Poincaré Series of the Weyl Groups of the Elliptic Root Systems $A_{1}^{(1,1)}, A_{1}^{(1,1)^{*}}$ and $A_{2}^{(1,1)}$

TADAYOSHI TAKEBAYASHI
takeba@shimizu.info.waseda.ac.jp
Department of Mathematical Science, School of Science and Engineering, Waseda University,
Ohkubo Shinjuku-ku, Tokyo, 169-8555
Received February 8, 2001; Revised September 10, 2002

Abstract

We calculate the Poincaré series of the elliptic Weyl group $W\left(A_{2}^{(1,1)}\right)$, which is the Weyl group of the elliptic root system of type $A_{2}^{(1,1)}$. The generators and relations of $W\left(A_{2}^{(1,1)}\right)$ have been already given by K. Saito and the author.

Keywords: Poincaré series, elliptic root system, elliptic Weyl group

1. Introduction

Elliptic Weyl groups are the Weyl groups associated to the elliptic root systems introduced by K. Saito [5, 6], which are defined by a semi-positive definite inner product with 2 -dimensional radical. The generators and their relations of elliptic Weyl groups were described from the viewpoint of a generalization of Coxeter groups by K. Saito and the author [7, 9]. The Poincaré series $W(t)$ of a group W with respect to a generator system is defined by

$$
W(t)=\sum_{w \in W} t^{l(w)}
$$

where t is an indeterminate and $l(w)$ is the length of a minimal expression of an element w in W in terms of the given generator system. If W is one of the finite or affine Weyl groups, it is known that

$$
\sum_{w \in W} t^{l(w)}= \begin{cases}\prod_{i=1}^{n} \frac{1-t^{m_{i}+1}}{1-t} & (\mathrm{~W}: \text { finite }) \\ \frac{1}{(1-t)^{n}} \prod_{i=1}^{n} \frac{1-t^{m_{i}+1}}{1-t} & (\mathrm{~W}: \text { affine })\end{cases}
$$

where n is the rank and m_{1}, \ldots, m_{n} are the exponents of $W[1-4,8]$. The goal of the present article is to calculate the Poincaré series $W(t)$ of the elliptic Weyl groups W of types $A_{1}^{(1,1)}, A_{1}^{(1,1)^{*}}$ and $A_{2}^{(1,1)}$. In the cases of types $A_{1}^{(1,1)}$ and $A_{1}^{(1,1) *}$, although they have
been already given by Wakimoto [10], we give a different proof from those and in the similar way we calculate the case of $A_{2}^{(1,1)}$. The result for $A_{2}^{(1,1)}$ is given by Theorem 3.7.

2. Poincaré series of the Weyl groups of types $A_{1}^{(1,1)}$ and $A_{1}^{(1,1) *}$

The generators and their relations of the elliptic Weyl group of type $A_{1}^{(1,1)}$ are given as follows [7, 9]:

$$
\begin{aligned}
\text { Generators: } & w_{i}, w_{i}^{*}(i=0,1) \\
\text { Relations: } & w_{i}^{2}=w_{i}^{* 2}=1(i=0,1), \quad w_{0} w_{0}^{*} w_{1} w_{1}^{*}=1
\end{aligned}
$$

The relation $w_{0} w_{0}^{*} w_{1} w_{1}^{*}=1$ is rewritten as follows:

$$
\begin{equation*}
w_{0}^{*} w_{1}=w_{0} w_{1}^{*}\left(\Leftrightarrow w_{1}^{*} w_{0}=w_{1} w_{0}^{*}\right) \tag{2.1.1}
\end{equation*}
$$

(It means that $w_{i} w_{j}^{*}=w_{i}^{*} w_{j}(i \neq j)$.) We set $T:=w_{1} w_{0}, R:=w_{1}^{*} w_{1}=w_{0} w_{0}^{*}$, then we easily see the following.

Lemma 2.1 The elements T, R and w_{1} generate the Weyl group of type $A_{1}^{(1,1)}$ and their fundamental relations are given by;

$$
T R=R T, \quad w_{1} T=T^{-1} w_{1}, \quad w_{1} R=R^{-1} w_{1}, \quad w_{1}^{2}=1 .
$$

From this, we have $W=\left\{R^{m} T^{n} w_{1}, R^{m} T^{n}, m, n \in \mathbb{Z}\right\}$. The elements T and w_{1} generate a subgroup isomorphic to the affine Weyl group of type A_{1}, and all elements of that are classified to the following:

$$
\left\{(\mathrm{I}) T^{n}(n \geq 0), \quad \text { (II) } T^{-n}(n \geq 1), \quad \text { (III) } T^{n} w_{1}(n \geq 0), \quad \text { (IV) } T^{-n} w_{1}(n \geq 1)\right\}
$$

We multiply the elements $R^{m}(m \in \mathbb{Z})$ to the above elements from the left, and examine their minimal length in each case by using the following.

Lemma 2.2 Let w be a minimal expression by w_{0} and w_{1}. Then even if we attach $*$ to any letters of w, the length of w does not decrease.

Proof: This is clear from the fact that a relation in w_{i} holds if and only if the relation in w_{i}^{*} obtained by attaching $*$ also holds.
(I) $T^{n}=\left(w_{1} w_{0}\right)^{n} \quad(n \geq 0)$

From the expression $R w_{1} w_{0}=w_{1}^{*} w_{0}$ and (2.1.1), we see that $R^{k} T^{n}=R^{k}\left(w_{1} w_{0}\right)^{n}=$ $\left(w_{11} w_{10}\right)\left(w_{21} w_{20}\right) \cdots\left(w_{n 1} w_{n 0}\right)$, for $0 \leq k \leq 2 n$, where $w_{i 1}$ (resp. $w_{i 0}$) is either w_{1} or w_{1}^{*} (resp. w_{0} or w_{0}^{*}) for all i, in such a way that $*$ is attached until the k-th letter. Further for $m \geq 1, R^{2 n+m} T^{n}=R^{m}\left(R^{2 n} T^{n}\right)=\left(w_{1}^{*} w_{1}\right)^{m}\left(w_{1}^{*} w_{0}^{*}\right)^{n}, R^{-m} T^{n}=\left(w_{1} w_{1}^{*}\right)^{m}\left(w_{1} w_{0}\right)^{n}$, and
each length is $2 n+2 m$, so we get $\sharp\left\{R^{k} T^{n},(n \geq 0, k \in \mathbb{Z}) \mid l\left(R^{k} T^{n}\right)=2 n\right\}=2 n+1$, and $\forall\left\{R^{k} T^{n},(n \geq 0, k \in \mathbb{Z}) \mid l\left(R^{k} T^{n}\right)=2 n+2 m\right\}=2$.

The case of (II) is similar to (I).
(III) $T^{n} w_{1}=\left(w_{1} w_{0}\right)^{n} w_{1} \quad(n \geq 0)$

From $R w_{1}=w_{1}^{*}$ and (2.1.1), for $0 \leq k \leq 2 n+1$, we have $R^{k} T^{n} w_{1}=R^{k}\left(w_{1} w_{0}\right)^{n} w_{1}=$ $\left(w_{11} w_{10}\right) \cdots\left(w_{n 1} w_{n 0}\right) w_{n+1,1}$ where $w_{i 1} \in\left\{w_{1}, w_{1}^{*}\right\}$ and $w_{i 0} \in\left\{w_{0}, w_{0}^{*}\right\}$, so $\sharp\left\{R^{k} T^{n} w_{1}\right.$, $\left.(n \geq 0, k \in \mathbb{Z}) \mid l\left(R^{k} T^{n} w_{1}\right)=2 n+1\right\}=2 n+2$, and $\sharp\left\{R^{k} T^{n} w_{1},(n \geq 0, k \in \mathbb{Z}) \mid\right.$ $\left.l\left(R^{k} T^{n} w_{1}\right)=2 n+1+2 m\right\}=\sharp\left\{R^{2 n+1+m} T^{n} w_{1}, R^{-m} T^{n} w_{1}\right\}=2$.
(IV) $T^{-n} w_{1}=\left(w_{0} w_{1}\right)^{n-1} w_{0} \quad(n \geq 1)$

From $R^{-1} w_{0}=w_{0}^{*},(2.1 .1)$, and that for $m \geq 1, R^{-(2 n-1)-m} T^{-n} w_{1}=R^{-m}\left(w_{0}^{*} w_{1}^{*}\right)^{n-1} w_{0}^{*}=$ $\left(w_{0}^{*} w_{0}\right)^{m}\left(w_{0}^{*} w_{1}^{*}\right)^{n-1} w_{0}^{*}, R^{m} T^{-n} w_{1}=\left(w_{0} w_{0}^{*}\right)^{m}\left(w_{0} w_{1}\right)^{n-1} w_{0}$, we see that $\sharp\left\{R^{k} T^{-n} w_{1}\right.$, $\left.(n \geq 1, k \in \mathbb{Z}) \mid l\left(R^{k} T^{-n} w_{1}\right)=2 n-1\right\}=2 n$, and $\sharp\left\{R^{k} T^{-n} w_{1},(n \geq 1, k \in \mathbb{Z}) \mid\right.$ $\left.l\left(R^{k} T^{-n} w_{1}\right)=2 n+2 m-1\right\}=2$.

In the case of type $A_{1}^{(1,1) *}$, the generators and their relations are given as follows:
Generators: w_{0}, w_{1}, w_{1}^{*}.
Relations: $w_{0}^{2}=w_{1}^{2}=w_{1}^{* 2}=\left(w_{0} w_{1} w_{1}^{*}\right)^{2}=1$.
This Weyl group is obtained from the Weyl group of type $A_{1}^{(1,1)}$ by removing one generator w_{0}^{*}, so we examine the case of type $A_{1}^{(1,1) *}$ similarly to the case of type $A_{1}^{(1,1)}$.
(I) $T^{n}=\left(w_{1} w_{0}\right)^{n} \quad(n \geq 0)$

From $R w_{1}=w_{1}^{*}$, we have $R^{n} T^{n}=\left(w_{1}^{*} w_{0}\right)^{n}$, and for $m \geq 1, R^{n+m} T^{n}=R^{m}\left(w_{1}^{*} w_{0}\right)^{n}=$ $\left(w_{1}^{*} w_{1}\right)^{m}\left(w_{1}^{*} w_{0}\right)^{n}$ and $R^{-m} T^{n}=\left(w_{1} w_{1}^{*}\right)^{m}\left(w_{1} w_{0}\right)^{n}$, so we get $\sharp\left\{R^{k} T^{n},(n \geq 0, k \in \mathbb{Z}) \mid\right.$ $\left.l\left(R^{k} T^{n}\right)=2 n\right\}=n+1$, and $\sharp\left\{R^{k} T^{n},(n \geq 0, k \in \mathbb{Z}) \mid l\left(R^{k} T^{n}\right)=2 n+2 m\right\}=2$.

The case of (II) is similar to (I).
(III) $T^{n} w_{1}=\left(w_{1} w_{0}\right)^{n} w_{1} \quad(n \geq 0)$

From $R w_{1}=w_{1}^{*}$, and $R^{n+1}\left(w_{1} w_{0}\right)^{n} w_{1}=\left(w_{1}^{*} w_{0}\right)^{n} w_{1}^{*}$, we see that $\sharp\left\{R^{k} T^{n} w_{1},(n \geq 0, k \in\right.$ $\left.\mathbb{Z}) \mid l\left(R^{k} T^{n} w_{1}\right)=2 n+1\right\}=n+2$, and $\sharp\left\{R^{k} T^{n} w_{1}, k \in \mathbb{Z} \mid l\left(R^{k} T^{n} w_{1}\right)=2 n+1+2 m\right\}=$ $\sharp\left\{R^{n+1+m} T^{n} w_{1}, R^{-m} T^{n} w_{1}\right\}=2$ 。
(IV) $T^{-n} w_{1}=\left(w_{0} w_{1}\right)^{n-1} w_{0} \quad(n \geq 1)$

From $\quad R^{-1}\left(w_{0} w_{1}\right)=w_{0} w_{1}^{*}$ and $R^{-(n-1)}\left(w_{0} w_{1}\right)^{n-1} w_{0}=\left(w_{0} w_{1}^{*}\right)^{n-1} w_{0}$, we see that $\sharp\left\{R^{k} T^{-n} w_{1},(n \geq 1, k \in \mathbb{Z}) \mid l\left(R^{k} T^{-n} w_{1}\right)=2 n-1\right\}=n$, and $\sharp\left\{R^{k} T^{-n} w_{1}, k \in\right.$ $\left.\mathbb{Z} \mid l\left(R^{k} T^{-n} w_{1}\right)=2 n-1+2 m\right\}=\sharp\left\{R^{-n+1-m} T^{-n} w_{1}, R^{m} T^{-n} w_{1}\right\}=2$.

From the above argument, we obtain the following.

$A_{1}^{(1,1)}$	$l(w)(n \geq 1, m \geq 1)$	\sharp	$A_{1}^{(1,1) *}$	$l(w)(n \geq 1, m \geq 1)$	$\#$
I	0	1	I	0	1
	$2 n$	$2 n+1$		$2 n$	$n+1$
	$2 m, 2(n+m)$	2		$2 m, 2(n+m)$	2
II	$2 n$	$2 n+1$	II	$2 n$	$n+1$
	$2(n+m)$	2		$2(n+m)$	2
III	$2 n-1$	$2 n$	III	$2 n-1$	$n+1$
	$2(n+m)-1$	2		$2(n+m)-1$	2
IV	$2 n-1$	$2 n$	IV	$2 n-1$	n
	$2(n+m)-1$	2		$2(n+m)-1$	2

Further from this, we obtain the following.

Proposition 2.3 ([10])

(i) The number of the elements of $W\left(A_{1}^{(1,1)}\right)$ and $W\left(A_{1}^{(1,1) *}\right)$ of length n is given by;

$$
\begin{aligned}
& W\left(A_{1}^{(1,1)}\right): \quad \sharp\{w \in W \mid l(w)=0\}=1, \quad \sharp\{w \in W \mid l(w)=n,(n \geq 1)\}=4 n, \\
& W\left(A_{1}^{(1,1) *}\right): \sharp\{w \in W \mid l(w)=0\}=1, \quad \sharp\{w \in W \mid l(w)=n,(n \geq 1)\}=3 n .
\end{aligned}
$$

(ii) The Poincaré series of $W\left(A_{1}^{(1,1)}\right)$ and $W\left(A_{1}^{(1,1) *}\right)$ are given by;

$$
\sum_{w \in W\left(A_{1}^{(1,1)}\right)} t^{l(w)}=\frac{(1+t)^{2}}{(1-t)^{2}}, \quad \sum_{w \in W\left(A_{1}^{(1.1) *}\right)} t^{l(w)}=\frac{1-t^{3}}{(1-t)^{3}} .
$$

Proof: (i) For an integer $k \geq 2$, the number of pairs (m, n) satisfying $k=m+n(m \geq$ $1, n \geq 1$) is equal to $k-1$, so in the case of type $A_{1}^{(1,1)}, \sharp\{w \in W \mid l(w)=2 n\}=$ $(2 n+1) \times 2+2+2 \times(n-1) \times 2=8 n$, and $\sharp\{w \in W \mid l(w)=2 n-1\}=$ $2 n \times 2+2 \times(n-1) \times 2=8 n-4$, so we get the result. The case of type $A_{1}^{(1,1) *}$ is calculated similarly. Then (ii) is easily obtained from (i).

3. Poincaré series of the Weyl group of type $A_{2}^{(1,1)}$

The elliptic Weyl group W of type $A_{2}^{(1,1)}$ is presented as follows [7, 9].

$$
\begin{aligned}
\text { Generators: } & w_{i}, w_{i}^{*} \quad(i=0,1,2) \\
\text { Relations: } & w_{i}^{2}=w_{i}^{* 2}=1 \quad(i=0,1,2) \\
& \text { for } i \neq j \\
& w_{i} w_{j} w_{i}=w_{j} w_{i} w_{j}, \quad w_{i}^{*} w_{j}^{*} w_{i}^{*}=w_{j}^{*} w_{i}^{*} w_{j}^{*}, \\
& w_{i}^{*} w_{j} w_{i}^{*}=w_{j} w_{i}^{*} w_{j}=w_{i} w_{j}^{*} w_{i}=w_{j}^{*} w_{i} w_{j}^{*} \\
& \text { and } w_{0} w_{0}^{*} w_{1} w_{1}^{*} w_{2} w_{2}^{*}=1
\end{aligned}
$$

We set $T_{1}:=w_{0} w_{2} w_{0} w_{1}, T_{2}:=w_{0} w_{1} w_{0} w_{2}, R_{1}:=w_{1} w_{1}^{*}$, and $R_{2}:=w_{2} w_{2}^{*}$, then we have the following.

Lemma 3.1

(i) W is generated by $w_{1}, w_{2}, T_{1}, T_{2}, R_{1}, R_{2}$, and they satisfy the following fundamental relations:

$$
\left\{\begin{array}{l}
w_{i} T_{i}=T_{i}^{-1} w_{i} \\
w_{i} R_{i}=R_{i}^{-1} w_{i} \\
w_{i} T_{j}=T_{i} T_{j} w_{i} \quad(i \neq j) \\
w_{i} R_{j}=R_{i} R_{j} w_{i} \quad(i \neq j) .
\end{array}\right.
$$

(ii) $W=\left\{R_{1}^{n} R_{2}^{m} T_{1}^{k} T_{2}^{l} w, \quad(n, m, k, l \in \mathbb{Z}) \mid w=\mathrm{id}, w_{1}, w_{2}, w_{1} w_{2}, w_{2} w_{1}, w_{1} w_{2} w_{1}\right\}$.

Proof: Let Φ be the elliptic root system of type $A_{2}^{(1,1)}$, then one has the expression [5]

$$
\Phi=\left\{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)+n b+m a \mid 1 \leq i<j \leq 3, n, m \in \mathbb{Z}\right\}
$$

with an inner product \langle,$\rangle , which is a symmetric bilinear form given by$

$$
\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle=\delta_{i j}, \quad\left\langle\epsilon_{i}, a\right\rangle=\left\langle\epsilon_{i}, b\right\rangle=\langle a, b\rangle=\langle a, a\rangle=\langle b, b\rangle=0, \quad(1 \leq i, j \leq 3)
$$

Let $F=\bigoplus_{1 \leq i<j \leq 3} \mathbb{R}\left(\epsilon_{i}-\epsilon_{j}\right) \oplus \mathbb{R} b \oplus \mathbb{R} a$ be a real vector space. Let w_{α} be the reflection corresponding to the root α defined by $w_{\alpha}(x)=x-<x, \alpha^{\vee}>\alpha, \quad \forall x \in F$ with $\alpha^{\vee}=$ $\frac{2 \alpha}{\langle\alpha, \alpha\rangle}$. We set $\alpha_{0}:=\epsilon_{3}-\epsilon_{1}+b, \alpha_{1}:=\epsilon_{1}-\epsilon_{2}, \alpha_{2}:=\epsilon_{2}-\epsilon_{3}$ and $\alpha_{i}^{*}:=\alpha_{i}+a(i=0,1,2)$. Then $w_{i}=w_{\alpha_{i}}, w_{i}^{*}=w_{\alpha_{i}^{*}}$. We see that all reflections act on $\mathbb{R} b \oplus \mathbb{R} a$ as identity, and

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ w _ { 1 } (\epsilon _ { 1 }) = \epsilon _ { 2 } } \\
{ w _ { 1 } (\epsilon _ { 2 }) = \epsilon _ { 1 } } \\
{ w _ { 1 } (\epsilon _ { 3 }) = \epsilon _ { 3 } }
\end{array} \quad \left\{\begin{array}{l}
w_{2}\left(\epsilon_{1}\right)=\epsilon_{1} \\
w_{2}\left(\epsilon_{2}\right)=\epsilon_{3} \\
w_{2}\left(\epsilon_{3}\right)=\epsilon_{2}
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ w _ { 1 } ^ { * } (\epsilon _ { 1 }) = \epsilon _ { 2 } - a } \\
{ w _ { 1 } ^ { * } (\epsilon _ { 2 }) = \epsilon _ { 1 } + a } \\
{ w _ { 1 } ^ { * } (\epsilon _ { 3 }) = \epsilon _ { 3 } }
\end{array} \quad \left\{\begin{array} { l }
{ w _ { 0 } (\epsilon _ { 1 }) = \epsilon _ { 3 } + b } \\
{ w _ { 0 } (\epsilon _ { 2 }) = \epsilon _ { 2 }) = \epsilon _ { 1 } } \\
{ w _ { 0 } (\epsilon _ { 3 }) = \epsilon _ { 1 } - b } \\
{ w _ { 2 } ^ { * } (\epsilon _ { 2 }) = \epsilon _ { 3 } - a } \\
{ w _ { 2 } ^ { * } (\epsilon _ { 3 }) = \epsilon _ { 2 } + a }
\end{array} \left\{\begin{array}{l}
w_{0}^{*}\left(\epsilon_{1}\right)=\epsilon_{3}+a \\
w_{0}^{*}\left(\epsilon_{2}\right)=\epsilon_{2} \\
w_{0}^{*}\left(\epsilon_{3}\right)=\epsilon_{1}-a
\end{array}\right.\right.\right.
\end{aligned}
$$

From these, we have the following:

$$
\left\{\begin{array} { l }
{ T _ { 1 } (\epsilon _ { 1 }) = \epsilon _ { 1 } - b } \\
{ T _ { 1 } (\epsilon _ { 2 }) = \epsilon _ { 2 } + b } \\
{ T _ { 1 } (\epsilon _ { 3 }) = \epsilon _ { 3 } }
\end{array} \left\{\begin{array} { l }
{ T _ { 2 } (\epsilon _ { 1 }) = \epsilon _ { 1 } } \\
{ T _ { 2 } (\epsilon _ { 2 }) = \epsilon _ { 2 } - b } \\
{ T _ { 2 } (\epsilon _ { 3 }) = \epsilon _ { 3 } + b }
\end{array} \left\{\begin{array} { l }
{ R _ { 1 } (\epsilon _ { 1 }) = \epsilon _ { 1 } - a } \\
{ R _ { 1 } (\epsilon _ { 2 }) = \epsilon _ { 2 } + a } \\
{ R _ { 1 } (\epsilon _ { 3 }) = \epsilon _ { 3 } }
\end{array} \left\{\begin{array}{l}
R_{2}\left(\epsilon_{1}\right)=\epsilon_{1} \\
R_{2}\left(\epsilon_{2}\right)=\epsilon_{2}-a \\
R_{2}\left(\epsilon_{3}\right)=\epsilon_{3}+a
\end{array}\right.\right.\right.\right.
$$

From these actions, we have

$$
w_{0}=T_{1} T_{2} w_{1} w_{2} w_{1}, \quad w_{0}^{*}=R_{1} R_{2} T_{1} T_{2} w_{1} w_{2} w_{1}, \quad w_{1}^{*}=w_{1} R_{1}, \quad w_{2}^{*}=w_{2} R_{2}
$$

and from this, (i) is easily checked. (ii) follows from (i).

We first consider minimal expressions of the elements $T_{1}^{n} T_{2}^{m}$ generated by $T_{1}=$ $w_{0} w_{2} w_{0} w_{1}$, and $T_{2}=w_{0} w_{1} w_{0} w_{2}$, then by noting the following minimal expressions;

$$
T_{1} T_{2}=w_{0} w_{1} w_{2} w_{1}, \quad T_{1} T_{2}^{-1}=\left(w_{2} w_{0} w_{1}\right)^{2}, \quad T_{1} T_{2}^{2}=\left(w_{0} w_{1} w_{2}\right)^{2}
$$

we have $T_{1}^{n} T_{2}^{n+i}=(0121)^{n}(0102)^{i}=(012)^{2}(0121)^{n-1}(0102)^{i-1}$, and from this we obtain

$$
T_{1}^{n} T_{2}^{n+i}(n \geq 1, i \geq 1)= \begin{cases}T_{1}^{n} T_{2}^{n+i}=(012)^{2 i}(0121)^{n-i} & (1 \leq i<n, n \geq 2) \\ T_{1}^{n} T_{2}^{2 n+i}=(0102)^{i}(012)^{2 n} & (i \geq 0, n \geq 1)\end{cases}
$$

where for brevity, we use $0,1,2,0^{*}, 1^{*}, 2^{*}$ for $w_{0}, w_{1}, w_{2}, w_{0}^{*}, w_{1}^{*}, w_{2}^{*}$, respectively. Further by considering minimal expressions of $T_{1}^{n} T_{2}^{m} w\left(w=w_{1}, w_{2}, w_{1} w_{2}, w_{2} w_{1}, w_{1} w_{2} w_{1}\right)$, we classify $T_{1}^{n} T_{2}^{m}(n, m \in \mathbb{Z})$ as follows.

$$
T_{1}^{n} T_{2}^{m}(n, m \in \mathbb{Z})=\left\{\begin{array}{l}
T_{1}^{n} T_{2}^{n+i}=(012)^{2 i}(0121)^{n-i} \quad(1 \leq i<n, n \geq 2) \quad(1 \leftrightarrow 2) \tag{3.1.1}\\
T_{1}^{-n} T_{2}^{-n-i}=(210)^{2 i}(1210)^{n-i} \quad(1 \leq i \leq n, n \geq 1) \quad(1 \leftrightarrow 2) \\
T_{1}^{n} T_{2}^{2 n+i}=(0102)^{i}(012)^{2 n} \quad(i \geq 0, n \geq 1) \quad(1 \leftrightarrow 2) \\
T_{1}^{-n} T_{2}^{-2 n-i}=(210)^{2 n}(2010)^{i} \quad(i \geq 1, n \geq 0) \quad(1 \leftrightarrow 2) \\
T_{1}^{-n-i} T_{2}^{n}=(1020)^{i}(102)^{2 n} \quad(i \geq 0, n \geq 1) \quad(1 \leftrightarrow 2) \\
T_{1}^{n+i} T_{2}^{-n}=(201)^{2 n}(0201)^{i} \quad(i \geq 1, n \geq 0) \quad(1 \leftrightarrow 2) \\
T_{1}^{n} T_{2}^{n}=(0121)^{n} \quad(n \geq 1) \\
T_{1}^{-n} T_{2}^{-n}=(1210)^{n} \quad(n \geq 0),
\end{array}\right.
$$

where ($1 \leftrightarrow 2$) means that we consider the element obtained by exchanging T_{1} and T_{2}.
Similarly to the case of type $A_{1}^{(1,1)}$, we use the following.
Lemma 3.2 Let w be a minimal expression by w_{0}, w_{1} and w_{2}. Then even if we attach $*$ to any letters of w, the length of that does not decrease.

In each case we multiply $R_{1}^{k} R_{2}^{l}$ from the left, and examine their minimal length. For $1 \leq i<n, T_{1}^{n} T_{2}^{n+i}=(012)^{2 i}(0121)^{n-i}$, by noting the expressions:

$$
\left\{\begin{array} { l }
{ 0 ^ { * } 1 2 0 1 2 = (R _ { 1 } R _ { 2 }) 0 1 2 0 1 2 } \\
{ 0 1 ^ { * } 2 0 1 2 = R _ { 2 } 0 1 2 0 1 2 } \\
{ 0 1 2 ^ { * } 0 1 2 = (R _ { 1 } R _ { 2 }) 0 1 2 0 1 2 } \\
{ 0 1 2 0 ^ { * } 1 2 = R _ { 2 } 0 1 2 0 1 2 } \\
{ 0 1 2 0 1 ^ { * } 2 = (R _ { 1 } R _ { 2 }) 0 1 2 0 1 2 } \\
{ 0 1 2 0 1 2 ^ { * } = R _ { 2 } 0 1 2 0 1 2 }
\end{array} \left\{\begin{array}{l}
0^{*} 121=\left(R_{1} R_{2}\right) 0121 \\
01^{*} 21=R_{2} 0121 \\
012^{*} 1=\left(R_{1} R_{2}\right) 0121 \\
0121^{*}=R_{1} 0121
\end{array}\right.\right.
$$

we consider how many R_{1}, R_{2} and $R_{1} R_{2}$ can be contained in $(012)^{2 i}(0121)^{n-i}$ by attaching $*$ to arbitrary letters. From the above, (012$)^{2}$ can contain $3 \times R_{1} R_{2}$ and $3 \times R_{2}$, and 0121
can contain $2 \times R_{1} R_{2}, 1 \times R_{1}, 1 \times R_{2}$, so by the relation, $(012)^{2} R_{j}=R_{j}(012)^{2}(j=1,2)$, we see that $(012)^{2 i}(0121)^{n-i}$ can contain $(n-i) \times R_{1},(n+2 i) \times R_{2}$ and $(2 n+i) \times R_{1} R_{2}$.

Lemma 3.3 For $1 \leq i<n$

$$
\begin{aligned}
R_{1}^{k} & R_{2}^{l}\left(R_{1} R_{2}\right)^{m} T_{1}^{n} T_{2}^{n+i} \\
= & R_{1}^{k} R_{2}^{l}\left(R_{1} R_{2}\right)^{m}(012)^{2 i}(0121)^{n-i} \\
= & \left(w_{10} w_{11} w_{12}\right) \cdots\left(w_{2 i, 0} w_{2 i, 1} w_{2 i, 2}\right)\left(w_{10}^{\prime} w_{11}^{\prime} w_{12}^{\prime} w_{11}^{\prime \prime}\right) \\
& \cdots\left(w_{n-i, 0}^{\prime} w_{n-i, 1}^{\prime} w_{n-i, 2}^{\prime} w_{n-i, 1}^{\prime \prime}\right)
\end{aligned}
$$

where $w_{i j}$, and $w_{i j}^{\prime}=w_{j}, w_{j}^{*}(j=0,1,2)$ and $w_{i 1}^{\prime \prime}=w_{1}, w_{1}^{*}$, for any $0 \leq k \leq n-i, 0 \leq$ $l \leq n+2 i, 0 \leq m \leq 2 n+i$.

We count the number

$$
\begin{aligned}
& \sharp\left\{R_{1}^{k} R_{2}^{l} T_{1}^{n} T_{2}^{n+i},(1 \leq i<n, n \geq 2, k, l \in \mathbb{Z}) \mid l\left(R_{1}^{k} R_{2}^{l} T_{1}^{n} T_{2}^{n+i}\right)\right. \\
& \left.\quad=l\left(T_{1}^{n} T_{2}^{n+i}\right)=4 n+2 i\right\} .
\end{aligned}
$$

For the purpose we use the following figure:

then the number is equal to the number of the vertices of the lattices, where $n-i+1, n+2 i+1$, and $2 n+i+1$ are the number of vertices on each edge.

Then we use the following.

Lemma 3.4

In the left figure, the number of the vertices of the lattices is $a b+b c+c a+a+b+c+1$.
(For example, the case of $a=1, b=2, c=3$)

$$
\sharp\{\text { all vertices }\}=1 \cdot 2+2 \cdot 3+3 \cdot 1+1+2+3+1=18
$$

By multiplying $R_{1}^{ \pm 1}, R_{2}^{ \pm 1}$, and $\left(R_{1} R_{2}\right)^{ \pm 1},\left(R_{1}=w_{1} w_{1}^{*}, R_{2}=w_{2} w_{2}^{*}, R_{1} R_{2}=w_{0}^{*} w_{0}\right)$, we obtain the elements whose length are $4 n+2 i+2$, and actually we have only to multiply to the boundary in the figure, and iterating this procedure we get the following.

Lemma 3.5

$$
\begin{aligned}
& \sharp\left\{R_{1}^{m} R_{2}^{l} T_{1}^{n} T_{2}^{n+i},(1 \leq i<n, n \geq 2, m, l \in \mathbb{Z}) \mid l\left(R_{1}^{m} R_{2}^{l} T_{1}^{n} T_{2}^{n+i}\right)\right. \\
& \quad=4 n+2 i+2 k,(k \geq 1)\}=8 n+4 i+6 k .
\end{aligned}
$$

Proof:

Next we consider the elements $T_{1}^{n} T_{2}^{n+i} w$, for $w=w_{1}, w_{2}, w_{1} w_{2}, w_{2} w_{1}$, and $w_{1} w_{2} w_{1}$, then we have the following:

$$
\left\{\begin{array}{l}
T_{1}^{n} T_{2}^{n+i}=(012)^{2 i}(0121)^{n-i} \\
T_{1}^{n} T_{2}^{n+i} 1=(012)^{2 i}(0121)^{n-i-1} 012 \\
T_{1}^{n} T_{2}^{n+i} 2=(012)^{2 i}(0121)^{n-i-1} 021 \\
T_{1}^{n} T_{2}^{n+i} 12=(012)^{2 i}(0121)^{n-i-1} 01 \\
T_{1}^{n} T_{2}^{n+i} 21=(012)^{2 i}(0121)^{n-i-1} 02 \\
T_{1}^{n} T_{2}^{n+i} 121=(012)^{2 i}(0121)^{n-i-1} 0
\end{array}\right.
$$

In the similar method to the case of $T_{1}^{n} T_{2}^{n+i}$, in this case and for other cases we count how many $R_{1}^{ \pm 1}, R_{2}^{ \pm 1}$ and $\left(R_{1} R_{2}\right)^{ \pm 1}$ can be contained in a minimal expression. By the figure of the number of $R_{1}^{ \pm 1}, R_{2}^{ \pm 1}$ and $\left(R_{1} R_{2}\right)^{ \pm 1}$, we count the number of a minimal expression of the elements of the Weyl group and that of increasing length by 2 , which is equal to \sharp (the boundary of the figure of the previous element) +6 . In the sequal, we examine the number of the vertices on each edge of the figure in a minimal expression, first we have

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 2 ^ { * } 1 0 2 1 0 = R _ { 2 } ^ { - 1 } 2 1 0 2 1 0 } \\
{ 2 1 ^ { * } 0 2 1 0 = (R _ { 1 } R _ { 2 }) ^ { - 1 } 2 1 0 2 1 0 } \\
{ 2 1 0 ^ { * } 2 1 0 = R _ { 2 } ^ { - 1 } 2 1 0 2 1 0 } \\
{ 2 1 0 2 ^ { * } 1 0 = (R _ { 1 } R _ { 2 }) ^ { - 1 } 2 1 0 2 1 0 } \\
{ 2 1 0 2 1 ^ { * } 0 = R _ { 2 } ^ { - 1 } 2 1 0 2 1 0 } \\
{ 2 1 0 2 1 0 ^ { * } = (R _ { 1 } R _ { 2 }) ^ { - 1 } 2 1 0 2 1 0 }
\end{array} \quad \left\{\begin{array}{l}
1^{*} 210=R_{1}^{-1} 1210 \\
12^{*} 10=\left(R_{1} R_{2}\right)^{-1} 1210 \\
121^{*} 0=R_{2}^{-1} 1210 \\
1210^{*}=\left(R_{1} R_{2}\right)^{-1} 1210
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ 0 ^ { * } 1 0 2 = (R _ { 1 } R _ { 2 }) 0 1 0 2 } \\
{ 0 1 ^ { * } 0 2 = R _ { 2 } 0 1 0 2 } \\
{ 0 1 0 ^ { * } 2 = R _ { 1 } ^ { - 1 } 0 1 0 2 } \\
{ 0 1 0 2 ^ { * } = R _ { 2 } 0 1 0 2 }
\end{array} \quad \left\{\begin{array}{l}
2^{*} 010=R_{2}^{-1} 2010 \\
20^{*} 10=R_{1} 2010 \\
201^{*} 0=R_{2}^{-1} 2010 \\
2010^{*}=\left(R_{1} R_{2}\right)^{-1} 2010
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ 1 ^ { * } 0 2 0 = R _ { 1 } ^ { - 1 } 1 0 2 0 } \\
{ 1 0 ^ { * } 2 0 = R _ { 2 } 1 0 2 0 } \\
{ 1 0 2 ^ { * } 0 = R _ { 1 } ^ { - 1 } 1 0 2 0 } \\
{ 1 0 2 0 ^ { * } = (R _ { 1 } R _ { 2 }) ^ { - 1 } 1 0 2 0 }
\end{array} \left\{\begin{array}{l}
102102=R_{1} 102102 \\
10^{*} 2102=R_{2} 102102 \\
102^{*} 102=R_{1}^{-1} 102102 \\
1021^{*} 02=R_{2} 102102 \\
10210^{*} 2=R_{1}^{-1} 102102 \\
102102^{*}=R_{2} 102102
\end{array}\right.\right.
\end{aligned}
$$

From these and (3.1.1), we obtain the following eight tables.

$(\mathbf{I}) \mathbf{T}_{\mathbf{1}}^{\mathbf{n}} \mathbf{T}_{\mathbf{2}}^{\mathbf{n}+\mathbf{i}}=(\mathbf{0 1 2})^{\mathbf{2 i}}(\mathbf{0 1 2 1})^{\mathbf{n}-\mathbf{i}}$	$(\mathbf{1} \leq \mathbf{i}<\mathbf{n}, \mathbf{n} \geq \mathbf{2})$		
$(012)^{2 i}(0121)^{n-i} w$	$\sharp R_{1}^{ \pm 1}$	$\sharp R_{2}^{ \pm 1}$	$\sharp\left(R_{1} R_{2}\right)^{ \pm 1}$
$(012)^{2 i}(0121)^{n-i}$	$n-i$	$n+2 i$	$2 n+i$
$(012)^{2 i}(0121)^{n-i-1} 012$	$n-i-1$	$n+2 i$	$2 n+i$
$(012)^{2 i}(0121)^{n-i-1} 021$	$n-i$	$n+2 i-1$	$2 n+i$
$(012)^{2 i}(0121)^{n-i-1} 01$	$n-i-1$	$n+2 i$	$2 n+i-1$
$(012)^{2 i}(0121)^{n-i-1} 02$	$n-i$	$n+2 i-1$	$2 n+i-1$
$(012)^{2 i}(0121)^{n-i-1} 0$	$n-i-1$	$n+2 i-1$	$2 n+i-1$

$(210)^{2 i}(1210)^{n-i}$	$n-i$	$n+2 i$	$2 n+i$
$(210)^{2 i}(1210)^{n-i} 1$	$n-i+1$	$n+2 i$	$2 n+i$
$(210)^{2 i}(1210)^{n-i} 2$	$n-i$	$n+2 i+1$	$2 n+i$
$(210)^{2 i}(1210)^{n-i} 12$	$n-i+1$	$n+2 i$	$2 n+i+1$
$(210)^{2 i}(1210)^{n-i} 21$	$n-i$	$n+2 i+1$	$2 n+i+1$
$(210)^{2 i}(1210)^{n-i} 121$	$n-i+1$	$n+2 i+1$	$2 n+i+1$
(III) $\mathbf{T}_{1}^{\mathrm{n}} \mathbf{T}_{2}^{2 \mathrm{n}+\mathrm{i}}=(\mathbf{0 1 0 2})^{\mathbf{i}}(\mathbf{0 1 2})^{\mathbf{2 n}}(\mathbf{i} \geq \mathbf{0}, \mathbf{n} \geq \mathbf{1})$			
$(0102)^{i}(012)^{2 n}$	i	$3 n+2 i$	$3 n+i$
$(0102)^{i}(012)^{2 n} 1$	$i+1$	$3 n+2 i$	$3 n+i$
$(0102)^{i}(012)^{2 n-2} 01201$	i	$3 n+2 i-1$	$3 n+i$
$(0102)^{i}(012)^{2 n-2} 012021$	$i+1$	$3 n+2 i$	$3 n+i-1$
$(0102)^{i}(012)^{2 n-2} 0120$	i	$3 n+2 i-1$	$3 n+i-1$
$(0102)^{i}(012)^{2 n-2} 01202$	$i+1$	$3 n+2 i-1$	$3 n+i-1$

$(\mathbf{I V}) \quad \mathbf{T}_{\mathbf{1}}^{-\mathbf{n}} \mathbf{T}_{\mathbf{2}}^{-\mathbf{2 n - i}}=(\mathbf{2 1 0})^{\mathbf{2 n}}(\mathbf{2 0 1 0})^{\mathbf{i}}(\mathbf{i} \geq \mathbf{1}, \mathbf{n} \geq \mathbf{0})$			
$(210)^{2 n}(2010)^{i}$	i	$3 n+2 i$	$3 n+i$
$(210)^{2 n}(2010)^{i-1} 210$	$i-1$	$3 n+2 i$	$3 n+i$
$(210)^{2 n}(2010)^{i} 2$	i	$3 n+2 i+1$	$3 n+i$
$(210)^{2 n}(2010)^{i-1} 2102$	$i-1$	$3 n+2 i$	$3 n+i+1$
$(210)^{2 n}(2010)^{i} 21$	i	$3 n+2 i+1$	$3 n+i+1$
$(210)^{2 n}(2010)^{i-1} 21021$	$i-1$	$3 n+2 i+1$	$3 n+i+1$

$(\mathbf{V}) \mathbf{T}_{\mathbf{1}}^{-\mathbf{n}-\mathbf{i}} \mathbf{T}_{\mathbf{2}}^{\mathbf{n}}=(\mathbf{1 0 2 0})^{\mathbf{i}}(\mathbf{1 0 2})^{\mathbf{2 n}}(\mathbf{i} \geq \mathbf{0}, \mathbf{n} \geq \mathbf{1})$			
$(1020)^{i}(102)^{2 n}$	$3 n+2 i$	$3 n+i$	i
$(1020)^{i}(102)^{2 n} 1$	$3 n+2 i+1$	$3 n+i$	i
$(1020)^{i}(102)^{2 n-2} 10210$	$3 n+2 i$	$3 n+i-1$	i
$(1020)^{i}(102)^{2 n} 12$	$3 n+2 i+1$	$3 n+i$	$i+1$
$(1020)^{i}(102)^{2 n-2} 102101$	$3 n+2 i$	$3 n+i-1$	$i+1$
$(1020)^{i}(102)^{2 n-2} 1021012$	$3 n+2 i+1$	$3 n+i-1$	$i+1$

(VI) $\quad \mathbf{T}_{1}^{\mathrm{n}+\mathrm{i}} \mathbf{T}_{2}^{-\mathbf{n}}=(\mathbf{2 0 1})^{\mathbf{2 n}}(\mathbf{0 2 0 1})^{\mathbf{i}}(\mathbf{i} \geq \mathbf{1}, \mathbf{n} \geq \mathbf{0})$

$(201)^{2 n}(0201)^{i}$	$3 n+2 i$	$3 n+i$	i
$(201)^{2 n}(0201)^{i-1} 202$	$3 n+2 i-1$	$3 n+i$	i
$(201)^{2 n}(0201)^{i} 2$	$3 n+2 i$	$3 n+i+1$	i
$(201)^{2 n}(0201)^{i-1} 20$	$3 n+2 i-1$	$3 n+i$	$i-1$
$(201)^{2 n}(0201)^{i-1} 2012$	$3 n+2 i$	$3 n+i+1$	$i-1$
$(201)^{2 n}(0201)^{i-1} 201$	$3 n+2 i-1$	$3 n+i+1$	$i-1$

$(\mathbf{V I I})$	$\mathbf{T}_{\mathbf{1}}^{\mathbf{n}} \mathbf{T}_{\mathbf{2}}=(\mathbf{0 1 2 1})^{\mathbf{n}}(\mathbf{n} \geq \mathbf{1})$		
$(0121)^{n}$	n	n	$2 n$
$(0121)^{n-1} 012$	$n-1$	n	$2 n$
$(0121)^{n-1} 021$	n	$n-1$	$2 n$
$(0121)^{n-1} 01$	$n-1$	n	$2 n-1$
$(0121)^{n-1} 02$	n	$n-1$	$2 n-1$
$(0121)^{n-1} 0$	$n-1$	$n-1$	$2 n-1$
$(\mathbf{V I I I})$	$\mathbf{T}_{\mathbf{1}}^{-\mathbf{n}} \mathbf{T}_{\mathbf{2}}^{-\mathbf{n}}=(\mathbf{1 2 1 0})^{\mathbf{n}}(\mathbf{n} \geq \mathbf{0})$		
$(1210)^{n}$	n	n	$2 n$
$(1210)^{n} 1$	$n+1$	n	$2 n$
$(1210)^{n} 2$	n	$n+1$	$2 n$
$(1210)^{n} 12$	$n+1$	n	$2 n+1$
$(1210)^{n} 21$	n	$n+1$	$2 n+1$
$(1210)^{n} 121$	$n+1$	$n+1$	$2 n+1$

We explain how to read the above tables, by using (I). In the element $(012)^{2 i}(0121)^{n-i} w$, w runs the elements $\{i d, 012,021,01,02,0\}$. The row of $\sharp R_{1}^{ \pm 1}$ denotes the number of $R_{1}^{ \pm 1}$, for example, in the case $(012)^{2 i}(0121)^{n-i}, \sharp R_{1}=n-i$. Therefore the third line in (I) means that in the type $(012)^{i}(0121)^{n-i}$, the number of the elements such that $l(w)=3 \times 2 i+4 \times(n-i)=4 n+2 i$, is equal to $\sharp\{$ all vertices in the figure of $\left.\sharp R_{1}=n-i, \sharp R_{2}=n+2 i, \sharp\left(R_{1} R_{2}\right)=2 n+i\right\}$. From all tables, we find the following.

Lemma 3.6

(i) By the suitable rearrangements of rows and columns, all tables are rewritten as

$\sharp R_{1}^{ \pm 1}, \sharp R_{2}^{ \pm 1}, \sharp\left(R_{1} R_{2}\right)^{ \pm 1}$		
a	b	c
a	$b+1$	c
a	$b+1$	$c+1$
$a+1$	b	c
$a+1$	b	$c+1$
$a+1$	$b+1$	$c+1$

	a		b
c			
I	$n-i-1$	$n+2 i-1$	$2 n+i-1$
II	$n-i$	$n+2 i$	$2 n+i$
III	$3 n+i-1$	i	$3 n+2 i-1$
IV	$3 n+i$	$i-1$	$3 n+2 i$
V	i	$3 n+i-1$	$3 n+2 i$
VI	$i-1$	$3 n+i$	$3 n+2 i-1$
VII	$n-1$	$n-1$	$2 n-1$
VIII	n	n	$2 n$

(ii) In all eight tables, we see that the minimal length $l(w)$ of each element w is equal to the sum of $\sharp R_{1}^{ \pm 1}, \sharp R_{2}^{ \pm 1}$, and $\sharp\left(R_{1} R_{2}\right)^{ \pm 1}$, that is, $l(w)=\sharp R_{1}^{ \pm 1}+\sharp R_{2}^{ \pm 1}+\sharp\left(R_{1} R_{2}\right)^{ \pm 1}$.

From this lemma, we obtain the main result.

Theorem 3.7 The Poincaré series of the Weyl group of type $A_{2}^{(1,1)}$ is given by

$$
\begin{aligned}
\sum_{w \in W} t^{l(w)}= & \frac{1+4 t+17 t^{2}+19 t^{3}+17 t^{4}+4 t^{5}+t^{6}}{(1-t)^{4}(1+t)^{2}} \\
& =\frac{\left(1+t+t^{2}\right)\left(1+3 t+13 t^{2}+3 t^{3}+t^{4}\right)}{(1-t)^{4}(1+t)^{2}}
\end{aligned}
$$

Proof: We set $w(a, b, c):=(a b+b c+c a+a+b+c+1) t^{a+b+c}+\sum_{k=1}^{\infty}\{2(a+b+$ $c)+6 k\} t^{a+b+c+2 k}$, and $W(a, b, c):=w(a, b, c)+w(a, b+1, c)+w(a, b+1, c+1)+$ $w(a+1, b, c)+w(a+1, b, c+1)+w(a+1, b+1, c+1)$. Then the Poincaré series is calculated as follows:

$$
\begin{aligned}
\sum_{w \in W} t^{l(w)}= & 2\left\{\sum_{n=2}^{\infty} \sum_{i=1}^{n-1} W(n-i-1, n+2 i-1,2 n+i-1)\right. \\
& +\sum_{n=1}^{\infty} \sum_{i=1}^{n} W(n-i, n+2 i, 2 n+i) \\
& +\sum_{n=1}^{\infty} \sum_{i=0}^{\infty} W(3 n+i-1, i, 3 n+2 i-1) \\
& +\sum_{n=0}^{\infty} \sum_{i=1}^{\infty} W(3 n+i, i-1,3 n+2 i) \\
& +\sum_{n=1}^{\infty} \sum_{i=0}^{\infty} W(i, 3 n+i-1,3 n+2 i) \\
& \left.+\sum_{n=0}^{\infty} \sum_{i=1}^{\infty} W(i-1,3 n+i, 3 n+2 i-1)\right\} \\
& +\sum_{n=1}^{\infty} W(n-1, n-1,2 n-1)+\sum_{n=0}^{\infty} W(n, n, 2 n) .
\end{aligned}
$$

By using Mathematica, we obtain the desired result.

References

1. N. Bourbaki Groupes et algebrès de Lie, Ch. 4-6, Hermann, Paris, 1968; Mason, Paris, 1981.
2. J.E. Humphreys, "Reflection groups and Coxeter groups," Cambridge Studies in Advanced Math. Cambridge University Press, 1990, vol. 29.
3. N. Iwahori and H. Matsumoto, "On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups," Publ. Math. I.H.E.S. 25 (1965), 5-48.
4. I.G. Macdonald, "The Poincaré series of a Coxeter group," Math. Ann. 199 (1972), 161-174.
5. K. Saito, "Extended affine root systems I," Publ. RIMS, Kyoto Univ. 21 (1985), 75-179.
6. K. Saito, "Extended affine root systems II," Publ. RIMS, Kyoto Univ. 26 (1990), 15-78.
7. K. Saito and T. Takebayashi, "Extended affine root systems III," Publ. RIMS, Kyoto Univ. 33 (1997), 301-329.
8. L. Solomon, "The orders of the finite Chevalley groups," Journal of Algebra 3 (1966), 376-393.
9. T. Takebayashi "Relations of the Weyl groups of extended affine root systems $A_{l}^{(1,1)}, B_{l}^{(1,1)}, C_{l}^{(1,1)}, D_{l}^{(1,1)}$," Proc. Japan Acad. 71(6) (1995), A123-124.
10. M. Wakimoto, "Poincaré series of the Weyl group of elliptic Lie algebras $A_{1}^{(1,1)}$ and $A_{1}^{(1,1) *, " ~ q-a l g / 9705025 . ~}$
