The Peak Algebra of the Symmetric Group

KATHRYN L. NYMAN
Received March 5, 2002; Revised October 8, 2002

Abstract

The peak set of a permutation σ is the set $\{i: \sigma(i-1)<\sigma(i)>\sigma(i+1)\}$. The group algebra of the symmetric group S_{n} admits a subalgebra in which elements are sums of permutations with a common descent set. In this paper we show the existence of a subalgebra of this descent algebra in which elements are sums of permutations sharing a common peak set. To prove the existence of this peak algebra we use the theory of enriched (P, γ)-partitions and the algebra of quasisymmetric peak functions studied by Stembridge (Trans. Amer. Math. Soc. 349 (1997) 763-788).

Keywords: peaks, Solomon's descent algebra, quasisymmetric functions

1. Introduction

In 1976 Louis Solomon [12] introduced a collection of algebras associated to finite Coxeter groups. In the case of the symmetric group the elements of the associated algebra are sums (in the group algebra of S_{n} over a field \mathbf{k}) of permutations sharing a common descent set. We refer to this algebra as the descent algebra and denote it by $\operatorname{Sol}\left(A_{n-1}\right)$ (see [3, 8], and [4]). In addition commutative subalgebras of the descent algebra have been studied in which permutations are grouped according to the number of descents ($[1,8,10]$, and [6]) and according to the shapes of the permutations [7].

As an analogue to the descent algebra of the symmetric group we look at a subalgebra of the group algebra of S_{n} indexed by the position of peaks in the permutations. To prove the existence of this subalgebra we will utilize a set of maps on labeled posets, introduced by Stembridge [15], called enriched (P, γ)-partitions which are a variation of Stanley's notion of (ordinary) P-partitions [14]. A more in-depth discussion of enriched (P, γ)-partitions can be found in [13].
We begin with several definitions and notation. We will write permutations of [n] in the form $\sigma=(\sigma(1) \sigma(2) \cdots \sigma(n))$, and for $\sigma, \gamma \in S_{n}$ the product $\sigma \gamma$ will indicate first applying γ and then applying σ. The descent set of a permutation, denoted $D(\sigma)$, is the set $\{i: \sigma(i)>\sigma(i+1)\}$. Thus $D(\sigma) \subseteq[n-1]$. For example the descent set of $\sigma=(31524)$ is $\{1,3\}$. Let $\mathcal{D}_{T}=\sum_{\sigma: D(\sigma)=T} \sigma$. Since there are 2^{n-1} possible descent sets, the symmetric group S_{n} is partitioned into 2^{n-1} disjoint descent classes. Solomon's result shows the product of two descent classes is a linear combination, with non-negative integer coefficients, of descent classes:

$$
\mathcal{D}_{T} \cdot \mathcal{D}_{Q}=\sum_{K} a_{K} \mathcal{D}_{K} \quad a_{K} \in \mathbb{Z}_{+}
$$

A formal power series f of bounded degree in a countable number of indeterminates x_{1}, x_{2}, \ldots with coefficients in a field \mathbf{k} is a quasisymmetric function if for any $a_{1}, \ldots, a_{k} \in$ \mathbb{Z}_{+}, the coefficient of $x_{i_{1}}^{a_{1}} \cdots x_{i_{k}}^{a_{k}}$ in f is equal to the coefficient of $x_{j_{1}}^{a_{1}} \cdots x_{j_{k}}^{a_{k}}$ whenever $i_{1}<\cdots<i_{k}$ and $j_{1}<\cdots<j_{k}$. Clearly symmetric functions are quasisymmetric functions. The series $\sum_{i<j .} x_{i} x_{j}^{2}$ and $\sum_{i<j<k} x_{i}^{3} x_{j} x_{k}^{2}$ are examples of quasisymmetric functions that are not symmetric.

Let $Q S y m=\bigoplus_{n \geq 0} \mathcal{Q}_{n}$ denote the algebra of quasisymmetric functions over a field \mathbf{k}. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ a composition of $n($ denoted $\alpha \models n)$ and

$$
\begin{equation*}
M_{\alpha}=\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}} \tag{1}
\end{equation*}
$$

the set $\left\{M_{\alpha}: \alpha \models n\right\}$ forms a basis for \mathcal{Q}_{n}. Since there is a bijection between compositions of n and subsets of $[n-1]$, we will sometimes write M_{E} for $E \subseteq[n-1]$ to denote the basis element M_{α} where α is the composition of n corresponding to E. We will also use Gessel's fundamental basis [9],

$$
F_{D}=\sum_{D \subseteq E} M_{E}
$$

For $f \in \mathcal{Q}_{m}$ and $g \in \mathcal{Q}_{n}$, the product $f g \in \mathcal{Q}_{m+n}$ making $Q S y m$ a graded \mathbf{k}-algebra.

2. The peak algebra of the symmetric group

We say that a permutation $\gamma \in S_{n}$ has a peak at position i if $\gamma(i-1)<\gamma(i)>\gamma(i+1)$. The peak set of γ is the set

$$
\Lambda(\gamma):=\{i: \gamma(i-1)<\gamma(i)>\gamma(i+1)\} .
$$

For example the permutation $\gamma=(325461) \in S_{6}$ has peaks at positions 3 and 5 since $\gamma(2)<\gamma(3)>\gamma(4)$ and $\gamma(4)<\gamma(5)>\gamma(6)$. We note that every subset S of $[n-1]$ is the descent set of at least one permutation of [n], and every subset Γ of $[n-1]$ satisfying $1 \notin \Gamma$ and $k \in \Gamma$ implies $(k+1) \notin \Gamma$ is the peak set of at least one permutation of [n]. For this reason we refer to arbitrary subsets of $[n-1]$ as descent sets and to subsets Γ of [$n-1$] with $1 \notin \Gamma$ and $k \in \Gamma$ implies $(k+1) \notin \Gamma$ as peak sets. We remark here that it is possible to allow peaks to occur at position 1 and this forms the basis of future work.

Given a descent set $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq[n-1]$ we form the corresponding peak set $\Lambda^{\prime}(S)$ by removing each s_{i} such that $s_{i}-s_{i-1}=1$, where $s_{0}=0$. For example the descent set $S=\{1,3,4,7,8\}$ gives rise to the peak set $\Lambda^{\prime}(S)=\{3,7\}$.

Our main result shows the existence of a subalgebra of the descent algebra of S_{n} in which elements are sums of permutations sharing a peak class.

Theorem 1 In the group algebra $\mathbb{Q} S_{n}$ of S_{n}, define for each peak set $\Gamma \subset[n-1]$

$$
P_{\Gamma}=\sum_{w: \Lambda(w)=\Gamma} w
$$

where $\Lambda(w)$ is the peak set of $w \in S_{n}$. Then the subspace \mathcal{P}_{n} spanned by the P_{Γ} 's is a subalgebra of $\operatorname{Sol}\left(A_{n-1}\right)$. We call this the peak algebra.

Example 2 Consider the peak algebra of $S_{4} \cdot \mathcal{P}_{4}$ consists of 3 elements: permutations with no peaks, permutations with a peak at position 2 and permutations with a peak at position 3 . We will denote these three classes by P_{\emptyset}, P_{2} and P_{3} respectively.

$$
\begin{aligned}
P_{\emptyset}= & (1234)+(2134)+(3124)+(4123)+(4312)+(3214)+(4213)+(4321) \\
P_{2}= & (1432)+(2431)+(3421)+(1423)+(2413)+(3412)+(1324)+(2314) \\
P_{3}= & (1243)+(1342)+(2341)+(4132)+(4231)+(3241)+(3142)+(2143) \\
P_{3} \cdot P_{2}= & (1342)+(1243)+(2143)+(4231)+(4132)+(3142)+(3241) \\
& +(2341)+(2341)+(3241)+(3142)+(1234)+(2134)+(2143) \\
& +(1243)+(1342)+(4321)+(4231)+(4132)+(3214)+(3124) \\
& +(4123)+(4213)+(4312)+(1324)+(1234)+(2134)+(4213) \\
& +(4123)+(3124)+(3214)+(2314)+(2314)+(3214)+(3124) \\
& +(1243)+(2143)+(2134)+(1234)+(1324)+(4312)+(4213) \\
& +(4123)+(3241)+(3142)+(4132)+(4231)+(4321)+(1423) \\
& +(1432)+(2431)+(4312)+(4321)+(3421)+(3412)+(2413) \\
& +(2413)+(3412)+(3421)+(1342)+(2341)+(2431)+(1432) \\
& +(1423) \\
= & 3 P_{\emptyset}+2 P_{2}+3 P_{3}
\end{aligned}
$$

The multiplication in \mathcal{P}_{4} is summarized in Table 1 in which (x, y, z) refers to the sum $x P_{\emptyset}+y P_{2}+z P_{3}$. We note here that a combinatorial multiplication rule which gives the coefficients a_{k}, where $P_{i} \cdot P_{j}=\sum_{k} a_{k} P_{k}$ is still an open question.

Denote by (P, γ) the labeled poset P with labels $\gamma(x)$ for $x \in P$, where γ is an injective map to a set of totally ordered elements (we will take this set to be $[n]$ where $n=|P|$; see figure 1). We represent $x<y$ in a poset if there is a path between x and y and if x is "under" y.

For a poset P with n elements, a linear extension $\bar{v}=\left\{v_{1}<\cdots<v_{n}\right\}$ is a total ordering of the elements of P that preserves the partial order of P, i.e., $v_{k}<v_{j}$ in P implies $v_{k}<v_{j}$ in \bar{v}. We next consider the set of linear extensions of a labeled poset (P, γ) regarded as permutations of the labels of P.

Table 1. The multiplication of \mathcal{P}_{4}.

\cdot	P_{\emptyset}	P_{2}	P_{3}
P_{\emptyset}	$(4,2,2)$	$(2,3,3)$	$(2,3,3)$
P_{2}	$(2,4,2)$	$(3,2,3)$	$(3,2,3)$
P_{3}	$(2,2,4)$	$(3,3,2)$	$(3,3,2)$

Figure 1. A labeled poset (P, γ).

Definition 3 Recall for a labeled poset (P, γ) the Jordan-Hölder set $\mathcal{L}(P, \gamma)$ is

$$
\mathcal{L}(P, \gamma)=\left\{\left(\gamma\left(v_{1}\right) \ldots \gamma\left(v_{n}\right)\right): v_{1}<\cdots<v_{n} \text { is a linear extension of } P\right\}
$$

For example the Jordan-Hölder set of the labeled poset (P, γ) in figure 1 is $\mathcal{L}(P, \gamma)=$ \{(35142), (35124), (35412), (31524), (31542)\}.

Now let \mathbb{P} denote the set of non-zero integers with the total ordering:

$$
-1 \prec 1 \prec-2 \prec 2 \prec-3 \prec 3 \prec \ldots .
$$

We will say $k>0$ to indicate positive integers and $|k|$ to refer to the absolute value of an integer as usual.

Definition 4 (Stembridge [15]) For (P, γ) a labeled poset, an enriched (P, γ)-partition is a map $f: P \longrightarrow \mathbb{P}$ such that for all $x<y$ in P, we have:

1. $f(x) \preceq f(y)$,
2. $f(x)=f(y)>0$ implies $\gamma(x)<\gamma(y)$,
3. $f(x)=f(y)<0$ implies $\gamma(x)>\gamma(y)$.

Let $\mathcal{E}(P, \gamma)$ denote the set of enriched (P, γ)-partitions. Figure 2 gives an example of an enriched (P, γ)-partition in which the γ labels appear in the vertices while $f(x)$ is shown below each element x.

We can think of $v \in \mathcal{L}(P, \gamma)$ as a labeled poset by considering γ as labels on the underlying chain formed by the linear extension $v_{1}<\cdots<v_{n}$. In this way we can define enriched (v, γ)-partitions.

Figure 2. An enriched (P, γ)-partition f.

Lemma 5 (Stembridge [15]) For any labeled poset (P, γ), we have

$$
\mathcal{E}(P, \gamma)=\bigcup_{v \in \mathcal{L}(P, \gamma)} \mathcal{E}(v, \gamma)
$$

where $\mathcal{E}(v, \gamma)$ is the set of enriched (v, γ)-partitions for the labeled chain v.
For each enriched (P, γ)-partition Stembridge [15] defines a weight enumerator that assigns the weight z_{k} to both k and $-k$. Taking the product of weights for $f(x)$ over all $x \in P$, summed over all (P, γ)-partitions gives a homogeneous quasisymmetric function:

$$
\Delta(P, \gamma):=\sum_{f \in \mathcal{E}(P, \gamma)} \prod_{x \in P} z_{|f(x)|}
$$

By Lemma 5 we have

$$
\begin{equation*}
\Delta(P, \gamma)=\sum_{v \in \mathcal{L}(P, \gamma)} \Delta(v, \gamma) \tag{2}
\end{equation*}
$$

Stembridge demonstrates that $\Delta(v, \gamma)$ depends only on the peak set of $v \in \mathcal{L}(P, \gamma)$ [15, Proposition 2.2], that is, the set

$$
\Lambda(v):=\left\{i: \gamma\left(v_{i-1}\right)<\gamma\left(v_{i}\right)>\gamma\left(v_{i+1}\right), 1<i<n\right\} .
$$

Following Stembridge define a family of quasisymmetric functions

$$
\begin{equation*}
\Theta_{\Lambda}:=\Delta(v, \gamma) \tag{3}
\end{equation*}
$$

for any labeled chain (v, γ) such that $\Lambda(v)=\Lambda$. These $\Theta_{\Lambda} \mathrm{s}$ form a basis of the algebra of quasisymmetric peak functions studied by Stembridge and discussed in Section 3 [15]. In this case we can rewrite (2) as

$$
\begin{equation*}
\Delta(P, \gamma)=\sum_{v \in \mathcal{L}(P, \gamma)} \Theta_{\Lambda(v)} \tag{4}
\end{equation*}
$$

Notice in calculating the weight enumerator Δ, only the absolute values of the mapping $f: P \rightarrow \mathbb{P}$ are of concern. As in [15] we will call two labelings γ and γ^{\prime} of a poset P weakly equivalent if $\{|f|: f \in \mathcal{E}(P, \gamma)\}=\left\{|f|: f \in \mathcal{E}\left(P, \gamma^{\prime}\right)\right\}$ as multisets, where $|f|(x):=|f(x)|$. Thus $\Delta(P, \gamma)=\Delta\left(P, \gamma^{\prime}\right)$ for weakly equivalent labelings γ and γ^{\prime}.

A criterion of Stembridge [15, Proposition 2.4] for testing weak equivalence of labelings involves the order ideals of a poset P, that is the subsets $I \subseteq P$ such that if $x \in I$ and $y<x$ then $y \in I$. For a labeled poset (P, γ), Stembridge defines binary relations \rightarrow and \leftarrow on the set, $J(P)$, of order ideals of P by

$$
\begin{array}{ll}
I \rightarrow J & \text { if } I \subset J, \text { and } x, y \in J \backslash I, x<y \Rightarrow \gamma(x)>\gamma(y), \\
I \leftarrow J & \text { if } I \subset J, \text { and } x, y \in J \backslash I, x<y \Rightarrow \gamma(x)<\gamma(y) . \tag{6}
\end{array}
$$

And finally, for any $I \subset J$,

$$
N(P, \gamma)(I, J):=|\{K \in J(P): I \rightarrow K \leftarrow J\}| .
$$

A subposet Q of P is convex if for $x<y<z$ in P and $x, z \in Q$ we have $y \in Q$ [15].

Proposition 6 (Stembridge) If γ and γ^{\prime} are labelings of a poset P, the following are equivalent:

1. γ and γ^{\prime} are weakly equivalent.
2. $\Delta(Q, \gamma)=\Delta\left(Q, \gamma^{\prime}\right)$ for every convex subposet Q of P.
3. $N(P, \gamma)=N\left(P, \gamma^{\prime}\right)$.

We will omit the (P, γ) in the notation of $N(P, \gamma)$ when there is only one poset and labeling under consideration.

Definition 7 A range poset is a poset whose Hasse diagram is a path. As such each element belongs to ≤ 2 maximal chains with equality possible only for maximal or minimal elements of P.

A range poset has a natural left to right ordering on its elements as well as the usual partial ordering. Given a descent set $S \subseteq[n-1]$ we define the range poset M_{S} corresponding to S to be the poset such that if the elements are labeled $1, \ldots, n$ from left to right, then element $i>i+1$ if and only if $i \in S$. Figure 3 illustrates the range poset corresponding to the descent set $\{1,4,6,7\}$. Given a permutation $\gamma \in S_{n}$ there is a natural labeling of an n element range poset P by assigning $\gamma(i)$ to the i th element from the left end of P.

Remark 8 For the remainder of this paper a peak of γ will refer to a peak of a permutation γ (i.e., $3<5>4$) and a trough of γ will refer to a trough of the permutation (i.e., $2>1<6$). A hill (respectively, a valley) of a range poset P will represent a maximal (minimal) element of P.

The next lemma can be found in [13, Exercise 7.95a]. The proof of Theorem 1 is an extension of the solution to [13, Exercise 7.95b] in which Gessel uses ordinary P-partitions to prove the existence of Solomon's descent algebra. When extending to enriched (P, γ) partitions it is necessary to work with the union of range posets which share a common hill

Figure 3. A range poset.

Figure 4. A range poset $M_{\{2,5\}}$ labeled by $\gamma=(351246)$.
set. In addition, to show the dependence of the weight enumerator of the enriched (P, γ)partitions on the peak set of the labeling permutation we will require a result on the weak equivalence of labelings of range posets. We will give this result in Corollary 12.

Lemma 9 (Stanley) Given $S \subseteq[n-1]$ and $\gamma \in S_{n}$, let $\left(M_{S}, \gamma\right)$ be the labeled range poset corresponding to S. Then the Jordan-Hölder set $\mathcal{L}\left(M_{S}, \gamma\right)$ consists of all permutations $v \in S_{n}$ such that $D\left(v^{-1} \gamma\right)=S$.

To illustrate this lemma consider the labeled range poset $\left(M_{\{2,5\}}, \gamma\right)$ in figure 4 where $\gamma=(351246)$. Let $v=(135264) \in \mathcal{L}\left(M_{\{2,5\}}, \gamma\right)$. Then $v^{-1} \gamma=(231465)$, and $D\left(v^{-1} \gamma\right)=$ $\{2,5\}$. We can see that this result is true by calling the i th element from the left end of M_{S} element i. Then $v^{-1} \gamma(i)$ gives the position of $\gamma(i)$ in v. Therefore a descent of $v^{-1} \gamma$ at position j indicates $\gamma(j+1)$ appears before $\gamma(j)$ in v and hence $j>(j+1)$ in M_{S}.

A similar result holds if we replace descent sets with peak sets. Here we must consider the set of all range posets with a particular peak set. For a peak set $\Gamma \subset[n-1]$ let $\mathcal{S}_{\Gamma}=\left\{S \subseteq[n-1]: \Lambda^{\prime}(S)=\Gamma\right\}$ be the collection of descent sets having peak set Γ. And let $\mathcal{M}_{\Gamma}=\left\{M_{S}: S \in \mathcal{S}_{\Gamma}\right\}$ be the family of range posets with descents at $\left\{S: S \in \mathcal{S}_{\Gamma}\right\}$.

Corollary 10 Given a peak set $\Gamma \subset[n-1]$ and a fixed permutation $\gamma \in S_{n}$ consider the family of labeled posets $\left\{\left(M_{S}, \gamma\right): M_{S} \in \mathcal{M}_{\Gamma}\right\}$. The union of Jordan-Hölder sets $\bigcup_{\mathcal{M}_{\Gamma}} \mathcal{L}\left(M_{S}, \gamma\right)$ consists of all permutations $v \in S_{n}$ such that $\Lambda\left(v^{-1} \gamma\right)=\Gamma$.

Proof: By Lemma 9, a permutation $v \in \mathcal{L}\left(M_{S}, \gamma\right)$, for $M_{S} \in \mathcal{M}_{\Gamma}$, if and only if the descent set $D\left(v^{-1} \gamma\right)=S$. Note if $S=D(u)$ then $\Lambda^{\prime}(S)=\Lambda(u)$. Since $\Lambda^{\prime}(S)=\Gamma$ for all $S \in \mathcal{S}_{\Gamma}$, any $v \in \bigcup_{\mathcal{M}_{\Gamma}} \mathcal{L}\left(M_{S}, \gamma\right)$ has $\Lambda\left(v^{-1} \gamma\right)=\Gamma$. Conversely, a permutation v such that $\Lambda\left(v^{-1} \gamma\right)=\Gamma$ has the property that $D\left(v^{-1} \gamma\right)=S$ for some $S \in \mathcal{S}_{\Gamma}$. Hence $v \in \mathcal{L}\left(M_{S}, \gamma\right)$ and thus is in $\bigcup_{\mathcal{M}_{\Gamma}} \mathcal{L}\left(M_{S}, \gamma\right)$.

Next we give a formula for $N(P, \gamma)(I, J)$, where P is a range poset, in terms of the positions of peaks of the labeling permutation γ. Notice that for a range poset P order ideals are unions of disjoint components, where a component consists of a set of consecutive elements of P (reading elements from left to right). These components are separated by hills of P. Similarly, for two order ideals $I \subseteq J$ the set $J \backslash I$ is composed of disjoint components separated by either hills or valleys of P (see figure 5).

Figure 5. Order ideals $I \subset J$ of a range poset P. Ideal I is shaded, $J \backslash I$ is in black, and $P \backslash J$ is white.

We can think of a component M as a subposet of P. The interior of M will refer to elements which are not the first or last elements of M (reading from left to right). Interior hills or valleys of M will thus be maximal or minimal elements of P which are interior elements of M, and an interior slope of M is composed of interior elements which are neither maximal nor minimal elements of P. Given a component M, interior peaks or troughs of a labeling γ will refer to peaks or troughs of γ which occur on interior elements of M.

Proposition 11 For P a range poset labeled by $\gamma \in S_{n}$ and $I \subset J$ order ideals

$$
N(P, \gamma)(I, J)=\prod_{M} k_{M}
$$

where the product is taken over the components M of $J \backslash I$ and

$$
k_{M}= \begin{cases}0 & \text { if there is a peak of } \gamma \text { on an interior slope of } M \\ 2^{\vartheta+1} & \text { otherwise }\end{cases}
$$

for ϑ the number of peaks of γ on interior hills and valleys of M.

Corollary 12 For a range poset M_{S}, two labelings $\gamma, \gamma^{\prime} \in S_{n}$ are weakly equivalent if and only if $\Lambda(\gamma)=\Lambda\left(\gamma^{\prime}\right)$.

Proof: For a range poset M_{S}, and arbitrary order ideals $I \subseteq J$, Proposition 11 gives $N\left(M_{S}, \gamma\right)(I, J)$ in terms of the positions of peaks of γ. Thus if $\Lambda(\gamma)=\Lambda\left(\gamma^{\prime}\right)$ we have $N\left(M_{S}, \gamma\right)=N\left(M_{S}, \gamma^{\prime}\right)$. So by Proposition 6, γ and γ^{\prime} are weakly equivalent.

For the converse we show that if $\Lambda(\gamma) \neq \Lambda\left(\gamma^{\prime}\right)$ then $N\left(M_{S}, \gamma\right) \neq N\left(M_{S}, \gamma^{\prime}\right)$. Suppose $i \in \Lambda(\gamma), i \notin \Lambda\left(\gamma^{\prime}\right)$. Take order ideals $I \subset J$ such that $J \backslash I$ consists of the elements $i-1$, $i, i+1$ of M_{S} (reading left to right). Since $i \notin \Lambda\left(\gamma^{\prime}\right), \gamma^{\prime}$ has no peaks in the interior of $J \backslash I$. By Proposition 11, if element i is on a slope of M_{S} (and hence an interior slope of $J \backslash I), N\left(M_{S}, \gamma\right)(I, J)=0$ while $N\left(M_{S}, \gamma^{\prime}\right)(I, J)=2$. If i is on a hill or valley of M_{S} (and hence an interior hill or valley of $J \backslash I), N\left(M_{S}, \gamma\right)(I, J)=2^{2}$ while $N\left(M_{S}, \gamma^{\prime}\right)(I, J)=2$. Thus $N\left(M_{S}, \gamma\right) \neq N\left(M_{S}, \gamma^{\prime}\right)$.

We are now in a position to prove Theorem 1 and Proposition 11.

Proof of Theorem 1: We show that the product of two peak classes is again a sum of peak classes; that is

$$
\begin{equation*}
P_{\Upsilon} \cdot P_{\Gamma}=\sum_{i} P_{\Theta_{i}} \tag{7}
\end{equation*}
$$

If γ and γ^{\prime} have the same peak set they must appear the same number of times on the right of (7), so we must show for $\gamma, \gamma^{\prime} \in S_{n}$ with $\Lambda(\gamma)=\Lambda\left(\gamma^{\prime}\right)$

$$
\begin{aligned}
& \left|\left\{(u, v) \in S_{n} \times S_{n}: v u=\gamma, \Lambda(u)=\Gamma, \Lambda(v)=\Upsilon\right\}\right| \\
& \quad=\left|\left\{(u, v) \in S_{n} \times S_{n}: v u=\gamma^{\prime}, \Lambda(u)=\Gamma, \Lambda(v)=\Upsilon\right\}\right|
\end{aligned}
$$

And so, for each γ, the number of such pairs (u, v) in $S_{n} \times S_{n}$ as above, should depend only on the peak sets Γ, Υ, and $\Lambda(\gamma)$.

For $\gamma \in S_{n}$ and $S \subseteq[n-1]$ with $\Lambda^{\prime}(S)=\Gamma$, consider the set $\mathcal{E}\left(M_{S}, \gamma\right)$ of enriched ($\left.M_{S}, \gamma\right)$-partitions. By (4) the weight enumerator $\Delta\left(M_{S}, \gamma\right)=\sum_{v \in \mathcal{L}\left(M_{s}, \gamma\right)} \Theta_{\Lambda(v)}$ is a sum of basis elements of the algebra of quasisymmetric peak functions, and this representation is unique. Thus the multiset $\left\{\Lambda(v): v \in \mathcal{L}\left(M_{S}, \gamma\right)\right\}$ is determined by $\Delta\left(M_{S}, \gamma\right)$.

If we consider the sum of weight enumerators taken over the union of enriched (M_{S}, γ)partitions for all $M_{S} \in \mathcal{M}_{\Gamma}$, we again have a unique representation in terms of the basis elements Θ_{Λ}, and so the multiset

$$
\Phi=\bigcup_{M_{S} \in \mathcal{M}_{\Gamma}}\left\{\Lambda(v): v \in \mathcal{L}\left(M_{S}, \gamma\right)\right\}=\left\{\Lambda(v): v \in \bigcup_{M_{S} \in \mathcal{M}_{\Gamma}} \mathcal{L}\left(M_{S}, \gamma\right)\right\}
$$

depends only on

$$
\sum_{M_{S} \in \mathcal{M}_{\Gamma}} \Delta\left(M_{S}, \gamma\right)
$$

This sum in turn depends only upon the weak isomorphism classes of the pairs (M_{S}, γ). By Corollary 12 these weak equivalence classes depend only on the posets M_{S} and the peak set $\Lambda(\gamma)$, while the posets $\left\{M_{S}: M_{S} \in \mathcal{M}_{\Gamma}\right\}$ are completely determined by Γ.

By Corollary 10 we can conclude that as a multiset,

$$
\Phi=\left\{\Lambda(v): \Lambda\left(v^{-1} \gamma\right)=\Gamma\right\}
$$

which by the above argument depends only upon Γ and $\Lambda(\gamma)$. Thus letting $u=v^{-1} \gamma$ we have the number of u, v for which $\Lambda(u)=\Gamma, \Lambda(v)=\Upsilon$, and $v u=\gamma$ depends only on Γ, Υ and $\Lambda(\gamma)$.

The subspace \mathcal{P}_{n} forms a subalgebra of the descent algebra of S_{n} since elements of \mathcal{P}_{n} are sums of descent classes. Specifically $P_{\Gamma}=\sum_{\Lambda^{\prime}(S)=\Gamma} \mathcal{D}_{S}$ where $\mathcal{D}_{S}=\sum_{D(\gamma)=S} \gamma$.

Proof of Proposition 11: It is sufficient to consider one component of $J \backslash I$ as $N(I, J)$ will be the product of the number of K satisfying $I \rightarrow K \leftarrow J$ in each component. For the remainder of this proof K will refer to an order ideal satisfying $I \rightarrow K \leftarrow J$.

Figure 6. Choices for K in conditions 1 to 4.

Consider an arbitrary segment M of $J \backslash I$. We first note several conditions which any K must satisfy. These conditions are illustrated in figure 6 in which $<$ and $>$ on edges indicate the relative values of γ.

1. If γ is increasing on an increasing slope of M, that is if we have $a<b<\cdots<m$ and $\gamma(a)<\gamma(b)<\cdots<\gamma(m)$ then b can not be in K. Otherwise we have $a, b \in K \backslash I$ with $a<b$ and $\gamma(a)<\gamma(b)$, violating (5).
2. If γ is increasing on an decreasing slope of M, that is $a>b>\cdots>m$ and $\gamma(a)<$ $\gamma(b)<\cdots<\gamma(m)$ then b must be in K. Otherwise we have $a, b \in J \backslash K$ with $a>b$ and $\gamma(a)<\gamma(b)$, violating (6).
3. Similarly, if γ is decreasing on an increasing slope of M, namely $a<\cdots<l<m$ and $\gamma(a)>\cdots>\gamma(l)>\gamma(m)$, then l must be in K.
4. Finally, if γ is decreasing on an decreasing slope of M, so $a>\cdots>l>m$ and $\gamma(a)>\cdots>\gamma(l)>\gamma(m)$, then l cannot be in K.

First consider the case in which there exists a peak of γ on an interior slope of M; that is $a<b<c$ in M with $\gamma(a)<\gamma(b)>\gamma(c)$. It cannot be the case that $b \in K$, since $b \in K \backslash I$ implies $a<b \in K \backslash I$ and $\gamma(a)<\gamma(b)$ contrary to (5). But it also cannot be the case that $b \notin K$, since that implies $b<c \in J \backslash K$, with $\gamma(b)>\gamma(c)$ contradicting (6). Thus there is no K satisfying $I \rightarrow K \leftarrow J$, and consequently $N(I, J)=0$.

For the remainder of this proof we assume any peaks of γ in the interior of M occur on hills or valleys of M. Between each consecutive pair of such peaks there exists a trough of γ and we claim regardless of where such a trough is located there are exactly two choices for K satisfying $I \rightarrow K \leftarrow J$. Figure 7 illustrates the choices for K in Cases A, B, and C.

Case A: There exists a trough of γ on a slope of M. So $a<b<c$ with $\gamma(a)>\gamma(b)<\gamma(c)$.
First note that we cannot have both a and b in $J \backslash K$ since $a<b$ with $\gamma(a)>\gamma(b)$. Thus element a must belong to K, but we have a choice to include b or not include b in K

Figure 7. Choices for K in Cases A, B, and C.
as follows. If b is in K we have $\gamma\left(x_{1}\right)>\gamma\left(x_{2}\right)$ for all $x_{1}<x_{2} \leq b$ in M since there are no peaks of γ on internal slopes of M. Thus $b \in K$ is consistent with (5). If b is not in K, and since γ only peaks at hills or valleys of M we have $\gamma\left(y_{1}\right)<\gamma\left(y_{2}\right)$ for all $b \leq y_{1}<y_{2}$ in M, which is consistent with (6). We note that c can not belong to K else we have $b<c$ in $K \backslash I$ with $\gamma(b)<\gamma(c)$ a contradiction to (5).
Case B: There exists a trough of γ on an interior peak of M, i.e., ac with $\gamma(a)>\gamma(b)<\gamma(c)$. Either a or $c \notin K$ violates (6) and again since interior peaks of γ only occur at hills or valleys of M we know that $\gamma\left(x_{1}\right)>\gamma\left(x_{2}\right)$ for all $x_{1}<x_{2} \leq b$ in M. Thus $b \in K$ or $b \notin K, a, c \in K$ both form valid choices for K.
Case C : There exists a trough of γ at an interior valley of M, i.e., $a>b<c$ with $\gamma(a)>\gamma(b)<\gamma(c)$. We know $\gamma\left(y_{1}\right)>\gamma\left(y_{2}\right)$ for all $y_{1}>y_{2} \geq b$ since interior peaks of γ are restricted to hills and valleys of M. Thus $b \notin K$ or $b \in K, a, c \notin K$ are valid choices for K. Furthermore a or $c \in K$ violate (5).

Hence there are two valid choices for K between each pair of consecutive γ peaks. These choices are independent because each choice is separated by either a valley or hill of M. We have left to consider the portion of M before the first γ peak and the portion of M after the last peak. (If there does not exist an interior γ peak on M then M can be treated as one of an initial segment or a final segment.)

If γ begins with a descent in the initial segment of M then there exists a trough of γ before the first γ peak and thus as in Cases A, B, and C there are exactly two choices for K. Otherwise γ ascends monotonically to the first peak. Then by condition 2 if M contains any decreasing slopes K must include all elements of the slope except (possibly) the top element. And by condition $1, K$ cannot include any element, except (possibly) the smallest, of any increasing slope of M. These requirements determine membership in K for all but the initial element i of M (see figure 8). If M begins with an ascent $i<j$ then i may belong to K, since j is not in K (by condition 1). But both i and j are eligible as members of $J \backslash K$ so there are two choices for K. If M begins with a descent $i>j$ then i may belong to $J \backslash K$ since j must be in K (by condition 2), or both i and j may belong to K since $i>j$ and $\gamma(i)<\gamma(j)$. So again there are 2 possible choices for K.

In the final segment of M, γ either has a final trough in which case we have two choices for K as before, or γ decreases monotonically to the end of M. In this situation by reading the elements of M from right to left, and consequently reading γ in reverse, this case reduces to the case in which γ increases on the initial segment of M. And so we have two choices for K by either including or not including the final element (from left to right) of M.

Figure 8. The two possible K s satisfying $I \rightarrow K \leftarrow J$ for γ increasing on a segment M of $J \backslash I$.

Figure 9. A range poset with γ peaks unfilled, and troughs shaded along with choices for where K "splits the trough" and end choices for K

Thus there are two independent choices for K between each pair of consecutive γ peaks which occur at interior hills or valleys of M plus two choices for K at both the beginning and end of M for a total of $2^{\vartheta+1}$ such K, where ϑ is the number of peaks of γ occurring at interior hills or valleys of M (see figure 9).

3. Connections to Stembridge's peak algebra

Let Π_{n} be the \mathbb{Z}-module generated by the $\left\{\Theta_{\Lambda}\right\}$ (3) where Λ ranges over peak sets in [$n-1$], and let $\Pi:=\bigoplus_{n \geq 0} \Pi_{n}$. This defines a graded Hopf subalgebra of QSym studied by Stembridge [15] and known as the algebra of peaks. Let $\mathcal{P}=\bigoplus_{n \geq 0} \mathcal{P}_{n}$. Although the peak algebra studied in this paper deals with a multiplication that is defined within each \mathcal{P}_{n} (referred to as the inner multiplication), there are ties to Stembridge's peak algebra which we now address.

We denote by Sym the graded ring of symmetric functions and by Ω the subring generated by Schur Q-functions (see [13]). Stembridge [15] introduces a map $\theta: Q S y m \rightarrow \Pi$ defined linearly on each graded piece by

$$
\theta\left(F_{D}\right)=\Theta_{\Lambda^{\prime}(D)}
$$

for each $D \subset[n-1]$. Furthermore there is map $\hat{\theta}: S y m \rightarrow \Omega$, and for $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ a partition of $n, \hat{\theta}$ is defined by

$$
\hat{\theta}\left(p_{\lambda}\right)= \begin{cases}2^{|\lambda|} p_{\lambda} & \text { if all parts of } \lambda \text { are odd } \\ 0 & \text { if any part of } \lambda \text { is even }\end{cases}
$$

where $|\lambda|$ is the length of $\lambda, p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}}, \ldots$, and p_{n} is the power sum symmetric function, namely $p_{n}=\sum_{i} x_{i}^{n}$. The diagram of figure 10 , in which the horizontal maps are inclusions and the vertical maps surjections, commutes [15, Remark 3.2].

Figure 10. The algebra of peaks and the Schur Q algebra.

Figure 11. The dualization of figure 10.

Recall that the Hopf algebra $\mathcal{N S y m}$ is the graded dual of $Q S y m$ via $\mathcal{D}_{K}=F_{K}^{*}$ [11]. And the dual of the inclusion map Sym \hookrightarrow QSym is the abelianization map from $\mathcal{N S y m}$ to Sym (recall Sym is a self dual Hopf algebra). Now we identify \mathcal{P} as the dual vector space to Π by letting $P_{S}=\Theta_{S}^{*}$. Then as \mathcal{D}_{K} is dual to F_{K}, the map θ is dual to the inclusion map $i\left(P_{S}\right)=\sum_{\Lambda^{\prime}(J)=S} \mathcal{D}_{J}$. It is known that θ is a map of Hopf algebras [5,15] and thus it follows that \mathcal{P} is a Hopf subalgebra of $\mathcal{N S y m}$.

It is known that Ω is self dual and the dual of $\hat{\theta}$ is the inclusion map $\Omega \hookrightarrow S y m$. Hence the diagram of figure 10 dualizes producing the diagram of figure 11. Thus the image of \mathcal{P} under the abelianization map is Ω. We note here that in Stembridge's work there is no consideration to the inner multiplication (namely the algebra structure on each \mathcal{P}_{n}) which is the main object of this work.

Acknowledgments

I wish to thank Louis Billera for suggesting the possible existence of the peak algebra and Richard Stanley for suggesting that exercise 7.95 [13] might be relevant to the proof. I would also like to thank Marcelo Aguiar for helpful conversations regarding the connections between the peak algebra \mathcal{P} and Stembridge's peak algebra Π, and Stephanie van Willigenburg for helpful comments on this document.

References

1. D. Bayer and P. Diaconis, "Trailing the dovetail shuffle to its lair," Ann. Appl. Probab. 2(2) (1992), 294-313.
2. F. Bergeron and N. Bergeron, "Orthogonal idempotents in the descent algebra of B_{n} and applications," J. Pure Appl. Algebra 79(2) (1992), 109-129.
3. F. Bergeron, N. Bergeron, R.B. Howlett, and D.E. Taylor, "A decomposition of the descent algebra of a finite Coxeter group," J. Algebraic Combinatorics 1 (1992), 23-44.
4. F. Bergeron, A. Garcia, and C. Reutenauer, "Homomorphisms between Solomon's descent algebra," J. Algebra 150 (1992), 503-519.
5. N. Bergeron, S. Mykytiuk, F. Sottile, and S. van Willigenburg, "Shifted quasisymmetric functions and the Hopf algebra of peak functions," Discrete Math. 246 (2002), 57-66.
6. P. Cellini, "A general commutative descent algebra," J. Algebra 175 (1995), 990-1014.
7. P. Doyle and D. Rockmore, "Riffles, ruffles, and the turning algebra," preprint.
8. A.M. Garsia and C. Reutenauer, "A decomposition of Solomon's descent algebra," Adv. in Math. 77 (1989), 189-262.
9. I.M. Gessel, "Multipartite P-partitions and inner products of skew Schur functions," Contemp. Math. 34 (1984), 289-301.
10. J.L. Loday, Opérations sur l'homologie cyclique des algèbre commutatives, Invent. Math. 96 (1989), 205-230.
11. C. Malvenuto and C. Reutenauer, "Duality between quasisymmetric functions and the Solomon descent algebra," J. Algebra 177 (1995), 967-982.
12. L. Solomon, "A Mackey formula in the group ring of a Coxeter group," J. Algebra 41(2) (1976), 255-268.
13. R.P. Stanley, Enumerative Combinatorics, Cambridge University Press, Cambridge, 1999, Vol. 2.
14. R.P. Stanley, "Ordered structures and partitions," Mem. Amer. Math. Soc. 119 (1972).
15. J.R. Stembridge, "Enriched P-partitions," Trans. Amer. Math. Soc. 349 (1997), 763-788.
