
Journal of Algebraic Combinatorics, 18, 135–151, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Actions of Finite Hypergroups

V.S. SUNDER sunder@imsc.res.in
Institute of Mathematical Sciences, Madras 600113, India

N.J. WILDBERGER norman@maths.unsw.edu.au
School of Mathematics, UNSW, Sydney 2052, Australia

Received December 13, 2001; Revised January 6, 2003

Abstract. This paper is concerned with actions of finite hypergroups on sets. After introducing the definitions
in the first section, we use the notion of ‘maximal actions’ to characterise those hypergroups which arise from
association schemes, introduce the natural sub-class of *-actions of a hypergroup and introduce a geometric
condition for the existence of *-actions of a Hermitian hypergroup. Following an insightful suggestion of Eiichi
Bannai we obtain an example of the surprising phenomenon of a 3-element hypergroup with infinitely many
pairwise inequivalent irreducible *-actions.
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1. Introduction

We begin with a brief bird’s eye overview of this paper.
Section 1 is devoted to a review of the definition of a hypergroup, some of its conse-

quences, and some of the better known examples of hypergroups.
In Section 2, we introduce the central notion of the paper—that of an ‘action of a hyper-

group’. After a preliminary result, we focus on what we term ‘maximal actions’, and use
these to obtain a characterisation—see Theorem 2.9—of those hypergroups which come
from association schemes.

After a brief Section 3, in which we direct attention to ‘*-actions’, we show in
Section 4, that these ‘*-actions’, at least in the case of Hermitian hypergroups (those hy-
pergroups where the involution is trivial), admit a pleasant geometric reformulation—see
Theorem 4.2.

In the final Section 5, we use Theorem 4.2 to exhibit an example of the phenemenon of
a finite Hermitian hypergroup possessing an infinite number of actions which are pairwise
inequivalent.

Definition 1.1 A hypergroup1 is a distinguished linear basis K = {c0, c1, . . . , cn}
of a complex unital associative ∗-algebra CK satisfying the following conditions, for
0 ≤ i, j ≤ n:
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(i) ci c j = ∑n
k=0 nk

i j ck, where

nk
i j ≥ 0 ∀ k (1.1)

n∑
k=0

nk
i j = 1; (1.2)

(ii) c0 is the multiplicative identity for CK —i.e.,

n j
0i = n j

i0 = δi, j (the ‘Kronecker delta’) and

(iii) K is a self-adjoint set—i.e., there exists an involutive mapping i 	→ i∗ of {0, 1, . . . , n}
such that ci∗ = c∗

i ; and further,

n0
i j > 0 ⇔ i = j∗. (1.3)

With the foregoing notation, the weight of the element ci is defined by w(ci ) = (n0
i∗i )

−1,

and the weight of the hypergroup K is defined by w(K ) = ∑n
i=0 w(ci ).

Here are some simple consequences of these axioms. (Some of these facts have also been
discussed in [5].)

Proposition 1.2 Suppose K = {c0, c1, . . . , cn} is as in Definition 1.1. Fix 0 ≤ i, j, k ≤ n;
then, we have

(a) nk
i j = nk∗

j∗i∗

(b)
nk

i j

w(ck)
= n j

i∗k

w(c j )

(c)
nk

i j

w(ck∗ )
= ni

k j∗

w(ci∗ )
.

Proof:

(a) This follows from the equation defining the structure constants nk
i j (upon taking adjoints

and using the fact that the structure constants are real).
(b) It follows from (a) that ck∗ci = ∑n

l=0 nl
i∗kcl∗ ; hence, the coefficient of c0 in the product

(ck∗ci )c j is seen to be n j
i∗k(w(c j ))−1. On the other hand, the coefficient of c0 in the

product ck∗ (ci c j ) is clearly nk
i j (w(ck))−1.

(c) Exactly as in (b), compute the coefficient of c0 in the product (ci c j ck∗ ) in two ways.

Given a (finite) hypergroup K as above, its Haar measure is the element e0 ∈ CK
defined by

e0 = w(K )−1
n∑

i=0

w(ci )ci . (1.4)
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It is well-known (and is a consequence of the following lemma—for whose explicit
statement and proof we thank the referee) that e0 is a central projection in CK ; more
precisely,

e0 = e∗
0 = e2

0 = ci e0 = e0ci ∀ i. (1.5)

Lemma 1.3 With the foregoing notation, we have

w(ci ) = w(ci∗ ) ∀ i.

Proof: Deduce from parts (a) and (b) of Proposition 1.2 that for all i, j, k,

nk
i j

w(ck)
= n j∗

k∗i

w(c j )
= n j∗

k∗i

w(c j∗ )

w(c j∗ )

w(c j )
= ni

k j∗

w(ci )

w(c j∗ )

w(c j )
. (1.6)

Then,

w(K )e0c j =
∑

i

w(ci )ci c j

=
∑
i,k

w(ci )n
k
i j ck

=
∑
i,k

w(ci )
nk

i j

w(ck)
w(ck)ck

=
∑
i,k

w(ci )
ni

k j∗

w(ci )

w(c j∗ )

w(c j )
w(ck)ck (by Eq. (1.6))

= w(c j∗ )

w(c j )

∑
k

( ∑
i

ni
k j∗

)
w(ck)ck

= w(c j∗ )

w(c j )
w(K )e0.

Hence

e0c j = w(c j∗ )

w(c j )
e0.

On the other hand,

w(K )c j e0 =
∑

i

w(ci )c j ci

=
∑
i,k

w(ci )n
k
ji ck
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=
∑
i,k

w(ci )
nk

ji

w(ck)
w(ck)ck

=
∑
i,k

w(ci )
ni

j∗k

w(ci )
w(ck)ck (by Proposition 1.2(b))

=
∑

k

( ∑
i

ni∗
k∗ j

)
w(ck)ck (by Proposition 1.2(a))

= w(K )e0.

Hence, c j e0 = e0, and

e2
0 = e0(c j e0) = (e0c j )e0 = w(c j∗ )

w(c j )
e2

0.

Now,

e2
0 = w(K )−2

∑
i, j,k

w(ci )w(c j )n
k
i j ck

= w(K )−2
∑

k

( ∑
i, j

w(ci )w(c j )n
k
i j

)
ck

�= 0,

since the coefficient of c0 is non-negative and at least

w(K )−2 = w(K )−2w(c0)2n0
00.

We may hence conclude that w(c j∗ ) = w(c j ) and that e0c j = e0. This proves the lemma
and explicitly demonstrates that e0 is a central idempotent.

We turn next to some examples; in addition to three hypergroups which are naturally
associated with any finite group, and those associated with (not necessarily commutative)
association schemes, we mention examples stemming from the theory of subfactors—see
[2]—which are of a much more general nature than those coming from groups (in a sense
that can be made precise—see [3]).

Example 1.4

(a) Let G be a finite group.

(i) Define K = G, with the involutive algebra structure on the complex group algebra
being the natural one.

(ii) Let {C0 = {e}, C1, . . . , Cn} be the set of conjugacy classes in G. (In the preceding
sentence and throughout this example, we denote the identity element of G by e.)
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Consider the elements ci ∈ CG defined by ci = |Ci |−1 ∑
g∈Ci

g; then K (G) =
{ci : 0 ≤ i ≤ n} is a basis for the algebra CK (G), which can be identified with the
centre of the group algebra CG. This set K (G) is a hypergroup, and is called the
class hypergroup of the group G. In this case, it is easy to see that w(ci ) = |Ci |.

(iii) Let {χ0 = 1, χ1, . . . , χn} be an enumeration of the set of irreducible characters
of G, and define ci = (χi (e))−1χi . Again, it is seen that K̂ (G) = {c0, c1, . . . , cn}
is a basis for the algebra CK̂ (G), which can be identified with the algebra of
central functions on G. This is again a hypergroup, and is called the character
hypergroup of G. It is seen that in this case, w(ci ) = χi (e)2.

(It is a fact—see [8], for instance—that the hypergroups K (G) and K̂ (G) are com-
mutative and are ‘duals’ of one another.)

The preceding examples all had the feature that the weight of every element of the
hypergroup is an integer. The next example also has this feature, but need have nothing
to do with groups.

(b) Suppose {A0, A1, . . . , An} is (the set of 0,1-matrices corresponding to) an association
scheme—see [1]—on a finite set of k elements. This means (essentially) that each Ai

is a k × k matrix with all entries being 0 or 1, such that (i) A0 is the k × k identity
matrix Ik, (ii) there exist non-negative integers pl

i j such that Ai A j = ∑n
l=0 pl

i j Al , (iii)
the collection {Ai : 0 ≤ i ≤ n} is closed under formation of matrix-transpose, and (iv)∑n

i=0 Ai is the matrix Jk, all of whose entries are equal to 1. If Ai∗ is the transpose
of Ai , then the number wi = (p0

i∗i ) is called the ‘valency’ of the ‘i-th class’ of the
association scheme. It is a fact that if we define ci = w−1

i Ai , then {c0, c1, . . . , cn}
is a hypergroup with w(ci ) = wi , and we shall call this the hypergroup of the given
association scheme. (We will return later to the question of which hypergroups arise
from association schemes in this fashion.)

(c) The next example has to do with tensor-products (or ‘Connes’ fusion’) of bimod-
ules (which are ‘of finite type’), over von Neumann factors of type II1. Given two
such bimodules P X Q and QYR , where P, Q and R are II1 factors, this construc-
tion yields a bimodule P (X ⊗Q Y )R , while the ‘contragredient’ of X is a bimod-
ule Q X̄ P . It turns out that, analogous to example (a)(ii), but for an infinite compact
group, the collection G(R) of isomorphism classes of R − R bimodules satisfies all
the requirements of a hypergroup with the exception of our finiteness requirement.
However, it turns out—see [6], for instance—that G(R) has many interesting finite sub-
hypergroups.

Thus, if we have an inclusion N ⊂ M of II1 factors, and let α denote the isomorphism
class of L2(M, tr ) regarded as an N − N bimodule, then this bimodule is ‘of finite type’
precisely when the so-called Jones index [M : N ] is finite; and the smallest subclass K
of G(N ) which contains α and is ‘closed under Connes’ fusion’ turns out to be finite
in many interesting cases (the so-called finite depth case). Furthermore, most of the
examples discussed in (a) above, are known to arise in this fashion. It is to be noted that
these examples often exhibit dimension functions which assume non-integral values.
For example, the hypergroup Kn of the ‘so-called’ An-subfactor has [ n+1

2 ] elements
(where [m] denotes the integral part of m) and the corresponding weights are given by
w(c j ) = (

sin( (2 j+1)π
n+1 )

sin( π
n+1 ) )2. (See [7] for details.)
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2. Actions

In the sequel, given a finite set X, we shall write sX for the simplex based on X, by which
we mean the subset of R

X defined by s X = {α ∈ R
X : αx ≥ 0 ∀ x ∈ X,

∑
x∈X αx = 1}. Let

MX (C) denote the set of matrices with rows and columns indexed by X . We shall denote by
Aff (X ) the set of affine (or convex) maps of sX, and make the natural identification—as in
linear algebra—between Aff (X ) and those elements of MX (C) which are column-stochastic.
Thus the map T ∈ Aff (X ) is identified with the column-stochastic matrix (tx,y)x,y∈X pre-
cisely when (T α)x = ∑

y tx,yαy .

We come now to the central notion of this paper.

Definition 2.1 An action of a hypergroup K on a finite set X is a mapping K � ci 	→
π (ci ) ∈ Aff (X ) such that

π (c0) = I (2.7)

π (ci )π (c j ) =
n∑

k=1

nk
i jπ (ck) (2.8)

where we think of elements of Aff (X ) as column-stochastic X × X matrices and I denotes
the identity matrix.

The action π : K → Aff (X ) is called a *-action if, in addition, the following condition
is satisfied:

π (ci∗ ) = π (ci )
∗ ∀ i.

Observe that if π is a *-action, then each π (ci ) is a doubly stochastic matrix.
Note that if π : K → Aff (X ) is an action, we may, by linearity, extend π to a map from

the convex hull, co(K ), of K in CK , (which can be identified in a natural manner with sK)
to Aff (X ). Thus, for instance, π (e0) = w(K )−1 ∑n

i=0 w(ci )π (ci ).

Example 2.2

(i) Let K be any finite hypergroup and let X = K , and define the regular action by
π (ci )c j ,ck = n j

ik . This is easily seen to be an action of K (because of associativity of
multiplication in CK ). It is immediate from the definition that this left-regular action
of K is a *-action if and only if the following condition is satisfied:

nk
i j = n j

i∗k ∀ i, j, k. (2.9)

On the other hand, it is seen from Proposition 1.2(b) (and the fact that w(c0) = 1)
that a hypergroup will satisfy condition 2.9 precisely when w(ci ) = 1 ∀ i, which,
in turn, is seen to happen precisely when the hypergroup is a group in the sense of
Example 1.4(a)(i).

(ii) If G is a finite group, then the class hypergroup K (G) admits a natural action on the
set G, which is inherited from the product in the group algebra CG.
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(iii) If we have an inclusion N ⊂ M of II1 factors—see Example 1.4(c)—such that the
Jones index [M : N ] is finite, then it turns out that the ‘infinite hypergroup’ G(N ) of
isomorphism classes of ‘irreducible N − N bimodules acts, by Connes’ fusion, on the
setG(N , M) of isomorphism classes of irreducible N −M bimodules. As before, if this
subfactor turns out to be of ‘finite depth’, then we can extract a finite sub-hypergroup
K of G(N ) and a finite subset X of G(N , M) such that K acts on X .

Proposition 2.3 The following conditions on an action π : K → Aff (X ) are equivalent:
(i) there exists no non-empty proper subset X0 ⊂ X with the property that the sub-simplex

sX0 is stable under π (ci ) for all i;
(ii) there exist strictly positive numbers αx , x ∈ X such that

∑
x∈X αx = 1 and π (e0)x,y =

αx ∀ x, y ∈ X ;
(iii) for each x, y ∈ X, there exists ci ∈ K such that π (ci )x,y > 0.

When these equivalent conditions are satisfied, the action is said to be irreducible.

Proof:

(i) ⇒ (ii) Suppose there are x, y ∈ X with π (e0)x,y = 0. Let u be the |X |-tuple with y-
coordinate 1 and all others 0. Then the vector defined by α = π (e0)u has x-coordinate
equal to 0. If α = 0 then the y-column of π (e0) must be 0; but this dominates a (strictly)
positive multiple of the y-column of π (c0), which contradicts π (c0)y,y = 1. So α �= 0.
Let X0 = {x ∈ X : αx > 0}. Since π (ci )α = α for all i , it follows that π (ci )x,y = 0 for
all x /∈ X0, y ∈ X0. Hence π (ci )(s X0) ⊂ s X0 for all i , which contradicts assumption
(i). Therefore π (e0)x,y > 0 for all x, y ∈ X . Now π (e0) is a positive idempotent
matrix, and Perron’s theorem implies that π (e0) has column rank 1. Since all column
sums are 1, the columns must be equal and (ii) follows.

(ii) ⇒ (iii) This follows from the strict positivity of the weights w(ci ) and the fact that

0 < αx

= π (e0)x,y

= w(K )−1
n∑

i=0

w(ci )π (ci )x,y .

(iii) ⇒ (i) This is obvious.

Remark 2.4

(a) Let G be a finite group and let K = G as in Example 1.4(a)(i). It is then an easy matter
to verify that the notion of an action of the hypergroup K on a set X is exactly the same
as the notion of an action of the group G on the set X, and that further, irreducibility
of the action of K is the same as transitivity of the action of the group G.

(b) There is a notion of a transitivity of an action of a hypergroup which is strictly stronger
than the notion of irreducibility (at least for a general hypergroup), which has the
pleasant feature that transitive actions of hypergroups are in bijective correspondence
with sub-hypergroups. We shall not say more about this here.
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Definition 2.5 Given an irreducible action of a hypergroup K on a set X as in
Proposition 2.3, if the numbers αx , x ∈ X are as in Proposition 2.3(b), we define weights
on the set X, as well as the weight of the set X by the prescription

w(x) = αx

miny∈X αy
, (2.10)

w(X ) =
∑
x∈X

w(x)

= 1

miny∈X αy
. (2.11)

The next theorem establishes two properties of the weights on a set underlying an irre-
ducible action of a hypergroup.

Theorem 2.6 Let π : K → Aff (X ) be an irreducible action of a hypergroup K on a set
X. Then,

(i) w(X ) ≤ w(K ); and
(ii) for any β = ((βx ))x∈X , if we define ||β||w = (

∑
x

|βx |2
w(x) )

1
2 , it follows that

||π (c)β||w ≤ ||β||w ∀ β ∈ C
X , c ∈ co(K ), (2.12)

where we think of π as being extended by linearity to all of co(K ).

Proof:

(i) Note that if αx , x ∈ X are as in Proposition 2.3(ii), and if x0 ∈ X is such that

αx0 = min
x∈X

αx = w(X )−1,

then,

w(X )−1 = αx0

= π (e0)x0,x0

= w(K )−1
n∑

i=0

w(ci ) π (ci )x0,x0

≥ w(K )−1 w(c0) π (c0)x0,x0

= w(K )−1,

as desired.
(ii) With x0 as in the proof of (i) above, notice that w(x) = αx

αx0
. Let D denote the X × X

matrix defined by dx,y = δx,y
αx
αx0

. We shall think of X -tuples β = ((βx ))x∈X as column
vectors, and write ||β|| = (

∑
x |βx |2)

1
2 . Then, by definition, we have

||β||w = ||D− 1
2 β||.
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Thus, it is seen that we need to show that for arbitrary c ∈ co(K ), if we set T = D− 1
2 π (c)

D
1
2 , then ||T || ≤ 1, where || · || denotes the usual operator norm.
Observe that the matrix P = D− 1

2 π (e0)D
1
2 is given by px,y = √

αxαy, and (since∑
x αx = 1) represents the orthogonal projection onto the one-dimensional subspace

spanned by the vector v = ((
√

αx )).
Notice next that ce0 = e0, so π (c)((αx )) = ((αx )), and consequently,

T v = (D− 1
2 π (c)D

1
2 )((

√
αx ))

= D− 1
2 π (c)

((
αx√
αx0

))

= D− 1
2

((
αx√
αx0

))
= v.

On the other hand, π (c)∗ is a row-stochastic matrix (since π (c) is column-stochastic) and
hence,

T ∗v = D
1
2 π (c)∗ D− 1

2
((√

αx
))

= D
1
2 π (c)∗

((√
αx0

))
= D

1
2
((√

αx0

))
= v.

Thus T ∗T v = v. Since T ∗T is a Hermitian matrix, it is unitarily diagonalisable, and
hence its norm equals its spectral radius. Since T ∗T has non-negative entries, and the
positive vector v is fixed by T ∗T , it follows from the Perron-Frobenius theorem that the
spectral radius, and hence the norm, of T ∗T must be 1.

Remark 2.7 Theorem 2.6(ii), in the special case of the left-regular action of a commuta-
tive hypergroup, appears in [8], where it is interpreted as an ‘entropy inequality’.

Observe also that, in the notation of Theorem 2.6, the obvious inequality |X | ≤ w(X ),
together with Theorem 2.6(i), shows that |X | ≤ w(K ). This is the justification for the
terminology used in the next definition.

Definition 2.8 An irreducible action π : K → Aff (X ) is said to be a maximal action if
|X | = w(K ).

Thus, in order for a hypergroup to admit a maximal action, it is clearly necessary that
w(K ) is an integer.

Theorem 2.9
(a) Suppose a hypergroup K admits a maximal action π : K → Aff (X ) which is also a

*-action. Then the matrices {Ai = w(ci )π (ci ), 0 ≤ i ≤ n} define an association
scheme—see Example 1.4(b)—and in particular, w(ci ) ∈ N ∀ i, and the hypergroup K
comes from an association scheme (in the sense of Example 1.4(b)).
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(b) Conversely, if a hypergroup K comes from an association scheme in the sense of
Example 1.4(b), then K admits a maximal *-action.

Proof:

(a) First observe that since w(x) ≥ 1 ∀ x ∈ X, we have

w(K ) = |X | ≤
∑
x∈X

w(x) = w(X ) ≤ w(K ).

Hence we necessarily have w(x) = 1 ∀ x ∈ X. In particular, π (e0)x,y = 1
k , where

k = |X |. Notice next that, for any x ∈ X, we have

1

k
= π (e0)x,x

= w(K )−1
k∑

i=0

w(ci )π (ci )x,x

≥ w(K )−1w(c0)π (c0)x,x

= w(K )−1

= 1

k
,

from which we may deduce that

π (ci )x,x = 0, ∀ x ∈ X, 0 < i ≤ n. (2.13)

Since π is a *-action, notice that if 0 ≤ i, j ≤ n, then, since n0
i j∗ = δi, jw(ci )−1, it

follows from Eq. (2.13) that

(π (ci )π (c j )
∗)x,x = π (ci c j∗ )x,x

=
n∑

l=0

nl
i j∗π (cl)x,x

= δi, jw(ci )
−1 +

n∑
l=1

nl
i j∗π (cl)x,x

= δi, jw(ci )
−1. (2.14)

Since π (ci ) has non-negative entries, this shows that

i �= j, π (ci )x,y > 0 ⇒ π (c j )x,y = 0.

On the other hand,

n∑
i=0

w(ci )π (ci )x,y = w(K )π (e0)x,y = 1 ∀ x, y;
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it follows from the last two equations that Ai = w(ci )π (ci ) is a matrix all of whose
entries are 0 or 1. Further,

∑n
i=0 Ai is the k × k matrix Jk (all of whose entries are equal

to 1), and it follows from Lemma 1.3 that Ai∗ = A∗
i . Deduce now from Eq. (2.14) that

(Ai Ai∗ )x,x = w(ci ) ∀ i, and in particular, w(ci ) is a positive integer for each i. It follows
easily now that {A0, A1, . . . , An} is an association scheme as in Example 1.4(b); further,
since the matrices {Ai : 0 ≤ i ≤ n} are clearly linearly independent—they are actually
orthogonal with respect to the natural inner-product on the set of matrices—it is seen
that the mapping ci 	→ w(ci )−1 Ai induces a linear isomorphism of CK onto the algebra
spanned by the Ai ’s and consequently, the hypergroup K does indeed come from the
association scheme as asserted.

(b) This is easy: simply define π (ci ) = w(ci )−1 Ai and verify that this is an action with all
the desired properties.

3. *-Actions

In what follows, we shall classify all *-actions of some commutative hypergroups. (Actions
πi : K → Aff Xi , i = 1, 2 are said to be equivalent if there exists a bijection σ : X1 → X2

such that π1(c j )x,y = π2(c j )σ (x),σ (y) ∀ c j ∈ K , x, y ∈ X1.) Since every hypergroup admits
a unique (necessarily irreducible) *-action on a singleton set, we only consider non-trivial
actions in what follows.

As a first step, we make the observation that any *-action breaks up naturally as a direct
sum of irreducible *-actions. This is because any doubly stochastic matrix which is a self-
adjoint projection of rank r is, up to conjugation by permutation matrices, nothing but a
direct sum of matrices of the form Pk—where Pk denotes the k × k matrix all of whose
entries are equal to 1

k . It follows that in order to classify *-actions, we only need to classify
irreducible *-actions. We shall use the following terminology and facts in the process.

Suppose K = {c0, c1, . . . , cn} is a finite commutative hypergroup, and suppose K̂ =
{χ0 = 1, χ1, . . . , χn} is the set of characters of K . Thus, each χ j is a multiplicative ho-
momorphism from CK into C such that χ j (c0) = 1. It is known that in general, K̂ is a
signed hypergroup (with respect to pointwise products and complex conjugation) meaning
that there exist real, not necessarily non-negative, constants qk

i j such that

χiχ j =
n∑

k=0

qk
i jχk

n∑
k=0

qk
i j = 1

∃ unique î such that χî = χi

q0
i j �= 0 ⇔ j = î

q0
i j > 0 ⇔ j = î

(Most recently, and in the language used in this paper, these facts can be found in [8].
They may also be found in [1] (Theorems II.5.9 and II.5.10), where the result is credited to
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Kawada [4]. Kawada worked with ‘C-algebras’ which are just signed hypergroups whose
basis elements are multiplied by some positive scalars.)

In many cases, K̂ might turn out to be a bona fide (positive) hypergroup. For instance,
the dual of the class hypergroup K (G) of a finite group G—see Example 1.4(a)(ii)—is
precisely the character hypergroup K̂ (G)—see Example 1.4(a)(iii).

The positive number (q0
î i

)−1 is called the weight of χi and denoted by w(χi ). For con-
venience of reference, we list some facts concerning characters and ‘duals’ of finite com-
mutative hypergroups. (These facts, in this language, may be found in [8]; in fact, parts (a),
(c), (d) of the next proposition may also be found in Section II.5 of [1].)

Proposition 3.1 Suppose K = {c0, . . . , cn} is a finite commutative hypergroup and K̂ =
{χ0, . . . , χn} is its dual signed hypergroup as above. Then,

(a) χi (c j∗ ) = χi (c j ) ∀ i, j ;
(b) |χi (c j )| ≤ 1, ∀ i, j ;
(c) if we let

ei = w(χi )

w(K )

n∑
k=0

w(ck)χi (ck∗ )ck, (3.15)

then {e0, e1, . . . , en} is a basis of self-adjoint projections for CK ;
(d) ci = ∑n

j=0 χ j (ci )e j ∀ i.

Now suppose π : K → Aff (X ) is a *-action of K . Then, π extends, by linearity, to
a *-homomorphism from CK into MX (C), and consequently there exist well-defined
non-negative integers b0, b1, . . . , bn which are the multiplicities with which the charac-
ters χ0, χ1, . . . , χn feature in the representation π. Alternatively, using Eq. (3.15), we see
that bi = χ (ei ), where we write χ (x) = Tr(π (x)) for all x ∈ CK .

In the sequel, we shall write b = [b0, . . . , bn] for the multiplicity vector for an action.
The following lists some facts concerning actions that we will use constantly in our

subsequent discussion of *-actions.

Proposition 3.2 Suppose π : K → Aff X is an irreducible *-action of a finite commutative
hypergroup K = {c0 . . . , cn} on a set X with k elements. With the foregoing notation, we
have:
(a) χ (c0) = k = |X |;
(b) k ≤ w(K );
(c) χ (ci ) ≥ 0 ∀ i ;
(d) b0 = χ (e0) = 1;
(e) bi = χ (ei ) ≤ w(χi ) ∀ i ;
(f) π (e0) is the matrix all of whose entries are equal to 1

k ; this matrix will henceforth be
denoted by the symbol Pk .

Proof: Assertions (a) and (c) are obvious while (b) and (d) are consequences of
Theorem 2.6(i) and Proposition 2.3, respectively; also, (f) is a consequence of
Proposition 2.3 and the obvious fact that Pk is the unique k × k doubly stochastic matrix
which is a projection of rank one.
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As for (e), since χ (ck), w(ck) ≥ 0 ∀ k, it follows from Proposition 3.1(c) and (b) that

|bi | = |T r π (ei )|
≤ w(χi )

w(K )

n∑
k=0

w(ck)χ (ck)

= w(χi ) χ (e0)

= w(χi ),

and the proof is complete.

4. *-Actions of Hermitian hypergroups

In this section, we first describe a reformulation of what it means to have an irreducible
*-action of a Hermitian hypergroup—i.e., a hypergroup where ci∗ = ci for all i . We will
need some terminology.

Remark 4.1 What is usually referred to as the standard (k −1)-simplex is the convex hull
of the standard basis—call it {x1, . . . , xk}—in R

k ; the centroid of this simplex is the vector
with all co-ordinates equal to 1

k . Hence, if we define v j = x j − 1
k

∑k
l=1 xl , then we see that

v1, . . . , vk are k vectors of what might be called a regular simplex centered at the origin; all
these vectors lie in the orthogonal complement of the vector

∑k
l=1 xl , and are easily verified

to satisfy the conditions:

〈vl , v j 〉 = δl j − 1

k
(4.16)

k∑
j=1

v j = 0. (4.17)

It should be observed—as was pointed out to us by the referee—that condition (4.17) is a
consequence of condition (4.16), as is seen by computing the inner product of

∑k
l=1 vl with

itself. It is clear, on the other hand that if z1, . . . , zk is any collection of k vectors in R
k−1

satisfying condition 4.16, then there exists a unique orthogonal transformation mapping
R

k−1 onto the hyperplane spanned by {v1, . . . , vk} which maps z j onto v j for 1 ≤ j ≤ k.
For this reason, we shall say that a collection {z1, . . . , zk} ⊂ R

k−1 are the vertices of a
regular normalised (k − 1)-simplex in R

k−1 centered at 0 precisely when they satisfy the
condition 4.16. In this case the simplex they span is

�z =
{
v ∈ R

k−1 : 〈v, z j 〉 + 1

k
≥ 0 ∀ j

}
.

Theorem 4.2 Let K be a Hermitian hypergroup.
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(a) Suppose π is an irreducible *-action of K on a set X with |X | = k. Suppose the
‘multiplicity vector’ associated with this action is given by b = [b0 = 1, b1, . . . , bn].
Consider the sequence

χ1, . . . , χ1; χ2, . . . , χ2; . . . ; χn, . . . , χn (4.18)

where χi is repeated bi times, for 1 ≤ i ≤ n. Let us re-write the sequence displayed in
(4.18) as: φ1, φ2, . . . , φk−1.

For 0 ≤ j ≤ n, consider the (k − 1) × (k − 1) diagonal matrix defined by

Tj = diag(φ1(c j ), . . . , φk−1(c j )).

Then there exist z1, . . . , zk ∈ R
k−1 such that

(i) z1, . . . , zk are the vertices of a regular normalised (k −1)-simplex in R
k−1 centered

at the origin; and
(ii) each Tj , 0 ≤ j ≤ n maps the convex hull of {zi : 1 ≤ i ≤ k} into itself.

(b) Conversely, if there exists {zi : 1 ≤ i ≤ k} ⊂ R
k−1 satisfying (i) and (ii) above, then

there exists an irreducible *-action of K on a set of k elements with multiplicity vector b.
(c) Finally, if {z(ε)

i : 1 ≤ i ≤ k}, ε = 1, 2 are two sets of points satisfying (i) and (ii) above,
then the associated *-actions are equivalent if and only if there exist an orthogonal
transformation S : R

k−1 → R
k−1 which commutes with each Tj , and a permutation

σ ∈ Sk such that Sz(1)
i = z(2)

σ (i) ∀ i .

Proof:

(a) We adopt the convention that the indices i, j, l always satisfy 0 ≤ i ≤ n, 1 ≤ j, l ≤ k.

Let us write φk(ci ) = 1 ∀ i. Since the hypergroup is Hermitian (and hence commu-
tative), it is clear that if we are given an irreducible *-action π : K → Aff X on a set
X = {x j } j with multiplicity vector b, then {π (ci )}i is a collection of commuting k × k
Hermitian matrices with non-negative entries. We regard the π (ci )’s as the matrices
of linear operators on the real Hilbert space �2

R
(X ) with respect to the standard basis

{x j } j . Since these are pairwise commuting Hermitian operators, we can—by definition
of b—find an orthonormal basis {y j } j of �2

R
(X ) such that

π (ci )y j = φ j (ci )y j .

Note that π (e0) = Pk , by the assumed irreducibility of the *-action. (See Propo-
sition 3.2 for the definition of Pk .) So we may assume that yk = 1√

k

∑k
j=1 x j . It fol-

lows from the discussion preceding the statement of this theorem that if we define
v j = x j − 1√

k
yk, then {v1, . . . , vk} are the vertices of a regular normalised (k − 1)-

simplex in the subspace {yk}⊥ = span{y1, . . . , yk−1}, which is centered at the origin;
further, the simplex they span is given by �v = �x − 1√

k
yk = �x − π (e0)(�x ), and

is consequently mapped into itself by each π (ci ). If we now set zl = [zl1, · · · , zl,k−1],
where zl j = 〈vl , y j 〉, the construction implies that the zl’s are the vertices of a reg-
ular normalised simplex in R

k−1 which is mapped into itself by each of the matrices
Ti , 0 ≤ i ≤ n.
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(b) Conversely, if we are given a regular normalised simplex in R
k−1 with vertices {zl =

[zl,1, . . . , zl,k−1] : 1 ≤ l ≤ k} which is centered at 0, and is left invariant by the matrices
Ti for each i, define the vectors vl in R

k by

vl =
[

zl,1, . . . , zl,k−1,
1√
k

]

and note that {vl : 1 ≤ l ≤ k} is an orthonormal basis for R
k .

Next consider the (real) diagonal k × k matrices T̃i , 0 ≤ i ≤ n, defined by

T̃i = Ti ⊕ 11,

where 11 denotes the 1 × 1 ‘identity matrix’; then we see that {T̃i : 0 ≤ i ≤ n} is a
collection of Hermitian matrices which satisfy

T̃i T̃m =
n∑

p=0

n p
im T̃p ∀ 0 ≤ i, m ≤ n.

Further, it should be clear that for each i , T̃i maps the convex hull �v of {v j : 1 ≤ j ≤ k}
into itself.

It follows that if we write the matrices of the T̃i ’s with respect to the orthonormal
basis {v j : 1 ≤ j ≤ k}, i.e., if we define the matrices {π (ci ) : 0 ≤ i ≤ n} by

(π (ci )) jl = 〈T̃ivl , v j 〉,

then π will define a *-action of K with multiplicity vector b.
(c) is an easy exercise in linear algebra.

5. An infinity of actions

We would like to acknowledge the suggestion made by E. Bannai that Theorem 4.2 was likely
to produce an example of a finite hypergroup with infinitely many pairwise inequivalent
irreducible *-actions.

Lemma 5.1 Suppose K = {c0, c1, c2} is a Hermitian 3-element hypergroup with character
table

c0 c1 c2

χ0 1 1 1

χ1 1 x1 x2

χ2 1 y1 y2

,

where x1, x2, y1, y2 ∈ (− 1
2 , 1

2 ). Then K admits infinitely many pairwise inequivalent irre-
ducible *-actions on a three element set, all with the multiplicity vector b = [1, 1, 1].
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Proof: Fix θ ∈ [0, 2π ], and define

z(θ )
j =

√
2

3

[
cos

(
θ + 2 jπ

3

)
, sin

(
θ + 2 jπ

3

)]
;

it is clear that z(θ )
1 , z(θ )

2 , z(θ )
3 are the vertices of a regular normalised 2-simplex in R

2 centered
at the origin. In the notation of Theorem 4.2, and with x0 = y0 = 1, let

T0 =
[

x0 0

0 y0

]
, T1 =

[
x1 0

0 y1

]
, T2 =

[
x2 0

0 y2

]
.

Let �(θ ) denote the regular normalised simplex spanned by the z(θ )
i ’s; then (see

Remark 4.1), we have:

�(θ ) =
{
v ∈ R

2 :
〈
v, z(θ )

i

〉 ≥ −1

3

}
.

Notice then, that for 1 ≤ k, l ≤ 3 and j = 1, 2, we have

∣∣〈Tj z
(θ )
k , z(θ )

l

〉∣∣ ≤ ∣∣∣∣Tj z
(θ )
k

∣∣∣∣ ∣∣∣∣z(θ )
l

∣∣∣∣
<

1

2

∣∣∣∣z(θ )
k

∣∣∣∣ ∣∣∣∣z(θ )
l

∣∣∣∣
= 1

2

√
2

3

√
2

3

= 1

3
,

thereby establishing that �(θ ) is mapped into its interior by T1 and T2. Hence �(θ ) is mapped
into itself by each Ti .

Therefore, according to Theorem 4.2, each �(θ ) accounts for one irreducible *-action of
K on a 3-element set. On the other hand, since {χ j : 0 ≤ j ≤ 2} are the distinct characters
of K , it follows that the Ti ’s linearly span the set of all real diagonal matrices; consequently
only diagonal orthogonal matrices can commute with all the Ti ’s. We may finally conclude
from Theorem 4.2(c) that if 0 < |θ − θ ′| < 2π

3 , then the *-actions corresponding to �(θ )

and �(θ ′) are inequivalent; and the lemma is proved.

On the other hand, the existence of hypergroups satisfying the conditions of the above
lemma has been demonstrated in [9]; in fact, in that example, we have (see the Table (7.11)
on p. 30) x1 = 2

15 , y1 = −1
30 , x2 = −1

25 , y1 = 1
125 . We thus see that it can happen that a finite

hypergroup admits a continuum of pairwise inequivalent irreducible *-actions. It should
be remarked that since the above numbers are all bounded, in absolute value, by 1

7 , the
reasoning in the above lemma can be imitated to construct a continuum of actions of this
hypergroup on an 8-element set.
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Note

1. This definition actually only yields finite hypergroups, but we shall never consider any other kind here.
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