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Abstract. Let � be a graph with diameter d ≥ 2. Recall � is 1-homogeneous (in the sense of Nomura) whenever
for every edge xy of � the distance partition

{{z ∈ V (�) | ∂(z, y) = i, ∂(x, z) = j} | 0 ≤ i, j ≤ d}

is equitable and its parameters do not depend on the edge xy. Let � be 1-homogeneous. Then � is distance-regular
and also locally strongly regular with parameters (v′, k′, λ′, µ′), where v′ = k, k′ = a1, (v′ − k′ − 1)µ′ =
k′(k′ − 1 − λ′) and c2 ≥ µ′ + 1, since a µ-graph is a regular graph with valency µ′. If c2 = µ′ + 1 and c2 �= 1,
then � is a Terwilliger graph, i.e., all the µ-graphs of � are complete. In [11] we classified the Terwilliger 1-
homogeneous graphs with c2 ≥ 2 and obtained that there are only three such examples. In this article we consider
the case c2 = µ′ + 2 ≥ 3, i.e., the case when the µ-graphs of � are the Cocktail Party graphs, and obtain that
either λ′ = 0, µ′ = 2 or � is one of the following graphs: (i) a Johnson graph J (2m, m) with m ≥ 2, (ii) a folded
Johnson graph J̄ (4m, 2m) with m ≥ 3, (iii) a halved m-cube with m ≥ 4, (iv) a folded halved (2m)-cube with
m ≥ 5, (v) a Cocktail Party graph Km×2 with m ≥ 3, (vi) the Schläfli graph, (vii) the Gosset graph.
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1. Introduction

We study 1-homogeneous graphs in the sense of Nomura [16] (defined later in this section).
Some examples of such graphs are distance-regular graphs with at most one i , such that
ai �= 0 (e.g. bipartite graphs, complete multipartite graphs Km×t and generalized Odd
graphs, in particular triangle free strongly regular graphs), regular near (2n)-gons (i.e.,
distance-regular graphs with ai = ci a1 for all i and no induced K1,2,1), Taylor graphs
(antipodal distance-regular 2-covers of complete graphs with diameter three), the Johnson
graphs J (2d, d), the folded Johnson graphs J̄ (4d, 2d), the halved n-cubes, the folded halved
(4n)-cubes and 3-valent distance-regular graphs [11, Proposition 3.5].

Let � be a graph with diameter at least 2, and let x, y be vertices of � at distance 2.
Then the µ-graph of x and y is the subgraph of � induced by their common neighbours.
Let � be 1-homogeneous. Then � is distance-regular, locally strongly regular and, by
[11, Proposition 2.1], the local graphs have the same parameters. Let us denote them by
(v′, k ′, λ′, µ′). Obviously, we have v′ = k, k ′ = a1, (v′ − k ′ − 1)µ′ = k ′(k ′ − 1 − λ′)
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and c2 ≥ µ′ + 1, since a µ-graph is a regular graph with valency µ′ by [9, Theorem 3.1].
The case c2 = µ′ + 1 ≥ 2, i.e., the case when � is a Terwilliger graph, was classified in
[11]. The µ-graphs of Terwilliger graphs are complete graphs. Since many of the above
mentioned examples of 1-homogeneous graphs have the property that their µ-graphs are
complete multipartite graphs, it is natural to study 1-homogeneous graphs or even some
more general graphs satisfying this property. Alternative motivation comes from the study
of extended generalized quadrangles, see for example [5] and [22].

We establish some general properties of distance-regular graphs with certain local struc-
ture, parameters and eigenvalues. There are some families of 1-homogeneous graphs for
which we can show that their µ-graphs are complete multipartite. One such (obvious) ex-
ample is the case c2 = µ′ + 2 ≥ 3, i.e., the case when the µ-graphs are Cocktail Party
graphs. In this case we show that either λ′ = 0 and µ′ = 2 or the smallest eigenvalue of each
local graph is −2 and so, by Seidel’s classification [17], [3, Theorem 3.12.4], either λ′ = 0
and µ′ = 2 or each local graph of � is one of the well known strongly regular graphs. In the
latter case we show that � must be one of the well known distance-regular graphs. Before
we state the precise statement of our main result, we establish some notation and review
basic definitions, for more details see Brouwer, Cohen and Neumaier [3], and Godsil [8].
At the end of this section we describe the organization of this paper.

Let us first recall that an equitable partition of a graph is a partition π = {P1, . . . , Ps}
of its vertices into cells, such that for all i, j ∈ {1, . . . , s} the number ci j of neighbours,
which a vertex in the cell Pi has in the cell Pj , is independent of the choice of the vertex
in Pi . Let � be a connected graph with diameter d. For a vertex x of � we define �i (x)
to be the set of vertices at distance i from x , and set �(x) = �1(x). For y ∈ �i (x) and
integers j and h we define Dh

j (x, y) = � j (x) ∩ �h(y) and pi
jh(x, y) = |Dh

j (x, y)|. Then �

is i-homogeneous in the sense of Nomura [16] when the distance partition corresponding
to any pair x, y of vertices at distance i , i.e., the collection of nonempty sets D j

h (x, y), is
an equitable partition, and the parameters corresponding to all such equitable partitions are
independent of vertices x and y at distance i . Note that the graph � is 0-homogeneous if and
only if it is distance-regular, and that if � is 1-homogeneous then it is distance-regular.

Let � be a graph. As usually, we denote the distance between vertices x and y of � by
∂(x, y). If x, y and z are vertices of � such that ∂(x, y) = 1, ∂(x, z) = ∂(y, z) = 2, then
we define a (triple) intersection number α(x, y, z) = |�(x)∩�(y)∩�(z)| (see figure 2.1(b)
and (c) and also figure 1.1). We say that the parameter α of � exists when α = α(x, y, z)
for all triples of vertices (x, y, z) of � such that ∂(x, y) = 1, ∂(x, z) = ∂(y, z) = 2. If
� is 1-homogeneous graph with diameter d ≥ 2 and a2 �= 0, then α exists. A strongly
regular graph with a2 �= 0, that is locally strongly regular is 1-homogeneous if and only
if α exists (see figure 1.1(a)). Similarly, we say that the intersection number pi

jh exists in
a graph � if pi

jh(x, y) = pi
jh for all pairs of vertices x and y at distance i . Of course, if �

is distance-regular, then for all i, j and h the numbers pi
jh exist. Let ai (x, y) := pi

1i (x, y),
bi (x, y) := pi

1,i+1(x, y) and ci (x, y) := pi
1,i−1(x, y).

For a vertex x of a graph � we define the local graph �(x) as the subgraph of �, induced
by the neighbours of x . If � is distance-regular, then �(x) has k = b0 vertices and valency
a1. Let C be a graph (or a class of graphs). The graph � is said to be locally (resp. µ-locally)
C, when each local graph (resp. each µ-graph) of � is isomorphic to (or a member of) C.
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Figure 1.1. Let � be a strongly regular graph (v, k, a1, c2) with a2 = k − c2 �= 0. Then � is 1-homogeneous,
i.e., it is a locally strongly regular graph (v′, k′, λ′, µ′), and for which α exists, if and only if its complement is
2-homogeneous. For the second subconstituent of the complement of � is isomorphic to the complement of a
local graph of � and for vertices x and y of � at distance 2 a vertex in D1

1(x, y) has a1 − α neighbours in the
set D2

2(x, y). (a) the distance partition of 1-homogeneous graph � corresponding to two adjacent vertices; (b)
the distance partition of the complement of 1-homogeneous graph �, corresponding to two vertices at distance 2,
where a1 = v − 2k + c2 − 2, c2 = v − 2k + a1, λ′ = k − 2a1 + µ′ − 2, µ′ = k − 2a1 + λ′, k̄ = kb1/c2 and k̄ − b1 =
a2b1/c2.

Figure 1.2. A tower of graphs with their distance partitions corresponding to two adjacent vertices (all but the
last one are 1-homogeneous graphs): (a) the Gosset graph is a unique distance-regular graph with intersection
array {27, 10, 1; 1, 10, 27}, an antipodal 2-cover of the complete graph K28, and it is locally Schläfli graph see
[3, pp. 103, 313]; (b) the Schläfli graph is a unique strongly regular graph (27, 16, 10, 8) and it is locally halved
5-cube, see [3, p. 103]; (c) the halved 5-cube, also known as the Clebsch graph, is a unique strongly regular graph
(16, 10, 6, 6) and it is locally J (5, 2), i.e., the complement of the Petersen graph, see [3, p. 264] (so the local graph
is not 1-homogeneous), the Johnson graph J (5, 2) is a unique strongly regular graph (10, 6, 3, 4) and is locally
the 3-prism; (d) the 3-prism has two different distance partitions corresponding to an edge.

Note that the distance partition of the Gosset graph corresponding to two adjacent vertices is at the same
time also its distance partition corresponding to two vertices at distance 2 (actually, in general, a 1-homogeneous
2-cover with diameter D is also (D − 1)-homogeneous).

We are now ready to state the main result of this paper.

Theorem 1.1 Let � be a 1-homogeneous graph with diameter d ≥ 2. Recall that for
each vertex x of � the local graph �(x) is strongly regular with parameters independent
of x ; we denote these parameters by (v′, k ′, λ′, µ′). If c2 = µ′ + 2 ≥ 3, then either
λ′ = 0, µ′ = 2, d ≥ 3 and α = 1, or � is one of the following graphs:

(i) a Johnson graph J (2m, m) with m ≥ 2,
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(ii) a folded Johnson graph J̄ (4m, 2m) with m ≥ 2,

(iii) a halved m-cube with m ≥ 4,

(iv) a folded halved (4m)-cube with m ≥ 2,

(v) a Cocktail Party graph Km×2 with m ≥ 3,

(vi) the Schläfli graph with intersection array {16, 5; 1, 8},
(vii) the Gosset graph with intersection array {27, 10, 1; 1, 10, 27}.

Remark The Gosset graph is locally the Schläfli graph, see figure 1.2.

The graph � in the above statement is µ-locally the Cocktail Party graph. Our study is
part of a larger project to classify 1-homogeneous graphs that are µ-locally complete mul-
tipartite. There are also very interesting examples of 1-homogeneous graphs that are µ-
locally several copies of complete multipartite graphs or even the 2-extension of the halved
5-cube.

The multipartite graph Kt×n is the complement of t cliques of size n, i.e., the multipartite
graph Kn1,n2,...,nt with n1 = n2 = · · · = nt = n. In particular, Kt×2 is the Cocktail
Party graph. Let � be a distance-regular graph with diameter d ≥ 2 and eigenvalues
θ0 > θ1 > · · · > θd . An easy eigenvalue interlacing argument guarantees θ1 ≥ 0 and
θd ≤ −√

2. We say that � is tight whenever it is not bipartite and

k(a1 + b+b−) = (a1 − b+)(a1 − b−),

where

b+ = −1 − b1

1 + θd
and b− = −1 − b1

1 + θ1
.

For d = 2 we have b1 = −(1 + θ1)(1 + θ2), b+ = θ1, b− = θ2, and therefore � is tight (i.e.,
θ1 = 0) if and only if it is a complete multipartite graph Kt×n with t > 2 (i.e., a1 �= 0 and
µ = k). Tight graphs of diameter d ≥ 3 were characterized in a number of ways in [10].
For example, if � is a distance-regular graph with diameter d ≥ 2, then � is tight if and
only if � is 1-homogeneous with a1 �= 0 and ad = 0. Some examples of tight graphs are
the Patterson graph and 10 tight antipodal distance-regular graphs with diameter four.

Corollary 1.2 Let � be a tight graph with diameter d ≥ 2. Recall that for each vertex x
of � the local graph �(x) is strongly regular with parameters independent of x ; we denote
these parameters by (v′, k ′, λ′, µ′). If c2 = µ′ + 2, then either λ′ = 0, µ′ = 2, d ≥ 3 and
α = 1, or � is one of the following graphs:

(i) a Johnson graph J (2m, m), with m ≥ 2,

(ii) a halved (2m)-cube, with m ≥ 2,

(iii) a Cocktail Party graph Km×2, with m ≥ 3,

(iv) the Gosset graph with intersection array {27, 10, 1; 1, 10, 27}.

Proof: If d = 2 then � is a complete multipartite graph Km×n with m ≥ 3, and c2 −µ′ =
(m −2)n − (m −3)n = n = 2 implies that � is a Cocktail Party graph Km×2 with m ≥ 3. So
let us now assume d ≥ 3. Since � is a tight graph, it is locally connected and ad = 0 by [10,



1-HOMOGENEOUS GRAPHS 83

Theorem 12.6 and Theorem 11.7]. Now µ′ = 0, implies that the local graph is complete,
and hence � is complete as well, so we have µ′ ≥ 1 and c2 = µ′ + 2 ≥ 3. Hence, � is one
of the graphs in the list of Theorem 1.1 with ad = 0 and we are done.

The paper is organized in the following way. In Section 2 we introduce some local conditions
that are satisfied by a 1-homogeneous graph having all the µ-graphs equal to the complete
multipartite graph Kt×n . Then we establish some basic properties of graphs that satisfy
these local conditions. The most important such property is that the intersection parameter
α can only be t or t − 1. Let � be a graph that satisfies these local conditions. In Section 3
we study the smallest eigenvalue of the local graphs of �. If α = t , then −n is the smallest
eigenvalue of �. If α = t −1, then either n �= 2, or λ′ = 0 and µ′ = 2. This sets the stage for
our classification of 1-homogeneous graphs with c2 = µ′ + 2. In Section 4 we determine
all such graphs that are additionally locally grid graphs or locally triangular graphs. In
Section 5 we prove the main theorem.

2. Local regularity conditions

We establish some basic properties of graphs that satisfy certain local regularity conditions.
If a graph � is regular with v vertices and valency k in which any two vertices at

distance 2 have precisely µ = µ(�) common neighbours, then it is called co-edge-regular
with parameters (v, k, µ), see [3, p. 3]. Let � be a distance-regular graph with diameter
d. For vertices x and y of � at distance i, 1 ≤ i ≤ d, we define the sets Ci (x, y) =
�i−1(x) ∩ �(y), Ai (x, y) = �i (x) ∩ �(y) and Bi (x, y) = �i+1(x) ∩ �(y), and say that �

has the CAB j property, j ≥ 1, when the partition

CABi (x, y) = {Ci (x, y), Ai (x, y), Bi (x, y)}

of the local graph of y is equitable for each pair of vertices x and y of � at distance i ≤ j .
Since the graph � with a1 �= 0 is 1-homogeneous graph if and only if it has CABd property
(see [11, Theorem 3.1]), we can now take a local approach to 1-homogeneous graphs.

We will start with a study of a distance-regular graph � with diameter at least 2 that is
µ-locally the complete multipartite graph Kt×n, n, t ∈ N, and for which a2 �= 0 and the
intersection number α exists with α ≥ 1. Since α ≤ a1 we have also a1 �= 0. The intersection
number α exists in a distance-regular graph with a2 �= 0 when it has additionally the CAB2

property (α is equal to the number of neighbours that a vertex of A2 has in C2), therefore also
for 1-homogeneous graphs. Certain examples of tight graphs are µ-locally the complete
multipartite graph Kt×n, n, t ∈ N, cf. [10] and [12]. If � is 1-homogeneous, then c2 = µ′+1
if and only if � is a Terwilliger graph, i.e., � is µ-locally Kt . Such graphs with c2 > 1 have
been classified in [11, Theorem 4.10].

It is quite natural to assume a2 �= 0 in �, since otherwise we have, by [3, Proposition 5.5.1]
and [3, Proposition 1.1.5], either

(a) a1 = 0, in which case any partition of a local graph of � is equitable, or
(b) a1 �= 0 and d = 2, in which case � is K(t+1)×n .
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Similarly, as in the case of Terwilliger 1-homogeneous graphs [11, Lemma 4.1], there are
also only two possibilities for α in the present situation.

Lemma 2.1 Let � be a distance-regular graph with diameter at least 2 that is µ-locally
the complete multipartite graph Kt×n, and for which a2 �= 0 and the intersection number
α exists with α ≥ 1. Then the following holds.

(i) c2 = nt, each local graph of � is µ-locally K(t−1)×n and co-edge-regular with
parameters (v′, k ′, µ′), where v′ = k, k ′ = a1, and µ′ = n(t − 1). Moreover,
αa2 = c2(a1 − µ′).

(ii) Let x and y be vertices of � at distance 2. Then for all z ∈ D1
2(x, y) the subgraph

induced by �(z) ∩ D1
1(x, y) is complete.

(iii) α ∈ {t − 1, t}, i.e., t − 1 ≤ α ≤ t,

(iv) � is a Terwilliger graph (i.e., c2 = µ′ + 1) if and only if n = 1, and

(v) � is locally connected if and only if t �= 1 (in which case every local graph has
diameter 2).

Proof:

(i) A µ-graph of � is Kt×n , so it has c2 = nt vertices. Let x be a vertex of �. Since
� has diameter at least 2, the local graph �(x) is not a complete graph. Any two
nonadjacent vertices of �(x) have µ′ = (t −1)n common neighbours in �(x) and these
common neighbours induce K(t−1)×n . Hence �(x) is co-edge-regular with parameters
(k, a1, µ

′). By a two way counting of the edges between D1
1(x, y) and D1

2(x, y), we
find αa2 = c2(a1 − µ′).

(ii) Suppose the opposite. Then |D1
1(x, y) ∩ �(z)| ≥ 2 and there exist two nonadjacent

vertices u, v ∈ D1
1(x, y) ∩ �(z). Then D1

1(u, v) ⊇ {x, y, z} and the subgraph induced
by D1

1(u, v) is not complete multipartite, since y and z are in the same coclique as x
and are adjacent.

(iii) We have α ≤ t by (ii). Let x and y be vertices of � at distance 2. Let z ∈ D2
1(x, y)

and A = �(z) ∩ D1
1(x, y). Suppose α ≤ t − 2. Then there are two adjacent vertices

u, v ∈ D1
1(x, y) such that the subgraph induced by {u} ∪ {v} ∪ A is complete and

∂(u, z) = 2 = ∂(v, z). Then the set �(u) ∩ D1
1(v, z) contains A ∪ {x}, which means

that α = |A| ≥ |A ∪ {x}| = α + 1. Contradiction! Hence α ≥ t − 1.
(iv) and (v) Let t �= 1 and w1, w2 be nonadjacent vertices of the local graph �(x). Then

x ∈ D1
1(w1, w2) so ∂�(w1, w2) = 2 and there is (t −1)n neighbours of x in the µ-graph

of w1 and w2 and hence also in the local graph �(x). Hence �(x) has diameter 2. The
rest follows now directly from (i).

We could relax the distance-regularity assumption on the graph � in Lemma 2.1 to the
requirement that the intersection numbers k, c2, a1 and a2 exist (see figure 2.1(a)).

Since the 1-homogeneous graphs that are µ-locally Kt×n , with t = 1 have been classified
in [16], we assume from now on t ≥ 2. Lemma 2.1 implies that we can calculate a2 in terms
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Figure 2.1. (a) The distance distribution corresponding to a vertex and the intersection numbers k, a1, c2 and
a2; (b) The distance distribution corresponding to y and z, ∂(y, z) = 1. Then we have |D1

1(y, z)| = a1 and
|D2

1(y, z)| = |D2
1(y, z)| = b1. (c) The distance distribution corresponding to x and y, ∂(x, y) = 2. Then we have

|D1
1(x, y)| = c2 and |D2

1(x, y)| = |D2
1(x, y)| = a2.

of a1, n and t :

a2 =



na1 − (t − 1)n2 if α = t,

t
a1n

t − 1
− n2t if α = t − 1.

(1)

Let us now assume additionally that the local graphs of � are strongly regular with parame-
ters (v′, k ′, λ′, µ′). We have already mentioned that α ≤ a1 implies a1 �= 0. In Lemma 2.1(i)
we expressed v′, k ′ and µ′ in terms of a1, n and t , therefore we can do the same for λ′:

λ′ = a1 − 1 + µ′ − µ′(k − 1)

a1
= a1 − 1 + n(t − 1) − n(t − 1)(k − 1)

a1
. (2)

If d = 2, then � is strongly regular and 1-homogeneous.

3. Eigenvalues of local graphs

Let � be a distance-regular graph with diameter at least 2, that is locally strongly regular
and µ-locally the complete multipartite graph Kt×n , t ≥ 2, for which a2 �= 0, and the
intersection number α exists with α ≥ 1. We study the smallest eigenvalue of a local graph
of �.

Let x1, . . . , xn be vertices of a graph �. Then we denote the intersection �(x1) ∩ · · ·
∩ �(xn) by �(x1, . . . , xn) and the corresponding induced subgraph by �(x1, . . . , xn).

Lemma 3.1 Let � be a distance-regular graph with diameter at least 2 that is locally
strongly regular with parameters (v′, k ′, λ′, µ′) and µ-locally the complete multipartite
graph Kt×n, t ≥ 2, for which a2 �= 0, and the intersection number α exists with α ≥ 1.
For an edge xy of �, the subgraph �(x, y) is co-edge-regular with parameters (v′′, k ′′, µ′′),
where

v′′ = k ′, k ′′ = λ′, and µ′′ = n(t − 2),
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for t ≥ 3 the subgraph �(x, y) has diameter 2, and it contains an equitable partition
π = {P1, P2} with quotient matrix

(
n(t − 2) λ′ − n(t − 2)

α − 1 λ′ − α + 1

)
.

In particular, |P1| = n(t − 1), |P2| = a1 − n(t − 1) and

(α − 1)(a1 − n(t − 1)) = (λ′ − (t − 2)n)n(t − 1). (3)

Proof: The verification of co-edge-regularity is similar as in the case of Lemma 2.1(i).
Let z ∈ D1

2(x, y). By Lemma 2.1(iii) and the fact that the valency of �(x, y) is λ′, the
partition

{�(x) ∩ �(y) ∩ �(z), �(x) ∩ �(y) ∩ �2(z)},

is an equitable partition of the graph �(x, y) with the required quotient matrix, see
Figure 2.1(b, c). The first set in the above partition has µ′ = n(t − 1) vertices, while the
other one has a′

2 = k ′ − µ′ = a1 − n(t − 1) vertices. We obtain (3) by a two way counting
of edges that are connecting vertices from different parts of the above partition.

The relation (3) gives us

λ′ = 1 − n − α + n(t − 1) + a1(α − 1)

n(t − 1)
, (4)

hence n(t −1) | a1(α −1). The above relation and (2) imply that one can express k in terms
of n, α, t and a1.

Theorem 3.2 Let � be a distance-regular graph with diameter at least 2, that is locally
strongly regular and µ-locally the complete multipartite graph Kt×n, for which a2 �= 0,

and the intersection number α exists with α = t ≥ 2. Then, for all vertices x of �, the
smallest eigenvalue of �(x) equals −n.

Proof: Suppose that the parameters of the local graphs that are strongly regular are
(v′, k ′, λ′, µ′). It follows directly from the relation (3) and α = t that a1 − n(t − 1) =
(λ′ − (t − 2)n)n. Now using that n(t − 1) = µ′ and a1 = k ′ it follows that k ′ − µ′ =
(λ′ − µ′ + n)n and hence −n is the negative eigenvalue of the local graph �(x) with
parameters (v′, k ′, λ′, µ′).

Theorem 3.3 Let � be a distance-regular graph with diameter at least 2, that is locally
strongly regular with parameters (v′, k ′, λ′, µ′) and µ-locally the complete multipartite
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graph Kt×n, for which a2 �= 0, and the intersection number α exists with α = t − 1 ≥ 2.
Then there exists a positive integer a such that −a − n is the smallest eigenvalue of every
local graph and

n(λ′ − n(t − 2)) = a(t − 2)(λ′ − n(t − 3) + a). (5)

In particular, a(t − 2) < n.

Proof: Fix a vertex x of �. Let s be the smallest eigenvalue of the local graph �(x). Then

µ′ − k ′ = (λ′ − µ′ − s)s.

On the other hand, k ′ = a1 and µ′ = n(t − 1) by Lemma 2.1(i), so by (3) and α = t − 1,
we have

(λ′ − µ′ + n)n(t − 1) = (t − 2)(λ′ − µ′ − s)(−s).

This means that −s > n, in particular s is negative. Set a := −n − s in the above identity and
we obtain (5). To show that a is integral, suppose the opposite. Then �(x) is a conference
graph with parameters (4µ′ +1, 2µ′, µ′ −1, µ′), so k = 4µ′ +1, a1 = 2µ′ and λ′ = µ′ −1.
Applying (4) we obtain n = t − 1, so k = 4(t − 1)2 + 1, a1 = b1 = 2(t − 1)2, c2 = nt =
(t − 1)t, λ′ = t(t − 2) and k2 = kb1/c2 = 2(4t2 − 8t + 5)(t − 1)/t, which implies t |10,
thus, by t ≥ 3, we have t = 5 or t = 10. Let y ∈ �(x). Then, by |D1

2(x, y)| = b1 and
|D2

2(x, y)| = a1(b1 − b′
1)/α = 2(t − 1)3, we obtain

k2 − ∣∣D2
2(x, y)

∣∣ − ∣∣D1
2(x, y)

∣∣ = −2
(t − 1)(−5t2 + 8t − 5 + t3)

t
< 0,

which is impossible. Therefore, �(x) is not a conference graph, and so a is integral.
Suppose a(t − 2) ≥ n. Then, by (5), we obtain

λ′ − n(t − 2) ≥ λ′ − n(t − 3) + a, i.e., −n ≥ a,

which is not possible since a is a positive integer. Therefore, we have a(t − 2) < n.

Note that the assumptions α = t − 1 and α ≥ 1 imply t = α + 1 ≥ 2.

Corollary 3.4 Let � be a distance-regular graph with diameter at least 2, that is locally
strongly regular with parameters (v′, k ′, λ′, µ′) and µ-locally the Cocktail Party graph
Kt×2, for which a2 �= 0, and the intersection number α exists with α = t − 1. Then α = 1,

λ′ = 0 and µ′ = 2.

Proof: Suppose α > 1, i.e., t ≥ 3. By Theorem 3.3, we obtain a(t − 2) < n = 2, and
therefore a = 1 and t = 3. This implies that every local graph in � is strongly regular with
parameters (57, 16, 5, 4). However, this is not possible, since for these parameters we do
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not have integral eigenvalue multiplicities. Therefore, α = 1, and so t = 2. Hence µ′ = 2
and λ′ = 0 by Lemma 2.1(i) and relation (4).

Lemma 3.5 Let � be a distance-regular graph with diameter at least 2 that is locally
strongly regular with parameters (k, a1, 0, 2) and eigenvalues a1 > p > q. Then p
is a nonnegative integer, not congruent 3 (mod 4), q = −p − 2, a1 = (p + 1)2 + 1,

k = 1 + a1(a1 + 1)/2 and b1 = a1(a1 − 1)/2.

Proof: The graph � is not locally a conference graph, since λ′ = 0 �= 1 = µ′ − 1, so p
is a nonnegative integer and we have

(p + 1)2 =
(

p + λ′ − µ′

2

)2

= (λ′ − µ′)2

4
+ (k ′ − µ′) = a1 − 1.

The multiplicities of the nontrivial eigenvalues are integral if and only if p is not congruent
3 (mod 4). The remaining relations are straightforward.

Remark 3.6

(i) For p = 0, 1, 2, i.e., a1 = 2, 5, 10, the local graphs of � are respectively the
quadrangle, the folded 5-cube with intersection array {5, 4; 1, 2} (also called the Cleb-
sch graph), and the Gewirtz graph with intersection array {10, 9; 1, 2}. These are the
only known strongly regular graphs with λ = 0 and µ = 2.

(ii) We are interested in the case, when � is additionally µ-locally Kt×2, t ≥ 2, a2 �= 0
and the intersection number α = 1. Then, by Lemma 2.1(iii) and (i), Lemma 3.5 and
the nonexistence of a strongly-regular graph with parameters (57, 16, 5, 4), we have

t = 2, c2 = 4, a1 > 5, a2 = 4(a1 − 2),

b2 = (a1 − 5)(a1 − 2)/2 and d ≥ 3.

Finally, if we additionally assume that � is 1-homogeneous, then we can apply [11,
Algorithm 4.7] in order to obtain that d �= 3 and that � is not locally Gewirtz, i.e.,
a1 �= 10.

Conjecture 3.7 There is no 1-homogeneous distance-regular graph with diameter at
least 2, that is locally strongly regular with parameters (v′, k ′, 0, 2), that has a2 �= 0, the
intersection number α = 1 and that � is µ-locally Kt×2, t ≥ 2.

4. Locally grid and locally triangular graphs

Before we start to study locally grid and locally triangular graphs, we need to introduce
some basic notions about codes. Let � be a graph with diameter d and the vertex set X . A
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code C in � is a nonempty subset of X . Then the distance of a vertex x ∈ X to C and the
covering radius of C respectively are

∂(x, C) := min{∂(x, y) | y ∈ C} and t(C) := max{∂(x, C) | x ∈ X}.

Let Pi be the set of vertices at distance i from C and t = t(C). The code C is completely
regular when the partition {Pi | i = 0, . . . , t} is equitable. This definition is due to
Neumaier [14], who showed that in the case of distance-regular graphs it is equivalent to
the original Delsarte’s definition, that the code C is completely regular when for each vertex
x of � and for each i ∈ {0, 1, . . . , t}, the intersection number |C ∩ �i (x)| depends only on
∂(x, C), see [6] or [3, p. 351]. A partition π of a graph � gives rise to the quotient graph
G/π with cells as vertices and two distinct cells Pi to Pj adjacent if there is an edge of
� joining some vertex of Pi to some vertex in Pj . An equitable partition π is uniformly
regular if there are constants e01 and e11 such that the parameters of the equitable partition
are

ci j =
{

e01 if i = j,

e11 if Pi ∼ Pj in �/π.

The line graph of Km,n , i.e., the graph Km × Kn , will be called the (m × n)-grid.

Proposition 4.1 Let � be a distance-regular graph with diameter at least 2. If � is locally
the (m × n)-grid and c2 = 4, then � is the Johnson graph J (n + m, n), or m = n and � is
the folded Johnson graph J̄ (2m, m).

Proof: By [3, Theorem 9.1.3], the graph � is the Johnson graph J (n + m, n), or m = n
and � is a quotient of the Johnson graph J (2m, m). More precisely, in the latter case we can
partition the vertex set of J (2m, m) into a uniform partition π := {Pi | i = 1, . . . , ( 2m

m )/2},
where |Pi | = 2. By [3, Theorem 11.1.6], we obtain that π is completely regular, i.e. the
sets Pi = {xi , yi } are completely regular with the same intersection numbers. Suppose
∂(xi , yi ) = h < d = m. Then, by bh �= 0, there exists a neighbour v of xi that is at dist-
ance h + 1 from yi . Therefore, each neighbour of a vertex in Pi is at distance h + 1 from
the other vertex of Pi . Hence h = 1 (since otherwise ch = 0) and a1 = 0. Since a1 = 2m−2,

this is not possible, thus ∂(xi , yi ) = d for every i . It follows that � is the folded Johnson
graph J̄ (2m, m).

The last part of the above proof was motivated by the proof of [13, Theorem 2.3.3].
The line graph of the complete graph Kn is the triangular graph T (n), i.e., the Johnson

graph J (n, 2). Note that T (1) is an empty graph, T (2) is K1, T (3) is K3 and T (4) is the
complete multipartite graph K2,2,2, i.e., the octahedron, and T (5) is the complement of the
Petersen graph.

Proposition 4.2 Let � be a distance-regular graph with diameter d ≥ 3 and let
(i) � be locally a triangular graph,

(ii) � have the CABi property for some i ∈ {2, . . . , d − 1}.
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Then for 1 ≤ j ≤ i and for all vertices x and y at distance j the induced subgraph on
C j (x, y) is the triangular graph T (2 j). Furthermore, if the distance between vertices x and
y is i + 1, then the subgraph induced on Ci+1(x, y) is a disjoint union of triangular graphs
T (2i + 2).

Proof: By [3, Proposition 4.3.9 and Lemma 4.3.10] (cf. [15, 20] and [21]), the condition
(i) implies

• there exists an integer n such that the graph � is locally T (n),
• � is the halved graph of a bipartite graph �′ with intersection numbers ci (�′) = i for

i ≤ 3, and
• the µ-graphs in � are isomorphic to the disjoint union of at most �n/4� copies of K2,2,2.

So k = n(n − 1)/2 and a1 = 2(n − 2). Since c3(�′) = 3 and a2(�′) = 0, any 3-claw in �′

determines a unique 3-cube by [3, Lemma 4.3.5(ii)]. Therefore, by [3, Proposition 4.3.6 and
Corollary 4.3.7], the n-cube Qn covers �′. More precisely, there exists a map π ′ : V (Qn) →
V (�′) that preserves distances ≤3. It induces a map π : V ( 1

2 Qn) → V (�), that preserves
adjacency (see figure 4.1). Let us denote by V ′ the set of vertices of �′ corresponding to
the vertices of �.

Let us define c′
m(u′, v′) := cm(�′)(u′, v′) for vertices u′ and v′ at distance m in �′ and

m = 1, 2, . . . , diam(�′). Suppose we have shown for an integer t , where 1 ≤ t < i, and
for all j ∈ {1, . . . , t} that

(a) the subgraph of � induced by C j (x, y) is T (2 j) for all x, y ∈ V (�) with ∂(x, y) = j ,
(b) c′

m(x ′, y′) = m for all m ∈ {1, . . . , 2t + 1}, x ′ ∈ V ′ and y′ ∈ �′
m(x ′).

Conditions (a) and (b) are certainly true for t = 1 by the observation made at the beginning
of this proof and since C1(x, y) contains only one vertex, which means that it induces T (2).

Before continuing with the induction, we need to introduce some new notations. Let m
be a positive integer, x ′ ∈ V ′ and y′ ∈ �′

m(x ′). We say that the number c′
m semi-exists if

c′
m(u′, v′) = c′

m(x ′, y′) for all u′ ∈ V ′ and v′ ∈ �′
m(u′) and c′

m = c′
m(x ′, y′). For vertices

u and v at distance s in a graph X we denote by IX (u, v) the interval graph, that is the

Figure 4.1. The halved graph of Qn is denoted by 1
2 Qn and called the halved n-cube.
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subgraph of X induced by the set {w ∈ V (X ) | ∂X (u, w) + ∂X (v, w) = s}, i.e., the set of
vertices that lie on a shortest path between u and v.

Let x be a vertex of � and x ′ the corresponding vertex of �′. Without loss of generality
we may choose π ′ to map the vector 0 to x ′. Since cm(Qn) = m = c′

m for all m ∈
{1, 2, . . . , 2t + 1}, by the induction assumption and since both graphs �′ and Qn are
bipartite, the map π ′ preserves distances ≤2t + 1 when at least one of the vertices is from
V ′, so also the map π preserves distances ≤t , and the words of weight m in Qn are in 1-1
correspondence with the vertices at distance m from x ′ in �′.

Let z ∈ �t+1(x) and let z′ be the corresponding vertex of �′. Then z′ ∈ �2t+2(x ′) and
since c′

2t+1 = 2t + 1 and �′ is bipartite, the words of weight 2t + 2 in the preimage π ′−1(z′)
are mutually disjoint. Moreover, as 2t + 1 ≥ 3, we have

ct+1 = ct+1(x, z) = c′
2t+2(x ′, z′)c′

2t+1

c′
2

= c′
2t+2(x ′, z′)(2t + 1)

2
,

and therefore c′
2t+2 semi-exists and it is equal to 2ct+1/(2t +1). The interval graph I�′ (x ′, z′)

consist of p := c′
2t+2/(2t + 2) copies of the (2t + 2)-cubes sharing only the vertices x ′ and

z′ with each other.
Let � be the subgraph of � induced by the set Ct+1(x, z). Then � consists of p disjoint

graphs and each of them is the halved graph of the second neighbourhood of the (2t + 2)-
cube. The halved graph of the second neighbourhood of the s-cube is the Johnson graph
J (s, 2), i.e., the triangular graph T (s). It follows that the graph � is a disjoint union of p
copies of the triangular graph T (2t +2). Since � has the CABt+1 property and t < i ≤ d −1
(so also t + 1 �= d), the set Ct+1(x, z) is a completely regular code with covering radius
2 in the triangular graph T (n). The latter graph can be considered as the line graph of Kn ,
and the p copies of T (2t +2) correspond to p distinguished disjoint (2t +2)-cliques of Kn ,
which do not cover all its vertices. Every edge of Kn corresponding to a vertex of At+1(x, z)
connects a vertex from one of the distinguished (2t + 2)-cliques with one of the remaining
vertices of Kn , or, if p > 1, it connects vertices from two distinct such (2t + 2)-cliques.
However, the latter is not possible by the CABt+1 property, thus we conclude that p = 1
and so c′

2t+2 = 2t + 2.
Now we will show that c′

2t+2 = 2t +3. By the fact that Ct+1(x, z) is a completely regular
code in T (n), it follows that bt+1 = ( n−2t−2

2 ). We have chosen x and z to be vertices of �

at distance t + 1 and x ′, z′ as their corresponding vertices of �′ at distance 2t + 2, hence

(n − 2t − 2)(n − 2t − 3)

2
= bt+1 = bt+1(x, z) = 1

c′
2

∑
y′∈B2t+2(x ′,z′)

b′
2t+3(x ′, y′),

As �′ is a bipartite graph with c′
2 = c2(�′) = 2, by [3, Proposition 1.9.1], it follows that

c′
i (u

′, v′) ≥ i for all vertices u′ and v′ of �′ at distance i . So, by |B2t+2(x ′, z′)| = b′
2t+2 =

n − c′
2t+2 = n − (2t + 2) and b′

2t+3(x ′, y′) = n − c′
2t+3(x ′, y′) ≤ n − (2t + 3), we conclude

b′
2t+3(x ′, y′) = n − 2t − 3, which implies c′

2t+3 = 2t + 3. Now the proposition follows by
induction.

For the convenience of the reader we give a proof of the following result.
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Theorem 4.3 (A.E. Brouwer) Let � be a bipartite distance-regular graph with diameter
d ≥ 4 and ci = i for i ≤ d − 1. Then � is a d-cube, a folded (2d)-cube or if d = 4, the
coset graph of the extended binary Golay code.

Proof: For d = 4 it follows from [4, Theorem 5.10 and Theorem 5.12] that either the
valency equals 4, 8 or 24. For valency 24 it follows, by [2], that � is the coset graph of the
binary Golay code. By [3, Theorem 11.1.6 and Corollary 4.3.7], there exists a completely
regular code with the following distance partition (figure 4.2).

Figure 4.2. The distance partition of a certain completely regular code.

For d ≥ 5, they were classified by van Tilborg, who showed |C | ≤ 2. The result follows
now.

Theorem 4.4 Let � be a distance-regular graph with diameter d ≥ 2. Then
(i) � is locally a triangular graph, and

(ii) � is 1-homogeneous
if and only if � is the halved n-cube, n ≥ 4, or � is the folded halved n-cube with n =
4m, m ∈ N and m ≥ 4, or � is the halved coset graph of the extended binary Golay code.

Proof: Similarly as in the proof of Proposition 4.2, we start with the following:

(a) there exists an integer n such that the graph � is locally T (n),
(b) � is the halved graph of a bipartite graph �′ with intersection numbers ci (�′) = i for

i ≤ 3, and
(c) the µ-graphs in � are isomorphic to the disjoint union of at most �n/4� copies of K2,2,2.

If d ≥ 3, then, by Proposition 4.2, for vertices x and y at distance i ∈ {1, . . . , d − 1} the
subgraph induced by Ci (x, y) is the triangular graph T (2i), and for vertices x and y at
distance d the subgraph induced by Cd (x, y) is a disjoint union of the triangular graphs
T (2d). Let us show that the same statement is true also when d = 2. We only need to
check it for i = 2. Let x and y be vertices of � at distance 2. Then we want to show that
the subgraph induced by C2(x, y), i.e., the µ-graph of x and y is a disjoint union of the
triangular graphs T (4). Since K2,2,2 is isomorphic to T (4), this statement coincides with
the above property (c).

By the CABd property, this means that the subgraph induced on Cd (x, y) is either one
copy of the triangular graph T (2d), or the disjoint union of exactly n/(2d) copies of T (2d).
Therefore, � is a distance-regular graph with intersection numbers

ci =
(

2i

2

)
, bi =

(
n − 2i

2

)
for i ≤ d − 1, and cd ∈

{(
2d

2

)
,

n

2d

(
2d

2

)}
.
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The first case can happen only when 2d ∈ {n, n − 1}. But then |V (�)| = 2n−1 and, by [3,
Corollary 4.3.8(ii)], the graph � is the halved n-cube, n ≥ 4. So we may assume that we
are in the second case. This can only happen when d ≥ 3 and it is easy to see that 2d = d ′,
where d ′ is the diameter of �′. We are going to show �′ is a distance-regular graph with
intersection numbers c′

i = i for i ≤ d ′ − 1 and cd ′ = n. As in the proof of Proposition 4.2,
let V ′ be the set of the vertices of �′ of the corresponding to vertices of � and we have
shown that c′

i (x
′, y′) = i for i ≤ d − 1 and x ′ ∈ V ′, y′ ∈ V (�′) at distance i. Furthermore,

by assumptions we have cd ′ = n.
Let x ′ ∈ V ′ and y′ ∈ V (�′). Then

|�2i (x
′)| =

(
n

2i

)
, |�2i (y′)| ≤

(
n

2i

)
,

|�2d (x ′)| =
(

n − 1

2d − 1

)
and |�2i (y′)| ≤

(
n − 1

2d − 1

)
,

as c′
i (u

′, v′) ≥ i for all u′, v′ ∈ V (�′) at distance i. But

d∑
i=0

|�′
2i (x

′)| =
d∑

i=0

|�′
2i (y′)|

and therefore c′
i = i for i ≤ 2d − 1 and c′

2d = n. Hence �′ is a distance-regular graph
with intersection numbers c′

i = i for i ≤ d ′ − 1 and cd ′ = n, so �′ is either the n-cube, the
folded 2n-cube or the coset graph of the extended binary Golay code by Theorem 4.3. As
the halved folded (4m + 2)-cube is not 1-homogeneous, the result follows now.

5. Proof of the main result

By Gardiner [7], in an antipodal distance-regular graph � with diameter D a vertex x , which
is at distance i ≤ �D/2� from one vertex in an antipodal class, is at distance D − i from
all other vertices in this antipodal class, hence

�D−i (x) =
⋃

{�D(y) | y ∈ �i (x)} for i = 0, 1, . . . , �D/2�. (6)

If � is 1-homogeneous and x, y are its adjacent vertices, then it is not hard to conclude by
(6) that, by taking antipodal quotient of �, the cells Dd− j

d−i (x, y) and D j
i (x, y) fold together

for 0 ≤ i, j ≤ �d/2�. However, it is even more effective to follow antipodal folding through
CABi partitions of � and its antipodal quotient.

Theorem 5.1 Let � be an antipodal graph with diameter D ≥ 4 and let � be its antipodal
quotient graph with diameter d. Then for i ≤ d − 1 the graph � has the CABi property if
and only if � has the CABi property, and for D = 2d the following are equivalent.
(i) The graph � is 1-homogeneous.

(ii) The graph � has the CABd property.
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Figure 5.1. The CABd partition in � (left) and the CABd partition in the antipodal quotient graph � (right).

Moreover, if � is 1-homogeneous and a1 �= 0, then � is 1-homogeneous if and only if D is
even.

Proof: The first part of the statement and (i) ⇔ (ii) follow directly from the fact that
a CABi partition of �, the corresponding CABD−i partitions of � and the corresponding
CABi partition of � are isomorphic by the covering projection for i = 1, . . . , d − 1 (see
figure 5.1).

Let y1, . . . , yr be the vertices of an antipodal class of �, let x be a vertex of � at distance
d from y1, and let x̂ and ŷ be the images of the covering projection corresponding to x and
y1 respectively. Consider the following partition

� = Dd−1
1 (x, y1) ∪ · · · ∪ Dd−1

1 (x, yr ) ∪
(

�(x)

∖
r⋃

i=1

Dd−1
1 (x, yi )

)

of the local graph of x (see figure 5.2). If D = 2d, then the first r sets have size cd (�),
the last one has size ad (�), and there are no edges between Dd−1

1 (x, yi ) and Dd−1
1 (x, y j )

when i �= j, which means that the partitions CABd (x, yi ) for i = 1, . . . , r are equitable
with the same parameters if and only if the partition � is equitable, in which case � has the

Figure 5.2. The partition corresponding to the distance distribution of the antipodal class {y1, . . . , yr } in the case
when D is even (left) and the case when D is odd (right). We have chosen r to be three. Inside this partition there
is a partition of the neighbourhood of the vertex x .
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following quotient matrix




g 0 0 · · · 0 a1 − g

0 g 0 · · · 0 a1 − g

0 0 g · · · 0 a1 − g
...

...
...

. . .
...

...

0 0 0 · · · g a1 − g

h h h · · · h a1 − rh




(7)

for some integers g and h. If (i)–(ii) holds, then g = γd = a1 − δd , h = αd = βd/(r − 1)
and the CABd partition of � is equitable with the quotient matrix ( γd δd

rαd a1−rα). Thus, we
have shown that if � is 1-homogeneous and D is even, then � has the CABd property, i.e.,
� is 1-homogeneous.

Finally, let us suppose the antipodal quotient graph � is 1-homogeneous, i.e., � has
the CABd property, and let (g, a1−g

a, a1−a) be the quotient matrix of the CABd (x̂, ŷ) partition in
�. Suppose D is odd. Then the local graph of x̂ is disconnected, (see figure 5.2 (right)),
and we have g = a1 and a = 0. By [11, Proposition 2.2], the set Cd (ŷ, x̂)(�) is inde-
pendent in �, which is not possible because a1 �= 0. Therefore, we have D = 2d by
[3, Proposition 4.2.2].

Remark 5.2 The Foster graph is an antipodal distance-regular graph with diameter 4
and intersection array {6, 4, 2, 1; 1, 1, 4, 6}. It is locally disconnected, therefore it is not a
tight graph in the sense of [10], and hence not 1-homogeneous (see [10, Theorem 11.7]).
However, its antipodal quotient is the complement of the triangular graph T (6) and it is
1-homogeneous. Thus, under the assumptions of the above result � is not necessary 1-
homogeneous when � is 1-homogeneous and D = 2d.

Theorem 5.3 A graph � is an 1-homogeneous graph with diameter at least 2, that is
µ-locally the complete multipartite graph Kt×2, t ≥ 2, and for which a2 �= 0 and the inter-
section number α exists with α = t if and only if � is one of the following:

(i) a Johnson graph J (2m, m) with m ≥ 3,

(ii) a folded Johnson graph J̄ (4m, 2m) with m ≥ 3,

(iii) a halved m-cube with m ≥ 5,

(iv) a folded halved (4m)-cube with m ≥ 3,

(v) the Schläfli graph with intersection array {16, 5; 1, 8},
(vi) the Gosset graph with intersection array {27, 10, 1; 1, 10, 27}.

Proof: Let � be an 1-homogeneous graph with diameter at least 2 that is µ-locally the
complete multipartite graph Kt×2, t ≥ 2, and for which a2 �= 0 and the intersection number
α exists with α = t. Let x be a vertex of �. Then the subgraph �(x) is a connected strongly
regular graph by [11, Theorem 3.1 and Proposition 2.1] and the smallest eigenvalue of �(x)
is −2 by Theorem 3.2. By Seidel’s classification [17], [3, Theorem 3.12.4], the local graph
�(x) is either
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• a triangular graph T (m) with m ≥ 5,

• a (m × m)-grid with m ≥ 3,

• a Cocktail Party graph Km×2 with m ≥ 2,

• the Petersen graph,
• the Clebsch graph (i.e., the folded 5-cube),
• the Schläfli graph,
• the Shrikhande graph, or
• one of the three Chang graphs.

The µ-graphs of the Shrikhande graph, the Petersen graph and all the three Chang graphs
are not all isomorphic to K(t−1)×2. If � is locally Km×2 with m ≥ 2, then � is the Cocktail
Party graph K(m+1)×2 by [3, Proposition 1.1.5], so a2 = 0.

If � is locally Clebsch graph, see [3, p. 104], then µ′ = 6, � is the Schläfli graph, see [3,
p. 312], which has a1 = 10, a2 = 8, c2 = 8 = µ′ + 2 (so it is µ-locally K4×2), and α = 4
(so it is really 1-homogeneous graph, cf. [11, Theorem 3.9]).

If � is locally Schläfli graph, then � is the Gosset graph, see [3, p. 313], which is 1-
homogeneous graph, see [10, Theorem 11.7 and 12.6], and has a1 = 16, c2 = 10 = µ′ + 2
(so it is µ-locally K5×2), and α = 5.

Suppose � is locally (m × m)-grid with m ≥ 3. Then the eigenvalues of the local graphs
are a1 = 2m − 2, m − 2 and −2. Furthermore, µ′ = 2 = n(t − 1), c2 = nt = 4 by
Lemma 2.1, and � is either a Johnson graph J (2m, m) or a folded Johnson graph J̄ (2m, m)
by Proposition 4.1. The first graph is 1-homogeneous by [10, Theorem 11.7 and 12.6],
with α = 2 and has c2 = µ′ + 2 (so it is µ-locally K2×2). Suppose � is the second
graph and θ1, θd are respectively its second largest and its smallest eigenvalue. Then the
1-homogeneous property of � implies that −1 − b1/(1 + θ ) for some θ ∈ {θ1, θd} is an
eigenvalue of all local graphs of � by [11, Theorem 3.9]. The latter can only happen when m
is even by [3, Proposition 9.1.5]. The folded Johnson graph J̄ (8, 4) is 1-homogeneous with
α = 4 by Theorem 5.1 and [12, Corollary 5.8], so α �= 2 = t . Thus m = 2s with s ≥ 3. By
Theorem 5.1, the folded Johnson graph J̄ (4s, , 2s) (obtained by folding 1-homogeneous
antipodal graph of even diameter) is 1-homogeneous with α = 2 and it has c2 = µ′ + 2 (so
it is µ-locally K2×2).

Finally, we suppose � is locally triangular graph T (m) with m ≥ 5. Then µ′ = 4, t = 3
and � is either

• the halved m-cube, or
• the folded halved m-cube with 4|m and m ≥ 8, or
• the halved coset graph of the extended binary Golay code,

by [11, Theorem 3.1] and Theorem 4.4. The first graph and the second graph in the case m �=
8, are by [10, Theorem 12.6 and 11.7] and by Theorem 5.1 respectively, 1-homogeneous
with α = 3 and have c2 = 6 = µ′ + 2 (so it is µ-locally K3×2). The folded halved 8-cube
is 1-homogeneous with α = 6 by Theorem 5.1 and [12, Corollary 4.8], so α �= t. By a
direct counting argument, we verify that also the halved (2s + 1)-cubes with s ≥ 2 and the
folded halved (4s + 2)-cubes with s ≥ 2 are 1-homogeneous. The third graph is the halved
graph of the distance-regular graph with intersection array {24, 23, 22, 21; 1, 2, 3, 24} by
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[3, Theorem 11.3.2] and is therefore a strongly regular graph with parameters (2048, 276,
44, 36) by [3, Proposition 4.2.2(i)], so c2 = 36 �= 6 = µ′ + 2.

The converse is straightforward, since we have already verified that the graphs in the
above list have the required properties.

Proof of Theorem 1.1: Let � be a 1-homogeneous graph with diameter d ≥ 2. Let
for all vertices x of � the local graph �(x) be a strongly regular graph with parameters
(v′, k ′, λ′, µ′) and c2 = µ′ +2 ≥ 3. Since µ′ is the valency of the µ-graphs, each µ-graph is
the Cocktail Party graph K(c2/2)×2, c2 is even and µ′ ≥ 2. Therefore, � is µ-locally K(c2/2)×2.
If a2 = 0, then b2 = 0 by µ′ �= 0 and connectivity of �, thus d = 2 and � is the Cocktail
party graph Km×2 with m = t +1 ≥ 3. Now we assume a2 �= 0. Since � is 1-homogeneous
and µ′ �= 0, the intersection parameter α exists, µ′ = n(t − 1) by Lemma 2.1(i), and
α ∈ {t − 1, t} by Lemma 2.1(iii). If α = t, then by Theorem 5.3 we obtain that � has to
be one of the listed examples except (v). If α = t − 1, then, by Corollary 3.4, we have
α = 1, t = 2, µ′ = 2, λ′ = 0 and c2 = 4, in which case d = 2 implies, by (1) and (2),
k − 4 = 4a1 − 8 and 0 = a1 + 1 − 2(k − 1)/a1, hence a1 = 2 or a1 = 5. In the first case we
obtain the octahedron that implies a2 = 0, and the second one has already been considered
in Remark 3.6 and is not possible.

The converse is straightforward.
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