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The Peak Algebra of the Symmetric Group
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Abstract. The peak set of a permutation σ is the set {i : σ (i − 1) < σ (i) > σ (i + 1)}. The group algebra of
the symmetric group Sn admits a subalgebra in which elements are sums of permutations with a common descent
set. In this paper we show the existence of a subalgebra of this descent algebra in which elements are sums of
permutations sharing a common peak set. To prove the existence of this peak algebra we use the theory of enriched
(P, γ )-partitions and the algebra of quasisymmetric peak functions studied by Stembridge (Trans. Amer. Math.
Soc. 349 (1997) 763–788).
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1. Introduction

In 1976 Louis Solomon [12] introduced a collection of algebras associated to finite Coxeter
groups. In the case of the symmetric group the elements of the associated algebra are sums
(in the group algebra of Sn over a field k) of permutations sharing a common descent set. We
refer to this algebra as the descent algebra and denote it by Sol(An−1) (see [3, 8], and [4]).
In addition commutative subalgebras of the descent algebra have been studied in which
permutations are grouped according to the number of descents ([1, 8, 10], and [6]) and
according to the shapes of the permutations [7].

As an analogue to the descent algebra of the symmetric group we look at a subalgebra of
the group algebra of Sn indexed by the position of peaks in the permutations. To prove the
existence of this subalgebra we will utilize a set of maps on labeled posets, introduced by
Stembridge [15], called enriched (P, γ )-partitions which are a variation of Stanley’s notion
of (ordinary) P-partitions [14]. A more in-depth discussion of enriched (P, γ )-partitions
can be found in [13].

We begin with several definitions and notation. We will write permutations of [n] in
the form σ = (σ (1)σ (2) · · · σ (n)), and for σ , γ ∈ Sn the product σγ will indicate first
applying γ and then applying σ . The descent set of a permutation, denoted D(σ ), is the set
{i : σ (i) > σ (i + 1)}. Thus D(σ ) ⊆ [n − 1]. For example the descent set of σ = (31524)
is {1, 3}. Let DT = ∑

σ :D(σ )=T σ . Since there are 2n−1 possible descent sets, the symmetric
group Sn is partitioned into 2n−1 disjoint descent classes. Solomon’s result shows the product
of two descent classes is a linear combination, with non-negative integer coefficients, of
descent classes:

DT · DQ =
∑

K

aKDK aK ∈ Z+.
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A formal power series f of bounded degree in a countable number of indeterminates
x1, x2, . . . with coefficients in a field k is a quasisymmetric function if for any a1, . . . , ak ∈
Z+, the coefficient of xa1

i1
· · · xak

ik
in f is equal to the coefficient of xa1

j1
· · · xak

jk
whenever

i1 < · · · < ik and j1 < · · · < jk . Clearly symmetric functions are quasisymmetric functions.
The series

∑
i< j xi x2

j and
∑

i< j<k x3
i x j x2

k are examples of quasisymmetric functions that
are not symmetric.

Let QSym = ⊕
n≥0 Qn denote the algebra of quasisymmetric functions over a field k.

For α = (α1, . . . , αk) a composition of n (denoted α |= n) and

Mα =
∑

i1<···<ik

xα1
i1

· · · xαk
ik

(1)

the set {Mα : α |= n} forms a basis for Qn . Since there is a bijection between compositions
of n and subsets of [n − 1], we will sometimes write ME for E ⊆ [n − 1] to denote the
basis element Mα where α is the composition of n corresponding to E . We will also use
Gessel’s fundamental basis [9],

FD =
∑
D⊆E

ME .

For f ∈ Qm and g ∈ Qn , the product fg ∈ Qm+n making QSym a graded k-algebra.

2. The peak algebra of the symmetric group

We say that a permutation γ ∈ Sn has a peak at position i if γ (i − 1) < γ (i) > γ (i + 1).
The peak set of γ is the set

	(γ ) := {i : γ (i − 1) < γ (i) > γ (i + 1)}.

For example the permutation γ = (325461) ∈ S6 has peaks at positions 3 and 5 since
γ (2) < γ (3) > γ (4) and γ (4) < γ (5) > γ (6). We note that every subset S of [n − 1] is
the descent set of at least one permutation of [n], and every subset 
 of [n − 1] satisfying
1 /∈ 
 and k ∈ 
 implies (k + 1) /∈ 
 is the peak set of at least one permutation of [n].
For this reason we refer to arbitrary subsets of [n − 1] as descent sets and to subsets 
 of
[n − 1] with 1 /∈ 
 and k ∈ 
 implies (k + 1) /∈ 
 as peak sets. We remark here that it is
possible to allow peaks to occur at position 1 and this forms the basis of future work.

Given a descent set S = {s1, . . . , sk} ⊆ [n − 1] we form the corresponding peak set
	′(S) by removing each si such that si − si−1 = 1, where s0 = 0. For example the descent
set S = {1, 3, 4, 7, 8} gives rise to the peak set 	′(S) = {3, 7}.

Our main result shows the existence of a subalgebra of the descent algebra of Sn in which
elements are sums of permutations sharing a peak class.

Theorem 1 In the group algebra QSn of Sn, define for each peak set 
 ⊂ [n − 1]

P
 =
∑

w:	(w)=


w
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where 	(w) is the peak set of w ∈ Sn. Then the subspace Pn spanned by the P
’s is a
subalgebra of Sol(An−1). We call this the peak algebra.

Example 2 Consider the peak algebra of S4. P4 consists of 3 elements: permutations with
no peaks, permutations with a peak at position 2 and permutations with a peak at position 3.
We will denote these three classes by P∅, P2 and P3 respectively.

P∅ = (1234) + (2134) + (3124) + (4123) + (4312) + (3214) + (4213) + (4321)

P2 = (1432) + (2431) + (3421) + (1423) + (2413) + (3412) + (1324) + (2314)

P3 = (1243) + (1342) + (2341) + (4132) + (4231) + (3241) + (3142) + (2143)

P3 · P2 = (1342) + (1243) + (2143) + (4231) + (4132) + (3142) + (3241)

+ (2341) + (2341) + (3241) + (3142) + (1234) + (2134) + (2143)

+ (1243) + (1342) + (4321) + (4231) + (4132) + (3214) + (3124)

+ (4123) + (4213) + (4312) + (1324) + (1234) + (2134) + (4213)

+ (4123) + (3124) + (3214) + (2314) + (2314) + (3214) + (3124)

+ (1243) + (2143) + (2134) + (1234) + (1324) + (4312) + (4213)

+ (4123) + (3241) + (3142) + (4132) + (4231) + (4321) + (1423)

+ (1432) + (2431) + (4312) + (4321) + (3421) + (3412) + (2413)

+ (2413) + (3412) + (3421) + (1342) + (2341) + (2431) + (1432)

+ (1423)

= 3P∅ + 2P2 + 3P3

The multiplication in P4 is summarized in Table 1 in which (x, y, z) refers to the sum
x P∅ + y P2 + z P3. We note here that a combinatorial multiplication rule which gives the
coefficients ak , where Pi · Pj = ∑

k ak Pk is still an open question.

Denote by (P, γ ) the labeled poset P with labels γ (x) for x ∈ P , where γ is an injective
map to a set of totally ordered elements (we will take this set to be [n] where n = |P|;
see figure 1). We represent x < y in a poset if there is a path between x and y and if x is
“under” y.

For a poset P with n elements, a linear extension v = {v1 < · · · < vn} is a total ordering
of the elements of P that preserves the partial order of P , i.e., vk < v j in P implies vk < v j

in v. We next consider the set of linear extensions of a labeled poset (P, γ ) regarded as
permutations of the labels of P .

Table 1. The multiplication of P4.

· P∅ P2 P3

P∅ (4, 2, 2) (2, 3, 3) (2, 3, 3)
P2 (2, 4, 2) (3, 2, 3) (3, 2, 3)
P3 (2, 2, 4) (3, 3, 2) (3, 3, 2)
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Figure 1. A labeled poset (P, γ ).

Definition 3 Recall for a labeled poset (P, γ ) the Jordan-Hölder set L(P, γ ) is

L(P, γ ) = {(γ (v1) . . . γ (vn)) : v1 < · · · < vn is a linear extension of P}.

For example the Jordan-Hölder set of the labeled poset (P, γ ) in figure 1 is L(P, γ ) =
{(35142), (35124), (35412), (31524), (31542)}.

Now let P denote the set of non-zero integers with the total ordering:

−1 ≺ 1 ≺ −2 ≺ 2 ≺ −3 ≺ 3 ≺ . . . .

We will say k > 0 to indicate positive integers and |k| to refer to the absolute value of an
integer as usual.

Definition 4 (Stembridge [15]) For (P, γ ) a labeled poset, an enriched (P, γ )-partition
is a map f : P −→ P such that for all x < y in P , we have:

1. f (x) � f (y),
2. f (x) = f (y) > 0 implies γ (x) < γ (y),
3. f (x) = f (y) < 0 implies γ (x) > γ (y).

Let E(P, γ ) denote the set of enriched (P, γ )-partitions. Figure 2 gives an example of an
enriched (P, γ )-partition in which the γ labels appear in the vertices while f (x) is shown
below each element x .

We can think of v ∈ L(P, γ ) as a labeled poset by considering γ as labels on the
underlying chain formed by the linear extension v1 < · · · < vn . In this way we can define
enriched (v, γ )-partitions.

3
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4

5

6

2
1
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1

Figure 2. An enriched (P, γ )-partition f .
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Lemma 5 (Stembridge [15]) For any labeled poset (P, γ ), we have

E(P, γ ) =
⋃

v∈L(P,γ )

E(v, γ )

where E(v, γ ) is the set of enriched (v, γ )-partitions for the labeled chain v.

For each enriched (P, γ )-partition Stembridge [15] defines a weight enumerator that
assigns the weight zk to both k and −k. Taking the product of weights for f (x) over all
x ∈ P , summed over all (P, γ )-partitions gives a homogeneous quasisymmetric function:

�(P, γ ) :=
∑

f ∈E(P,γ )

∏
x∈P

z| f (x)|.

By Lemma 5 we have

�(P, γ ) =
∑

v∈L(P,γ )

�(v, γ ). (2)

Stembridge demonstrates that �(v, γ ) depends only on the peak set of v ∈ L(P, γ ) [15,
Proposition 2.2], that is, the set

	(v) := {i : γ (vi−1) < γ (vi ) > γ (vi+1), 1 < i < n}.

Following Stembridge define a family of quasisymmetric functions

�	 := �(v, γ ) (3)

for any labeled chain (v, γ ) such that 	(v) = 	. These �	s form a basis of the algebra of
quasisymmetric peak functions studied by Stembridge and discussed in Section 3 [15]. In
this case we can rewrite (2) as

�(P, γ ) =
∑

v∈L(P,γ )

�	(v). (4)

Notice in calculating the weight enumerator �, only the absolute values of the mapping
f : P → P are of concern. As in [15] we will call two labelings γ and γ ′ of a poset P
weakly equivalent if {| f | : f ∈ E(P, γ )} = {| f | : f ∈ E(P, γ ′)} as multisets, where
| f |(x) := | f (x)|. Thus �(P, γ ) = �(P, γ ′) for weakly equivalent labelings γ and γ ′.

A criterion of Stembridge [15, Proposition 2.4] for testing weak equivalence of labelings
involves the order ideals of a poset P , that is the subsets I ⊆ P such that if x ∈ I and
y < x then y ∈ I . For a labeled poset (P, γ ), Stembridge defines binary relations → and
← on the set, J (P), of order ideals of P by

I → J if I ⊂ J, and x, y ∈ J\I, x < y ⇒ γ (x) > γ (y), (5)

I ← J if I ⊂ J, and x, y ∈ J\I, x < y ⇒ γ (x) < γ (y). (6)
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And finally, for any I ⊂ J ,

N (P, γ )(I, J ) := |{K ∈ J (P) : I → K ← J }|.

A subposet Q of P is convex if for x < y < z in P and x , z ∈ Q we have y ∈ Q [15].

Proposition 6 (Stembridge) If γ and γ ′ are labelings of a poset P, the following are
equivalent:
1. γ and γ ′ are weakly equivalent.

2. �(Q, γ ) = �(Q, γ ′) for every convex subposet Q of P.

3. N (P, γ ) = N (P, γ ′).

We will omit the (P, γ ) in the notation of N (P, γ ) when there is only one poset and
labeling under consideration.

Definition 7 A range poset is a poset whose Hasse diagram is a path. As such each
element belongs to ≤ 2 maximal chains with equality possible only for maximal or minimal
elements of P .

A range poset has a natural left to right ordering on its elements as well as the usual partial
ordering. Given a descent set S ⊆ [n − 1] we define the range poset MS corresponding
to S to be the poset such that if the elements are labeled 1, . . . , n from left to right, then
element i > i + 1 if and only if i ∈ S. Figure 3 illustrates the range poset corresponding to
the descent set {1, 4, 6, 7}. Given a permutation γ ∈ Sn there is a natural labeling of an n
element range poset P by assigning γ (i) to the i th element from the left end of P .

Remark 8 For the remainder of this paper a peak ofγ will refer to a peak of a permutationγ

(i.e., 3 < 5 > 4) and a trough of γ will refer to a trough of the permutation (i.e., 2 > 1 < 6).
A hill (respectively, a valley) of a range poset P will represent a maximal (minimal) element
of P .

The next lemma can be found in [13, Exercise 7.95a]. The proof of Theorem 1 is an
extension of the solution to [13, Exercise 7.95b] in which Gessel uses ordinary P-partitions
to prove the existence of Solomon’s descent algebra. When extending to enriched (P, γ )-
partitions it is necessary to work with the union of range posets which share a common hill

Figure 3. A range poset.
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Figure 4. A range poset M{2,5} labeled by γ = (351246).

set. In addition, to show the dependence of the weight enumerator of the enriched (P, γ )-
partitions on the peak set of the labeling permutation we will require a result on the weak
equivalence of labelings of range posets. We will give this result in Corollary 12.

Lemma 9 (Stanley) Given S ⊆ [n − 1] and γ ∈ Sn, let (MS, γ ) be the labeled range
poset corresponding to S. Then the Jordan-Hölder setL(MS, γ ) consists of all permutations
v ∈ Sn such that D(v−1γ ) = S.

To illustrate this lemma consider the labeled range poset (M{2,5}, γ ) in figure 4 where
γ = (351246). Let v = (135264) ∈ L(M{2,5}, γ ). Then v−1γ = (231465), and D(v−1γ ) =
{2, 5}. We can see that this result is true by calling the i th element from the left end of MS

element i . Then v−1γ (i) gives the position of γ (i) in v. Therefore a descent of v−1γ at
position j indicates γ ( j + 1) appears before γ ( j) in v and hence j > ( j + 1) in MS .

A similar result holds if we replace descent sets with peak sets. Here we must consider
the set of all range posets with a particular peak set. For a peak set 
 ⊂ [n − 1] let
S
 = {S ⊆ [n − 1] : 	′(S) = 
} be the collection of descent sets having peak set 
. And
let M
 = {MS : S ∈ S
} be the family of range posets with descents at {S : S ∈ S
}.

Corollary 10 Given a peak set 
 ⊂ [n − 1] and a fixed permutation γ ∈ Sn consider
the family of labeled posets {(MS, γ ) : MS ∈ M
}. The union of Jordan-Hölder sets⋃

M

L(MS, γ ) consists of all permutations v ∈ Sn such that 	(v−1γ ) = 
.

Proof: By Lemma 9, a permutation v ∈ L(MS, γ ), for MS ∈ M
 , if and only if the
descent set D(v−1γ ) = S. Note if S = D(u) then 	′(S) = 	(u). Since 	′(S) = 
 for all
S ∈ S
 , any v ∈ ⋃

M

L(MS, γ ) has 	(v−1γ ) = 
. Conversely, a permutation v such that

	(v−1γ ) = 
 has the property that D(v−1γ ) = S for some S ∈ S
 . Hence v ∈ L(MS, γ )
and thus is in

⋃
M


L(MS, γ ).

Next we give a formula for N (P, γ )(I, J ), where P is a range poset, in terms of the
positions of peaks of the labeling permutation γ . Notice that for a range poset P order
ideals are unions of disjoint components, where a component consists of a set of consecutive
elements of P (reading elements from left to right). These components are separated by hills
of P . Similarly, for two order ideals I ⊆ J the set J\I is composed of disjoint components
separated by either hills or valleys of P (see figure 5).
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I

J

P \ J

Figure 5. Order ideals I ⊂ J of a range poset P . Ideal I is shaded, J\I is in black, and P\J is white.

We can think of a component M as a subposet of P . The interior of M will refer to
elements which are not the first or last elements of M (reading from left to right). Interior
hills or valleys of M will thus be maximal or minimal elements of P which are interior
elements of M , and an interior slope of M is composed of interior elements which are neither
maximal nor minimal elements of P . Given a component M , interior peaks or troughs of a
labeling γ will refer to peaks or troughs of γ which occur on interior elements of M .

Proposition 11 For P a range poset labeled by γ ∈ Sn and I ⊂ J order ideals

N (P, γ )(I, J ) =
∏
M

kM

where the product is taken over the components M of J\I and

kM =
{

0 if there is a peak of γ on an interior slope of M

2ϑ+1 otherwise

for ϑ the number of peaks of γ on interior hills and valleys of M.

Corollary 12 For a range poset MS, two labelings γ , γ ′ ∈ Sn are weakly equivalent if
and only if 	(γ ) = 	(γ ′).

Proof: For a range poset MS , and arbitrary order ideals I ⊆ J , Proposition 11 gives
N (MS, γ )(I, J ) in terms of the positions of peaks of γ . Thus if 	(γ ) = 	(γ ′) we have
N (MS, γ ) = N (MS, γ

′). So by Proposition 6, γ and γ ′ are weakly equivalent.
For the converse we show that if 	(γ ) �= 	(γ ′) then N (MS, γ ) �= N (MS, γ

′). Suppose
i ∈ 	(γ ), i /∈ 	(γ ′). Take order ideals I ⊂ J such that J\I consists of the elements i − 1,
i , i + 1 of MS (reading left to right). Since i /∈ 	(γ ′), γ ′ has no peaks in the interior of
J\I . By Proposition 11, if element i is on a slope of MS (and hence an interior slope of
J\I ), N (MS, γ )(I, J ) = 0 while N (MS, γ

′)(I, J ) = 2. If i is on a hill or valley of MS (and
hence an interior hill or valley of J\I ), N (MS, γ )(I, J ) = 22 while N (MS, γ

′)(I, J ) = 2.
Thus N (MS, γ ) �= N (MS, γ

′).

We are now in a position to prove Theorem 1 and Proposition 11.
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Proof of Theorem 1: We show that the product of two peak classes is again a sum of
peak classes; that is

Pϒ · P
 =
∑

i

P�i . (7)

If γ and γ ′ have the same peak set they must appear the same number of times on the right
of (7), so we must show for γ , γ ′ ∈ Sn with 	(γ ) = 	(γ ′)

|{(u, v) ∈ Sn × Sn : vu = γ, 	(u) = 
, 	(v) = ϒ}|
= |{(u, v) ∈ Sn × Sn : vu = γ ′, 	(u) = 
, 	(v) = ϒ}|.

And so, for each γ , the number of such pairs (u, v) in Sn × Sn as above, should depend only
on the peak sets 
, ϒ , and 	(γ ).

For γ ∈ Sn and S ⊆ [n − 1] with 	′(S) = 
, consider the set E(MS, γ ) of enriched
(MS, γ )-partitions. By (4) the weight enumerator �(MS, γ ) = ∑

v∈L(Ms ,γ ) �	(v) is a sum
of basis elements of the algebra of quasisymmetric peak functions, and this representation
is unique. Thus the multiset {	(v) : v ∈ L(MS, γ )} is determined by �(MS, γ ).

If we consider the sum of weight enumerators taken over the union of enriched (MS, γ )-
partitions for all MS ∈ M
 , we again have a unique representation in terms of the basis
elements �	, and so the multiset

� =
⋃

MS∈M


{	(v) : v ∈ L(MS, γ )} =
{

	(v) : v ∈
⋃

MS∈M


L(MS, γ )

}

depends only on∑
MS∈M


�(MS, γ ).

This sum in turn depends only upon the weak isomorphism classes of the pairs (MS, γ ). By
Corollary 12 these weak equivalence classes depend only on the posets MS and the peak
set 	(γ ), while the posets {MS : MS ∈ M
} are completely determined by 
.

By Corollary 10 we can conclude that as a multiset,

� = {	(v) : 	(v−1γ ) = 
},

which by the above argument depends only upon 
 and 	(γ ). Thus letting u = v−1γ we
have the number of u, v for which 	(u) = 
, 	(v) = ϒ , and vu = γ depends only on 
,
ϒ and 	(γ ).

The subspace Pn forms a subalgebra of the descent algebra of Sn since elements of Pn

are sums of descent classes. Specifically P
 = ∑
	′(S)=
 DS where DS = ∑

D(γ )=S γ .

Proof of Proposition 11: It is sufficient to consider one component of J\I as N (I, J )
will be the product of the number of K satisfying I → K ← J in each component. For
the remainder of this proof K will refer to an order ideal satisfying I → K ← J .
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Figure 6. Choices for K in conditions 1 to 4.

Consider an arbitrary segment M of J\I . We first note several conditions which any K
must satisfy. These conditions are illustrated in figure 6 in which < and > on edges indicate
the relative values of γ .

1. If γ is increasing on an increasing slope of M , that is if we have a < b < · · · < m and
γ (a) < γ (b) < · · · < γ (m) then b can not be in K . Otherwise we have a, b ∈ K\I
with a < b and γ (a) < γ (b), violating (5).

2. If γ is increasing on an decreasing slope of M , that is a > b > · · · > m and γ (a) <

γ (b) < · · · < γ (m) then b must be in K . Otherwise we have a, b ∈ J\K with a > b
and γ (a) < γ (b), violating (6).

3. Similarly, if γ is decreasing on an increasing slope of M , namely a < · · · < l < m and
γ (a) > · · · > γ (l) > γ (m), then l must be in K .

4. Finally, if γ is decreasing on an decreasing slope of M , so a > · · · > l > m and
γ (a) > · · · > γ (l) > γ (m), then l cannot be in K .

First consider the case in which there exists a peak of γ on an interior slope of M ; that is
a < b < c in M with γ (a) < γ (b) > γ (c). It cannot be the case that b ∈ K , since b ∈ K\I
implies a < b ∈ K\I and γ (a) < γ (b) contrary to (5). But it also cannot be the case that
b /∈ K , since that implies b < c ∈ J\K , with γ (b) > γ (c) contradicting (6). Thus there is
no K satisfying I → K ← J , and consequently N (I, J ) = 0.

For the remainder of this proof we assume any peaks of γ in the interior of M occur on
hills or valleys of M . Between each consecutive pair of such peaks there exists a trough of
γ and we claim regardless of where such a trough is located there are exactly two choices
for K satisfying I → K ← J . Figure 7 illustrates the choices for K in Cases A, B, and C.

Case A: There exists a trough of γ on a slope of M . So a < b < c with γ (a) > γ (b) < γ (c).
First note that we cannot have both a and b in J\K since a < b with γ (a) > γ (b). Thus
element a must belong to K , but we have a choice to include b or not include b in K

K1

K2
b

a

c c

K2
b K2

K1

b

ca
a

K1 a

b

c

K2

K1

Figure 7. Choices for K in Cases A, B, and C.
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as follows. If b is in K we have γ (x1) > γ (x2) for all x1 < x2 ≤ b in M since there
are no peaks of γ on internal slopes of M . Thus b ∈ K is consistent with (5). If b is
not in K , and since γ only peaks at hills or valleys of M we have γ (y1) < γ (y2) for all
b ≤ y1 < y2 in M , which is consistent with (6). We note that c can not belong to K else
we have b < c in K\I with γ (b) < γ (c) a contradiction to (5).

Case B: There exists a trough of γ on an interior peak of M , i.e., a < b > c with
γ (a) > γ (b) < γ (c). Either a or c /∈ K violates (6) and again since interior peaks of γ

only occur at hills or valleys of M we know that γ (x1) > γ (x2) for all x1 < x2 ≤ b in
M . Thus b ∈ K or b /∈ K , a, c ∈ K both form valid choices for K .

Case C: There exists a trough of γ at an interior valley of M , i.e., a > b < c with
γ (a) > γ (b) < γ (c). We know γ (y1) > γ (y2) for all y1 > y2 ≥ b since interior peaks
of γ are restricted to hills and valleys of M . Thus b /∈ K or b ∈ K , a, c /∈ K are valid
choices for K . Furthermore a or c ∈ K violate (5).

Hence there are two valid choices for K between each pair of consecutive γ peaks. These
choices are independent because each choice is separated by either a valley or hill of M .
We have left to consider the portion of M before the first γ peak and the portion of M after
the last peak. (If there does not exist an interior γ peak on M then M can be treated as one
of an initial segment or a final segment.)

If γ begins with a descent in the initial segment of M then there exists a trough of γ

before the first γ peak and thus as in Cases A, B, and C there are exactly two choices for
K . Otherwise γ ascends monotonically to the first peak. Then by condition 2 if M contains
any decreasing slopes K must include all elements of the slope except (possibly) the top
element. And by condition 1, K cannot include any element, except (possibly) the smallest,
of any increasing slope of M . These requirements determine membership in K for all but
the initial element i of M (see figure 8). If M begins with an ascent i < j then i may belong
to K , since j is not in K (by condition 1). But both i and j are eligible as members of J\K
so there are two choices for K . If M begins with a descent i > j then i may belong to J\K
since j must be in K (by condition 2), or both i and j may belong to K since i > j and
γ (i) < γ ( j). So again there are 2 possible choices for K .

In the final segment of M , γ either has a final trough in which case we have two choices
for K as before, or γ decreases monotonically to the end of M . In this situation by reading
the elements of M from right to left, and consequently reading γ in reverse, this case reduces
to the case in which γ increases on the initial segment of M . And so we have two choices
for K by either including or not including the final element (from left to right) of M .

K1

K2

Figure 8. The two possible K s satisfying I → K ← J for γ increasing on a segment M of J\I .
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Figure 9. A range poset with γ peaks unfilled, and troughs shaded along with choices for where K “splits the
trough” and end choices for K .

Thus there are two independent choices for K between each pair of consecutive γ peaks
which occur at interior hills or valleys of M plus two choices for K at both the beginning
and end of M for a total of 2ϑ+1 such K , where ϑ is the number of peaks of γ occurring at
interior hills or valleys of M (see figure 9).

3. Connections to Stembridge’s peak algebra

Let �n be the Z-module generated by the {�	} (3) where 	 ranges over peak sets in
[n − 1], and let � := ⊕

n≥0 �n . This defines a graded Hopf subalgebra of QSym studied
by Stembridge [15] and known as the algebra of peaks. Let P = ⊕

n≥0 Pn . Although the
peak algebra studied in this paper deals with a multiplication that is defined within each Pn

(referred to as the inner multiplication), there are ties to Stembridge’s peak algebra which
we now address.

We denote by Sym the graded ring of symmetric functions and by � the subring generated
by Schur Q-functions (see [13]). Stembridge [15] introduces a map θ : QSym → � defined
linearly on each graded piece by

θ (FD) = �	′(D)

for each D ⊂ [n − 1]. Furthermore there is map θ̂ : Sym → �, and for λ = (λ1, λ2, . . .) a
partition of n, θ̂ is defined by

θ̂ (pλ) =
{

2|λ| pλ if all parts of λ are odd

0 if any part of λ is even

where |λ| is the length of λ, pλ = pλ1 pλ2 , . . . , and pn is the power sum symmetric function,
namely pn = ∑

i xn
i . The diagram of figure 10, in which the horizontal maps are inclusions

and the vertical maps surjections, commutes [15, Remark 3.2].

θ

QSym

θ̂

ΠΩ

Sym

Figure 10. The algebra of peaks and the Schur Q algebra.
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θ̂

ΠΩ

QSym

θ

NSymP

Sym

ab

Figure 11. The dualization of figure 10.

Recall that the Hopf algebra NSym is the graded dual of QSym via DK = F∗
K [11]. And

the dual of the inclusion map Sym ↪→ QSym is the abelianization map from NSym to Sym
(recall Sym is a self dual Hopf algebra). Now we identify P as the dual vector space to �

by letting PS = �∗
S . Then as DK is dual to FK , the map θ is dual to the inclusion map

i(PS) = ∑
	′(J )=S DJ . It is known that θ is a map of Hopf algebras [5, 15] and thus it

follows that P is a Hopf subalgebra of NSym.
It is known that � is self dual and the dual of θ̂ is the inclusion map � ↪→ Sym. Hence

the diagram of figure 10 dualizes producing the diagram of figure 11. Thus the image of
P under the abelianization map is �. We note here that in Stembridge’s work there is no
consideration to the inner multiplication (namely the algebra structure on each Pn) which
is the main object of this work.
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