valency k ≥ 3. Let E, F denote a taut pair of primitive idempotents. Let σ0, σ1, . . . , σD

and ρ0, ρ1, . . . , ρD denote the corresponding cosine sequences, respectively, and let α, β

denote the corresponding weights. Then

σi−1 − ασi

σσi − σi+1
= βρi − ρi+1

ρρi − ρi+1
(1 ≤ i ≤ D − 1), (62)

ρi−1 − βρi

ρρi − ρi+1
= ασi − σi+1

σσi − σi+1
(1 ≤ i ≤ D − 1). (63)

Observe the denominators in (62), (63) are nonzero by Lemma 5.6.

Proof: In the proof of Theorem 5.7, interchange the roles of σi−1, σi+1 and also the roles
of ρi−1, ρi+1.
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Lemma 5.11 Let � denote a taut bipartite distance-regular graph with odd diameter D ≥
5 and valency k ≥ 3. Let E, F denote a taut pair of primitive idempotents. Let σ0, σ1, . . . , σD

and ρ0, ρ1, . . . , ρD denote the corresponding cosine sequences, respectively, and let α, β

denote the corresponding weights. Then

k

bi
= ασi − σi−1

σσi − σi−1
+ βρi − ρi−1

ρρi − ρi−1
(1 ≤ i ≤ D − 1), (64)

k

ci
= ασi − σi+1

σσi − σi+1
+ βρi − ρi+1

ρρi − ρi+1
(1 ≤ i ≤ D − 1). (65)

Observe the denominators in (64), (65) are nonzero by Lemma 5.6.

Proof: From (12), we find

k

bi
= σi+1 − σi−1

σσi − σi−1
(66)

= ασi − σi−1

σσi − σi−1
+ σi+1 − ασi

σσi − σi−1
. (67)

Evaluating the expression on the right in (67) using (59), we obtain (64). We similarly obtain
(65) by using (11), (62) in place of (12), (59) in the above argument.

Definition 5.12 Let � denote a bipartite distance-regular graph with diameter D ≥ 4 and
valency k ≥ 3. We say a pair of cosine sequences of � is taut whenever the associated pair
of primitive idempotents is taut.

Theorem 5.13 Let � denote a bipartite distance-regular graph with diameter D ≥ 4 and
valency k ≥ 3. Let σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD denote two sequences of complex
scalars, and abbreviate σ = σ1, ρ = ρ1. Let α, β denote complex scalars. Then the
following are equivalent:
(i) � is taut and D is odd. Moreover, σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD form a taut pair of

cosine sequences, and α, β are the weights of the corresponding primitive idempotents.
(ii) σ0 = 1, ρ0 = 1, σD−1 = σσD, ρD−1 = ρρD, σ = α, ρ = β, σ = ±ρ, and

σi+1 − ασi

σσi − σi−1
= βρi − ρi−1

ρρi − ρi−1
(1 ≤ i ≤ D − 1), (68)

ρi+1 − βρi

ρρi − ρi−1
= ασi − σi−1

σσi − σi−1
(1 ≤ i ≤ D − 1), (69)

k

bi
= ασi − σi−1

σσi − σi−1
+ βρi − ρi−1

ρρi − ρi−1
(1 ≤ i ≤ D − 1), (70)

and the denominators in (68)–(70) are nonzero.

Proof: (i)⇒(ii). We assume σ0, σ1, . . . , σD is a cosine sequence, so σ0 = 1 and σD−1 =
σσD by Lemma 2.1(ii). Similarly, ρ0 = 1 and ρD−1 = ρρD . Observe σ = ±ρ by Lemma 2.6
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and Theorem 2.17(i). Observe σ = α, ρ = β by Lemma 5.5. Equations (68)–(70) follow
from Theorem 5.7 and Lemma 5.11.
(ii)⇒(i). Let θ0 > θ1 > · · · > θD denote the eigenvalues of �. Replacing the rightmost
fraction in (70) using (68) and simplifying, we obtain

bi (σi+1 − σi−1) = k(σσi − σi−1) (1 ≤ i ≤ D − 1). (71)

We assume σ0 = 1, σD−1 = σσD , so σ0, σ1, . . . , σD is a cosine sequence of � by Lemma 2.1.
Similarly, ρ0, ρ1, . . . , ρD is a cosine sequence of �. Let E (respectively F) denote the
primitive idempotent of � associated with σ0, σ1, . . . , σD (respectively ρ0, ρ1, . . . , ρD).
Observe E, F are nontrivial, since otherwise we would have a zero denominator in (68)
at i = 1 by Lemma 2.7. We show E, F is a taut pair. To do this, we show (37) holds for
1 ≤ i ≤ D − 1. Fixing an integer i (1 ≤ i ≤ D − 1), we multiply the Eqs. (68), (69)
together and simplify to obtain

(σi+1 − ασi )(ρi+1 − βρi ) = (βρi − ρi−1)(ασi − σi−1). (72)

Expanding (72), we routinely obtain (37). We have now shown (37) holds for 1 ≤ i ≤ D − 1.
Combining this with Theorem 5.1, we find E, F is a taut pair. Now the cosine sequences
σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD form a taut pair by Definition 5.12.

We show � is taut by applying Definition 2.15. We just showed E, F is a taut pair of
primitive idempotents. To show � is taut, we show � is not 2-homogeneous. To do this,
we assume � is 2-homogeneous and obtain a contradiction. First observe σ = 0, ρ = 0;
otherwise, we have a zero denominator in (68) for i = 2. By Theorem 2.14, at least one of
E, F is in the set {E1, ED−1}. Without loss of generality, we assume E is one of E1, ED−1.
By Theorem 2.18, there exists a real scalar λ such that

σi−1 − λσi + σi+1 = 0 (1 ≤ i ≤ D − 1). (73)

Combining (73) at i = 1, 2, we find

σ2(σ2 + 1) = σ (σ3 + σ ). (74)

Consider the expression

e = σ2(σ2 + 1) − σ (σ3 + σ )

σ 2 − σ2
. (75)

We remark that the denominator in (75) is nonzero; otherwise σ 2−1 is zero by Corollary 2.2,
forcing a zero denominator in (68) at i = 1. We evaluate e in two ways. First, by (74), we find
e = 0. Second, applying (68), (69), we solve for σ2, σ3 in terms of σ, ρ, α, β. Eliminating
σ2, σ3 in e using this, we obtain

e = (ρ − β)(σ + ρ)(σ − ρ)

ρ(ρ − 1)(ρ + 1)
. (76)



TAUT DISTANCE-REGULAR GRAPHS OF ODD DIAMETER 145

We assumed ρ = β, σ = ±ρ, so e = 0. We now have a contradiction. We conclude � is
not 2-homogeneous. Now � is taut by Definition 2.15.

We now show D is odd. Suppose D is even. By Theorem 2.17(ii), we find one of E, F
is Ed , where d = D/2. Since the eigenvalue associated with Ed is 0, we find σ = 0
or ρ = 0, a contradiction. We conclude D is odd. Finally, since we proved (37) holds
for 1 ≤ i ≤ D − 1, we conclude by Corollary 5.4 that α, β are the weights for E, F ,
respectively.

In Example 2.16, we mentioned that the doubled Odd graphs are taut. Using the above
theorem, we can readily verify this is the case. Our result is the following.

Example 5.14 Given an integer k ≥ 3, let � denote the graph 2.Ok from Example 2.16.
Recall � is a bipartite distance-regular graph with valency k and diameter D = 2k − 1.
Define a sequence of scalars σ0, σ1, . . . , σD by

σi = (−1)i + (2k − 1)(2i − 2k + 1)

4k(1 − k)
(0 ≤ i ≤ D). (77)

Let ρ0, ρ1, . . . , ρD denote the sequence y0, −y1, y1, −y2, y2, . . . ,−yk , where

yi = (−1)i

(
k
i

)−1

(0 ≤ i ≤ k). (78)

Now define scalars α, β by

α = 1 + (k − 1)k−2 (79)

β = −k−2. (80)

Using (18), we may verify that the scalars α, β and the sequences σ0, σ1, . . . , σD and
ρ0, ρ1, . . . , ρD satisfy all the conditions of Theorem 5.13(ii). Applying Theorem 5.13, we
find � is taut. Moreover, σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD form a taut pair of cosine
sequences, and α, β are the corresponding weights. We remark that the eigenvalues of �

associated with σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD are k − 1 and 1, respectively.

6. Antipodal 2-covers

In this section we prove that any taut bipartite distance-regular graph of odd diameter D ≥ 5
is an antipodal 2-cover. We begin with the definition of antipodal.

Definition 6.1 Let � denote a distance-regular graph with vertex set X and diameter
D ≥ 2. Let �D denote the undirected graph with vertex set X and edge set {(x, y)|x, y ∈
X, ∂(x, y) = D}, where ∂ is the path-length distance function of �. � is said to be antipodal
whenever �D is a disjoint union of cliques. In this case each clique has cardinality 1 + kD ,
where kD is from (4). We refer to � as an r -cover, where r = 1 + kD .
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Lemma 6.2 [2, Prop. 4.2.2] Let � denote a bipartite distance-regular graph of odd diam-
eter D ≥ 3. Then � is antipodal if and only if bi = cD−i for 0 ≤ i ≤ D. In this case, � is
a 2-cover.

We mention a result about the cosine sequences of an antipodal 2-cover.

Lemma 6.3 [2, pp. 142–143] Let � denote a bipartite distance-regular graph with di-
ameter D ≥ 3, valency k ≥ 3, and eigenvalues θ0 > θ1 > · · · > θD. Assume � is an
antipodal 2-cover. Choose an integer j (0 ≤ j ≤ D), and let σ0, σ1, . . . , σD denote the
cosine sequence of � associated with θ j . If j is even, then σi = σD−i for 0 ≤ i ≤ D. If j is
odd, then σi = −σD−i for 0 ≤ i ≤ D.

Theorem 6.4 Let � denote a taut bipartite distance-regular graph with odd diameter
D ≥ 5 and valency k ≥ 3. Then � is an antipodal 2-cover.

Proof: Let θ0 > θ1 > · · · > θD denote the eigenvalues of �, and let σ0, σ1, . . . , σD denote
the cosine sequence associated with θ1. We first show

σD− j = σ jσD (0 ≤ j ≤ D). (81)

To show (81), it is convenient to simultaneously consider the cosine sequence for θd , where
d = (D − 1)/2. Let ρ0, ρ1, . . . , ρD denote the cosine sequence for θd . For 0 ≤ j ≤ D, let
σ ′

j := σD− j/σD and ρ ′
j := ρD− j/ρD . We recall σD, ρD are nonzero by Corollary 2.3(ii).

We show σ ′
j = σ j , ρ ′

j = ρ j for 0 ≤ j ≤ D. Our proof is by induction on j . Observe
σ ′

0 = σ0, ρ ′
0 = ρ0 by construction and since σ0 = ρ0 = 1. Observe σ ′

1 = σ1, ρ ′
1 = ρ1

by Lemma 2.1(ii). Now fix an integer i (1 ≤ i ≤ D − 1), and assume by induction that
σ ′

j = σ j , ρ ′
j = ρ j for 0 ≤ j ≤ i . We show σ ′

i+1 = σi+1, ρ ′
i+1 = ρi+1. Replacing i by D − i

in (62), we obtain

σ ′
i+1 − ασ ′

i

σσ ′
i − σ ′

i−1

= βρ ′
i − ρ ′

i−1

ρρ ′
i − ρ ′

i−1

, (82)

where α, β denote the weights of θ1, θd , respectively. Comparing (82), (59), and using
σ ′

i = σi , σ ′
i−1 = σi−1, ρ ′

i = ρi , ρ ′
i−1 = ρi−1, we find σ ′

i+1 = σi+1. Interchanging the roles
of σ0, σ1, . . . , σD and ρ0, ρ1, . . . , ρD in the above argument, we similarly find ρ ′

i+1 = ρi+1.
We have now shown σ ′

j = σ j and ρ ′
j = ρ j for 0 ≤ j ≤ D. In particular, we have (81).

We now show bi = cD−i for 0 ≤ i ≤ D. Assume 1 ≤ i ≤ D − 1; otherwise the result is
trivial. Replacing i by D − i in (11), and evaluating the result using (81), we find

cD−i (σi+1 − σi−1) = k(σσi − σi−1). (83)

Comparing (83), (12), and using Lemma 5.6, we find bi = cD−i .

We finish this paper with a comment on Theorem 5.8. Let � denote a taut bipartite
distance-regular graph with odd diameter D ≥ 5, valency k ≥ 3, and eigenvalues θ0 >
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θ1 > · · · > θD . Consider the taut pair E1, Ed , where d = (D − 1)/2. Let σ0, σ1, . . . , σD

and ρ0, ρ1, . . . , ρD denote the corresponding cosine sequences, and let α, β denote the
corresponding weights. Combining Lemma 6.3 and Theorem 6.4, we find σD−i = −σi and
ρD−i = (−1)dρi for 0 ≤ i ≤ D. In particular,

σd+1 = −σd , ρd+1 = (−1)dρd . (84)

In view of Theorem 5.8, the equations in (84) imply two polynomial equations involving
σ, ρ, α, β, where we abbreviate σ = σ1, ρ = ρ1. For the cases D = 5 and D = 7, we
have obtained these equations explicitly, and they seem rather complicated. In particular,
it is not clear how to use them to solve for two of σ, ρ, α, β in terms of the other two. We
will pursue this matter in a future paper.
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