Poincaré Series of the Weyl Groups of the Elliptic Root Systems $A_1^{(1,1)}, A_1^{(1,1)^*}$ and $A_2^{(1,1)}$

TADAYOSHI TAKEBAYASHI

takeba@shimizu.info.waseda.ac.jp

Department of Mathematical Science, School of Science and Engineering, Waseda University, Ohkubo Shinjuku-ku, Tokyo, 169-8555

Received February 8, 2001; Revised September 10, 2002

Abstract. We calculate the Poincaré series of the elliptic Weyl group $W(A_2^{(1,1)})$, which is the Weyl group of the elliptic root system of type $A_2^{(1,1)}$. The generators and relations of $W(A_2^{(1,1)})$ have been already given by K. Saito and the author.

Keywords: Poincaré series, elliptic root system, elliptic Weyl group

1. Introduction

Elliptic Weyl groups are the Weyl groups associated to the elliptic root systems introduced by K. Saito [5, 6], which are defined by a semi-positive definite inner product with 2-dimensional radical. The generators and their relations of elliptic Weyl groups were described from the viewpoint of a generalization of Coxeter groups by K. Saito and the author [7, 9]. The Poincaré series W(t) of a group W with respect to a generator system is defined by

$$W(t) = \sum_{w \in W} t^{l(w)},$$

where t is an indeterminate and l(w) is the length of a minimal expression of an element w in W in terms of the given generator system. If W is one of the finite or affine Weyl groups, it is known that

$$\sum_{w \in W} t^{l(w)} = \begin{cases} \prod_{i=1}^{n} \frac{1 - t^{m_i + 1}}{1 - t} & \text{(W: finite),} \\ \frac{1}{(1 - t)^n} \prod_{i=1}^{n} \frac{1 - t^{m_i + 1}}{1 - t} & \text{(W: affine),} \end{cases}$$

where n is the rank and m_1, \ldots, m_n are the exponents of W [1–4, 8]. The goal of the present article is to calculate the Poincaré series W(t) of the elliptic Weyl groups W of types $A_1^{(1,1)}$, $A_1^{(1,1)^*}$ and $A_2^{(1,1)}$. In the cases of types $A_1^{(1,1)}$ and $A_1^{(1,1)^*}$, although they have

been already given by Wakimoto [10], we give a different proof from those and in the similar way we calculate the case of $A_2^{(1,1)}$. The result for $A_2^{(1,1)}$ is given by Theorem 3.7.

2. Poincaré series of the Weyl groups of types $A_1^{(1,1)}$ and $A_1^{(1,1)*}$

The generators and their relations of the elliptic Weyl group of type $A_1^{(1,1)}$ are given as follows [7, 9]:

Generators: $w_i, w_i^* \ (i = 0, 1)$. Relations: $w_i^2 = w_i^{*2} = 1 \ (i = 0, 1), \ w_0 w_0^* w_1 w_1^* = 1$.

The relation $w_0 w_0^* w_1 w_1^* = 1$ is rewritten as follows:

$$w_0^* w_1 = w_0 w_1^* (\Leftrightarrow w_1^* w_0 = w_1 w_0^*). \tag{2.1.1}$$

(It means that $w_i w_j^* = w_i^* w_j$ $(i \neq j)$.) We set $T := w_1 w_0$, $R := w_1^* w_1 = w_0 w_0^*$, then we easily see the following.

Lemma 2.1 The elements T, R and w_1 generate the Weyl group of type $A_1^{(1,1)}$ and their fundamental relations are given by;

$$TR = RT$$
, $w_1T = T^{-1}w_1$, $w_1R = R^{-1}w_1$, $w_1^2 = 1$.

From this, we have $W = \{R^m T^n w_1, R^m T^n, m, n \in \mathbb{Z}\}$. The elements T and w_1 generate a subgroup isomorphic to the affine Weyl group of type A_1 , and all elements of that are classified to the following:

$$\{(I)\ T^n(n\geq 0),\ (II)\ T^{-n}(n\geq 1),\ (III)\ T^nw_1(n\geq 0),\ (IV)\ T^{-n}w_1(n\geq 1)\}.$$

We multiply the elements $R^m(m \in \mathbb{Z})$ to the above elements from the left, and examine their minimal length in each case by using the following.

Lemma 2.2 Let w be a minimal expression by w_0 and w_1 . Then even if we attach * to any letters of w, the length of w does not decrease.

Proof: This is clear from the fact that a relation in w_i holds if and only if the relation in w_i^* obtained by attaching * also holds.

(I)
$$T^n = (w_1 w_0)^n \quad (n \ge 0)$$

From the expression $Rw_1w_0 = w_1^*w_0$ and (2.1.1), we see that $R^kT^n = R^k(w_1w_0)^n = (w_{11}w_{10})(w_{21}w_{20})\cdots(w_{n1}w_{n0})$, for $0 \le k \le 2n$, where w_{i1} (resp. w_{i0}) is either w_1 or w_1^* (resp. w_0 or w_0^*) for all i, in such a way that * is attached until the k-th letter. Further for $m \ge 1$, $R^{2n+m}T^n = R^m(R^{2n}T^n) = (w_1^*w_1)^m(w_1^*w_0^*)^n$, $R^{-m}T^n = (w_1w_1^*)^m(w_1w_0)^n$, and

each length is 2n + 2m, so we get $\sharp\{R^kT^n, (n \ge 0, k \in \mathbb{Z}) \mid l(R^kT^n) = 2n\} = 2n + 1$, and $\sharp\{R^kT^n, (n \ge 0, k \in \mathbb{Z}) \mid l(R^kT^n) = 2n + 2m\} = 2$.

The case of (II) is similar to (I).

(III)
$$T^n w_1 = (w_1 w_0)^n w_1 \quad (n \ge 0)$$

From $Rw_1 = w_1^*$ and (2.1.1), for $0 \le k \le 2n+1$, we have $R^kT^nw_1 = R^k(w_1w_0)^nw_1 = (w_{11}w_{10})\cdots(w_{n1}w_{n0})w_{n+1,1}$ where $w_{i1} \in \{w_1, w_1^*\}$ and $w_{i0} \in \{w_0, w_0^*\}$, so $\sharp\{R^kT^nw_1, (n \ge 0, k \in \mathbb{Z}) \mid l(R^kT^nw_1) = 2n+1\} = 2n+2$, and $\sharp\{R^kT^nw_1, (n \ge 0, k \in \mathbb{Z}) \mid l(R^kT^nw_1) = 2n+1+2m\} = \sharp\{R^{2n+1+m}T^nw_1, R^{-m}T^nw_1\} = 2$.

(IV)
$$T^{-n}w_1 = (w_0w_1)^{n-1}w_0$$
 $(n > 1)$

From $R^{-1}w_0 = w_0^*$, (2.1.1), and that for $m \ge 1$, $R^{-(2n-1)-m}T^{-n}w_1 = R^{-m}(w_0^*w_1^*)^{n-1}w_0^* = (w_0^*w_0)^m(w_0^*w_1^*)^{n-1}w_0^*$, $R^mT^{-n}w_1 = (w_0w_0^*)^m(w_0w_1)^{n-1}w_0$, we see that $\sharp\{R^kT^{-n}w_1, (n \ge 1, k \in \mathbb{Z}) \mid l(R^kT^{-n}w_1) = 2n-1\} = 2n$, and $\sharp\{R^kT^{-n}w_1, (n \ge 1, k \in \mathbb{Z}) \mid l(R^kT^{-n}w_1) = 2n+2m-1\} = 2$.

In the case of type $A_1^{(1,1)*}$, the generators and their relations are given as follows:

Generators: w_0 , w_1 , w_1^* .

Relations: $w_0^2 = w_1^2 = w_1^{*2} = (w_0 w_1 w_1^*)^2 = 1.$

This Weyl group is obtained from the Weyl group of type $A_1^{(1,1)}$ by removing one generator w_0^* , so we examine the case of type $A_1^{(1,1)*}$ similarly to the case of type $A_1^{(1,1)}$.

(I)
$$T^n = (w_1 w_0)^n \quad (n \ge 0)$$

From $Rw_1 = w_1^*$, we have $R^nT^n = (w_1^*w_0)^n$, and for $m \ge 1$, $R^{n+m}T^n = R^m(w_1^*w_0)^n = (w_1^*w_1)^m(w_1^*w_0)^n$ and $R^{-m}T^n = (w_1w_1^*)^m(w_1w_0)^n$, so we get $\sharp\{R^kT^n, (n \ge 0, k \in \mathbb{Z}) \mid l(R^kT^n) = 2n\} = n+1$, and $\sharp\{R^kT^n, (n \ge 0, k \in \mathbb{Z}) \mid l(R^kT^n) = 2n+2m\} = 2$.

The case of (II) is similar to (I).

(III)
$$T^n w_1 = (w_1 w_0)^n w_1 \quad (n \ge 0)$$

From $Rw_1 = w_1^*$, and $R^{n+1}(w_1w_0)^n w_1 = (w_1^*w_0)^n w_1^*$, we see that $\sharp\{R^kT^nw_1, (n \ge 0, k \in \mathbb{Z}) \mid l(R^kT^nw_1) = 2n+1\} = n+2$, and $\sharp\{R^kT^nw_1, k \in \mathbb{Z} \mid l(R^kT^nw_1) = 2n+1+2m\} = \sharp\{R^{n+1+m}T^nw_1, R^{-m}T^nw_1\} = 2$.

(IV)
$$T^{-n}w_1 = (w_0w_1)^{n-1}w_0$$
 $(n > 1)$

From $R^{-1}(w_0w_1)=w_0w_1^*$ and $R^{-(n-1)}(w_0w_1)^{n-1}w_0=(w_0w_1^*)^{n-1}w_0$, we see that $\sharp\{R^kT^{-n}w_1,\ (n\geq 1,\ k\in\mathbb{Z})\mid l(R^kT^{-n}w_1)=2n-1\}=n$, and $\sharp\{R^kT^{-n}w_1,\ k\in\mathbb{Z}\mid l(R^kT^{-n}w_1)=2n-1+2m\}=\sharp\{R^{-n+1-m}T^{-n}w_1,\ R^mT^{-n}w_1\}=2$.

From	the	above	argument.	we	obtain	the	following.
1 1 0111	1110	accie	ar 5 arriving	***	CCtairi	uic	TOTIO WITING.

$A_1^{(1,1)}$	$l(w) (n \ge 1, m \ge 1)$	#	$A_1^{(1,1)*}$	$l(w) (n \ge 1, m \ge 1)$	#
I	0	1	I	0	1
	2n	2n + 1		2n	n+1
	2m, 2(n+m)	2		2m, 2(n+m)	2
II	2n	2n + 1	II	2n	n+1
	2(n+m)	2		2(n+m)	2
III	2n - 1	2n	III	2n - 1	n+1
	2(n+m)-1	2		2(n+m)-1	2
IV	2n - 1	2n	IV	2n - 1	n
	2(n+m)-1	2		2(n+m)-1	2

Further from this, we obtain the following.

Proposition 2.3 ([10])

(i) The number of the elements of $W(A_1^{(1,1)})$ and $W(A_1^{(1,1)*})$ of length n is given by;

$$\begin{split} W\left(A_1^{(1,1)}\right) \colon & \sharp \{w \in W \mid l(w) = 0\} = 1, \quad \sharp \{w \in W \mid l(w) = n, \ (n \ge 1)\} = 4n, \\ W\left(A_1^{(1,1)*}\right) \colon & \sharp \{w \in W \mid l(w) = 0\} = 1, \quad \sharp \{w \in W \mid l(w) = n, \ (n \ge 1)\} = 3n. \end{split}$$

(ii) The Poincaré series of $W(A_1^{(1,1)})$ and $W(A_1^{(1,1)*})$ are given by;

$$\sum_{w \in W(A_1^{(1,1)})} t^{l(w)} = \frac{(1+t)^2}{(1-t)^2}, \quad \sum_{w \in W(A_1^{(1,1)*})} t^{l(w)} = \frac{1-t^3}{(1-t)^3}.$$

Proof: (i) For an integer $k \ge 2$, the number of pairs (m, n) satisfying $k = m + n (m \ge 1, n \ge 1)$ is equal to k - 1, so in the case of type $A_1^{(1,1)}$, $\sharp \{w \in W \mid l(w) = 2n\} = (2n + 1) \times 2 + 2 + 2 \times (n - 1) \times 2 = 8n$, and $\sharp \{w \in W \mid l(w) = 2n - 1\} = 2n \times 2 + 2 \times (n - 1) \times 2 = 8n - 4$, so we get the result. The case of type $A_1^{(1,1)*}$ is calculated similarly. Then (ii) is easily obtained from (i).

3. Poincaré series of the Weyl group of type $A_2^{(1,1)}$

The elliptic Weyl group W of type $A_2^{(1,1)}$ is presented as follows [7, 9].

Generators:
$$w_i, \ w_i^* \ (i=0,1,2).$$

Relations: $w_i^2 = w_i^{*2} = 1 \ (i=0,1,2),$
for $i \neq j$
 $w_i w_j w_i = w_j w_i w_j, \ w_i^* w_j^* w_i^* = w_j^* w_i^* w_j^*,$
 $w_i^* w_j w_i^* = w_j w_i^* w_j = w_i w_j^* w_i = w_j^* w_i w_j^*,$
and $w_0 w_0^* w_1 w_1^* w_2 w_2^* = 1.$

We set $T_1 := w_0 w_2 w_0 w_1$, $T_2 := w_0 w_1 w_0 w_2$, $R_1 := w_1 w_1^*$, and $R_2 := w_2 w_2^*$, then we have the following.

Lemma 3.1

(i) W is generated by w_1 , w_2 , T_1 , T_2 , R_1 , R_2 , and they satisfy the following fundamental relations:

$$\begin{cases} w_{i}T_{i} = T_{i}^{-1}w_{i} \\ w_{i}R_{i} = R_{i}^{-1}w_{i} \\ w_{i}T_{j} = T_{i}T_{j}w_{i} \quad (i \neq j) \\ w_{i}R_{i} = R_{i}R_{i}w_{i} \quad (i \neq j). \end{cases}$$

(ii)
$$W = \{R_1^n R_2^m T_1^k T_2^l w, (n, m, k, l \in \mathbb{Z}) \mid w = \text{id}, w_1, w_2, w_1 w_2, w_2 w_1, w_1 w_2 w_1\}.$$

Proof: Let Φ be the elliptic root system of type $A_2^{(1,1)}$, then one has the expression [5]

$$\Phi = \{ \pm (\epsilon_i - \epsilon_j) + nb + ma \mid 1 \le i < j \le 3, \ n, m \in \mathbb{Z} \},$$

with an inner product \langle , \rangle , which is a symmetric bilinear form given by

$$\langle \epsilon_i, \epsilon_j \rangle = \delta_{ij}, \quad \langle \epsilon_i, a \rangle = \langle \epsilon_i, b \rangle = \langle a, b \rangle = \langle a, a \rangle = \langle b, b \rangle = 0, \quad (1 \le i, j \le 3).$$

Let $F=\bigoplus_{1\leq i< j\leq 3}\mathbb{R}(\epsilon_i-\epsilon_j)\oplus\mathbb{R}b\oplus\mathbb{R}a$ be a real vector space. Let w_α be the reflection corresponding to the root α defined by $w_\alpha(x)=x-\langle x,\alpha^\vee >\alpha, \quad \forall x\in F$ with $\alpha^\vee=\frac{2\alpha}{\langle \alpha,\alpha\rangle}$. We set $\alpha_0:=\epsilon_3-\epsilon_1+b, \, \alpha_1:=\epsilon_1-\epsilon_2, \, \alpha_2:=\epsilon_2-\epsilon_3$ and $\alpha_i^*:=\alpha_i+a$ (i=0,1,2). Then $w_i=w_{\alpha_i}, \ w_i^*=w_{\alpha_i^*}$. We see that all reflections act on $\mathbb{R}b\oplus\mathbb{R}a$ as identity, and

$$\begin{cases} w_{1}(\epsilon_{1}) = \epsilon_{2} \\ w_{1}(\epsilon_{2}) = \epsilon_{1} \\ w_{1}(\epsilon_{3}) = \epsilon_{3} \end{cases} \begin{cases} w_{2}(\epsilon_{1}) = \epsilon_{1} \\ w_{2}(\epsilon_{2}) = \epsilon_{3} \\ w_{2}(\epsilon_{3}) = \epsilon_{2} \end{cases} \begin{cases} w_{0}(\epsilon_{1}) = \epsilon_{3} + b \\ w_{0}(\epsilon_{2}) = \epsilon_{2} \\ w_{0}(\epsilon_{3}) = \epsilon_{1} - b \end{cases}$$
$$\begin{cases} w_{1}^{*}(\epsilon_{1}) = \epsilon_{2} - a \\ w_{1}^{*}(\epsilon_{2}) = \epsilon_{1} + a \\ w_{1}^{*}(\epsilon_{3}) = \epsilon_{3} \end{cases} \begin{cases} w_{2}^{*}(\epsilon_{1}) = \epsilon_{1} \\ w_{2}^{*}(\epsilon_{2}) = \epsilon_{3} - a \\ w_{2}^{*}(\epsilon_{3}) = \epsilon_{2} + a \end{cases} \begin{cases} w_{0}^{*}(\epsilon_{1}) = \epsilon_{3} + a \\ w_{0}^{*}(\epsilon_{2}) = \epsilon_{2} \\ w_{0}^{*}(\epsilon_{3}) = \epsilon_{1} - a \end{cases}$$

From these, we have the following:

$$\begin{cases} T_1(\epsilon_1) = \epsilon_1 - b \\ T_1(\epsilon_2) = \epsilon_2 + b \\ T_1(\epsilon_3) = \epsilon_3 \end{cases} \begin{cases} T_2(\epsilon_1) = \epsilon_1 \\ T_2(\epsilon_2) = \epsilon_2 - b \\ T_2(\epsilon_3) = \epsilon_3 + b \end{cases} \begin{cases} R_1(\epsilon_1) = \epsilon_1 - a \\ R_1(\epsilon_2) = \epsilon_2 + a \\ R_1(\epsilon_3) = \epsilon_3 \end{cases} \begin{cases} R_2(\epsilon_1) = \epsilon_1 \\ R_2(\epsilon_2) = \epsilon_2 - a \\ R_2(\epsilon_3) = \epsilon_3 + a \end{cases}$$

From these actions, we have

$$w_0 = T_1 T_2 w_1 w_2 w_1, \quad w_0^* = R_1 R_2 T_1 T_2 w_1 w_2 w_1, \quad w_1^* = w_1 R_1, \quad w_2^* = w_2 R_2,$$

and from this, (i) is easily checked. (ii) follows from (i).

We first consider minimal expressions of the elements $T_1^n T_2^m$ generated by $T_1 = w_0 w_2 w_0 w_1$, and $T_2 = w_0 w_1 w_0 w_2$, then by noting the following minimal expressions;

$$T_1T_2 = w_0w_1w_2w_1$$
, $T_1T_2^{-1} = (w_2w_0w_1)^2$, $T_1T_2^2 = (w_0w_1w_2)^2$,

we have $T_1^n T_2^{n+i} = (0121)^n (0102)^i = (012)^2 (0121)^{n-1} (0102)^{i-1}$, and from this we obtain

$$T_1^n T_2^{n+i} (n \ge 1, i \ge 1) = \begin{cases} T_1^n T_2^{n+i} = (012)^{2i} (0121)^{n-i} & (1 \le i < n, n \ge 2) \\ T_1^n T_2^{2n+i} = (0102)^i (012)^{2n} & (i \ge 0, n \ge 1) \end{cases}$$

where for brevity, we use $0, 1, 2, 0^*, 1^*, 2^*$ for $w_0, w_1, w_2, w_0^*, w_1^*, w_2^*$, respectively. Further by considering minimal expressions of $T_1^n T_2^m w(w=w_1, w_2, w_1w_2, w_2w_1, w_1w_2w_1)$, we classify $T_1^n T_2^m (n, m \in \mathbb{Z})$ as follows.

$$T_{1}^{n}T_{2}^{m}(n, m \in \mathbb{Z}) = \begin{cases} T_{1}^{n}T_{2}^{n+i} = (012)^{2i}(0121)^{n-i} & (1 \leq i < n, \ n \geq 2) & (1 \leftrightarrow 2) \\ T_{1}^{-n}T_{2}^{-n-i} = (210)^{2i}(1210)^{n-i} & (1 \leq i \leq n, \ n \geq 1) & (1 \leftrightarrow 2) \\ T_{1}^{n}T_{2}^{2n+i} = (0102)^{i}(012)^{2n} & (i \geq 0, \ n \geq 1) & (1 \leftrightarrow 2) \\ T_{1}^{-n}T_{2}^{-2n-i} = (210)^{2n}(2010)^{i} & (i \geq 1, \ n \geq 0) & (1 \leftrightarrow 2) \\ T_{1}^{-n-i}T_{2}^{n} = (1020)^{i}(102)^{2n} & (i \geq 0, \ n \geq 1) & (1 \leftrightarrow 2) \\ T_{1}^{n+i}T_{2}^{-n} = (201)^{2n}(0201)^{i} & (i \geq 1, \ n \geq 0) & (1 \leftrightarrow 2) \\ T_{1}^{n}T_{2}^{n} = (0121)^{n} & (n \geq 1) \\ T_{1}^{-n}T_{2}^{-n} = (1210)^{n} & (n \geq 0), \end{cases}$$

$$(3.1.1)$$

where $(1 \leftrightarrow 2)$ means that we consider the element obtained by exchanging T_1 and T_2 . Similarly to the case of type $A_1^{(1,1)}$, we use the following.

Lemma 3.2 Let w be a minimal expression by w_0 , w_1 and w_2 . Then even if we attach * to any letters of w, the length of that does not decrease.

In each case we multiply $R_1^k R_2^l$ from the left, and examine their minimal length. For $1 \le i < n$, $T_1^n T_2^{n+i} = (012)^{2i} (0121)^{n-i}$, by noting the expressions:

$$\begin{cases} 0*12012 = (R_1R_2) \ 012012 \\ 01*2012 = R_2 \ 012012 \\ 012*012 = (R_1R_2) \ 012012 \\ 0120*12 = R_2 \ 012012 \\ 01201*2 = (R_1R_2) \ 012012 \\ 01201*2 = (R_1R_2) \ 012012 \\ 012012* = R_2 \ 012012 \end{cases} \begin{cases} 0*121 = (R_1R_2) \ 0121 \\ 01*21 = R_2 \ 0121 \\ 0121* = R_1 \ 0121, \\ 012012* = R_2 \ 012012 \end{cases}$$

we consider how many R_1 , R_2 and R_1R_2 can be contained in $(012)^{2i}(0121)^{n-i}$ by attaching * to arbitrary letters. From the above, $(012)^2$ can contain $3 \times R_1R_2$ and $3 \times R_2$, and 0121

can contain $2 \times R_1 R_2$, $1 \times R_1$, $1 \times R_2$, so by the relation, $(012)^2 R_j = R_j (012)^2$ (j = 1, 2), we see that $(012)^{2i} (0121)^{n-i}$ can contain $(n-i) \times R_1$, $(n+2i) \times R_2$ and $(2n+i) \times R_1 R_2$.

Lemma 3.3 *For* $1 \le i < n$

$$R_1^k R_2^l (R_1 R_2)^m T_1^n T_2^{n+i}$$

$$= R_1^k R_2^l (R_1 R_2)^m (012)^{2i} (0121)^{n-i}$$

$$= (w_{10} w_{11} w_{12}) \cdots (w_{2i,0} w_{2i,1} w_{2i,2}) (w'_{10} w'_{11} w'_{12} w''_{11})$$

$$\cdots (w'_{n-i,0} w'_{n-i,1} w'_{n-i,2} w''_{n-i,1})$$

where w_{ij} , and $w'_{ij} = w_j$, $w^*_j (j = 0, 1, 2)$ and $w''_{i1} = w_1$, w^*_1 , for any $0 \le k \le n - i$, $0 \le l \le n + 2i$, $0 \le m \le 2n + i$.

We count the number

$$\sharp \left\{ R_1^k R_2^l T_1^n T_2^{n+i}, (1 \le i < n, n \ge 2, k, l \in \mathbb{Z}) \mid l \left(R_1^k R_2^l T_1^n T_2^{n+i} \right) \\ = l \left(T_1^n T_2^{n+i} \right) = 4n + 2i \right\}.$$

For the purpose we use the following figure:

then the number is equal to the number of the vertices of the lattices, where n-i+1, n+2i+1, and 2n+i+1 are the number of vertices on each edge.

Then we use the following.

Lemma 3.4

In the left figure, the number of the vertices of the lattices is ab + bc + ca + a + b + c + 1.

(For example, the case of a = 1, b = 2, c = 3)

By multiplying $R_1^{\pm 1}$, $R_2^{\pm 1}$, and $(R_1R_2)^{\pm 1}$, $(R_1 = w_1w_1^*, R_2 = w_2w_2^*, R_1R_2 = w_0^*w_0)$, we obtain the elements whose length are 4n + 2i + 2, and actually we have only to multiply to the boundary in the figure, and iterating this procedure we get the following.

Lemma 3.5

$$\sharp \left\{ R_1^m R_2^l T_1^n T_2^{n+i}, \ (1 \le i < n, \ n \ge 2, \ m, l \in \mathbb{Z}) \, \middle| \, l \left(R_1^m R_2^l T_1^n T_2^{n+i} \right) \right.$$

$$= 4n + 2i + 2k, \ (k \ge 1) \right\} = 8n + 4i + 6k.$$

Proof:

Next we consider the elements $T_1^n T_2^{n+i} w$, for $w = w_1, w_2, w_1 w_2, w_2 w_1$, and $w_1 w_2 w_1$, then we have the following:

$$\begin{cases} T_1^n T_2^{n+i} = (012)^{2i} (0121)^{n-i} \\ T_1^n T_2^{n+i} 1 = (012)^{2i} (0121)^{n-i-1} 012 \\ T_1^n T_2^{n+i} 2 = (012)^{2i} (0121)^{n-i-1} 021 \\ T_1^n T_2^{n+i} 12 = (012)^{2i} (0121)^{n-i-1} 01 \\ T_1^n T_2^{n+i} 21 = (012)^{2i} (0121)^{n-i-1} 02 \\ T_1^n T_2^{n+i} 121 = (012)^{2i} (0121)^{n-i-1} 0. \end{cases}$$

In the similar method to the case of $T_1^n T_2^{n+i}$, in this case and for other cases we count how many $R_1^{\pm 1}$, $R_2^{\pm 1}$ and $(R_1 R_2)^{\pm 1}$ can be contained in a minimal expression. By the figure of the number of $R_1^{\pm 1}$, $R_2^{\pm 1}$ and $(R_1 R_2)^{\pm 1}$, we count the number of a minimal expression of the elements of the Weyl group and that of increasing length by 2, which is equal to \sharp (the boundary of the figure of the previous element) + 6. In the sequal, we examine the number of the vertices on each edge of the figure in a minimal expression, first we have

$$\begin{cases} 2^*10210 = R_2^{-1} \ 210210 \\ 21^*0210 = (R_1R_2)^{-1} \ 210210 \\ 210^*210 = R_2^{-1} \ 210210 \\ 2102^*10 = (R_1R_2)^{-1} \ 210210 \\ 21021^*0 = R_2^{-1} \ 210210 \\ 21021^*0 = R_2^{-1} \ 210210 \\ 210210^* = (R_1R_2)^{-1} \ 210210 \\ \end{cases} \begin{cases} 1^*210 = R_1^{-1} \ 1210 \\ 12^*10 = (R_1R_2)^{-1} \ 1210 \\ 121^*0 = R_2^{-1} \ 1210 \\ 1210^* = (R_1R_2)^{-1} \ 1210 \\ 1210^* = (R_1R_2)^{-1} \ 1210 \\ \end{cases}$$

$$\begin{cases} 0^*102 = (R_1R_2) \ 0102 \\ 01^*02 = R_2 \ 0102 \\ 010^*2 = R_1^{-1} \ 0102 \\ 0102^* = R_2 \ 0102 \end{cases} \begin{cases} 2^*010 = R_2^{-1} \ 2010 \\ 201^*0 = R_1^{-1} \ 2010 \\ 201^*0 = R_1^{-1} \ 2010 \\ 2010^* = (R_1R_2)^{-1} \ 2010 \end{cases}$$

$$\begin{cases} 1^*020 = R_1^{-1} \ 1020 \\ 10^*20 = R_2 \ 1020 \\ 102^*0 = R_1^{-1} \ 102102 \\ 102^*102 = R_2 \ 102102 \\ 1021^*2 = R_2 \ 102102 \\ 10210^*2 = R_2 \ 102102 \\ 10210^* = R_2 \ 102102 \end{cases}$$

From these and (3.1.1), we obtain the following eight tables.

$\overline{(I)} T_1^n T_2^{n+i} = (012)^{2i} (0121)^{n-i} (1 \leq i < n, \ n \geq 2)$						
$(012)^{2i}(0121)^{n-i}w$	$\sharp R_1^{\pm 1}$	$\sharp R_2^{\pm 1}$	$\sharp (R_1R_2)^{\pm 1}$			
$(012)^{2i}(0121)^{n-i}$	n-i	n+2i	2n + i			
$(012)^{2i}(0121)^{n-i-1}012$	n-i-1	n+2i	2n + i			
$(012)^{2i}(0121)^{n-i-1}021$	n-i	n + 2i - 1	2n + i			
$(012)^{2i}(0121)^{n-i-1}01$	n-i-1	n+2i	2n + i - 1			
$(012)^{2i}(0121)^{n-i-1}02$	n-i	n + 2i - 1	2n + i - 1			
$(012)^{2i}(0121)^{n-i-1}0$	n-i-1	n+2i-1	2n + i - 1			

$(II) T_1^{-n} T_2^{-n-i} = (210)$	$0)^{2i}(1210)^{n-i}$ (1	$\leq i \leq n, \ n \geq 1)$	
$(210)^{2i}(1210)^{n-i}$	n-i	n+2i	2n + i
$(210)^{2i}(1210)^{n-i}1$	n - i + 1	n+2i	2n + i
$(210)^{2i}(1210)^{n-i}2$	n-i	n + 2i + 1	2n + i
$(210)^{2i}(1210)^{n-i}12$	n - i + 1	n+2i	2n + i + 1
$(210)^{2i}(1210)^{n-i}21$	n-i	n + 2i + 1	2n + i + 1
$(210)^{2i}(1210)^{n-i}121$	n - i + 1	n + 2i + 1	2n + i + 1
-			

$(III) T_1^n T_2^{2n+i} = (0102)^i ($	$(0.012)^{2n}$ $(i \ge$	$0,\ n\geq 1)$	
$(0102)^i(012)^{2n}$	i	3n + 2i	3n + i
$(0102)^i(012)^{2n}1$	i+1	3n + 2i	3n + i
$(0102)^i(012)^{2n-2}01201$	i	3n + 2i - 1	3n + i
$(0102)^i(012)^{2n-2}012021$	i + 1	3n + 2i	3n + i - 1
$(0102)^i(012)^{2n-2}0120$	i	3n + 2i - 1	3n + i - 1
$(0102)^i(012)^{2n-2}01202$	i + 1	3n + 2i - 1	3n + i - 1

$(IV) T_1^{-n}T_2^{-2n-i} = (210)^{2n}(2010)^i \ (i \geq 1, \ n \geq 0)$							
$(210)^{2n}(2010)^i$	i	3n + 2i	3n + i				
$(210)^{2n}(2010)^{i-1}210$	i-1	3n + 2i	3n + i				
$(210)^{2n}(2010)^i 2$	i	3n + 2i + 1	3n + i				
$(210)^{2n}(2010)^{i-1}2102$	i-1	3n + 2i	3n + i + 1				
$(210)^{2n}(2010)^i21$	i	3n + 2i + 1	3n + i + 1				
$(210)^{2n}(2010)^{i-1}21021$	i-1	3n+2i+1	3n + i + 1				

$(V) T_1^{-n-i}T_2^n = (1020)^i(102)^{2n} \; (i \geq 0, \; n \geq 1)$								
$(1020)^i(102)^{2n}$	3n + 2i	3n + i	i					
$(1020)^i(102)^{2n}1$	3n + 2i + 1	3n+i	i					
$(1020)^i(102)^{2n-2}10210$	3n + 2i	3n + i - 1	i					
$(1020)^i(102)^{2n}12$	3n + 2i + 1	3n+i	i+1					
$(1020)^i(102)^{2n-2}102101$	3n + 2i	3n + i - 1	i+1					
$(1020)^i(102)^{2n-2}1021012$	3n + 2i + 1	3n + i - 1	i+1					

$(VI) T_1^{n+i}T_2^{-n} = (201)^{2n}(0201)^i \; (i \geq 1, \; n \geq 0)$							
$(201)^{2n}(0201)^i$	3n + 2i	3n + i	i				
$(201)^{2n}(0201)^{i-1}202$	3n + 2i - 1	3n+i	i				
$(201)^{2n}(0201)^{i}2$	3n + 2i	3n + i + 1	i				
$(201)^{2n}(0201)^{i-1}20$	3n + 2i - 1	3n+i	i-1				
$(201)^{2n}(0201)^{i-1}2012$	3n + 2i	3n + i + 1	i-1				
$(201)^{2n}(0201)^{i-1}201$	3n + 2i - 1	3n + i + 1	i-1				

$\overline{(VII) T_1^n T_2^n = (0121)^n \ (n \geq 1)}$						
$(0121)^n$	n	n	2n			
$(0121)^{n-1}012$	n-1	n	2n			
$(0121)^{n-1}021$	n	n-1	2n			
$(0121)^{n-1}01$	n-1	n	2n - 1			
$(0121)^{n-1}02$	n	n-1	2n - 1			
$(0121)^{n-1}0$	n-1	n-1	2n - 1			

$\overline{(VIII) T_1^{-n}T_2^{-n} = (1210)^n \ (n \geq 0)}$							
$(1210)^n$	n	n	2n				
$(1210)^n 1$	n+1	n	2n				
$(1210)^n 2$	n	n+1	2n				
$(1210)^n 12$	n+1	n	2n + 1				
$(1210)^n 21$	n	n+1	2n + 1				
$(1210)^n 121$	n+1	n+1	2n + 1				

We explain how to read the above tables, by using (I). In the element $(012)^{2i}(0121)^{n-i}w$, w runs the elements $\{id, 012, 021, 01, 02, 0\}$. The row of $\sharp R_1^{\pm 1}$ denotes the number of $R_1^{\pm 1}$, for example, in the case $(012)^{2i}(0121)^{n-i}$, $\sharp R_1 = n-i$. Therefore the third line in (I) means that in the type $(012)^i(0121)^{n-i}$, the number of the elements such that $l(w) = 3 \times 2i + 4 \times (n-i) = 4n + 2i$, is equal to $\sharp \{$ all vertices in the figure of $\sharp R_1 = n-i$, $\sharp R_2 = n + 2i$, $\sharp (R_1R_2) = 2n+i \}$. From all tables, we find the following.

Lemma 3.6

(i) By the suitable rearrangements of rows and columns, all tables are rewritten as

				а	b	с
$\sharp R_2^{\pm 1}, \sharp (R$	$(1 R_2)^{\pm 1}$		I	n-i-1	n + 2i - 1	2n + i - 1
b	с		II	n-i	n+2i	2n+i
b + 1	c		III	3n + i - 1	i	3n + 2i - 1
b + 1	c+1	and	IV	3n + i	i-1	3n + 2i
b	c		\mathbf{V}	i	3n + i - 1	3n + 2i
b	c+1		VI	i-1	3n + i	3n + 2i - 1
b+1	c + 1		VII	n-1	n-1	2n - 1
			VIII	n	n	2n
	b $b+1$ $b+1$ b	b+1 $cb+1$ $c+1b$ cb $c+1$	b c $b+1$ c $b+1$ $c+1$ and b c b $c+1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

(ii) In all eight tables, we see that the minimal length l(w) of each element w is equal to the sum of $\sharp R_1^{\pm 1}$, $\sharp R_2^{\pm 1}$, and $\sharp (R_1R_2)^{\pm 1}$, that is, $l(w) = \sharp R_1^{\pm 1} + \sharp R_2^{\pm 1} + \sharp (R_1R_2)^{\pm 1}$.

From this lemma, we obtain the main result.

Theorem 3.7 The Poincaré series of the Weyl group of type $A_2^{(1,1)}$ is given by

$$\sum_{w \in W} t^{l(w)} = \frac{1 + 4t + 17t^2 + 19t^3 + 17t^4 + 4t^5 + t^6}{(1 - t)^4 (1 + t)^2}$$
$$= \frac{(1 + t + t^2)(1 + 3t + 13t^2 + 3t^3 + t^4)}{(1 - t)^4 (1 + t)^2}.$$

Proof: We set $w(a,b,c) := (ab+bc+ca+a+b+c+1)t^{a+b+c} + \sum_{k=1}^{\infty} \{2(a+b+c)+6k\}t^{a+b+c+2k}$, and W(a,b,c) := w(a,b,c)+w(a,b+1,c)+w(a,b+1,c+1)+w(a+1,b,c)+w(a+1,b,c+1)+w(a+1,b+1,c+1). Then the Poincaré series is calculated as follows:

$$\begin{split} \sum_{w \in W} t^{l(w)} &= 2 \left\{ \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} W(n-i-1,n+2i-1,2n+i-1) \right. \\ &+ \sum_{n=1}^{\infty} \sum_{i=1}^{n} W(n-i,n+2i,2n+i) \\ &+ \sum_{n=1}^{\infty} \sum_{i=0}^{\infty} W(3n+i-1,i,3n+2i-1) \right. \\ &+ \sum_{n=0}^{\infty} \sum_{i=1}^{\infty} W(3n+i,i-1,3n+2i) \\ &+ \sum_{n=0}^{\infty} \sum_{i=1}^{\infty} W(i,3n+i-1,3n+2i) \\ &+ \sum_{n=0}^{\infty} \sum_{i=1}^{\infty} W(i-1,3n+i,3n+2i-1) \right\} \\ &+ \sum_{n=0}^{\infty} W(n-1,n-1,2n-1) + \sum_{n=0}^{\infty} W(n,n,2n). \end{split}$$

By using Mathematica, we obtain the desired result.

References

- 1. N. Bourbaki *Groupes et algebrès de Lie*, Ch. 4–6, Hermann, Paris, 1968; Mason, Paris, 1981.
- J.E. Humphreys, "Reflection groups and Coxeter groups," Cambridge Studies in Advanced Math. Cambridge University Press, 1990, vol. 29.

- 3. N. Iwahori and H. Matsumoto, "On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups," *Publ. Math. I.H.E.S.* **25** (1965), 5–48.
- 4. I.G. Macdonald, "The Poincaré series of a Coxeter group," Math. Ann. 199 (1972), 161–174.
- 5. K. Saito, "Extended affine root systems I," Publ. RIMS, Kyoto Univ. 21 (1985), 75–179.

- 6. K. Saito, "Extended affine root systems II," *Publ. RIMS, Kyoto Univ.* 26 (1990), 15–78.
 7. K. Saito and T. Takebayashi, "Extended affine root systems III," *Publ. RIMS, Kyoto Univ.* 33 (1997),
- Solt-329.
 L. Solomon, "The orders of the finite Chevalley groups," *Journal of Algebra* 3 (1966), 376–393.
 T. Takebayashi "Relations of the Weyl groups of extended affine root systems A_l^(1,1), B_l^(1,1), C_l^(1,1), D_l^(1,1)," *Proc. Japan Acad.* 71(6) (1995), A123–124.
 M. Wakimoto, "Poincaré series of the Weyl group of elliptic Lie algebras A₁^(1,1) and A₁^{(1,1)*}," q-alg/9705025.