Schensted-Type Correspondences and Plactic Monoids for Types $\boldsymbol{B}_{\boldsymbol{n}}$ and $\boldsymbol{D}_{\boldsymbol{n}}$

CEDRIC LECOUVEY
lecouvey@math.unicaen.fr
Université De Caen, Departemente De Mathematiques, Caen, CEDEX 14032, France

Received November 30, 2001; Revised November 25, 2002

Abstract

We use Kashiwara's theory of crystal bases to study plactic monoids for $U_{q}\left(s o_{2 n+1}\right)$ and $U_{q}\left(s o_{2 n}\right)$. Simultaneously we describe a Schensted type correspondence in the crystal graphs of tensor powers of vector and spin representations and we derive a Jeu de Taquin for type B from the Sheats sliding algorithm.

Keywords: combinatorics, quantum algebra, representation theory

1. Introduction

The Schensted correspondence based on the bumping algorithm yields a bijection between words w of length l on the ordered alphabet $\mathcal{A}_{n}=\{1 \prec 2 \prec \cdots \prec n\}$ and pairs $\left(P^{A}(w), Q^{A}(w)\right)$ of tableaux of the same shape containing l boxes where $P^{A}(w)$ is a semistandard Young tableau on \mathcal{A}_{n} and $Q^{A}(w)$ is a standard tableau. By identifying the words w having the same tableau $P^{A}(w)$, we obtain the plactic monoid $\operatorname{Pl}\left(A_{n}\right)$ whose defining relations were determined by Knuth:

$$
\begin{aligned}
& y z x=y x z \quad \text { and } \quad x z y=z x y \quad \text { if } x \prec y \prec z, \\
& x y x=x x y \quad \text { and } \quad x y y=y x y \quad \text { if } x \prec y .
\end{aligned}
$$

The Robinson-Schensted correspondence has a natural interpretation in terms of Kashiwara's theory of crystal bases [2, 5, 8]. Let V_{n}^{A} denote the vector representation of $U_{q}\left(s l_{n}\right)$. By considering each vertex of the crystal graph of $\bigoplus_{l \geq 0}\left(V_{n}^{A}\right)^{\otimes l}$ as a word on \mathcal{A}_{n}, we have for any words w_{1} and w_{2} :

- $P^{A}\left(w_{1}\right)=P^{A}\left(w_{2}\right)$ if and only if w_{1} and w_{2} occur at the same place in two isomorphic connected components of this graph.
- $Q^{A}\left(w_{1}\right)=Q^{A}\left(w_{2}\right)$ if and only if w_{1} and w_{2} occur in the same connected component of this graph.

Replacing V_{n}^{A} by the vector representation V_{n}^{C} of $s p_{2 n}$ whose basis vectors are labelled by the letters of the totally ordered alphabet

$$
\mathcal{C}_{n}=\{1 \prec \cdots \prec n-1 \prec n \prec \bar{n} \prec \overline{n-1} \prec \cdots \prec \overline{1}\},
$$

we have obtained in [10] a Schensted type correspondence for type C_{n}. This correspondence is based on an insertion algorithm for the Kashiwara-Nakashima's symplectic tableaux [4] analogous to the bumping algorithm. It may be regarded as a bijection between words w of length l on \mathcal{C}_{n} and pairs $\left(P^{C}(w), Q^{C}(w)\right.$) where $P^{C}(w)$ is a symplectic tableau and $Q^{C}(w)$ an oscillating tableau of type C and length l, that is, a sequence $\left(Q_{1}, \ldots, Q_{l}\right)$ of Young diagrams such that two consecutive diagrams differ by exactly one box. Moreover by identifying the words of the free monoid \mathcal{C}_{n}^{*} having the same symplectic tableau we also obtain a monoid $P l\left(C_{n}\right)$. This is the plactic monoid of type C_{n} in the sense of [12] and [8].
The vector representations V_{n}^{B} and V_{n}^{D} of $U_{q}\left(s o_{2 n+1}\right)$ and $U_{q}\left(s o_{2 n}\right)$ have crystal graphs whose vertices may be respectively labelled by the letters of

$$
\mathcal{B}_{n}=\{1 \prec \cdots \prec n-1 \prec n \prec 0 \prec \bar{n} \prec \overline{n-1} \prec \cdots \prec \overline{1}\}
$$

and

$$
\mathcal{D}_{n}=\left\{1 \prec \cdots \prec n-1 \prec \begin{array}{l}
n \\
\bar{n}
\end{array} \prec \overline{n-1} \prec \cdots \prec \overline{1}\right\} .
$$

Let G_{n}^{B} and G_{n}^{D} be the crystal graphs of $\bigoplus_{l \geq 0}\left(V_{n}^{B}\right)^{\otimes l}$ and $\bigoplus_{l \geq 0}\left(V_{n}^{D}\right)^{\otimes l}$. Then it is possible to label the vertices of G_{n}^{B} and G_{n}^{D} by the words of the free monoids \mathcal{B}_{n}^{*} and \mathcal{D}_{n}^{*}.However the situation is more complicated than in the case of types A and C. Indeed there exist a fundamental representation of $U_{q}\left(s o_{2 n+1}\right)$ and two fundamental representations of $U_{q}\left(s o_{2 n}\right)$ that do not appear in the decompositions of $\bigoplus\left(V_{n}^{B}\right)^{\otimes l}$ and $\bigoplus_{l \geq 0}\left(V_{n}^{D}\right)^{\otimes l}$ into their irreducible components. They are called the spin representations and denoted respectively by $V\left(\Lambda_{n}^{B}\right), V\left(\Lambda_{n}^{D}\right)$ and $V\left(\Lambda_{n-1}^{D}\right)$. In [4], Kashiwara and Nakashima have described their crystal graphs by using a new combinatorical object that we will call a spin column. Write $S P_{n}$ for the set of spin columns of height n and set $\mathfrak{B}_{n}=\mathcal{B}_{n} \cup S P_{n}, \mathfrak{D}_{n}=\mathcal{D}_{n} \cup S P_{n}$. Then each vertex of the crystal graphs \mathfrak{G}_{n}^{B} and \mathfrak{G}_{n}^{D} of $\bigoplus_{l \geq 0}\left(V_{n}^{B} \oplus V\left(\Lambda_{n}^{B}\right)\right)^{\otimes l}$ and $\bigoplus_{l \geq 0}\left(V_{n}^{D} \oplus V\left(\Lambda_{n}^{D}\right) \oplus V\left(\Lambda_{n-1}^{D}\right)\right)^{\otimes l}$ may be respectively identified with a word on \mathfrak{B}_{n} or \mathfrak{D}_{n}. We can define two relations $\stackrel{B}{\sim}$ and $\stackrel{D}{\sim}$ by:
$w_{1} \stackrel{B}{\sim} w_{2}$ if and only if w_{1} and w_{2} occur at the same place in two isomorphic connected components of \mathfrak{G}_{n}^{B},
$w_{1} \stackrel{D}{\sim} w_{2}$ if and only if w_{1} and w_{2} occur at the same place in two isomorphic connected components of \mathfrak{G}_{n}^{D}.

In this article, we prove that $\operatorname{Pl}\left(B_{n}\right)=\mathcal{B}_{n}^{*} / \stackrel{B}{\sim}, \operatorname{Pl}\left(D_{n}\right)=\mathcal{D}_{n}^{*} / \stackrel{D}{\sim}, \mathfrak{P l}\left(B_{n}\right)=\mathfrak{B}_{n}^{*} / \stackrel{B}{\sim}$ and $\mathfrak{B r}\left(D_{n}\right)=\mathfrak{D}_{n}^{*} / \sim \sim$ are monoids and we undertake a detailed investigation of the corresponding insertion algorithms. We summarize in part 2 the background on Kashiwara's theory of crystals used in the sequel. In part 3, we first recall Kashiwara-Nakashima's notion of orthogonal tableau (analogous to Young tableaux for types B and D) and we relate it to Littelmann's notion of Young tableau for classical types. Then we derive a set of defining relations for $P l\left(B_{n}\right)$ and $P l\left(D_{n}\right)$ and we describe the corresponding column insertion algorithms. Using the combinatorial notion of oscillating tableaux (analogous to standard
tableaux for types B and D), these algorithms yield the desired Schensted type correspondences in G_{n}^{B} and G_{n}^{D}. In part 4 we propose an orthogonal Jeu de Taquin for type B based on Sheats' sliding algorithm for type C [16]. Finally in part 5, we bring into the picture the spin representations and extend the results of part 3 to the graphs $\mathfrak{G}_{n}^{B}, \mathfrak{G}_{n}^{D}$ and the monoids $\mathfrak{P l}\left(B_{n}\right), \mathfrak{P l}\left(D_{n}\right)$. Note that bounds for the length of the plactic relations are given in [12].

Notation 1.0.1 In the sequel, we often write B and D instead of B_{n} and D_{n} to simplify the notation. Moreover, we frequently define similar objects for types B and D. When they are related to type B (respectively D), we attach to them the label ${ }^{B}$ (respectively the label ${ }^{D}$). To avoid cumbersome repetitions, we sometimes omit the labels ${ }^{B}$ and ${ }^{D}$ when our statements are true for the two types.

2. Conventions for crystal graphs

2.1. Kashiwara's operators

Let \mathfrak{g} be simple Lie algebra and $\alpha_{i}, i \in I$ its simple roots. Recall that the crystal graphs of the $U_{g}(\mathfrak{g})$-modules are oriented colored graphs with colors $i \in I$. An arrow $a \rightarrow b$ means that $\tilde{f}_{i}(a)=b$ and $\tilde{e}_{i}(b)=a$ where \tilde{e}_{i} and \tilde{f}_{i} are the crystal graph operators (for a review of crystal bases and crystal graphs see [5]). Let V, V^{\prime} be two $U_{q}(\mathfrak{g})$-modules and B, B^{\prime} their crystal graphs. A vertex $v^{0} \in B$ satisfying $\tilde{e}_{i}\left(v^{0}\right)=0$ for any $i \in I$ is called a highest weight vertex. The decomposition of V into its irreducible components is reflected into the decomposition of B into its connected components. Each connected component of B contains a unique vertex of highest weight. We write $B\left(v^{0}\right)$ for the connected component containing the highest weight vertex v^{0}. The crystals graphs of two isomorphic irreducible components are isomorphic as oriented colored graphs. We will say that two vertices b_{1} and b_{2} of B occur at the same place in two isomorphic connected components Γ_{1} and Γ_{2} of B if there exist $i_{1}, \ldots, i_{r} \in I$ such that $w_{1}=\tilde{f}_{i_{i}} \cdots \tilde{f}_{i_{r}}\left(w_{1}^{0}\right)$ and $w_{2}=\tilde{f}_{i_{i}} \cdots \tilde{f}_{i_{r}}\left(w_{2}^{0}\right)$, where w_{1}^{0} and w_{2}^{0} are respectively the highest weight vertices of Γ_{1} and Γ_{2}.

The action of \tilde{e}_{i} and \tilde{f}_{i} on $B \otimes B^{\prime}=\left\{b \otimes b^{\prime} ; b \in B, b^{\prime} \in B^{\prime}\right\}$ is given by:

$$
\tilde{f}_{i}(u \otimes v)= \begin{cases}\tilde{f}_{i}(u) \otimes v & \text { if } \varphi_{i}(u)>\varepsilon_{i}(v) \tag{1}\\ u \otimes \tilde{f}_{i}(v) & \text { if } \varphi_{i}(u) \leq \varepsilon_{i}(v)\end{cases}
$$

and

$$
\tilde{e}_{i}(u \otimes v)= \begin{cases}u \otimes \tilde{e}_{i}(v) & \text { if } \varphi_{i}(u)<\varepsilon_{i}(v) \tag{2}\\ \tilde{e}_{i}(u) \otimes v & \text { if } \varphi_{i}(u) \geq \varepsilon_{i}(v)\end{cases}
$$

where $\varepsilon_{i}(u)=\max \left\{k ; \tilde{e}_{i}^{k}(u) \neq 0\right\}$ and $\varphi_{i}(u)=\max \left\{k ; \tilde{f}_{i}^{k}(u) \neq 0\right\}$. Denote by $\Lambda_{i}, i \in I$ the fundamental weights of \mathfrak{g}. The weight of the vertex u is defined by $\operatorname{wt}(u)=\sum_{I}\left(\varphi_{i}(u)-\right.$
$\left.\varepsilon_{i}(u)\right) \Lambda_{i}$. Write $s_{i}=s_{\alpha_{i}}$ for $i \in I$. The Weyl group W of \mathfrak{g} acts on B by:

$$
\begin{array}{ll}
s_{i}(u)=\left(\tilde{f}_{i}\right)^{\varphi_{i}(u)-\varepsilon_{i}(u)}(u) & \text { if } \varphi_{i}(u)-\varepsilon_{i}(u) \geq 0, \\
s_{i}(u)=\left(\tilde{e}_{i}\right)^{\varepsilon_{i}(u)-\varphi_{i}(u)}(u) & \text { if } \varphi_{i}(u)-\varepsilon_{i}(u)<0 . \tag{3}
\end{array}
$$

We have the equality $\operatorname{wt}(\sigma(u))=\sigma(\operatorname{wt}(u)$ for any $\sigma \in W$ and $u \in B$. The following lemma is a straightforward consequence of (1) and (2).

Lemma 2.1.1 Let $u \otimes v \in B \otimes B^{\prime}$. Then:
(i) $\varphi_{i}(u \otimes v)=\left\{\begin{array}{ll}\varphi_{i}(v)+\varphi_{i}(u)-\varepsilon_{i}(v) & \text { if } \varphi_{i}(u)>\varepsilon_{i}(v) \\ \varphi_{i}(v) & \text { otherwise. }\end{array}\right.$.
(ii) $\varepsilon_{i}(u \otimes v)=\left\{\begin{array}{ll}\varepsilon_{i}(v)+\varepsilon_{i}(u)-\varphi_{i}(u) & \text { if } \varepsilon_{i}(v)>\varphi_{i}(u) \\ \varepsilon_{i}(u) & \text { otherwise. }\end{array}\right.$.
(iii) $u \otimes v$ is a highest weight vertex of $B \otimes B^{\prime}$ if and only if for any $i \in I \tilde{e}_{i}(u)=0$ (i.e. u is of highest weight) and $\varepsilon_{i}(v) \leq \varphi_{i}(u)$.

For any dominant weight $\lambda \in P_{+}$, write $B(\lambda)$ for the crystal graph of $V(\lambda)$, the irreducible module of highest weight λ and denote by u_{λ} its highest weight vertex. Kashiwara has introduced in [6] an embedding of $B(\lambda)$ into $B(m \lambda)$ for any positive integer m. He uses this embedding to obtain a simple bijection between Littlemann's path crystal associated to λ and $B(\lambda)$ [14].

Theorem 2.1.2 (Kashiwara) There exists a unique injective map

$$
\begin{aligned}
S_{m}: B(\lambda) & \rightarrow B(m \lambda) \subset B(\lambda)^{\otimes m} \\
u_{\lambda} & \mapsto u_{\lambda}^{\otimes m}
\end{aligned}
$$

such that for any $b \in B(\lambda)$:
(i) $\quad S_{m}\left(\tilde{e}_{i}(b)\right)=\tilde{e}_{i}^{m}\left(S_{m}(b)\right)$,
(ii) $\quad S_{m}\left(\tilde{f}_{i}(b)\right)=\tilde{f}_{i}^{m}\left(S_{m}(b)\right)$,
(iii) $\quad \varphi_{i}\left(S_{m}(b)\right)=m \varphi_{i}(b)$,
(iv) $\quad \varepsilon_{i}\left(S_{m}(b)\right)=m \varepsilon_{i}(b)$,
(v) $\quad \operatorname{wt}\left(S_{m}(b)\right)=m \mathrm{wt}(b)$.

Corollary 2.1.3 Let $\lambda_{1}, \ldots, \lambda_{k} \in P_{+}$. Then, the map:

$$
\begin{aligned}
S_{m}: B\left(\lambda_{1}\right) \otimes \cdots \otimes B\left(\lambda_{k}\right) & \rightarrow B\left(m \lambda_{1}\right) \otimes \cdots \otimes B\left(m \lambda_{k}\right) \\
b_{1} \otimes \cdots \otimes b_{k} & \mapsto S_{m}\left(b_{1}\right) \otimes \cdots \otimes S_{m}\left(b_{k}\right)
\end{aligned}
$$

is injective and satisfies the relations (4) with $b=b_{1} \otimes \cdots \otimes b_{k}$. Moreover the image by S_{m} of a highest weight vertex of $B\left(\lambda_{1}\right) \otimes \cdots \otimes B\left(\lambda_{k}\right)$ is a highest weight vertex of $B\left(m \lambda_{1}\right) \otimes \cdots \otimes B\left(m \lambda_{k}\right)$.

Proof: By induction, we can suppose $k=2 . \mathrm{S}_{m}$ is injective because S_{m} is injective. Let $u \otimes v \in B\left(\lambda_{1}\right) \otimes B\left(\lambda_{2}\right)$. Suppose that $\varphi_{i}(u) \leq \varepsilon_{i}(v)$. We derive the following equalities from Formulas (1) and (2):

$$
\begin{aligned}
\mathrm{S}_{m} \tilde{f}_{i}(u \otimes v) & =\mathrm{S}_{m}\left(u \otimes \tilde{f}_{i} v\right)=S_{m}(u) \otimes S_{m}\left(\tilde{f}_{i} v\right)=S_{m}(u) \otimes \tilde{f}_{i}^{m} S_{m}(v) \quad \text { and } \\
\tilde{f}_{i}^{m}\left(\mathrm{~S}_{m}(u \otimes v)\right) & =\tilde{f}_{i}^{m}\left(S_{m}(u) \otimes S_{m}(v)\right)=S_{m}(u) \otimes \tilde{f}_{i}^{m} S_{m}(v)
\end{aligned}
$$

Indeed, $\varepsilon_{i}\left(S_{m}(v)\right)=m \varepsilon_{i}(v) \geq m \varphi_{i}(u)=\varphi_{i}\left(S_{m}(u)\right)$ and for $p=1, \ldots, m \varepsilon_{i}\left(\tilde{f}_{i}^{p} S_{m}(v)\right)>$ $\varepsilon_{i}\left(S_{m}(v)\right)$. Hence $\mathrm{S}_{m} \tilde{f}_{i}(u \otimes v)=\tilde{f}_{i}^{m}\left(\mathrm{~S}_{m}(u \otimes v)\right)$. Now suppose $\varepsilon_{i}(v)<\varphi_{i}(u)$ i.e. $\varepsilon_{i}(u) \leq$ $\varphi_{i}(v)+1$. We obtain:

$$
\begin{aligned}
\mathrm{S}_{m} \tilde{f}_{i}(u \otimes v) & =\mathrm{S}_{m}\left(\tilde{f}_{i} u \otimes v\right)=S_{m}\left(\tilde{f}_{i} u\right) \otimes S_{m}(v)=\tilde{f}_{i}^{m} S_{m}(u) \otimes S_{m}(v) \quad \text { and } \\
\tilde{f}_{i}^{m}\left(\mathrm{~S}_{m}(u \otimes v)\right) & =\tilde{f}_{i}^{m}\left(S_{m}(u) \otimes S_{m}(v)\right)=\tilde{f}_{i}^{m} S_{m}(u) \otimes S_{m}(v)
\end{aligned}
$$

because $\varepsilon_{i}\left(S_{m}(v)\right)=m \varepsilon_{i}(v) \leq m \varphi_{i}(u)+m=\varphi_{i}\left(S_{m} u\right)+m$. Hence we have $\mathrm{S}_{m} \tilde{f}_{i}(u \otimes v)=$ $\tilde{f}_{i}^{m}\left(\mathrm{~S}_{m}(u \otimes v)\right)$.

Similarly we prove that $\mathrm{S}_{m} \tilde{e}_{i}\left(u \otimes v=\tilde{e}_{i}^{m}\left(\mathrm{~S}_{m}(u \otimes v)\right)\right.$. So S_{m} satisfies the formulas (i) and (ii). By Lemma 2.1.1(i) and (ii) we obtain then that S_{m} satisfies (iii), (iv) and (v).

Suppose that $u \otimes v$ is a highest weight vertex of $B\left(\lambda_{1}\right) \otimes B\left(\lambda_{2}\right)$. By Lemma 2.1.1(iii), u is the highest weight vertex of $B\left(\lambda_{1}\right)$ and $\varepsilon_{i}(v) \leq \varphi_{i}(u)$ for $i \in I$. Then by definition of $S_{m}, S_{m}(u)$ is the highest weight vertex of $B\left(m \lambda_{1}\right)$. Moreover for any $i \in I, \varepsilon_{i}\left(S_{m}(v)\right)=$ $m \varepsilon_{i}(v) \leq m \varphi_{i}(u)=\varphi_{i}\left(S_{m}(u)\right)$. So $S_{m}(u) \otimes S_{m}(v)=\mathrm{S}_{m}(u \otimes v)$ is of highest weight in $B\left(m \lambda_{1}\right) \otimes B\left(m \lambda_{2}\right)$.

By this corollary, the connected component of $B\left(\lambda_{1}\right) \otimes \cdots \otimes B\left(\lambda_{k}\right)$ of highest weight vertex $u^{0}=u_{1} \otimes \cdots \otimes u_{k}$, may be identified with the sub-graph of $B\left(m \lambda_{1}\right) \otimes \cdots \otimes B\left(m \lambda_{k}\right)$ generated by the vertex $S_{m}\left(u_{1}\right) \otimes \cdots \otimes S_{m}\left(u_{k}\right)$ and the operators \tilde{f}_{i}^{m} for $i \in I$.

2.2. Tensor powers of the vector representations

We choose to label the Dynkin diagram of $\mathrm{so}_{2 n+1}$ by:

$$
\stackrel{1}{\circ}-2_{\circ}^{\circ}-\frac{3}{\circ} \cdots \stackrel{n-2}{\circ}-\stackrel{n-1}{\circ} \Rightarrow \stackrel{n}{\circ}
$$

and the Dynkin diagram of $\operatorname{so}_{2 n}$ by:

Write W_{n}^{B} and W_{n}^{D} for the Weyl groups of $s o_{2 n+1}$ and $s o_{2 n}$. Denote by V_{n}^{B} and V_{n}^{D} the vector representations of $U_{q}\left(s o_{2 n+1}\right)$ and $U_{q}\left(s o_{2 n}\right)$. Their crystal graphs are respectively:

$$
\begin{equation*}
1 \xrightarrow{1} 2 \cdots \rightarrow n-1 \xrightarrow{n-1} n \xrightarrow{n} 0 \xrightarrow{n} \bar{n} \xrightarrow{n-1} \overline{n-1} \xrightarrow{n-2} \cdots \rightarrow \overline{2} \xrightarrow{1} \overline{1} \tag{5}
\end{equation*}
$$

and

By induction, formulas (1), (2) allow to define a crystal graph for the representations $\left(V_{n}^{B}\right)^{\otimes l}$ and $\left(V_{n}^{D}\right)^{\otimes l}$ for any l. Each vertex $u_{1} \otimes u_{2} \otimes \cdots \otimes u_{l}$ of the crystal graph of $\left(V_{n}^{B}\right)^{\otimes l}$ will be identified with the word $u_{1} u_{2} \cdots u_{l}$ on the totally ordered alphabet

$$
\mathcal{B}_{n}=\{1 \prec \cdots \prec n-1 \prec n \prec 0 \prec \bar{n} \prec \overline{n-1} \prec \cdots \prec \overline{1}\} .
$$

Similarly each vertex $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{l}$ of the crystal graph of $\left(V_{n}^{D}\right)^{\otimes l}$ will be identified with the word $v_{1} v_{2} \cdots v_{l}$ on the partially ordered alphabet

$$
\mathcal{D}_{n}=\left\{1 \prec \cdots \prec n-1 \prec \begin{array}{l}
n \\
\bar{n}
\end{array} \prec \overline{n-1} \prec \cdots \prec \overline{1}\right\} .
$$

By convention we set $\overline{0}=0$ and for $k=1, \ldots, n, \overline{\bar{k}}=k$. The letter x is barred if $x \succeq \bar{n}$ unbarred if $x \preceq n$ and we set:

$$
|x|= \begin{cases}x & \text { if } x \text { is unbarred } \\ \bar{x} & \text { otherwise. }\end{cases}
$$

Write \mathcal{B}_{n}^{*} and \mathcal{D}_{n}^{*} for the free monoids on \mathcal{B}_{n} and \mathcal{D}_{n}. If w is a word of \mathcal{B}_{n}^{*} or \mathcal{D}_{n}^{*}, we denote by $\mathrm{l}(w)$ its length and by $d(w)=\left(d_{1}, \ldots, d_{n}\right)$ the n-tuple where d_{i} is the number of letters i in w minus the number of letters \bar{i}. Let G_{n}^{B} and $G_{n, l}^{B}$ be respectively the crystal graphs of $\bigoplus_{l}\left(V_{n}^{B}\right)^{\otimes l}$ and $\left(V_{n}^{B}\right)^{\otimes l}$. Then the vertices of G_{n}^{B} are indexed by the words of \mathcal{B}_{n}^{*} and those of $G_{n, l}^{B}$ by the words of \mathcal{B}_{n}^{*} of length l. Similarly G_{n}^{D} and $G_{n, l}^{D}$, the crystal graphs of $\bigoplus_{l}\left(V_{n}^{B}\right)^{\otimes l}$ and $\left(V_{n}^{B}\right)^{\otimes l}$ are indexed respectively by the words of \mathcal{D}_{n}^{*} and by the words of \mathcal{D}_{n}^{*} of length l. If w is a vertex of G_{n}, write $B(w)$ for the connected component of G_{n} containing w.

Denote by $\Lambda_{1}^{B}, \ldots, \Lambda_{n}^{B}$ and $\Lambda_{1}^{D}, \ldots, \Lambda_{n}^{D}$ the fundamental weights of $U_{q}\left(s o_{2 n+1}\right)$ and $U_{q}\left(s o_{2 n}\right)$. Let P_{+}^{B} and P_{+}^{D} be the sets of dominant weights of their weight lattices. We set

$$
\begin{aligned}
& \omega_{n}^{B}=2 \Lambda_{n}^{B}, \\
& \omega_{i}^{B}=\Lambda_{i}^{B} \quad \text { for } i=1, \ldots, n-1
\end{aligned}
$$

and

$$
\begin{aligned}
\omega_{n}^{D} & =2 \Lambda_{n}^{D} \\
\bar{\omega}_{n}^{D} & =2 \Lambda_{n-1}^{D} \\
\omega_{n-1}^{D} & =\Lambda_{n}^{D}+\Lambda_{n-1}^{D} \\
\omega_{i}^{D} & =\Lambda_{i}^{D} \quad \text { for } i=1, \ldots, n-2
\end{aligned}
$$

Then the weight of a vertex w of G_{n} is given by:

$$
\mathrm{wt}(w)=d_{n} \omega_{n}+\sum_{i=1}^{n-1}\left(d_{i}-d_{i+1}\right) \omega_{i}
$$

Thus we recover the well-known fact that there is no connected component of G_{n}^{B} isomorphic to $B\left(\Lambda_{n}^{B}\right)$ and no connected component of G_{n}^{D} isomorphic to $B\left(\Lambda_{n}^{D}\right)$ or $B\left(\Lambda_{n-1}^{D}\right)$. Recall that in the cases of the types A and C, every crystal graph of an irreducible module may be embedded in the crystal graph of a tensor power of the vector representation. For $\lambda \in P_{+}^{B}, B^{B}(\lambda)$ may be embedded in a tensor power of the vector representation V_{n}^{B} if and only if λ lies in the weight sub-lattice Ω^{B} generated by the ω_{i}^{B},s. Similarly, for $\lambda \in P_{+}^{D}, B^{D}(\lambda)$ may be embedded in a tensor power of the vector representation V_{n}^{D} if and only if λ lies in the weight sub-lattice Ω^{D} generated by the ω_{i}^{D} 's. Set $\Omega_{+}^{B}=P_{+}^{B} \cap \Omega^{B}$ and $\Omega_{+}^{D}=P_{+}^{D} \cap \Omega^{D}$.

Now we introduce the coplactic relation. For w_{1} and $w_{2} \in \mathcal{B}_{n}^{*}$ (resp. \mathcal{D}_{n}^{*}), write $w_{1} \stackrel{B}{\leftrightarrow} w_{2}$ (resp. $w_{1} \stackrel{D}{\leftrightarrow} w_{2}$) if and only if w_{1} and w_{2} belong to the same connected component of G_{n}^{B} (resp. G_{n}^{D}). The proof of the following lemma is the same as in the symplectic case [10].

Lemma 2.2.1 If $w_{1}=u_{1} v_{1}$ and $w_{2}=u_{2} v_{2}$ with $l\left(u_{2}\right)$ and $l\left(v_{1}\right)=l\left(v_{2}\right)$

$$
w_{1} \leftrightarrow w_{2} \Rightarrow\left\{\begin{array}{l}
u_{1} \leftrightarrow u_{2} \\
v_{1} \leftrightarrow v_{2}
\end{array}\right.
$$

2.3. Crystal graphs of the spin representations

The spin representations of $U_{q}\left(s o_{2 n+1}\right)$ and $U_{q}\left(s o_{2 n}\right)$ are $V\left(\Lambda_{n}^{B}\right), V\left(\Lambda_{n}^{D}\right)$ and $V\left(\Lambda_{n-1}^{D}\right)$. Recall that $\operatorname{dim} V\left(\Lambda_{n}^{B}\right)=2^{n}$ and $\operatorname{dim} V\left(\Lambda_{n}^{D}\right)=\operatorname{dim} V\left(\Lambda_{n-1}^{D}\right)=2^{n-1}$. Now we review the description of $B\left(\Lambda_{n}^{B}\right), B\left(\Lambda_{n}^{D}\right)$ and $B\left(\Lambda_{n-1}^{D}\right)$ given by Kashiwara and Nakashima in [4]. It is based on the notion of spin column. To avoid confusion between these new columns and the classical columns of a tableau that we introduce in the next section, we follow KashiwaraNakashima's convention and represent spin columns by column shape diagrams of width $1 / 2$. Such diagrams will be called K-N diagrams.

Definition 2.3.1 A spin column \mathfrak{C} of height n is a K-N diagram containing n letters of \mathcal{D}_{n} such that the word $x_{1} \cdots x_{n}$ obtained by reading \mathfrak{C} from top to bottom does not contain a
pair (z, \bar{z}) and verifies $x_{1} \prec \cdots \prec x_{n}$. The set of spin columns of length n will be denoted $S P_{n}$.

- $B\left(\Lambda_{n}^{B}\right)=\left\{\mathfrak{C} ; \mathfrak{C} \in S P_{n}\right\}$ where Kashiwara's operators act as follows:
if $n \in \mathfrak{C}$ then $\tilde{f}_{n} \mathfrak{C}$ is obtained by turning n into \bar{n}, otherwise $\tilde{f}_{n} \mathfrak{C}=0$,
if $\bar{n} \in \mathfrak{C}$ then $\tilde{e}_{n} \mathfrak{C}$ is obtained by turning \bar{n} into n, otherwise $\tilde{e}_{n} \mathfrak{C}=0$,
if $(i, \overline{i+1}) \in \mathfrak{C}$ then $\tilde{f}_{i} \mathfrak{C}$ is obtained by turning $(i, \overline{i+1})$ into $(i+1, \bar{i})$, otherwise $\tilde{f}_{i} \mathfrak{C}=0$,
if $(i+1, \bar{i}) \in \mathfrak{C}$ then $\tilde{e}_{i} \mathfrak{C}$ is obtained by turning $(i+1, \bar{i})$ into $(i, \overline{i+1})$, otherwise $\tilde{e}_{i} \mathfrak{C}=0$.
- $B\left(\Lambda_{n}^{D}\right)=\left\{\mathfrak{C} \in S P_{n}\right.$; the number of barred letters in \mathfrak{C} is even $\}$ and $B\left(\Lambda_{n-1}^{D}\right)=\left\{\mathfrak{C} \in S P_{n}\right.$; the number of barred letters in \mathfrak{C} is odd $\}$ where Kashiwara's operators act as follows:
if $(n-1, n) \in \mathfrak{C}$ then $\tilde{f}_{n} \mathfrak{C}$ is obtained by turning $(n-1, n)$ into $(\bar{n}, \overline{n-1})$, otherwise $\tilde{f}_{n} \mathfrak{C}=0$,
if $(\bar{n}, \overline{n-1}) \in \mathfrak{C}$ then $\tilde{e}_{n} \mathfrak{C}$ is obtained by turning $(\bar{n}, \overline{n-1})$ into $(n-1, n)$, otherwise $\tilde{e}_{n} \mathfrak{C}=0$, for $i \neq n, \tilde{f}_{i}$ and \tilde{e}_{i} act like in $B\left(\Lambda_{n}^{B}\right)$.

In the sequel we denote by $v_{\Lambda_{n}}^{B}$ the highest weight vertex of $B\left(\Lambda_{n}^{B}\right)$, by $v_{\Lambda_{n}}^{D}$ and $v_{\Lambda_{n-1}}^{D}$ the highest weight vertices of $B\left(\Lambda_{n}^{D}\right)$ and $B\left(\Lambda_{n-1}^{D}\right)$. Note that $v_{\Lambda_{n}}^{B}$ and $v_{\Lambda_{n}}^{D}$ correspond to the spin column containing the letters of $\{1, \ldots, n\}$ and $v_{\Lambda_{n-1}}^{D}$ corresponds to the spin column containing the letters of $\{1, \ldots, n-1, \bar{n}\}$.

3. Schensted correspondences in G_{n}^{B} and G_{n}^{D}

3.1. Orthogonal tableaux

Let $\lambda \in \Omega_{+}$. We are going to review the notion of standard orthogonal tableaux introduced by Kashiwara and Nakashima [4] to label the vertices of $B(\lambda)$.
3.1.1. Columns and admissible columns. A column of type B is a Young diagram

$$
C=\begin{array}{|l|}
\hline x_{1} \\
\hline \cdot \\
\hline \cdot \\
\hline x_{l} \\
\hline
\end{array}
$$

of column shape filled by letters of \mathcal{B}_{n} such that C increases from top to bottom and 0 is the unique letter of \mathcal{B}_{n} that may appear more than once.

A column of type D is a Young diagram C of column shape filled by letters of \mathcal{D}_{n} such that $x_{i+1} \not \leq x_{i}$ for $i=1, \ldots, l-1$. Note that the letters n and \bar{n} are the unique letters that may appear more than once in C and if they do, these letters are different in two adjacent boxes.

Figure 1. The crystal graphs $B\left(\Lambda_{n}^{B}\right), B\left(\Lambda_{n}^{D}\right)$ and $B\left(\Lambda_{n-1}^{D}\right)$ for $U_{q}\left(s o_{7}\right)$ and $U_{q}\left(s o_{6}\right)$.

The height $h(C)$ of the column C is the number of its letters. The word obtained by reading the letters of C from top to bottom is called the reading of C and denoted by $\mathrm{w}(C)$. We will say that the column C contains a pair (z, \bar{z}) when a letter 0 or the two letters $z \preceq n$ and \bar{z} appear in C.

Definition 3.1.1 (Kashiwara-Nakashima) Let C be a column such that $\mathrm{w}(C)=x_{1} \cdots x_{h(C)}$. Then C is admissible if $h(C) \leq n$ and for any pair (z, \bar{z}) of letters in C satisfying $z=x_{p}$ and $\bar{z}=x_{q}$ with $z \preceq n$ we have

$$
\begin{equation*}
|q-p| \geq h(C)-z+1 \tag{7}
\end{equation*}
$$

(Note that $0 \succ n$ on \mathcal{B}_{n} and we may have $q-p<0$ for type D and $z=n$).
Example 3.1.2 For $n=4,40 \overline{4} \overline{2}$ and $3 \overline{4} 4 \overline{3}$ are readings of admissible columns respectively of type B and D.

Let C be a column of type B or D and $z \preceq n$ a letter of C. We denote by $N(z)$ the number of letters x in C such that $x \preceq z$ or $x \succeq \bar{z}$. Then Condition (7) is equivalent to $N(z) \leq z$.

Suppose that C is non admissible and does not contain a pair (z, \bar{z}) with $z \preceq n$ and $N(z)>z$. Then $h(C)>n$. Hence C is of type B and $0 \in C$. Indeed, if $0 \notin C, C$ contains a letter z maximal such that $z \preceq n$ and $\bar{z} \in C$. It means that for any $x \in\{z+1, \ldots, n\}$, there is at most one letter $y \in C$ with $|y|=x$. We have a contradiction because in this case $N(z)>n-(n-z)$. We obtain the

Remark 3.1.3 A column C is non admissible if and only if at least one of the following assertions is satisfied:
(i) C contains a letter $z \preceq n$ and $N(z)>z$
(ii) C is of type $B, 0 \in C$ and $h(C)>n$.

If we set $v_{\omega_{k}}^{B}=1 \cdots k$ for $k=1, \ldots, n$, then $B\left(v_{\omega_{k}}^{B}\right)$ is isomorphic to $B\left(\omega_{k}^{B}\right)$. Similarly, if we set $v_{\omega_{k}}^{D}=1 \cdots k$ for $k=1, \ldots, n$ and $v_{\bar{\omega}_{n}}^{D}=1 \cdots(n-1) \bar{n}$, then $B\left(v_{\omega_{k}}^{D}\right)$ and $B\left(v_{\bar{\omega}_{n}}^{D}\right)$ are respectively isomorphic to $B\left(\omega_{k}^{D}\right)$ and $B\left(\bar{\omega}_{n}^{D}\right)$.

Proposition 3.1.4 (Kashiwara-Nakashima)

- The vertices of $B\left(v_{\omega_{k}}^{B}\right)$ are the readings of the admissible columns of type B and length k.
- The vertices of $B\left(v_{\omega_{k}}^{D}\right)$ with $k<n$ are the readings of the admissible columns of type D and length k.
- The vertices of $B\left(v_{\omega_{n}}^{D}\right)$ are the readings of the admissible columns C of type D such that $\mathrm{w}(C)=x_{1} \cdots x_{n}$ and $x_{k}=n\left(\right.$ resp. $\left.x_{k}=\bar{n}\right)$ implies $n-k$ is even (resp. odd).
- The vertices of $B\left(v_{\bar{\omega}_{n}}^{D}\right)$ are the readings of the admissible columns C of type D such that $\mathrm{w}(C)=x_{1} \cdots x_{n}$ and $x_{k}=\bar{n}$ (resp. $x_{k}=n$) implies $n-k$ is odd (resp. even).

We can obtain another description of the admissible columns by computing, for each admissible column C, a pair of columns ($l C, r C$) without pair (z, \bar{z}). This duplication was inspired by the description of the admissible columns of type C in terms of De Concini columns used by Sheats in [16].

Definition 3.1.5 Let C be a column of type B and denote by $I_{C}=\left\{z_{1}=0, \ldots, z_{r}=\right.$ $\left.0 \succ z_{r+1} \succ \cdots \succ z_{s}\right\}$ the set of letters $z \preceq 0$ such that the pair (z, \bar{z}) occurs in C. We will say that C can be split when there exists (see the example below) a set of s unbarred letters $J_{C}=\left\{t_{1} \succ \cdots \succ t_{s}\right\} \subset \mathcal{B}_{n}$ such that: t_{1} is the greatest letter of \mathcal{B}_{n} satisfying: $t_{1} \prec z_{1}, t_{1} \notin C$ and $\bar{t}_{1} \notin C$, for $i=2, \ldots, s, t_{i}$ is the greatest letter of \mathcal{B}_{n} satisfying: $t_{i} \prec \min \left(t_{i-1}, z_{i}\right)$, $t_{i} \notin C$ and $\bar{t}_{1} \notin C$.

In this case we write:

- $r C$ for the column obtained first by changing in $C \bar{z}_{i}$ into \bar{t}_{i} for each letter $z_{i} \in I$, next by reordering if necessary.
- $l C$ for the column obtained first by changing in $C z_{i}$ into t_{i} for each letter $z_{i} \in I$, next by reordering if necessary.

Definition 3.1.6 Let C be a column of type D. Denote by \hat{C} the column of type B obtained by turning in C each factor $\bar{n} n$ into 00 . We will say that C can be split when \hat{C} can be split. In this case we write $l C=l \hat{C}$ and $r C=l \hat{C}$.

Example 3.1.7 Suppose $n=9$ and consider the column C of type B such that $\mathrm{w}(C)=$ $458900 \overline{8} \overline{5} \overline{4}$. We have $I_{C}=\{0,0,8,5,4\}$ and $J_{C}=\{7,6,3,2,1\}$. Hence

$$
\mathrm{w}(l C)=123679 \overline{8} \overline{5} \overline{4} \quad \text { and } \quad \mathrm{w}(r C)=4589 \overline{7} \overline{6} \overline{3} \overline{2} \overline{1}
$$

Suppose $n=8$ and consider the column C^{\prime} of type D such that $\mathrm{w}(C)=56 \overline{8} 8 \overline{8} \overline{6} \overline{5} \overline{2}$. Then $\mathrm{w}\left(\hat{C}^{\prime}\right)=5600 \overline{8} \overline{6} \overline{5} \overline{2}, I_{\hat{C}^{\prime}}=\{0,0,6,5\}$ and $J_{\hat{C}^{\prime}}=\{7,4,3,1\}$. Hence

$$
\mathrm{w}\left(l C^{\prime}\right)=1347 \overline{8} \overline{6} \overline{5} \overline{2} \quad \text { and } \quad \mathrm{w}\left(r C^{\prime}\right)=56 \overline{8} \overline{7} \overline{4} \overline{3} \overline{2} \overline{1}
$$

Lemma 3.1.8 Let C be a column of type B or D which can be split. Then C is admissible.
Proof: Suppose C of type B. We have $h(C) \leq n$ for C can be split. If there exists a letter $z \prec 0$ in C such that the pair (z, \bar{z}) occurs in C and $N(z) \geq z+1, C$ contains at least $z+1$ letters x satisfying $|x| \preceq z$. So $r C$ contains at least $z+1$ letters x^{\prime} satisfying $\left|x^{\prime}\right| \preceq z$. We obtain a contradiction because $r C$ does not contain a pair (t, \bar{t}). When C is of type D, by applying the lemma to \hat{C} we obtain that \hat{C} is admissible. So C is admissible.

The meaning of $l C$ and $r C$ is explained in the following proposition.
Proposition 3.1.9 Let $\omega \in\left\{\omega_{1}^{B}, \ldots, \omega_{n}^{B}\right\}$ or $\omega \in\left\{\omega_{1}^{D}, \ldots, \omega_{n-1}^{D}, \omega_{n}^{D}, \bar{\omega}_{n}^{D}\right\}$. The map

$$
S_{2}: B\left(v_{\omega}\right) \rightarrow B\left(v_{\omega}\right) \otimes B\left(v_{\omega}\right)
$$

defined in Theorem 2.1.2 satisfies for any admissible column $C \in B\left(v_{\omega}\right)$:

$$
S_{2}(\mathrm{w}(C))=\mathrm{w}(r C) \otimes \mathrm{w}(l C)
$$

Example 3.1.10 Consider $\omega=\omega_{2}^{B}$ for $U_{q}\left(\operatorname{so}_{5}\right)$. The following graphs are respectively those of $B(\omega)$ and $S_{2}(B(\omega))$.

$$
\begin{gathered}
12 \xrightarrow{2} 10 \xrightarrow{2} 1 \overline{2} \xrightarrow{1} 2 \overline{2} \xrightarrow{\prime} 2 \overline{1} \bar{\downarrow} \\
\downarrow 1 \\
\\
20 \xrightarrow{2} 00 \xrightarrow{2} 0 \overline{2} \xrightarrow{1} 0 \overline{1} \xrightarrow{2} \overline{2} \overline{1} \overline{1} \\
(12) \otimes(12) \xrightarrow{2^{2}}(1 \overline{2}) \otimes(12) \xrightarrow{2^{2}}(1 \overline{2}) \otimes(1 \overline{2}) \xrightarrow{1^{2}}(2 \overline{1}) \otimes(1 \overline{2}) \xrightarrow{1^{2}}(2 \overline{1}) \otimes(2 \overline{1}) \\
\left.\downarrow 1^{2}\right) \\
\downarrow 2^{2} \\
(2 \overline{1}) \otimes(12) \xrightarrow{2^{2}}(\overline{2} \overline{1}) \otimes(12) \xrightarrow{2^{2}}(\overline{2} \overline{1}) \otimes(1 \overline{2}) \xrightarrow{1^{2}}(\overline{2} \overline{1}) \otimes(2 \overline{1}) \xrightarrow{2^{2}}(\overline{2} \overline{1}) \otimes(\overline{2} \overline{1})
\end{gathered}
$$

Proof of Proposition 3.1.9: In this proof we identify each column with its reading to simplify the notations. When $C=v_{\omega}$ is the highest weight vertex of $B\left(v_{\omega}\right), r\left(v_{\omega}\right)=$ $l\left(v_{\omega}\right)=v_{\omega}$ because v_{ω} does not contain a pair (z, \bar{z}). So $S_{2}\left(v_{\omega}\right)=r C \otimes l C$. Each vertex C of $B(\omega)$ may be written $C=\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{r}}\left(v_{\omega}\right)$. By induction on r, it suffices to prove that for any $\mathrm{w}(C) \in B\left(v_{\omega}\right)$ such that $\tilde{f}_{i}(C) \neq 0$ we have

$$
S_{2}(C)=r C \otimes l C \Rightarrow S_{2}\left(\tilde{f}_{i} C\right)=r\left(\tilde{f}_{i} C\right) \otimes l\left(\tilde{f}_{i} C\right)
$$

For any column D we denote by $[D]_{i}$ the word obtained by erasing all the letters x of D such that $\tilde{f}_{i}(x)=\tilde{e}_{i}(x)=0$. It is clear that only the letters of $[D]_{i}$ may be changed in D when we apply \tilde{f}_{i}.

Suppose $\omega \in\left\{\omega_{1}^{B}, \ldots, \omega_{n}^{B}\right)$. Consider $C \in B\left(v_{\omega}\right)$ such that $S_{2}(C)=r C \otimes l C$ and $\tilde{f}_{i}(C) \neq 0$.

When $i \neq n$, the letters $x \notin\{\overline{i+1}, \bar{i}, i, i+1\}$ do not interfere in the computation of \tilde{f}_{i}. It follows from the condition $\tilde{f}_{i}(C) \neq 0$ and an easy computation from (1) and (2) that we need only consider the following cases: (i) $[C]_{i}=i$, (ii) $[C]_{i}=\overline{i+1}$, (iii) $[C]_{i}=(i+1)(\overline{i+1})$, (iv) $[C]_{i}=(i)(\overline{i+1}),(\mathrm{v})[C]_{i}=i(i+1)(\overline{i+1})$ and (vi) $[C]_{i}=i(\overline{i+1}) \bar{i}$. In the case (i), if $i+1 \notin J_{C}$, we have $[l C]_{i}=i$ and $[r C]_{i}=i$. Then $\left[\tilde{f}_{i}(C)\right]_{i}=i+1$ and $J_{\tilde{f}_{i} C}=J_{C}$ (hence $i \notin J_{\tilde{f}_{i} C}$). So $\left[l\left(\tilde{f}_{i} C\right)\right]_{i}=i+1$ and $\left[r\left(\tilde{f}_{i} C\right)\right]_{i}=i+1$. That means that $S_{2}\left(\tilde{f}_{i} C\right)=$ $\tilde{f}_{i}^{2}(r C \otimes l C)=\tilde{f}_{i}(r C) \otimes \tilde{f}_{i}(l C)=r\left(\tilde{f}_{i} C\right) \otimes l\left(\tilde{f}_{i} C\right)$ by definition of the map S_{2}. If $i+1 \in J_{C}$, we can write $[r C]_{i}=(i)(\overline{i+1})$ and $[l C]_{i}=(i)(i+1)$. Then $\left.\left[\tilde{f}_{i} C\right)\right]_{i}=i+1$ and $J_{\tilde{f}_{i} C}=J_{C}-\{i+1\}+\{i\}$. So $\left[r\left(\tilde{f}_{i} C\right)\right]=(i+1)(\bar{i})$ and $\left[l\left(\tilde{f}_{i} C\right)\right]=(i)(i+1)$. Hence $S_{2}\left(\tilde{f}_{i} C\right)=\tilde{f}_{i}^{2}(r C \otimes l C)=\tilde{f}_{i}^{2}(r C) \otimes l C=r\left(\tilde{f}_{i} C\right) \otimes l\left(\tilde{f}_{i} C\right)$. The proof is similar in the cases (ii) to (vi). When $i=n$, only the letters of $\{\bar{n}, 0, n\}$ interfere in the computation of \tilde{f}_{n}. We obtain the proposition by considering the cases: $[C]_{n}=\underbrace{0 \cdots 0}_{0 p \text { times }},[C]_{n}=n \underbrace{0 \cdots 0}_{0 p \text { times }}$ and $[C]_{n}=n$.

Suppose $\omega \in\left\{\omega_{1}^{D}, \ldots, \omega_{n-1}^{D}, \bar{\omega}_{n}^{D}, \omega_{n}^{D}\right\}$. When $i<n-1$ the proof is the same as above. When $i \in\{n-1, n\}$, the proposition follows by considering successively the cases:

$$
\left\{\begin{array}{l}
{[C]_{i}=n-1(\bar{n} n)^{r},} \\
{[C]_{i}=n(\bar{n} n)^{r} \bar{n},} \\
{[C]_{i}=(n-1) n(\bar{n} n)^{r} \bar{n},} \\
{[C]_{i}=(\bar{n} n)^{r} \bar{n},} \\
{[C]_{i}=(n-1)(\bar{n} n)^{r} \bar{n},} \\
{[C]_{i}=(n-1)(\bar{n} n)^{r} \bar{n}(\overline{n-1}) .}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
{[C]_{i}=n-1(n \bar{n})^{r},} \\
{[C]_{i}=\bar{n}(n \bar{n})^{r} n,} \\
{[C]_{i}=(n-1) \bar{n}(n \bar{n})^{r} n,} \\
{[C]_{i}=(n \bar{n})^{r} n,} \\
{[C]_{i}=(n-1)(n \bar{n})^{r} n,} \\
{[C]_{i}=(n-1)(n \bar{n})^{r} n(\overline{n-1}) .}
\end{array}\right.
$$

where $(\bar{n} n)^{r}$ (resp. $(n \bar{n})^{r}$) is the word containing the factor $\bar{n} n$ (resp. $n \bar{n}$) repeated r times.

Using Lemma 3.1.8 we derive immediately the
Corollary 3.1.11 A column C of type B or D is admissible if and only if it can be split.
Example 3.1.12 From Example 3.1.7, we obtain that C is admissible for $n=9$ and C^{\prime} is admissible for $n=8$.

Remark 3.1.13 With the notations of the previous proposition, denote by W_{n} / W_{ω} the set of cosets of the Weyl group W_{n} with respect to the stabilizer W_{ω} of ω in W_{n}. Then we obtain a bijection τ between the orbit O_{ω} of v_{ω} in $B(\omega)$ under the action of W_{n} defined by (3) and W_{n} / W_{ω}. Using Formulas (3) it is easy to prove that O_{ω} consists of the vertices of $B\left(v_{\omega}\right)$ without the pair (z, \bar{z}). Moreover if C_{1}, C_{2} are two columns such that $\mathrm{w}\left(C_{1}\right)=x_{1} \cdots x_{p}$, $\mathrm{w}\left(C_{2}\right)=y_{1} \cdots y_{p} \in O_{\omega}$, we have

$$
C_{1} \preceq C_{2} \Leftrightarrow \tau_{\mathrm{w}\left(C_{1}\right)} \triangleleft_{\omega} \tau_{\mathrm{w}\left(C_{2}\right)}
$$

where $C_{1} \preceq C_{2}$ means that $x_{i} \preceq y_{i}, i=1, \ldots, p$ and " \triangleleft_{ω} " denotes the projection of the Bruhat order on W_{n} / W_{ω}. Then Proposition 3.1.9 may be regarded as a version of Littelmann's labelling of $B\left(v_{\omega}\right)$ by pairs $\left(\tau_{\mathrm{w}(r C)}, \tau_{\mathrm{w}(l C)}\right) \in W_{n} / W_{\omega} \times W_{n} / W_{\omega}$ satisfying $\tau_{\mathrm{w}(l C)} \triangleleft_{\omega} \tau_{\mathrm{w}(r C)}$ [13].
3.1.2. Orthogonal tableaux. Every $\lambda \in \Omega_{+}^{B}$ has a unique decomposition of the form $\lambda=\sum_{i=1}^{n} \lambda_{i} \omega_{i}^{B}$. Similarly, every $\lambda \in \Omega_{+}^{D}$ has a unique decomposition of the form (*) $\lambda=\sum_{i=1}^{n} \lambda_{i} \omega_{i}^{D}$ or $(* *) \lambda=\lambda_{n} \bar{\omega}_{n}^{D}+\sum_{i=1}^{n-1} \lambda_{i} \omega_{i}^{D}$ with $\lambda_{n} \neq 0$, where $\left(\lambda_{n}, \ldots, \lambda_{n}\right) \in \mathbb{N}^{n}$. We will say that $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the positive decomposition of $\lambda \in \Omega_{+}$. Denote by Y_{λ} the Young diagram having λ_{i} columns of height i for $i=1, \ldots, n$. If $\lambda \in \Omega_{+}^{D}, Y_{\lambda}$ may not suffice to characterize the weight λ because a column diagram of length n may be associated to ω_{n} or to $\bar{\omega}_{n}$. In Section 3.4 we will need to attach to each dominant weight $\lambda \in \Omega_{+}$a combinatorial object $Y(\lambda)$. Moreover it will be convenient to distinguish in (*) the cases where $\lambda_{n}=0$ or $\lambda_{n} \neq 0$. This leads us to set:
(i) $Y(\lambda)=Y_{\lambda}$ if $\lambda \in \Omega_{+}^{B}$,
(ii) $Y(\lambda)=\left(Y_{\lambda},+\right)$ in case $(*)$ with $\lambda_{n} \neq 0$,
(iii) $Y(\lambda)=\left(Y_{\lambda}, 0\right)$ in case $(*)$ with $\lambda_{n}=0$,
(iv) $Y(\lambda)=\left(Y_{\lambda},-\right)$ in case $(* *)$.

When $\lambda \in \Omega_{+}^{D}, Y(\lambda)$ may be regarded as the generalization of the notion of the shape of type A associated to a dominant weight. Now write

$$
\begin{aligned}
v_{\lambda}^{B} & =\left(v_{\omega_{1}^{B}}\right)^{\otimes \lambda_{1}} \otimes \cdots \otimes\left(v_{\omega_{n}^{B}}\right)^{\otimes \lambda_{n}} \text { in case (i) }, \\
v_{\lambda}^{D} & =\left(v_{\omega_{1}^{D}}\right)^{\otimes \lambda_{1}} \otimes \cdots \otimes\left(v_{\omega_{n}^{D}}\right)^{\otimes \lambda_{n}} \text { in case (ii), } \\
v_{\lambda}^{D} & =\left(v_{\omega_{1}^{D}}\right)^{\otimes \lambda_{1}} \otimes \cdots \otimes\left(v_{\omega_{n-1}^{D}}\right)^{\otimes \lambda_{n-1}} \text { in case (iii) and } \\
v_{\lambda}^{D} & =\left(v_{\omega_{1}^{D}}\right)^{\otimes \lambda_{1}} \otimes \cdots \otimes\left(v_{\bar{\omega}_{n}^{D}}\right)^{\otimes \lambda_{n}} \text { in case (iv). }
\end{aligned}
$$

Then v_{λ}^{B} and v_{λ}^{D} are highest weight vertices of G_{n}^{B} and G_{n}^{D}. Moreover $B\left(v_{\lambda}^{B}\right)$ and $B\left(v_{\lambda}^{D}\right)$ are isomorphic to $B^{B}(\lambda)$ and $B^{D}(\lambda)$.

A tabloid τ of type B (resp. D) is a Young diagram whose columns are filled to give columns of type B (resp. D). If $\tau=C_{1} \cdots C_{r}$, we write $\mathrm{w}(T)=\mathrm{w}\left(C_{r}\right) \cdots \mathrm{w}\left(C_{1}\right)$ for the reading of τ.

Definition 3.1.14

- Consider $\lambda \in \Omega_{+}^{B}$. A tabloid T of type B is an orthogonal tableau of shape $Y(\lambda)$ and type B if $\mathrm{w}(T) \in B\left(v_{\lambda}^{B}\right)$.
- Consider $\lambda \in \Omega_{+}^{D}$. A tabloid T of type D is an orthogonal tableau of shape $Y(\lambda)$ and type D if $\mathrm{w}(T) \in B\left(v_{\lambda}^{D}\right)$.

The orthogonal tableaux of a given shape form a single connected component of G_{n}, hence two orthogonal tableaux whose readings occur at the same place in two isomorphic connected components of G_{n} are equal. The shape of an orthogonal tableau T of type D may be regarded as a pair $\left[O_{T}, \varepsilon_{T}\right]$ where O_{T} is a Young diagram and $\varepsilon_{T} \in\{-, 0,+\}$. The $\{-, 0,+\}$ part of this shape can be read off directly on T. Indeed $\varepsilon=0$ if T does not contain a column of height n. Otherwise write $\mathrm{w}\left(C_{1}\right)=x_{1} \cdots x_{n}$ for the reading of the first column of T. Since it is admissible, C_{1} contains at least a letter, say x_{k} of $\{n, \bar{n}\}$. Then ε is given by the parity of $n-k$ according to Proposition 3.1.4.

Consider $\tau=C_{1} C_{2} \cdots C_{r}$ a tabloid whose columns are admissible. The split form of τ is the tabloid obtained by splitting each column of τ. We write $\operatorname{spl}(\tau)=\left(l C_{1} r C_{1}\right)\left(l C_{2} r C_{2}\right) \cdots$ $\left(l C_{r} r C_{r}\right)$. With the notations of Proposition 3.1.9, we will have $\mathrm{w}(\operatorname{spl}(T))=S_{2} \mathrm{w}\left(C_{r}\right) \cdots$ $S_{2} \mathrm{w}\left(C_{1}\right)$. Kashiwara-Nakashima's combinatorial description [4] of an orthogonal tableau T is based on the enumeration of configurations that should not occur in two adjacent columns of T. Considering its split form $\operatorname{spl}(T)$, this description becomes more simple because the columns of $\operatorname{spl}(T)$ does not contain any pair (z, \bar{z}).

Lemma 3.1.15 Let $T=C_{1} C_{2} \cdots C_{r}$ be a tabloid whose columns are admissible. Then T is an orthogonal tableau if and only if $\operatorname{spl}(T)$ is an orthogonal tableau.

Proof: Suppose first that $\mathrm{w}(T)$ is a highest weight vertex of weight λ. Then, by Corollary 2.1.3, $\mathrm{w}(\operatorname{spl}(T))$ is a highest weight vertex of weight 2λ. If T is an orthogonal tableau, $\mathrm{w}(T)=v_{\lambda}$ and we have $\mathrm{w}(\operatorname{spl}(T))=v_{2 \lambda}$. $\operatorname{So} \operatorname{spl}(T)$ is an orthogonal tableau. Conversely, if $\operatorname{spl}(T)$ is an orthogonal tableau, $\mathrm{w}(\operatorname{spl}(T))=S_{2} \mathrm{w}\left(C_{r}\right) \cdots S_{2} \mathrm{w}\left(C_{1}\right)$ is a highest weight vertex of weight 2λ by Corollary 2.1.3. Hence we have $\mathrm{w}(\operatorname{spl}(T))=v_{2 \lambda}$ because there exists only one orthogonal tableau of highest weight 2λ. So $w(T)=v_{\lambda}$. In the general case, denote by T_{0} the tableau such that $\mathrm{w}\left(T_{0}\right)$ is the highest weight vertex of the connected component of G_{n} containing $\mathrm{w}(T)$. Then $\mathrm{w}\left(\mathrm{spl}\left(T_{0}\right)\right)$ is the highest weight vertex of the connected component containing $\mathrm{w}(\operatorname{spl}(T))$ and the following assertions are equivalent:
(i) $\operatorname{spl}(T)$ is an orthogonal tableau,
(ii) $\operatorname{spl}\left(T_{0}\right)$ is orthogonal tableau,
(iii) T_{0} is orthogonal tableau,
(iv) T is orthogonal tableau.

Definition 3.1.16 Let $\tau=C_{1} C_{2}$ be a tabloid with two admissible columns C_{1} and C_{2}. We set:

- $C_{1} \preceq C_{2}$ when $h\left(C_{1}\right) \geq h\left(C_{2}\right)$ and the rows of $C_{1} C_{2}$ are weakly increasing from left to right,
- $C_{1} \unlhd C_{2}$ when $r C_{1} \preceq l C_{2}$.

Definition 3.1.17 (Kashiwara-Nakashima)

Let $C_{1}=$\begin{tabular}{|l|}
\hlinex_{1}

\hline\cdot

\hline\cdot

\hlinex_{N}

\hline

 and $C_{2}=$

\hliney_{1}

\hline\cdot

\hline\cdot

\hliney_{N}

\hline
\end{tabular} be admissible columns of type D and p, q, r, s integers satisfying $1 \leq p \leq q<r \leq s \leq M$.

$C_{1} C_{2}$ contains an a-odd-configuration (with $a \notin\{\bar{n}, n\}$) when:

- $a=x_{p}, \bar{n}=x_{r}$ are letters of C_{1} and $\bar{a}=y_{s}, n=y_{q}$ letters of C_{2} such that $r-q+1$ is odd or
- $a=x_{p}, n=x_{r}$ are letters of C_{1} and $\bar{a}=y_{s}, \bar{n}=y_{q}$ letters of C_{2} such that $r-q+1$ is odd $C_{1} C_{2}$ contains an a-even-configuration (with $a \notin\{\bar{n}, n\}$) when:
- $a=x_{p}, n=x_{r}$ are letters of C_{1} and $\bar{a}=y_{s}, n=y_{q}$ letters of C_{2} such that $r-q+1$ is even or
- $a=x_{p}, \bar{n}=x_{r}$ are letters of C_{1} and $\bar{a}=y_{s}, \bar{n}=y_{q}$ letters of C_{2} such that $r-q+1$ is even

Then we denote by $\mu(a)$ the positive integer defined by:

$$
\mu(a)=s-p
$$

Theorem 3.1.18

(i) Consider $C_{1}, C_{2}, \ldots, C_{r}$ some admissible columns of type B. Then the tabloid $T=$ $C_{1} C_{2} \cdots C_{r}$ is an orthogonal tableau if and only if $C_{i} \unlhd C_{i+1}$ for $i=1, \ldots$, $r-1$.
(ii) Consider $C_{1}, C_{2}, \ldots, C_{r}$ some admissible columns of type D. Then the tabloid $T=$ $C_{1} C_{2} \cdots C_{r}$ is an orthogonal tableau if and only if, $C_{i} \unlhd C_{i+1}$ for $i=1, \ldots, r-1$, and $r C_{i} l C_{i+1}$ does not contain an a-configuration (even or odd) such that $\mu(a)=$ $n-a$.

Proof: Kashiwara and Nakashima describe an orthogonal tableau T by listing the configurations that should not occur in two adjacent columns of T. If we except the a-configurations even or odd, these configurations disappear in $\operatorname{spl}(T)$ because $\operatorname{spl}(T)$ does not contain a column with a pair (z, \bar{z}). Hence the theorem follows from Lemma 3.1.15 and Theorems 5.7.1 and 6.7.1 of [4].

Example 3.1.19 Suppose $n=$ 4. Then $T=$\begin{tabular}{|c|c|c|}
\hline 3 \& 3 \& 4

\hline 4 \& 0 \& $\overline{4}$

\hline 0 \& $\overline{2}$ \&

\hline 0 \& \&

 is an orthogonal tobleau of type B because $\operatorname{spl}(T)=$

\hline 1 \& 3 \& 3 \& 3 \& 3 \& 4

\hline 2 \& 4 \& 4 \& $\overline{4}$ \& $\overline{4}$ \& $\overline{3}$

\hline 3 \& $\overline{2}$ \& $\overline{2}$ \& $\overline{2}$ \& \&

\hline 4 \& $\overline{1}$ \& \& \&

\hline

. But

\hline 3 \& $\overline{4}$

\hline$\overline{4}$ \& $\overline{3}$

\hline
\end{tabular} is not orthogonal of type D because it contains a 3 -even configuration with $\mu(3)=1$.

3.2. Plactic monoids for types B_{n} and D_{n}

Definition 3.2.1 Let w_{1} and w_{2} be two words on \mathcal{B}_{n} (resp. \mathcal{D}_{n}). We write $w_{1} \stackrel{B}{\sim} w_{2}$ (resp. $w_{1} \stackrel{D}{\sim} w_{2}$) when these two words occur at the same place in two isomorphic connected components of the crystal $G_{n}^{B}\left(\operatorname{resp} . G_{n}^{D}\right)$.

The definition of the orthogonal tableaux implies that for any word $w \in \mathcal{B}_{n}^{*}\left(\operatorname{resp} . w \in \mathcal{D}_{n}^{*}\right)$ there exists a unique orthogonal tableau $P^{B}(w)$ (resp. $P^{D}(w)$) such that $w \sim \mathrm{w}(P(w)$). So the sets $\mathcal{B}_{n}^{*} / \stackrel{B}{\sim}$ and $\mathcal{D}_{n}^{*} / \stackrel{D}{\sim}$ can be identified respectively ${ }_{D}$ with the sets of orthogonal tableaux of type B and D. Our aim is now to show that $\stackrel{B}{\sim}$ and $\stackrel{D}{\sim}$ are in fact congruencies $\stackrel{B}{\equiv}$ and $\stackrel{D}{\equiv}$ so that $\mathcal{B}_{n}^{*} / \stackrel{B}{\sim}$ and $\mathcal{D}_{n} / \stackrel{D}{\sim}$ are in a natural way endowed with a multiplication.

Definition 3.2.2 The monoid $\operatorname{Pl}\left(B_{n}\right)$ is the quotient of the free monoid \mathcal{B}_{n}^{*} by the relations:
$R_{1}^{B}:$ if $x \neq \bar{z}$ and $x \prec y \prec z:$

$$
y z x \stackrel{B}{=} y x z \quad \text { and } \quad x z y \stackrel{B}{\equiv} z x y .
$$

$R_{2}^{B}:$ If $x \neq \bar{y}$ and $x \prec y:$

$$
x y x \stackrel{B}{\equiv} x x y \text { for } x \neq 0 \text { and } x y y \stackrel{B}{\equiv} y x y \text { for } y \neq 0
$$

$R_{3}^{B}:$ If $1 \prec x \preceq n$ and $x \preceq y \preceq \bar{x}:$

$$
\begin{gathered}
y(\overline{x-1})(x-1) \stackrel{B}{\equiv} y x \bar{x}, \quad \text { and } \quad x \bar{x} y \stackrel{B}{\equiv}(\overline{x-1})(x-1) y, \\
0 \bar{n} n \equiv \bar{n} n 0 .
\end{gathered}
$$

$R_{4}^{B}:$ If $x \preceq n:$

$$
00 x \stackrel{B}{\equiv} 0 x 0 \quad \text { and } \quad 0 \bar{x} 0 \stackrel{B}{\equiv} \bar{x} 00 .
$$

R_{5}^{B} : Let $w=\mathrm{w}(C)$ be a non admissible column word each strict factor of which is admissible. When C satisfies the assertion (i) of Remark 3.1.3, let z be the lowest unbarred letter of w such that the pair (z, \bar{z}) occurs in w and $N(z)>z$, otherwise set $z=0$. The $w \stackrel{B}{\equiv} \tilde{w}$ where \tilde{w} is the column word obtained by erasing the pair (z, \bar{z}) in w if $z \preceq n$, by erasing 0 otherwise.

Definition 3.2.3 The monoid $\operatorname{Pl}\left(D_{n}\right)$ is the quotient of the free monoid \mathcal{D}_{n}^{*} by the relations:
R_{1} : If $x \neq \bar{z}$

$$
y z x \stackrel{D}{\equiv} y x z \quad \text { for } \quad x \preceq y \prec z \quad \text { and } \quad x z y \stackrel{D}{\equiv} z x y \quad \text { for } \quad x \prec y \preceq z .
$$

R_{2} : If $1 \prec x \preceq n$ and $x \preceq y \preceq \bar{x}$

$$
y(\overline{x-1})(x-1) \stackrel{D}{\equiv} y x \bar{x} \quad \text { and } \quad x \bar{x} y \xlongequal[\equiv]{\underline{D}}(\overline{x-1})(x-1) y .
$$

$R_{3}^{D}:$ If $x \preceq n-1$:

$$
\left\{\begin{array} { l }
{ \overline { n } \overline { x } n \stackrel { D } { = } \overline { x } \overline { n } n } \\
{ n \overline { x } \overline { n } \stackrel { D } { = } \overline { x } n \overline { n } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\bar{n} n x \stackrel{D}{\equiv} \bar{n} x n \\
n \bar{n} x \stackrel{D}{\equiv} n x \bar{n}
\end{array} .\right.\right.
$$

R_{4}^{D} :

$$
\left\{\begin{array} { l }
{ n \overline { n } \overline { n } \stackrel { D } { \equiv } (\overline { n - 1 }) (n - 1) \overline { n } } \\
{ \overline { n } n n \stackrel { D } { \equiv } (\overline { n - 1 }) (n - 1) n }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\bar{n}(\overline{n-1})(n-1) \stackrel{D}{\equiv} \bar{n} \bar{n} n \\
n(\overline{n-1})(n-1) \stackrel{D}{\equiv} n n \bar{n}
\end{array}\right.\right.
$$

R_{5}^{D} : Consider w a non admissible column word each strict factor of which is admissible. Let z be the lowest unbarred letter such that the pair (z, \bar{z}) occurs in w and $N(z)>z$ (see Remark 3.1.3). Then $w \stackrel{D}{\equiv} \tilde{w}$ where \tilde{w} is the column word obtained by erasing the pair (z, \bar{z}) in w if $z \prec n$, by erasing a pair (n, \bar{n}) of consecutive letters otherwise.

The relations R_{5}^{B} and R_{5}^{D} are called the contraction relations. When the letter 0 or a pair (n, \bar{n}) disappears, we have $l(C)=n+1$ and in R_{5}^{D} the word \tilde{w} does not depend on the factor $n \bar{n}$ or $\bar{n} n$ erased. Moreover \tilde{w} is an admissible column word. Note that $w_{1} \equiv w_{2}$ implies $d\left(w_{1}\right)=d\left(w_{2}\right)$, that is, \equiv is compatible with the grading given by d.

Theorem 3.2.4 Given two words w_{1} and w_{2}

$$
\begin{equation*}
w_{1} \sim w_{2} \Leftrightarrow w_{1} \equiv w_{2} \Leftrightarrow P\left(w_{1}\right)=P\left(w_{2}\right) \tag{9}
\end{equation*}
$$

This theorem is proved in the same way as in the symplectic case [10], and we will only sketch the arguments. Note first that we have

$$
w_{1} \sim w_{2} \Leftrightarrow P\left(w_{1}\right)=P\left(w_{2}\right)
$$

immediately from the definition of P. For any word w occurring in the left hand side of a relation $R_{1}^{B}, \ldots, R_{4}^{B}$ (resp. $R_{1}^{D}, \ldots, R_{4}^{D}$), write $\xi^{B}(w)\left(\right.$ resp. $\left.\xi^{D}(w)\right)$ for the word occurring in the right hand side of this relation. Similarly for $p=1, \ldots, n$ and w a word of length $p+1$ occurring in the left hand side of R_{5}^{B} (resp. R_{5}^{D}), denote by $\xi_{p}^{B}(w)$ (resp. $\left.\xi_{p}^{D}(w)\right)$ the word occurring in the right hand side of this relation. By using similar arguments to those of [10], we obtain the following assertions:

- The map $\xi^{B}: w \mapsto \xi(w)$ is the crystal isomorphism from $B^{B}(121)$ to $B^{B}(112)$.
- If $n>2$, the map $\xi^{D}: w \mapsto \xi(w)$ is the crystal isomorphism from $B^{D}(121)$ to $B^{D}(112)$ otherwise ξ^{D} is the crystal isomorphism from $B^{D}(121) \cup B^{D}(1 \overline{2} 1)$ to $B^{D}(112) \cup$ $B^{D}(11 \overline{2})$.
- For $p=2, \ldots, n-1, \xi_{p}: \mapsto \xi_{p}(w)$ is the crystal isomorphism from $B(12 \cdots p \bar{p})$ to $B(12 \cdots p-1)$.
- The map $\xi_{n}^{B}: w \mapsto \xi_{n}^{B}(w)$ is the crystal isomorphism from $B^{B}(12 \cdots n \bar{n}) \cup B^{B}(12 \cdots$ $n 0)$ to $B^{B}(12 \cdots n-1) \cup B^{B}(12 \cdots n)$.
- The words w of length $n+1$ occurring in the left hand side of R_{5}^{D} are the vertices of $B^{D}(12 \cdots n \bar{n}) \cup B^{D}(12 \cdots \bar{n} n)$. Moreover the restriction of the map $\xi_{n}^{D}: w \mapsto \xi_{n}^{D}(w)$ to $B^{D}(12 \cdots n \bar{n})\left(\right.$ resp. to $\left.B^{D}(12 \cdots \bar{n} n)\right)$ is the crystal isomorphism from $B^{D}(12 \cdots n \bar{n})$ $\left(\right.$ resp. $\left.B^{D}(12 \cdots \bar{n} n)\right)$ to $B^{D}(12 \cdots n-1)$.

The crystals $B^{B}(121)$ and $B^{B}(112)$ in G_{2}^{B}

The crystals $B^{D}(121)$ and $B^{D}(112)$ in G_{2}^{D}

The crystals $B^{D}(1 \overline{2} 1)$ and $B^{D}(11 \overline{2})$ in G_{2}^{D}

By (1) and (2), this implies that the plactic relations above are compatible with Kashiwara's operators, that is, for any words w_{1} and w_{2} such that $w_{1} \equiv w_{2}$ one has:

$$
\left\{\begin{array}{cl}
\tilde{e}_{i}\left(w_{1}\right) \equiv \tilde{e}_{i}\left(w_{2}\right) & \text { and } \varepsilon_{i}\left(w_{1}\right)=\varepsilon_{i}\left(w_{2}\right) \tag{10}\\
\tilde{f}_{i}\left(w_{1}\right) \equiv \tilde{f}_{i}\left(w_{2}\right) & \text { and } \varphi_{i}\left(w_{1}\right)=\varphi_{i}\left(w_{2}\right) .
\end{array}\right.
$$

Hence:

$$
w_{1} \equiv w_{2} \Rightarrow w_{1} \sim w_{2}
$$

To obtain the converse we show that for any highest weight vertex w^{0}

$$
\begin{equation*}
\mathrm{w}\left(P\left(w^{0}\right)\right) \equiv w^{0} . \tag{11}
\end{equation*}
$$

This follows by induction on $l\left(w^{0}\right)$. When $l\left(w^{0}\right)=1, \mathrm{w}\left(P\left(w^{0}\right)\right)=w^{0}$. By writing $w^{0}=$ $v^{0} x^{0}$, it is possible (see the proof of Lemma 3.2.6 in [10]) to show that $\mathrm{w}\left(P\left(w^{0}\right)\right)$ may be obtained from the word $\mathrm{w}\left(P\left(v^{0}\right)\right) x^{0}$ by applying only Knuth relations and contraction
relations of type $12 \cdots r \bar{p} \equiv 12 \cdots \hat{p} \cdots r$ with $p \leq r \leq n$ (the hat means removal the letter p).

From (11), we obtain that two highest weight vertices w_{1}^{0} and w_{2}^{0} with the same weight λ verify $w_{1}^{0} \equiv w_{2}^{0}$. Indeed there is only one orthogonal tableau whose reading is a highest vertex of weight λ. Now suppose that $w_{1} \sim w_{2}$ and denote by w_{1}^{0} and w_{2}^{0} the highest weight vertices of $B\left(w_{1}\right)$ and $B\left(w_{2}\right)$. We have $w_{1}^{0} \equiv w_{2}^{0}$. Set $w_{1}=\tilde{F} w_{1}^{0}$ where \tilde{F} is a product of Kashiwara's operators $\tilde{f}_{i}, i=1, \ldots, n$. Then $w_{2}=\tilde{F} w_{2}^{0}$ because $w_{1} \sim w_{2}$. So by (10) we obtain

$$
w_{1}^{0} \equiv w_{2}^{0} \Rightarrow \tilde{F} w_{1}^{0} \equiv \tilde{F} w_{2}^{0} \Rightarrow w_{1} \equiv w_{2}
$$

3.3. A bumping algorithm for types B and D

Now we are going to see how the orthogonal tableau $P(w)$ may be computed for each vertex w by using an insertion scheme analogous to bumping algorithm for type A. As a first step, we describe $P(w)$ when $w=\mathrm{w}(C) x$, where x and C are respectively a letter and an admissible column. This will be called "the insertion of the letter x in the admissible column C ' and denoted by $x \rightarrow C$. Then we will be able to obtain $P(w)$ when $w=\mathrm{w}(T) x$ with x a letter and T an orthogonal tableau. This will be called "the insertion of the letter x in the orthogonal tableau T " and denoted by $x \rightarrow T$. Our construction of P will be recursive, in the sense that if $P(u)=T$ and x is a letter, then $P(u x)=x \rightarrow T$.
3.3.1. Insertion of a letter in an admissible column. Consider a word $w=\mathrm{w}(C) x$, where x and C are respectively a letter and an admissible column of height p. When $w=\mathrm{w}\left(C^{x}\right)$ is the reading of a column C^{x}, we have:
$x \rightarrow C=C^{x} \quad$ if C^{x} is admissible or
$x \rightarrow C=\widetilde{C^{x}}$ where $\widetilde{C^{x}}$ is the column whose reading correspondsto \tilde{w} otherwise.

Indeed, $x \rightarrow C$ must be an orthogonal tableau such that $\mathrm{w}(x \rightarrow C) \equiv w$.
When w is not a column word, by Lemma 2.1.1 the highest weight vertex w^{0} of $B(w)$ may be written $w^{0}=v^{0} 1$ where $v^{0} \in\left\{b_{\omega_{p}} ; p=1, \ldots, n\right\} \cup\left\{b_{\bar{\omega}_{n}}\right\}$. Then $u^{0}=1 v^{0}$ is the reading of an orthogonal tableau and $u^{0} \equiv w^{0}$. So u^{0} is the highest weight vertex of the connected component containing $\mathrm{w}(x \rightarrow C)$. Moreover there exists a unique sequence of highest weight vertices $w_{1}^{0}, \ldots, w_{p}^{0}$ such that $w_{1}^{0}=w^{0}, w_{p}=u^{0}$ and for $i=2, \ldots, p w_{i}^{0}$ differs from w_{i-1}^{0} by applying one relation R_{1} from left to right. This implies that there exists a unique sequence of vertices w_{1}, \ldots, w_{p} such that $w_{1}=w$ and for $i=2, \ldots, p-1 B\left(w_{i}\right)=$ $B\left(w_{i}^{0}\right)$. Each w_{i} differs from w_{i-1} by applying one relation R_{1}, R_{2}, R_{3} or R_{4} from left to right. The word w_{p} is the reading of an orthogonal tableau and can be factorized as $w_{p}=v^{\prime} x^{\prime}$ where $v^{\prime}=\mathrm{w}\left(C^{\prime}\right)$ is a column word an x^{\prime} a letter. We will have $x \rightarrow C=$ $C^{\prime} x^{\prime}$.

Example 3.3.1

Suppose $n=7$. Let $\mathrm{w}(C)=6700 \overline{7} \overline{6}$ be an admissible column word of type B. Choose $x=6$. Then by applying relations $R_{i}^{B} i=1, \ldots, 4$ we obtain successively:

$$
6700 \overline{\mathbf{7}} \mathbf{6} \mathbf{6} \equiv 6700 \overline{7} 7 \overline{7} \equiv 670 \overline{7} 70 \overline{7} \equiv 67 \overline{7} 700 \overline{7} \equiv \mathbf{6} \overline{\mathbf{6}} \mathbf{6} 700 \overline{7} \equiv \overline{5} 56700 \overline{7}
$$

Suppose $n=7$. Let $\mathrm{w}(C)=67 \overline{7} 7 \overline{7} \overline{6}$ be an admissible column word of type D. Choose $x=6$. Then by applying relations $R_{i}^{D} i=1, \ldots, 4$ we obtain successively:

$$
67 \overline{7} 7 \overline{7} \overline{\mathbf{6}} \mathbf{6} \equiv 67 \overline{7} 7 \overline{7} \overline{7} 7 \equiv 67 \overline{7} \overline{\mathbf{6}} \mathbf{6} 77 \equiv 67 \overline{7} \overline{7} 7 \overline{7} 7 \equiv \mathbf{6} \overline{\mathbf{6}} \mathbf{6} \overline{7} 7 \overline{7} 7 \equiv \overline{5} 567 \overline{7} 7 \overline{7}
$$

Hence
3.3.2. Insertion of a letter in an orthogonal tableau. Consider an orthogonal tableau $T=C_{1} C_{2} \cdots C_{r}$. We can prove as in [10] that the insertion $x \rightarrow T$ is characterized as follows:

- If $\mathrm{w}\left(C_{1}\right) x$ is an admissible column word, then $x \rightarrow T=C_{1}^{x} C_{2} \cdots C_{r}$ where C_{1}^{x} is the column of reading $\mathrm{w}\left(C_{1}\right) x$.
- If $\mathrm{w}\left(C_{1}\right) x$ is a non admissible column word each strict factor of which is admissible and such that $x \widetilde{\mathrm{w}}\left(C_{1}\right)=x_{1} \cdots x_{s}$, then $x \rightarrow T=x_{s} \rightarrow\left(x_{s-1} \rightarrow\left(\cdots x_{1} \rightarrow T^{\prime}\right)\right)$ where $T^{\prime}=C_{2} \cdots C_{r}$. Moreover the insertion of x_{1}, \ldots, x_{s} in T^{\prime} does not cause a new contraction.
- If $\mathrm{w}\left(C_{1}\right) x$ is not a column word, the insertion of x in C_{1} gives a column C_{1}^{\prime} and a letter x^{\prime} (with the notation of 3.3.1). Then $x \rightarrow T=C_{1}^{\prime}\left(x^{\prime} \rightarrow T^{\prime}\right)$, that is, $x \rightarrow T$ is the tableau defined by C_{1}^{\prime} and the columns of $x^{\prime} \rightarrow T^{\prime}$.

Notice that the algorithm terminates because in the last two cases we are reduced to the insertion of a letter in a tableau whose number of boxes is strictly less than that of T. Finally for any vertex $w \in G_{n}$, we will have:

$$
\begin{aligned}
& P(w)=w \text { if } w \text { is a letter, } \\
& P(w)=x \rightarrow P(u) \quad \text { if } w=u x \text { with } u \text { a word and } x \text { a letter. }
\end{aligned}
$$

3.4. Schensted-type correspondences

In this section a bijection is established between words w of length l on \mathcal{B}_{n} and pairs $\left(P^{B}(w), Q^{B}(w)\right)$ where $P^{B}(w)$ is the orthogonal tableau defined above and $Q^{B}(w)$ is an
oscillating tableau of type B. Similarly we obtain a bijection between words w of length l on \mathcal{D}_{n} and pairs $\left(P^{D}(w), Q^{D}(w)\right)$ where $P^{D}(w)$ is an oscillating tableau of type D. For type B, such a one-to-one correspondence has already been obtained by Sundaram [17] using another definition of orthogonal tableaux and an appropriate insertion algorithm. Unfortunately it is not known if this correspondence is compatible with a monoid structure. Our bijection based on the previous insertion algorithm for admissible orthogonal tableaux of type B will be different from Sundaram's one but compatible with the plactic relations defining $P l\left(B_{n}\right)$.

Definition 3.4.1 An oscillating tableau Q of type B and length l is a sequence of Young diagrams $\left(Q_{1}, \ldots, Q_{l}\right)$ whose columns have height $\leq n$ and such that any two consecutive diagrams are equal or differ by exactly one box (i.e. $Q_{k+1}=Q_{k}, Q_{k+1} / Q_{k}=(\square)$ or $Q_{k} / Q_{k+1}=(\square)$).

An oscillating tableau Q of type D and length l is a sequence $\left(Q_{1}, \ldots, Q_{l}\right)$ of pairs $Q_{k}\left(O_{k}, \varepsilon_{k}\right)$ where O_{k} is a Young diagram whose columns have height $\leq n$ and $\varepsilon_{k} \in$ $\{-, 0,+\}$, satisfying for $k=1, \ldots, l$

- $O_{k+1} / O_{k}=(\square)$ or $O_{k} / O_{k+1}=(\square)$,
- $\varepsilon_{k+1} \neq 0$ and $\varepsilon_{k} \neq 0$ implies $\varepsilon_{k+1}=\varepsilon_{k}$.
- $\varepsilon_{k}=0$ if and only if O_{k} has no columns of height n.

Let $w=x_{1} \cdots x_{l}$ be a word. The construction of $P(w)$ involves the construction of the l orthogonal tableaux defined by $P_{i}=P\left(x_{1} \cdots x_{i}\right)$. For $w \in \mathcal{B}_{n}^{*}$ (resp. $\left.w \in \mathcal{D}_{n}^{*}\right)$ we denote by $Q^{B}(w)$ (resp. $Q^{D}(w)$) the sequence of shapes of the orthogonal tableaux P_{1}, \ldots, P_{l}.

Proposition 3.4.2 $Q_{B}(w)$ and $Q_{D}(w)$ are respectively oscillating tableaux of type B and D.

Proof: Each Q_{i} is the shape of an orthogonal tableau so it suffices to prove that for any letter x and any orthogonal tableau T, the shape of $x \rightarrow T$ differs from the shape of T by at most one box according to Definition 3.4.1.
The highest weight vertex of the connected component containing $\mathrm{w}(T) x$ may be written $\mathrm{w}\left(T^{0}\right) x^{0}$ where T^{0} is an orthogonal tableau. It follows from Lemma 2.2.1(ii) that $\mathrm{w}(T) \leftrightarrow$ $\mathrm{w}\left(T^{0}\right)$. So $\mathrm{wt}\left(\mathrm{w}\left(T^{0}\right)\right)$ is given by the shape of T. Then the shape of $x \rightarrow T$ is given by the coordinates of $\mathrm{wt}\left(\mathrm{w}\left(T^{0}\right) x^{0}\right)$ on the basis $\left(\omega_{1}^{B}, \ldots, \omega_{n}^{B}\right)$ for type B, on the base $\left(\omega_{1}^{D}, \ldots, \omega_{n}^{D}\right)$ or $\left(\omega_{1}^{D}, \ldots, \omega_{n-1}^{D}, \bar{\omega}_{n}^{D}\right)$ for type D.

Suppose that $x \in \mathcal{B}_{n}^{*}$ and T is orthogonal of type B. Let $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the coordinates of $\mathrm{wt}\left(T^{0}\right)$ on the basis of the ω_{i}^{B} s. If $x^{0}=\bar{i} \succ 0$ then $\mathrm{wt}\left(x^{0}\right)=\omega_{i-1}^{B}-\omega_{i}^{B}$. So $\lambda_{i}>0$ and $\mathrm{wt}\left(\mathrm{w}\left(T^{0}\right) x^{0}\right)=\left(\lambda_{1}, \ldots, \lambda_{i-1}+1, \lambda_{i}-1, \ldots, \lambda_{n-1}\right)$. Hence during the insertion of the letter x in T, a column of height i (corresponding to the weight ω_{i}) is turned into a column of height $i-1$ (corresponding to the weight ω_{i-1}). So the shape of $x \rightarrow T$ is obtained by erasing one box to the shape of T. If $x^{0}=i \prec 0$, then we can prove by similar arguments that the shape of $x \rightarrow T$ is obtained by adding one box to the shape of T. When $x^{0}=0$, $\mathrm{wt}\left(x^{0}\right)=0$, so $\mathrm{wt}\left(\mathrm{w}\left(T^{0}\right) x^{0}\right)=\mathrm{wt}\left(\mathrm{w}\left(T^{0}\right)\right)$. Hence the shapes of T and $x \rightarrow T$ are the same.

Suppose $x \in \mathcal{D}_{n}^{*}$ and T orthogonal of type D. When $\left|x^{0}\right| \neq n$, the proof is the same as above. If $x^{0}=n, \operatorname{wt}\left(x^{0}\right)=\Lambda_{n}-\Lambda_{n-1}=\omega_{n}-\omega_{n-1}=\omega_{n-1}-\bar{\omega}_{n}$. We have to consider three cases, (i) $\varepsilon_{T}=-$; (ii) $\varepsilon_{T}=0$ and (iii) $\varepsilon_{T}=+$. Denote by ($\lambda_{1}, \ldots, \lambda_{n}$) the positive decomposition of $\mathrm{wt}\left(\mathrm{w}\left(T^{0}\right)\right)$ on the basis $\left(\omega_{1}^{D}, \ldots, \omega_{n}^{D}\right)$ or on the basis $\left(\omega_{1}^{D}, \ldots, \bar{\omega}_{n}^{D}\right)$.
In the first case, $\lambda_{n}>0$ and the positive decomposition of $\mathrm{wt}\left(x^{0} \mathrm{w}\left(T^{0}\right)\right)$ on the base $\left(\omega_{1}^{D}, \ldots, \bar{\omega}_{n}^{D}\right)$ is $\left(\lambda_{1}, \ldots, \lambda_{n-2}, \lambda_{n-1}+1, \lambda_{n}-1\right)$. It means that during the insertion of x in T a column of height n (corresponding to $\bar{\omega}_{n}$) is turned into a column of height $n-1$ (corresponding to ω_{n-1}). Moreover $\varepsilon_{x \rightarrow T}=\varepsilon_{T}$ if $\lambda_{n}>1$ and $\varepsilon_{x \rightarrow T}=0$ otherwise.

In the second case, $\lambda_{n-1}>0, \lambda_{n}=0$ and the positive decomposition of $\mathrm{wt}\left(x^{0} \mathrm{w}\left(T^{0}\right)\right)$ on the base $\left(\omega_{1}^{D}, \ldots, \omega_{n}^{D}\right)$ is $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}-1,1\right)$. It means that during the insertion of x in T a column of height $n-1$ (corresponding to ω_{n-1}) is turned into a column of height n (corresponding to ω_{n}). Moreover $\varepsilon_{x \rightarrow T}=+$.

In the last case, $\lambda_{n-1}>0, \lambda_{n}>0$ and the positive decomposition of $\mathrm{wt}\left(x^{0} \mathrm{w}\left(T^{0}\right)\right)$ on $\left(\omega_{1}^{D}, \ldots, \omega_{n}^{D}\right)$ is $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}-1, \lambda_{n}+1\right)$. It means that during the insertion of x in T a column of height $n-1$ (corresponding to ω_{n-1}) is turned into a column of height n (corresponding to ω_{n}). Moreover $\varepsilon_{x \rightarrow T}=\varepsilon_{T}$.

When $x^{0}=\bar{n}$, the proof is similar.
Theorem 3.4.3 For any vertices w_{1} and w_{2} of G_{n} :

$$
w_{1} \leftrightarrow w_{2} \Leftrightarrow Q\left(w_{1}\right)=Q\left(w_{2}\right)
$$

Proof: The proof is analogous to that of Proposition 5.2.1 in [10].
Corollary 3.4.4 Let $\mathcal{B}_{n, l}^{*}$ and $\mathcal{O}_{l}^{B}\left(\right.$ resp. $\mathcal{D}_{n, l}^{*}$ and $\left.\mathcal{O}_{l}^{D}\right)$ be the set of words of length l on $\mathcal{B}_{n}\left(\right.$ resp. $\left.\mathcal{D}_{n}\right)$ and the set of pairs (P, Q) where P is an orthogonal tableau of type B (resp. $D)$ and Q an oscillating tableau of type B (resp. D) and length l such that P has shape Q_{l} (Q_{l} is the last shape of Q). Then the maps:

$$
\begin{aligned}
& \Psi^{B}: B_{n, l}^{*} \rightarrow O_{l}^{B} \\
& w \mapsto\left(P^{B}(w), Q^{B}(w)\right)
\end{aligned}
$$

and $\quad \Psi^{D}: \mathcal{D}_{n, l}^{*} \rightarrow \mathcal{O}_{l}^{D}$
and $\quad w \mapsto\left(P^{D}(w), Q^{D}(w)\right)$
are bijections.
Proof: For type Ψ^{B} the proof is analogous to that of Theorem 5.2.2 in [10]. By Theorems 3.2.4 and 3.4.3, we obtain that Ψ^{D} is injective. Consider an oscillating tableau Q of length l and type D. Set $x_{1}=1$ and for $i=2, \ldots, l$

- $x_{i}=k$ if O_{i} differs from O_{i-1} by adding a box in row k of height $<n$,
$-x_{i}=\bar{k}$ if Q_{i} differs from Q_{i-1} by removing a box in row k of height $<n$,
$-x_{i}=n$ if O_{i} differs from O_{i-1} by adding a box in row n and $\varepsilon_{i}=+$,
- $x_{i}=\bar{n}$ if Q_{i} differs from Q_{i-1} by adding a box in row n and $\varepsilon_{i}=-$,
- $x_{i}=\bar{n}$ if O_{i} differs from O_{i-1} by removing a box in row n and $\varepsilon_{i}=+$,
$-x_{i}=n$ if O_{i} differs from O_{i-1} by removing a box in row n and $\varepsilon_{i}=-$,
- Consider $w_{Q}=x_{l} \cdots x_{2}$. Then $Q\left(w_{Q}\right)=Q$. By Theorem 3.1.18, the image of $B\left(w_{Q}\right)$ by Ψ^{D} consists in the pairs (P, Q) where P is a symplectic tableau of shape Q_{l}. We deduce immediately that Ψ is surjective.

3.5. Jeu de Taquin for type B

In [16], J.T. Sheats has developed a sliding algorithm for type C acting on the skew admissible symplectic tableaux. This algorithm is analogous to the classical Jeu de Taquin of Lascoux and Schützenberger for type A [9]. Each inner corner of the skew tableau considered is turned into an outside corner by applying vertical and horizontal moves. We have shown in [10] how to extend it to take into account the contraction relation of the plactic monoid $\operatorname{Pl}\left(C_{n}\right)$ (analogous to $P l\left(B_{n}\right)$ and $P l\left(D_{n}\right)$ for type C). Then we have proved that the tableau obtained does not depend on the way the inner corners disappear. In this section we propose a sliding algorithm for type B. The main idea is that the split form of any skew orthogonal tableau T of type B may be regarded as a symplectic skew tableau.

Set $\mathcal{C}_{n}=\{1 \prec \cdots \prec n \prec \bar{n} \prec \cdots \prec \overline{1}\} \subset \mathcal{B}_{n}$. The symplectic tableaux are, for type C, the combinatorial objects analogous to the orthogonal tableaux. They can be regarded as orthogonal tableaux of type B on the alphabet \mathcal{C}_{n} instead of \mathcal{B}_{n}. The plactic monoid $P l\left(C_{n}\right)$ is the quotient of the free monoid \mathcal{C}_{n}^{*} by relations R_{1}^{B}, R_{2}^{B} and R_{5}^{B}. We denote by $\xlongequal[\equiv]{C}$ the congruence relation in $\operatorname{Pl}\left(C_{n}\right)$. Then for w_{1} and w_{2} two words of \mathcal{C}_{n}^{*} we have:

$$
w_{1} \stackrel{C}{=} w_{2} \Rightarrow w_{1} \stackrel{B}{=} w_{2}
$$

A skew orthogonal tableau of type B is a skew Young diagram filled by letters of \mathcal{B}_{n} whose columns are admissible of type B and such that the rows of its split form (obtained by splitting its columns) are weakly increasing from left to right. Skew orthogonal tableaux are the combinatorial objects analogous to the admissible skew tableaux introduced by Sheats in [16] for type C. Note that two different skew tableaux may have the same reading.

Example 3.5.1 For $n=3$,

The relation $0 \bar{n} n \equiv \bar{n} n 0$ has no natural interpretation in terms of horizontal or vertical slidings in skew orthogonal tableaux. To overcome this problem we are going to work on the split form of the skew tableaux instead of the skew tableaux themselves that is, we are
going to obtain a Jeu de Taquin for type B by applying the symplectic Jeu de Taquin on the split form of the skew orthogonal tableaux of type B.

Lemma 3.5.2 Let T and T^{\prime} be two skew orthogonal tableaux of type B. Then:

$$
\mathrm{w}(T) \xlongequal{\underline{B}} \mathrm{w}\left(T^{\prime}\right) \Leftrightarrow \mathrm{w}[\operatorname{spl}(T)] \stackrel{B}{\underline{\underline{B}}} \mathrm{w}\left[\operatorname{spl}\left(T^{\prime}\right)\right] .
$$

Proof: We can write $\mathrm{w}(T)=\mathrm{w}\left(C_{1}\right) \cdots \mathrm{w}\left(C_{r}\right)$ and $\mathrm{w}\left(T^{\prime}\right)=\mathrm{w}\left(C_{1}^{\prime}\right) \cdots \mathrm{w}\left(C_{s}^{\prime}\right)$ where C_{k} and $C_{k}^{\prime}, k=1, \ldots, r$ are admissible columns. All the vertices $w \in B(\mathrm{w}(T))$ and $w^{\prime} \in$ $B\left(\mathrm{w}\left(T^{\prime}\right)\right)$ can be respectively written on the form $w=c_{\tau} \cdots c_{1}$ and $w^{\prime}=c_{s}^{\prime} \cdots c_{1}^{\prime}$ where $c_{i}, i=1, \ldots, r$ and $c_{j}^{\prime}, j=1, \ldots, s$ are readings of admissible columns of type B. Consider the maps:

$$
\begin{aligned}
& \theta_{2}:\left\{\begin{array}{l}
B(\mathrm{w}(T)) \rightarrow B(\operatorname{spl}(\mathrm{w}(T)) \\
w=c_{\tau} \cdots c_{1} \mapsto S_{2}\left(c_{\tau}\right) \cdots S_{2}\left(c_{1}\right)
\end{array}\right. \text { and } \\
& \theta_{2}^{\prime}:\left\{\begin{array}{l}
B\left(\mathrm{w}\left(T^{\prime}\right)\right) \rightarrow B(\operatorname{spl}(\mathrm{w}(T)) \\
w^{\prime}=c_{s}^{\prime} \cdots c_{1} \mapsto S_{2}\left(c_{\tau}^{\prime}\right) \cdots S_{2}\left(c_{1}^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

where S_{2} is the map defined in Proposition 3.1.9. We have $\mathrm{w}[\operatorname{spl}(T)]=\theta_{2}(\mathrm{w}(T))$ and $\mathrm{w}\left[\operatorname{spl}\left(T^{\prime}\right)\right]=\theta_{2}^{\prime}\left(\mathrm{w}\left(T^{\prime}\right)\right)$. By using Corollary 2.1.3 we obtain

$$
\begin{aligned}
\mathrm{w}(T) \stackrel{B}{=} \mathrm{w}\left(T^{\prime}\right) & \Leftrightarrow \mathrm{w}(T) \stackrel{B}{\sim} \mathrm{w}\left(T^{\prime}\right) \Leftrightarrow \mathrm{w}[\operatorname{spl}(T)] \stackrel{B}{\sim} \mathrm{w}\left[\operatorname{spl}\left(T^{\prime}\right)\right] \\
& \Leftrightarrow \mathrm{w}[\operatorname{spl}(T)] \stackrel{B}{=} \mathrm{w}\left[\operatorname{spl}\left(T^{\prime}\right)\right] .
\end{aligned}
$$

If T is a skew orthogonal tableau of type B with r columns, then $\operatorname{spl}(T)$ is a symplectic skew tableau with $2 r$ columns. We can apply the symplectic Jeu de taquin to $\operatorname{spl}\left(T_{B}\right)$ to obtain a symplectic tableau $\operatorname{spl}(T)^{\prime}$. We will have $\mathrm{w}\left[\operatorname{spl}(T)^{\prime}\right] \stackrel{C}{=} \mathrm{w}[\operatorname{spl}(T)]$ so $\mathrm{w}\left[\operatorname{spl}(T)^{\prime}\right] \stackrel{B}{\equiv} \mathrm{w}[\operatorname{spl}(T)]$.

Proposition 3.5.3 $\operatorname{spl}(T)^{\prime}$ is the split form of the orthogonal tableau $P^{B}(T)$.

Proof: It follows from $\mathrm{w}(T) \stackrel{B}{\equiv} \mathrm{w}\left(P_{B}(T)\right)$ and the lemma above that $\mathrm{w}[\operatorname{spl}(T)] \stackrel{B}{\equiv}$ $\mathrm{w}\left[\operatorname{spl}\left(P^{B}(T)\right)\right]$. So we obtain $\mathrm{w}\left[\operatorname{spl}(T)^{\prime}\right] \stackrel{B}{=} \mathrm{w}\left[\operatorname{spl}\left(P^{B}(T)\right)\right]$. But $\operatorname{spl}\left(T^{\prime}\right)$ and $\operatorname{spl}\left(p^{B}(T)\right)$ are orthogonal tableaux, hence $\operatorname{spl}(T)^{\prime}=\operatorname{spl}\left(P^{B}(T)\right)$.

The columns of the split form of a skew orthogonal tableau T of type B contain no letters 0 and no pairs of letters (x, \bar{x}) with $x \preceq n$. In this particular case most of the elementary steps of the symplectic Jeu de Taquin applied on T are simple slidings identical to those of the original Jeu de Taquin of Lascoux and Schützenberger (that is complications of the symplectic Jeu de taquin are not needed in these slidings).

Example 3.5.4 From spl $\left(\begin{array}{|c|c|c|}\right.$\cline { 2 - 6 } \& 1 \& 2

\hline 1 \& 0 \& \(\left.\overline{3}

\hline 3 \& \overline{3} \& \overline{2}

\hline\end{array}\right)=\)| $* *$ | $*$ | 1 | 1 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | $\overline{3}$ | $\overline{3}$ | $\overline{3}$ |
| 3 | 3 | $\overline{3}$ | $\overline{2}$ | $\overline{2}$ | $\overline{1}$ | we compute successively:

*	1	1	1	1	2	*	1	1	1	1	2	*	1	1	1	1	2
1	2	*	$\overline{3}$	$\overline{3}$	$\overline{3}$	1	2	$\overline{3}$	$\overline{3}$	3	$\overline{3}$	1	2	3	$\overline{3}$	$\overline{3}$	$\overline{3}$
3	3	$\overline{3}$	$\overline{2}$	$\overline{2}$	$\overline{1}$	3	3	こ̄	*	$\overline{2}$	$\overline{1}$	3	3	$\overline{2}$	$\overline{2}$	*	$\overline{1}$

$*$	1	1	1	2	2
1	2	$\overline{3}$	$\overline{3}$	$\overline{3}$	$\overline{3}$
3	3	$\overline{2}$	$\overline{2}$	$\overline{2}$	${ }^{*}$

1	1	1	1	2	2							
2	$*$	3	3	3	$\overline{3}$							
3	3	$\overline{2}$	$\overline{2}$	$\overline{2}$	$*$,	1	1	1	1	2	2
:---:	:---:	:---:	:---:	:---:	:---:							
2	3	$\overline{3}$	$\overline{3}$	$\overline{3}$	$\overline{3}$							
3	$\overline{2}$	$*$	$\overline{2}$	$\overline{2}$	$*$,						

1	1	1	1	2	2
2	3	$\overline{3}$	$\overline{3}$	$\overline{3}$	$\overline{3}$
3	$\overline{2}$	$\overline{2}$	$*$	$\overline{2}$	$*$

1	1	1	1	2	2
2	3	$\overline{3}$	$\overline{3}$	$\overline{3}$	$\overline{3}$
3	$\overline{2}$	$\overline{2}$	$\overline{2}$	$*$	$*$

\hline 3 \& \overline{3} \& \overline{3}

\hline 0 \& \overline{2} \&

\hline\end{array}\right)\).

Note that the sliding applied in the fourth duplicated tableau above is the unique sliding which is not identical to an original Jeu de taquin step.

The split form of a skew orthogonal tableau of type D (defined in the same way than for type B) is still a symplectic skew tableau. But

$$
w_{1} \stackrel{C}{=} w_{2} \nRightarrow w_{1} \stackrel{D}{\equiv} w_{2}
$$

so we can not use the same idea to obtain an Jeu de Taquin for type D. Moreover the examples (computed by using P^{D} with $n=3$)

$$
\begin{array}{|c|c|}
\hline 1 & 3 \\
\hline \overline{3} & \overline{2} \\
\hline * & \overline{1} \\
\hline
\end{array} \equiv \begin{array}{|l|l|}
\hline 2 & 3 \\
\hline \overline{3} & \overline{2} \\
\hline \overline{2} & \\
\hline
\end{array} \text { and } \begin{array}{|c|c|}
\hline 1 & \overline{3} \\
\hline \overline{3} & \overline{2} \\
\hline * & \overline{1} \\
\hline
\end{array} \equiv \begin{array}{|c|c|}
\hline \overline{3} & \overline{3} \\
\hline 3 & \overline{2} \\
\hline \overline{3} & \\
\hline
\end{array}
$$

show that it is not enough to know what letter x slides from the second column C_{2} to the first C_{1} to be able to compute an horizontal sliding. Indeed the result depends on the whole column C_{2}. Thus, to give a combinatorial description of a sliding algorithm for type D would probably be very complicated.

4. Plactic monoid for \mathfrak{G}_{n}

Write \mathfrak{G}_{n}^{B} and \mathfrak{G}_{n}^{D} for the crystal graphs of the direct sums

$$
\bigoplus_{l \geq 0}\left(V\left(\Lambda_{1}^{B}\right) \oplus V\left(\Lambda_{n}^{B}\right)\right)^{\otimes l} \quad \text { and } \quad \bigoplus_{l \geq 0}\left(V\left(\Lambda_{1}^{D}\right) \oplus V\left(\Lambda_{n}^{D}\right) \oplus V\left(\Lambda_{n-1}^{D}\right)\right)^{\otimes l}
$$

We call $\mathfrak{B}_{n}=\mathcal{B}_{n} \cup S P_{n}$ and $\mathfrak{D}_{n}=\mathcal{D}_{n} \cup S P_{n}$ the sets of generalized letters of type B and D. Then we identify the vertices of \mathfrak{G}_{n}^{B} and \mathfrak{G}_{n}^{D} respectively with the words of the free monoid \mathfrak{B}_{n}^{*} and \mathfrak{D}_{n}^{*}. If w is a vertex of \mathfrak{G}_{n}, we write $\mathrm{wt}(w)$ for the weight of w. The spin representations are minuscule, hence every spin column is determined by its weight.

We can extend the Definition 3.2.1 to vertices of \mathfrak{G}_{n}. Consider two vertices \mathfrak{b}_{1} and \mathfrak{b}_{2} of \mathfrak{G}_{n}^{B} (resp. \mathfrak{G}_{n}^{D}). We write $\mathfrak{b}_{1} \stackrel{B}{\sim} \mathfrak{b}_{2}$ (resp. $\mathfrak{b}_{1} \xrightarrow[\sim]{D} \mathfrak{b}_{2}$) when these vertices occur at the same place in two isomorphic connected components of \mathfrak{G}_{n}^{B} (resp. \mathfrak{G}_{n}^{D}). Our aim is now to extend the results of Section 3.2 to the vertices of \mathfrak{G}_{n}.

4.1. Tensor products of spin representations

Write $B(0)$ for the connected component of \mathfrak{G}_{n} containing only the empty word. Let \mathfrak{C}_{0} be the spin column containing only barred letters. For $p=1, \ldots, n$, denote by \mathfrak{C}_{p} the spin column containing exactly the unbarred letters $x \preceq p$. For any admissible column C, set $|C|=\{x \preceq n, x \in l C$ or $\bar{x} \in l C\}=\{x \preceq n, x \in r C$ or $\bar{x} \in r C\}$.

Lemma 4.1.1

1. There exists a unique crystal isomorphism S^{B}

$$
B(0) \cup B\left(v_{\omega_{n}^{B}}\right) \cup\left(\bigcup_{i=1}^{n-1} B\left(v_{\omega_{i}^{B}}\right)\right) \xrightarrow{S^{B}} B\left(v_{\Lambda_{n}^{B}}\right)^{\otimes 2}
$$

2. Let w be the reading of an admissible column C of type B. Write

- lC for the spin column of height n obtained by adding to lC the barred letters \bar{x} such that $x \notin|C|$,
$-r \mathfrak{C}$ for the spin column of height n obtained by adding to $r C$ the unbarred letters x such that $x \notin|C|$.
Then

$$
S^{B}(w)=r \mathfrak{C} \otimes l \mathfrak{C} .
$$

Proof:

1. From Lemma 2.1.1 we obtain that the highest weight vertices of $B\left(v_{\Lambda_{n}^{B}}\right)^{\otimes 2}$ are the vertices $v_{p}^{B}=\mathfrak{C}_{n} \otimes \mathfrak{C}_{p}$ with $p=0, \ldots, n$. We have $\operatorname{wt}\left(v_{p}^{B}\right)=\omega_{p}^{B}$ for $p=1, \ldots, n$ and $\operatorname{wt}\left(v_{0}^{D}\right)=0$. Hence S^{B} is the crystal isomorphism which sends $B\left(v_{\omega_{p}^{B}}\right)$ on $B\left(v_{p}^{B}\right)$ for $p=1, \ldots, n$ and $B(0)$ on $B\left(v_{0}^{B}\right)$.
2. When $w=v_{\omega_{p}^{B}}$, the equality $S^{B}(w)=r \mathfrak{C} \otimes l \mathfrak{C}$ is true. Consider $w \in B\left(v_{\omega_{p}^{B}}\right)$ and $i=$ $1, \ldots, n$ such that $w^{\prime}=\tilde{f}_{i}(w) \neq 0$. Write $w=\mathrm{w}(C)$ and $w^{\prime}=\mathrm{w}\left(C^{\prime}\right)$ where C and C^{\prime} are two admissible columns of height p. The lemma will be proved if we show the implication

$$
S^{B}(w)=r \mathfrak{C} \otimes l \mathfrak{C} \Rightarrow S^{B}\left(w^{\prime}\right)=r \mathfrak{C}^{\prime} \otimes l \mathfrak{C}^{\prime}
$$

where $r \mathfrak{C}^{\prime}$ and $l \mathfrak{C}^{\prime}$ are defined from C^{\prime} in the same manner than $r \mathfrak{C}$ and $l \mathfrak{C}$ from C. This is equivalent to

$$
\begin{equation*}
\tilde{f}_{i}(r \mathfrak{C} \otimes l \mathfrak{C})=r \mathfrak{C}^{\prime} \otimes l \mathfrak{C}^{\prime} \tag{12}
\end{equation*}
$$

Suppose $i \neq n$. Set $E_{i}=\{i, i+1, \overline{i+1}, \bar{i}\}$.
(i) If $\{i, i+1\} \subset|C|, l C$ and $l \mathfrak{C}$ coincide on E_{i}. Similarly $r C$ and $r \mathfrak{C}, l C^{\prime}$ and $l \mathfrak{C}^{\prime}, r C^{\prime}$ and $l \mathfrak{C}^{\prime}$ coincide on E_{i}. By Proposition 3.1.9, we know that

$$
\tilde{f}_{i}^{2}(r C \otimes l C)=r C^{\prime} \otimes l C^{\prime}
$$

The action of \tilde{f}_{i}^{2} on $r C \otimes l C$ is analogous to that of \tilde{f}_{i} on $r \mathfrak{C} \otimes l \mathfrak{C}$. It means that \tilde{f}_{i} changes a pair $(i, \overline{i+1})$ of $r \mathfrak{C}(\operatorname{resp} l \mathfrak{C})$ into a pair $(i+1, \bar{i})$ if and only if \tilde{f}_{i}^{2} changes a pair $(i, \overline{i+1})$ of $r C$ (resp. $l C$) into a pair $(i+1, \bar{i})$. So (12) is true because only the letters of E_{i} may be modified when we apply \tilde{f}_{i}.
(ii) If $\{i, i+1\} \cap|C|=\{i+1\}$, we have $[r C]_{i}=[l C]_{i}=\overline{i+1}$ with the notation of the proof of Proposition 3.1.9. Then $r \mathfrak{C} \cap E_{i}=\{\overline{i+1}, i\}$ and $l \mathfrak{C} \cap E_{i}=\{\overline{i+1}, \bar{i}\}$. Moreover $\left[C^{\prime}\right]_{i}=\bar{i}, r \mathfrak{C}^{\prime} \cap E_{i}=\{\bar{i}, i+1\}$ and $l \mathfrak{C}^{\prime} \cap E_{i}=\{\overline{i+1}, \bar{i}\}$. Hence $\tilde{f}_{i}(r \mathfrak{C} \otimes l \mathfrak{C})$ and $r \mathfrak{C}^{\prime} \otimes l \mathfrak{C}^{\prime}$ coincide on E_{i}. So they are equal because \tilde{f}_{i} does not modify the letters $x \notin E_{i}$.
(iii) If $\{i, i+1\} \cap|C|=\{i\}$, the proof is analogous to case (ii).

Suppose $i=n$. Set $E_{n}=\{n, \bar{n}\}$. Then $n \in|C|$ because $\tilde{f}_{i}(w) \neq 0$. We obtain (12) by using similar arguments to those of (i).

Lemma 4.1.2

1. There exists two crystal isomorphisms S_{n}^{D} and S_{n-1}^{D}

$$
\begin{gathered}
B(0) \cup B\left(v_{\omega_{n}^{D}}\right) \cup\left(\bigcup_{i=1}^{n-1} B\left(v_{\omega_{i}^{D}}\right)\right) \xrightarrow{S_{n}^{D}} B\left(v_{\Lambda_{n}^{D}}\right) \otimes\left(B\left(v_{\Lambda_{n}^{D}}\right) \cup B\left(v_{\Lambda_{n-1}^{D}}\right)\right), \\
B(0) \cup B\left(v_{\bar{\omega}_{n}^{D}}\right) \cup\left(\bigcup_{i=1}^{n-1} B\left(v_{\omega_{i}^{D}}\right)\right) \xrightarrow{S_{n-1}^{D}} B\left(v_{\Lambda_{n-1}^{D}}\right) \otimes\left(B\left(v_{\Lambda_{n-1}^{D}}\right) \cup B\left(v_{\Lambda_{n}^{D}}\right)\right) .
\end{gathered}
$$

2. Let w be the reading of an admissible column C of type D. If $h(C) \prec n$, denote by the greatest unbarred letter such that $t \notin|C|$. Write

- lC for the spin column of height n obtained by adding to lC the barred letters \bar{x} such that $x \notin|C|$.
$-r \mathfrak{C}$ for the spin column of height n obtained by adding to $r C$ the unbarred letters x such that $x \notin|C|$.
- $l_{t} \mathfrak{C}$ for the spin column of height n obtained by adding to $l C$ the letter t and the barred letters \bar{x} such that $x \notin|C| \cup\{t\}$.
- $r_{t} \mathfrak{C}$ for the spin column of height n obtained by adding to $r C$ the letter \bar{t} and the unbarred letters x such that $x \notin|C| \cup[t]$.

Then we have

(i) $\left\{\begin{array}{ll}S_{n}^{D}(w)=r \mathfrak{C} \otimes l \mathfrak{C} & \text { if } r \mathfrak{C} \in B\left(v_{\Lambda_{n}^{D}}\right) \\ S_{n}^{D}(w)=r_{t} \mathfrak{C} \otimes l_{t} \mathfrak{C} & \text { otherwise }\end{array} \quad\right.$ and
(ii) $\begin{cases}S_{n-1}^{D}(w)=r \mathfrak{C} \otimes l \mathfrak{C} & \text { if } r \mathfrak{C} \in B\left(v_{\Lambda_{n-1}^{D}}\right) \\ S_{n-1}^{D}(w)=r_{t} \mathfrak{C} \otimes l_{t} \mathfrak{C} & \text { otherwise }\end{cases}$
(recall that $r \mathfrak{C} \in B\left(v_{\Lambda_{n}^{D}}\right)$ if and only if it contains an even number of barred letters).
Proof: We only sketch the proof for S_{n}^{D}, the arguments are analogous for S_{n-1}^{D}.

1. The highest weight vertices of $B\left(v_{\Lambda_{n}^{D}}\right) \otimes\left(B\left(v_{\Lambda_{n}^{D}}\right) \cup B\left(v_{\Lambda_{n-1}^{D}}\right)\right)$ are the vertices $v_{p}^{D}=$ $\mathfrak{C}_{n} \otimes \mathfrak{C}_{p}$ with $p=0, \ldots, n$. We have $\mathrm{wt}\left(v_{p}^{D}\right)=\omega_{p}^{D}$ for $p=1, \ldots, n$ and $\mathrm{wt}\left(v_{0}^{D}\right)=0$. Hence S_{n}^{D} is the crystal isomorphism which sends $B\left(v_{\omega_{p}^{D}}\right)$ on $B\left(v_{p}^{D}\right)$ for $p=1, \ldots, n$ and $B(0)$ on v_{0}^{D}.
2. When $w=v_{\omega_{p}^{D}}$, the equality $S_{n}^{D}(w)=r \mathfrak{C} \otimes l \mathfrak{C}$ is true. Consider $w \in B\left(v_{\omega_{p}^{D}}\right)$ and $i=$ $1, \ldots, n$ such that $w^{\prime}=\bar{f}_{i}(w) \neq 0$. Write $w=\mathrm{w}(C)$ and $w^{\prime}=\mathrm{w}\left(C^{\prime}\right)$ where C and C^{\prime} are two admissible columns of height p. Let t^{\prime} be the greatest unbarred letter such that $t^{\prime} \notin\left|C^{\prime}\right|$. If the number of barred letters of C is equal to that of $C^{\prime}, r \mathfrak{C}$ and $r \mathfrak{C}^{\prime}$ belongs together in $B\left(v_{\Lambda_{n}^{D}}\right)$ or in $B\left(v_{\Lambda_{n-1}^{D}}\right)$. In these cases we can prove that

$$
\begin{align*}
& S_{n}^{D}(w)=r \mathfrak{C} \otimes l \mathfrak{C} \Rightarrow S_{n}^{D}\left(w^{\prime}\right)=r \mathfrak{C}^{\prime} \otimes l \mathfrak{C}^{\prime} \quad \text { and } \tag{13}\\
& S_{n}^{D}(w)=r_{t} \mathfrak{C} \otimes l_{t} \mathfrak{C} \Rightarrow S_{n}^{D}\left(w^{\prime}\right)=r_{t^{\prime}} \mathfrak{C}^{\prime} \otimes l_{t^{\prime}} \mathfrak{C}^{\prime}
\end{align*}
$$

as we have done for S^{B}. Otherwise we have $i=n$ and $r C \cap E_{n}=\{n-1\}$ or $r C \cap E_{n}=$ $\{n\}$.

Suppose $i=n$ and $n \in|C|$. Then $n-1$ is the unique letter of $E_{n}=\{n-1, n, \bar{n}, \overline{n-1}\}$ that occurs in C. We have $t=n$ and $t^{\prime}=n-1$ because $l C^{\prime} \cap E_{n}=\bar{n}$. So $r \mathfrak{C} \cap E_{n}=$ $\{n, n-1\}, r_{t} \mathfrak{C} \cap E_{n}=\{\bar{n}, n-1\}, l \mathfrak{C} \cap E_{n}=\{\bar{n}, n-1\}$ and $l_{t} \mathfrak{C} \cap E_{n}=\{n, n-1\}$. Similarly $r \mathfrak{C}^{\prime} \cap E_{n}=\{\bar{n}, n-1\}, r_{t} \mathfrak{C}^{\prime} \cap E_{n}=\{\bar{n}, \overline{n-1}\}, l \mathfrak{C}^{\prime} \cap E_{n}=\{\bar{n}, \overline{n-1}\}$ and $l_{t} \mathfrak{C}^{\prime} \cap E_{n}=\{\bar{n}, n-1\}$. Hence $\tilde{f}_{i}(r \mathfrak{C} \otimes l \mathfrak{C})=r_{t^{\prime}} \mathfrak{C}^{\prime} \otimes l_{t^{\prime}} \mathfrak{C}^{\prime}$ and $\tilde{f}_{i}\left(r_{t} \mathfrak{C} \otimes l_{t} \mathfrak{C}\right)=r \mathfrak{C}^{\prime} \otimes l \mathfrak{C}^{\prime}$. We have

$$
\begin{align*}
& S_{n}^{D}(w)=r \mathfrak{C} \otimes l \mathfrak{C} \Rightarrow S_{n}^{D}\left(w^{\prime}\right)=r_{t^{\prime}} \mathfrak{C}^{\prime} \otimes l_{t^{\prime}} \mathfrak{C}^{\prime} \quad \text { and } \\
& S_{n}^{D}(w)=r_{t} \mathfrak{C} \otimes l_{t} \mathfrak{C} \Rightarrow S_{n}^{D}\left(w^{\prime}\right)=r \mathfrak{C}^{\prime} \otimes l \mathfrak{C}^{\prime} . \tag{14}
\end{align*}
$$

When $i=n$ and $n-1 \in|C|$, we obtain (14) by similar arguments. Finally (i) follows from (13) and (14).

Figure 2. The connected components of $V\left(\Lambda_{3}^{D}\right)^{\otimes 2}$ and $V\left(\Lambda_{2}^{D}\right)^{\otimes 2}$ isomorphic to $V\left(\omega_{1}^{D}\right)$ for $U_{q}($ so $)$.
Example 4.1.3 Suppose $n=7$ and consider the admissible column C of type D such that $\mathrm{w}(C)=67 \overline{7} 7 \overline{6}$. Then $\mathrm{w}(l C)=3457 \overline{6}, \mathrm{w}(r C)=67 \overline{5} \overline{4} \overline{3}$. So $(t, \bar{t})=(2, \overline{2})$ and, by identifying the spin columns with the set of letters that they contain, we have $l \mathfrak{C}=$ $\{3457 \overline{6} \overline{2} \overline{1}\}, r \mathfrak{C}=\{1267 \overline{5} \overline{4} \overline{3}\}, l_{t} \mathfrak{C}=\{23457 \overline{6} \overline{1}\}, r_{t} \mathfrak{C}=\{167 \overline{5} \overline{4} \overline{3} \overline{2}\}$. We have $S_{n}^{D}(\mathrm{w}(C))=$ $r_{t} \mathfrak{C} \otimes l_{t} \mathfrak{C}$ and $S_{n-1}^{D}(\mathrm{w}(C))=r \mathfrak{C} \otimes l \mathfrak{C}$ for $r \mathfrak{C} \notin B\left(v_{\Lambda_{n}^{D}}\right)$.

Although C must be the empty column in Lemmas 4.1.1 and 4.1.2, we only use these lemmas with $h(C) \geq 1$ in the sequel. Figure 2 below describe the connected components of $V\left(\Lambda_{3}^{D}\right)^{\otimes 2}$ and $V\left(\Lambda_{2}^{D}\right)^{\otimes 2}$ isomorphic to the vector representation $V\left(\Lambda_{1}^{D}\right)$ of $U_{q}\left(s o_{6}\right)$ (see also (5)).

Note that it is possible to describe explicitly the isomorphisms $\left(S^{B}\right)^{-1},\left(S_{n}^{D}\right)^{-1}$ and $\left(S_{n-1}^{D}\right)^{-1}$. The reader interested by this subject is referred to [11].

4.2. Plactic monoid for \mathfrak{G}_{n}

Let λ be a dominant weight such that $\lambda \notin \Omega_{+}$. If $\lambda \in P_{+}^{B}$ then λ has a unique decomposition $\lambda=\Lambda_{n}^{B}+\lambda^{\prime}$ with $\lambda^{\prime} \in \Omega_{+}^{B}$. We set $v_{\lambda}^{B}=v_{\lambda^{\prime}} \otimes v_{\Lambda_{n}^{B}}$. Then v_{λ}^{B} is the highest weight vector of $B\left(v_{\lambda}^{B}\right)$, a connected component of \mathfrak{G}_{n}^{B} isomorphic to $B^{B}(\lambda)$. Denote by $Y(\lambda)$ the diagram obtained by adding a K.N-diagram of height n to $Y\left(\lambda^{\prime}\right)$.
When $\lambda \in P_{+}^{D}, \lambda$ has a unique decomposition of type $\lambda=\Lambda_{n}^{D}+\lambda^{\prime}$ with $\lambda^{\prime} \in \Omega_{-}^{D}$ and $\bar{\omega}_{n}^{D}$ not appearing in λ^{\prime} or $\lambda=\Lambda_{n-1}^{D}+\lambda^{\prime}$ with $\lambda^{\prime} \in \Omega_{+}^{D}$ and ω_{n}^{D} not appearing in λ^{\prime}. According to this decomposition we set $v_{\lambda}^{D}=v_{\lambda^{\prime}} \otimes v_{\Lambda_{n}^{D}}$ or $v_{\lambda}=v_{\lambda^{\prime}} \otimes v_{\Lambda_{n-1}^{D}}$. Then v_{λ}^{D} is the highest weight vector of $B\left(v_{\lambda}^{D}\right)$, a connected component of \mathfrak{G}_{n}^{D} isomorphic to $B^{D}(\lambda)$. If $Y\left(\lambda^{\prime}\right)=\left(Y^{\prime}, \varepsilon\right)$ (see 8) with $\varepsilon \in\{-, 0,+\}$, we set $Y(\lambda)=(Y, \varepsilon)$ where Y is the diagram obtained by adding a K.N diagram of height n to Y^{\prime}.

Given a tabloid τ and a spin column \mathfrak{C}, the spin tabloid $[\mathfrak{C}, T]$ is obtained by adding \mathfrak{C} in front of τ. The reading of the spin tabloid $[\mathfrak{C}, \tau]$ is $w([\mathfrak{C}, \tau])=\mathrm{w}(\tau) \otimes \mathfrak{C}=\mathrm{w}(\tau) \mathfrak{C}$. Note that the vertices of $B\left(v_{\lambda}\right)$ are readings of spin tabloids.

Definition 4.2.1

- Let $\lambda \in P_{+}^{B}$ such that $\lambda \notin \Omega_{+}^{B}$. A spin tabloid is a spin tableau of type B and shape $Y(\lambda)$ if its reading is a vertex of $B\left(v_{\lambda}^{B}\right)$.
- Let $\lambda \in P_{+}^{D}$ such that $\lambda \notin \Omega_{+}^{D}$. A spin tabloid is a spin tableau of type D and shape $Y(\lambda)$ if its reading is a vertex of $B\left(v_{\lambda}^{D}\right)$.

It follows from this definition that for \mathfrak{T}_{1} and \mathfrak{T}_{2} two spin tableaux $\mathfrak{T}_{1} \sim \mathfrak{T}_{2} \Leftrightarrow \mathfrak{T}_{1}=\mathfrak{T}_{2}$. It is possible to extend Definition 3.1.17 to a spin tableau $[\mathfrak{C}, C$] of type D with C an admissible column of type D. We will say that $[\mathfrak{C}, C$] contains an a-configuration even or odd when this configuration appears in the tableau of two columns $C_{\mathfrak{C}} C$ where $C_{\mathfrak{C}}$ is the admissible column of type D and height n containing the letters of \mathfrak{C}. Kashiwara and Nakashima have obtained in [4] a combinatorial description of the orthogonal spin tableaux equivalent to the following:

Theorem 4.2.2

- $\mathfrak{T}=[\mathfrak{C}, T]$ is a spin tableau of type B if and only if T is a tableau of type B and the rows of $\left[\mathfrak{C}, l C_{1}\right]$ weakly increase from left to right.
- $\mathfrak{T}=[\mathfrak{C}, T]$ is a spin tableau of type D if and only if T is a tableau of type D, the rows of $\left[\mathfrak{C}, l C_{1}\right]$ weakly increase from left to right and $\left[\mathfrak{C}, l C_{1}\right]$ does not contain an a-configuration (even or odd) with $q(a)=n-a$.

It follows from the definition above that for any spin tableau $[\mathfrak{C}, T]$ of type D

$$
\begin{aligned}
& \mathfrak{C} \in B\left(\Lambda_{n}^{D}\right) \text { implies that the shape of } T \text { is }(Y, \varepsilon) \text { with } \varepsilon \neq- \\
& \mathfrak{C} \in B\left(\Lambda_{n-1}^{D}\right) \text { implies that the shape of } T \text { is }(Y, \varepsilon) \text { with } \varepsilon \neq+.
\end{aligned}
$$

A generalized tableau is an orthogonal tableau or a spin orthogonal tableau. Similarly to Section 3.2, the quotient sets $\mathfrak{G}_{n} / \stackrel{B}{\sim}$ and $\mathfrak{G}_{n} / \stackrel{D}{\sim}$ can be respectively identified with the sets of generalized tableaux of type B and D. For x a letter of \mathcal{B}_{n} or \mathcal{D}_{n} and \mathfrak{C} a spin column of height n whose greatest letter is z, we write $x \Delta \mathfrak{C}$ when $x \nsubseteq z$.

Definition 4.2.3 The monoid $\mathfrak{P l}\left(B_{n}\right)$ is the quotient set of \mathfrak{B}_{n}^{*} by the relations:

- $R_{i}^{B}, i=1, \ldots, 5$ defining $\operatorname{Pl}\left(B_{n}\right)$,
- R_{6}^{B} : for $x \in \mathcal{B}_{n}$ and \mathfrak{C} a spin column such that $x \Delta \mathfrak{C} ; \mathfrak{C} x \equiv \mathfrak{C}^{\prime}$ where \mathfrak{C}^{\prime} is the spin column such that $\mathrm{wt}\left(\mathfrak{C}^{\prime \prime}\right)=\mathrm{wt}(\mathfrak{C})+\mathrm{wt}(x)$,
- R_{7}^{B} : for $x \in \mathcal{B}_{n}$ and \mathfrak{C} a spin column such that $x \nLeftarrow \mathfrak{C} ; \mathfrak{C} x \equiv x^{\prime} \mathfrak{C}^{\prime}$ where

$$
\begin{cases}x^{\prime}=\min \{t \in \mathfrak{C} ; t \succeq x\} & \text { if } x \succeq 0 \\ x^{\prime}=\min \{t \in \mathfrak{C} ; t \succeq x\} \cup\{0\} & \text { if } x \preceq n\end{cases}
$$

and \mathfrak{C}^{\prime} is the spin column such that $\mathrm{wt}\left(\mathfrak{C}^{\prime}\right)=\mathrm{wt}(\mathfrak{C})+\mathrm{wt}(x)-\mathrm{wt}\left(x^{\prime}\right)$,

- R_{8}^{B} : for C an admissible column of type $B, S^{B}(\mathrm{w}(C)) \equiv \mathrm{w}(C)$.

Lemma 2.1.1 implies that the highest weight vertex of the connected component containing a word $\mathfrak{C} x$ with $x \in \mathcal{B}_{n}$ and \mathfrak{C} a spin column may be written $\mathfrak{C}_{n} x_{0}$ where $x_{0} \in\{0,1\}$. So $\mathfrak{C} x \in B\left(v_{\Lambda_{n}^{B}} \otimes 0\right)$ or $\mathfrak{C} x \in B\left(v_{\Lambda_{n}^{B}} \otimes 1\right)$. The following lemma gives the interpretation of relations R_{6}^{B} and R_{7}^{B} in terms of crystal isomorphisms.

Lemma 4.2.4

1. The vertices of $B\left(v_{\Lambda_{n}^{B}} \otimes 0\right)$ are the words of the form $\mathfrak{C} x$ where \mathfrak{C} is a spin column and $x \in \mathcal{B}_{n}$ such that $x \triangle \mathfrak{C}$.
2. The vertices of $B\left(v_{\Lambda_{n}^{B}} \otimes 1\right)$ are the words of the form $\mathfrak{C} x$ where \mathfrak{C} is a spin column and $x \in \mathcal{B}_{n}$ such that $x \notin \mathfrak{C}$.
3. Denote by Ψ and Ψ^{\prime} the crystal isomorphisms:

$$
\begin{aligned}
\Psi: B\left(v_{\Lambda_{n}^{B}} \otimes 0\right) & \rightarrow B\left(v_{\Lambda_{n}^{B}}\right) \\
\Psi^{\prime}: B\left(v_{\Lambda_{n}^{B}} \otimes 1\right) & \rightarrow B\left(1 \otimes v_{\Lambda_{n}^{B}}\right) .
\end{aligned}
$$

Then if the word $\mathfrak{C} x$ occurs in the left hand side a relation R_{6}^{B} (resp. of $\left.R_{7}^{B}\right), \Psi(\mathfrak{C} x)$ (resp. $\Psi^{\prime}(\mathfrak{C} x)$) is the word occurring in the right hand side of this relation.

Proof:

1. Consider a word $\mathfrak{C} x$ such that $x \Delta \mathfrak{C}$ and $\tilde{f}_{i}(\mathfrak{C} x) \neq 0$. Let y be the greatest letter of \mathfrak{C}. Set $\tilde{f}_{i}(\mathfrak{C} x)=\mathfrak{U} t$ where \mathfrak{U} is a spin column and t a letter of \mathcal{B}_{n}. We are going to show that $t \Delta \mathfrak{U}$. If y is the greatest letter of \mathfrak{U} then $t \succeq x \succ y$, hence $t \Delta \mathfrak{U}$. Otherwise $\tilde{f}_{i}(\mathfrak{C} x)=\tilde{f}_{i}(\mathfrak{C}) x$ thus $\varepsilon_{i}(x)=0$ by (1). When $i \neq n$, we must have $y=\overline{i+1}, x>y$ and $x \notin\{\bar{i}, i+1\}$ because $\varepsilon_{i}(x)=0$. Hence $x \succ \bar{i}$ and $x=t \Delta \mathfrak{U}$ for \bar{i} is the greatest letter of \mathfrak{U}. When $i=n, y=n$ and $x \succ \bar{n}$ because $\varepsilon_{n}(x)=0$. We obtain similarly $t \Delta \mathfrak{U}$. Hence the set of words $\mathfrak{C} x$ such that $x \Delta \mathfrak{C}$ is closed under the action of the \tilde{f}_{i}. By similar arguments we can prove that this set is also closed under the action of the \tilde{e}_{i}. Moreover $v_{\Lambda_{n}^{B}} \otimes 0$ is the unique highest weight vertex among these words $\mathfrak{C} x$. Hence $B\left(v_{\Lambda_{n}^{B}} \otimes 0\right)$ contains exactly the words of the form $\mathfrak{C} x$ such that $x \Delta \mathfrak{C}$.
2. Follows immediately from 1.
3. If $x \Delta \mathfrak{C}, \Psi(\mathfrak{C} x)$ is the unique spin column of weight $w t(\mathfrak{C} x)$, that is $\Psi(\mathfrak{C} x)=\mathfrak{C}^{\prime}$ with the notation of R_{6}^{B}. When $x \notin \mathfrak{C}$, we consider the following cases:
(i) $x \in \mathfrak{C}$. Set $\Psi(\mathfrak{C} x)=y \mathfrak{D}$. Then we deduce from the equality $\operatorname{wt}(y \mathfrak{D})=\operatorname{wt}(\mathfrak{C} x)$ that $y=x$ and $\mathfrak{D}=\mathfrak{C}$. Indeed $x \mathfrak{C}$ is the unique vertex of $B(1) \otimes B\left(v_{\Lambda_{n}^{B}}\right)$ of weight $\operatorname{wt}(\mathfrak{C} x)$. Hence $y=x=t$ and $\mathfrak{D}=\mathfrak{C}^{\prime}$ with the notation of R_{6}^{B}.
(ii) $x \notin \mathfrak{C}$. When $x \succ 0$, set $x=\bar{p}$ and $\bar{k}=\min \{t \in \mathfrak{C} ; t \succeq x\}$. Then $\{p, p-1, \ldots, k+$ $1\} \subset \mathfrak{C}$. By using the formulas (1) and (2) we obtain

$$
\tilde{f}_{k} \cdots \tilde{f}_{p-2} \tilde{f}_{p-1}(\mathfrak{C} \bar{p})=\mathfrak{C} \bar{k}
$$

So, by (i), $\mathfrak{C} \bar{k} \sim \bar{k} \mathfrak{C}$ which implies

$$
\mathfrak{C} \bar{p} \sim \tilde{e}_{p-1} \cdots \tilde{e}_{k}(\bar{k} \mathfrak{C})=\bar{k} \tilde{e}_{p-1} \cdots \tilde{e}_{k}(\mathfrak{C})=\bar{k} \mathfrak{C}^{\prime}
$$

with the notation of R_{7}^{B}. It means that $\Psi(\mathfrak{C} x)=\bar{k} \mathfrak{C}^{\prime}$. When $x=0$, we have $\tilde{f}_{x^{\prime}-1} \cdots \tilde{f}_{1} \tilde{f}_{n}(\mathfrak{C} 0)=\mathfrak{C} \bar{k}$. Because $\{n, n-1, \ldots, k+1\} \subset \mathfrak{C}$ and we terminate as above. When $x=p \prec 0$ and $\min \{t \in \mathfrak{C} ; t \succeq x\} \cup\{0\}=k \prec 0$, we have $\{\bar{p}, \overline{p+1}, \ldots, \overline{k-1}\} \subset \mathfrak{C}$. So $\tilde{f}_{k-1} \cdots \tilde{f}_{p+1} \tilde{f}_{p}(\mathfrak{C} p)=\mathfrak{C} k$ and the proof is similar. If $\min \{t \in \mathfrak{C} ; t \succeq p\} \cup\{0\}=0,\{\bar{p}, \overline{p+1}, \ldots, \bar{n}\} \subset \mathfrak{C}$. Then $\tilde{f}_{n} \cdots \tilde{f}_{p+1} \tilde{f}_{p}(\mathfrak{C} p)=$ $\mathfrak{C} 0 \sim \bar{n} \mathfrak{C}^{\circ}$ with $\mathfrak{C}^{\circ}=\mathfrak{C}-\{\bar{n}\}+\{n\}$ by the case $x=0$. So formulas (1) and (2) imply that $\mathfrak{C} x \sim \tilde{e}_{p} \cdots \tilde{e}_{n}\left(\bar{n} \mathfrak{C}^{\circ}\right)=\tilde{e}_{n}(\bar{n}) \tilde{e}_{p} \cdots \tilde{e}_{n-1}\left(\mathfrak{C}^{\circ}\right)=0 \mathfrak{C}^{\prime}$ with the notation of R_{7}^{B}. It means that $\Psi(\mathfrak{C} x)=0 \mathfrak{C}^{\prime}$.

Definition 4.2.5 The monoid $\mathfrak{P l}\left(D_{n}\right)$ is the quotient set of \mathfrak{D}_{n}^{*} by the relations:

- $R_{i}^{D}, i=1, \ldots, 5$ defining $\operatorname{Pl}\left(D_{n}\right)$,
- R_{6}^{D} : for $x \in \mathcal{D}_{n}$ and \mathfrak{C} a spin column such that $x \Delta \mathfrak{C} ; \mathfrak{C} x \equiv \mathfrak{C}^{\prime}$ where \mathfrak{C}^{\prime} is the spin column such that $\operatorname{wt}\left(\mathfrak{C}^{\prime}\right)=\operatorname{wt}(\mathfrak{C})+\operatorname{wt}(x)$,
- R_{7}^{D} : for $x \in \mathcal{D}_{n}$ and \mathfrak{C} a spin column such that $x \nLeftarrow \mathfrak{C} ; \mathfrak{C} x \equiv x^{\prime} \mathfrak{C}^{\prime}$ where $x^{\prime}=\min \{t \in$ $\mathfrak{C} ; t \succeq x\}$ and \mathfrak{C}^{\prime} is the spin column such that $\mathrm{wt}\left(\mathfrak{C}^{\prime}\right)=\mathrm{wt}(\mathfrak{C})+\mathrm{wt}(x)-\mathrm{wt}\left(x^{\prime}\right)$,
- R_{8}^{D} : for C an admissible column of type $D, S_{n}^{D}(\mathrm{w}(C)) \equiv \mathrm{w}(C)$ and $S_{n-1}^{D}(\mathrm{w}(C)) \equiv \mathrm{w}(C)$.

We can prove by using similar arguments to those of Lemma 4.2.4 that the relations R_{6}^{D} and R_{7}^{D} read from left to right describe respectively the crystal isomorphisms

$$
\left\{\begin{array} { l }
{ B (v _ { \Lambda _ { n } ^ { D } } \otimes \overline { n }) \rightarrow B (v _ { \Lambda _ { n - 1 } ^ { D } }) } \tag{15}\\
{ B (v _ { \Lambda _ { n - 1 } ^ { D } } \otimes n) \rightarrow B (v _ { \Lambda _ { n } ^ { D } }) }
\end{array} \text { and } \quad \left\{\begin{array}{l}
B\left(v_{\Lambda_{n}^{D}} \otimes 1\right) \rightarrow B\left(1 \otimes v_{\Lambda_{n}^{D}}\right) \\
B\left(v_{\Lambda_{n-1}^{D}} \otimes 1\right) \rightarrow B\left(1 \otimes v_{\Lambda_{n-1}^{D}}\right)
\end{array}\right.\right.
$$

Lemma 4.2.6 Let w_{1} and w_{2} be two vertices of \mathfrak{G}_{n} such that $w_{1} \equiv w_{2}$. Then for $i=$ $1, \ldots, n$:

$$
\begin{aligned}
& \tilde{e}_{i}\left(w_{1}\right) \equiv \tilde{e}_{i}\left(w_{2}\right) \quad \text { and } \quad \varepsilon_{i}\left(w_{1}\right)=\varepsilon_{i}\left(w_{2}\right), \\
& \tilde{f}_{i}\left(w_{1}\right) \equiv \tilde{f}_{i}\left(w_{2}\right) \quad \text { and } \quad \varphi_{i}\left(w_{1}\right)=\varphi_{i}\left(w_{2}\right) .
\end{aligned}
$$

Proof: By induction we can suppose that w_{2} is obtained from w_{1} by applying only one plactic relation. In this case we write $w_{1}=u \hat{w}_{1} v$ and $w_{2}=u \hat{w}_{2} v$ where $u, v, \hat{w}_{1}, \hat{w}_{2}$ are factors of w_{1} and w_{2} such that $\hat{w}_{1} \equiv \hat{w}_{2}$ by one of the relations R_{i}. Formulas (1) and (2) imply that it is enough to prove the lemma for \hat{w}_{1} and \hat{w}_{2}. This last point is immediate because we have seen that each plactic relation may be interpreted in terms of a crystal isomorphism.

So we obtain $w_{1} \equiv w_{2} \Rightarrow w_{1} \sim w_{2}$. To establish the implication $w_{1} \sim w_{2} \Rightarrow w_{1} \equiv w_{2}$, it suffices, as in Section 3.2 to prove that two highest weight vertices of \mathfrak{G}_{n}^{B} (resp. \mathfrak{G}_{n}^{D}) with the same weight are congruent in $\mathfrak{P l}\left(B_{n}\right)$ (resp. $\mathfrak{P l}\left(D_{n}\right)$). Given a vertex $w \in \mathfrak{G}_{n}$, we know by Theorems 4.2.2 and 3.1.18 that there exists a unique generalized tableau $\mathfrak{P}(w)$ such that

$$
\mathrm{w}(\mathfrak{P}(w)) \sim w .
$$

Lemma 4.2.7 Let w be a highest weight vertex of \mathfrak{G}_{n}. Then $w(\mathfrak{P}(w)) \equiv w$.

Proof: By using relations R_{6} and R_{7}, w is congruent to a word $u \mathfrak{U}$ such that $u \in G_{n}$ and $\mathfrak{U} \in \mathfrak{G}_{n}$. Relation R_{8} implies that any word consisting in an even number of spin columns is congruent to a vertex of G_{n}. If \mathfrak{U} contains an even number of spin columns, there exists $v \in G_{n}$ such that $w \equiv v$. We have $\mathfrak{P}(w)=P(v)$ because $w \equiv v \Rightarrow w \sim v$. Thus $\mathrm{w}(\mathfrak{P}(w))=\mathrm{w}(P(v)) \equiv v \equiv w$ and the lemma is proved. If w contains an odd number of spin columns, there exists a vertex $v \in G_{n}$ and a spin column \mathfrak{C} such that $w \equiv v \mathfrak{C}$. Set $P(v)=T$. Then $w \equiv \mathrm{w}(T) \mathfrak{C}$. Write $T=C \hat{T}$ where C is the first column of T and \hat{T} the tableau obtained by erasing C in T. By Lemma 2.1.1, $\mathrm{w}(T)$ is a highest weight vertex because w is a highest weight vertex of \mathfrak{G}_{n}. In particular, $\mathrm{w}(C)$ is a highest weight vertex. Set $p=h(C)$.

Suppose first $w \in \mathfrak{G}_{n}^{B}$. We have $S^{B}(\mathrm{w}(C))=\mathfrak{C}_{n} \mathfrak{C}_{p}$ (see Lemma 4.1.1). So $w \equiv$ $\mathrm{w}(\hat{T}) \mathfrak{C}_{n} \mathfrak{C}_{p} \mathfrak{C}$. By Lemma 2.1.1 we must have $\varepsilon_{i}(\mathfrak{C})=0$ for $i=p+1, \ldots, n$. This implies that the letters of $\{\overline{p+1}, \ldots, \bar{n}\}$ do not appear in \mathfrak{C}. Indeed $\bar{n} \notin \mathfrak{C}$ otherwise $\varepsilon_{n}(\mathfrak{C}) \neq 0$ and if $\bar{q} \succ \bar{n}$ is the lowest barred letter of $\{\overline{p+1}, \ldots, \bar{n}\}$ appearing in \mathfrak{C} we obtain $\varepsilon_{q}(\mathfrak{C})=1 \neq 0$ because $q+1 \in \mathfrak{C}$. So \mathfrak{C} contains the letters of $\{p+1, \ldots, n\}$. Let $\left\{x_{1} \prec \cdots \prec x_{s}\right\}$ be the set of unbarred letters $\leq p$ that occur in \mathfrak{C}. By Lemma 4.1.1, we have

$$
S^{B}(x_{1} \cdots x_{s} \underbrace{0 \cdots 0}_{n-p \text { times }})=\mathfrak{C}_{p} \mathfrak{C} .
$$

Hence

$$
w \equiv \mathrm{w}(\hat{T}) \mathfrak{C}_{n}(x_{1} \cdots x_{s} \underbrace{0 \cdots 0}_{n-p \text { times }})
$$

and by applying relations R_{6}^{B} and R_{7}^{B} we have $w \equiv \mathrm{w}(\hat{T})\left(x_{1} \cdots x_{s}\right) \mathfrak{C}_{n}$. Write $T^{\prime}=x_{s} \rightarrow(\rightarrow$ $\left.\cdots x_{1} \rightarrow \hat{T}\right)$. Then $\left[\mathfrak{C}_{n}, T^{\prime}\right]$ is a spin orthogonal tableau and $\mathrm{w}\left(T^{\prime}\right) \mathfrak{C}_{n} \equiv w$. So $T^{\prime}=\mathfrak{P}(w)$ and the lemma is true.

Suppose now $w \in \mathfrak{G}_{n}^{D}$. If the shape of \hat{T} is (Y, ε) with $\varepsilon \neq-$, we consider $S_{n}^{D}(\mathrm{w}(C))=$ $\mathfrak{C}_{n} \mathfrak{C}_{p}$. Then $\left[\mathfrak{C}_{n}, \hat{T}\right]$ is a spin tableau and the proof is similar to that of the type B case. If the shape of \hat{T} is (Y, ε) with $\varepsilon=-$, it suffices to consider $S_{n-1}^{D}(\mathrm{w}(C))=\mathfrak{C}_{n-1} \mathfrak{C}_{n-1}$ where instead of $S_{n}^{D}(\mathrm{w}(C))$.

Now if w_{1} and w_{2} are two highest weight vertices of \mathfrak{G}_{n} with the same weight λ, we have $\mathfrak{P}\left(w_{1}\right)=\mathfrak{P}\left(w_{2}\right)$ because there is only one orthogonal tableau of highest weight λ. Then the lemma above implies that $w_{1} \equiv w_{2}$. We can state the

Theorem 4.2.8 Let w_{1} and w_{2} be two vertices of \mathfrak{G}_{n}. Then $w_{1} \sim w_{2}$ if and only if $w_{1} \equiv w_{2}$.
For any vertex $w \in \mathfrak{G}_{n}$, it is possible to obtain $\mathfrak{P}(w)$ by using an insertion algorithm analogous to that described in Section 3. Considering the sequence of shape of the intermediate generalized tableaux appearing during the computation of $\mathfrak{P}(w)$, we obtain a \mathfrak{Q}-symbol $\mathfrak{Q}(w)$. Then for w_{1} and w_{2} two vertices of \mathfrak{G}_{n} we have:

$$
w_{1} \leftrightarrow w_{2} \Leftrightarrow \mathfrak{Q}\left(w_{1}\right)=\mathfrak{Q}\left(w_{1}\right)
$$

where $w_{1} \leftrightarrow w_{2}$ means that w_{1} and w_{2} occur in the same connected component of \mathfrak{G}_{n}. The reader interested in this subject is referred to [11].

References

1. C. De Concini, "Symplectic standard tableaux," Adv. in Math. 34 (1979), 1-27.
2. E. Date, M. Jimbo, and T. Miwa, "Representations of $U_{q}(g l(n, C))$ at $q=0$ and the Robinson-Schensted correspondence," in Physics and Mathematic of Strings, L. Brink, D. Friedman and A.M. Polyakov (Eds.), Word Scientific, Teaneck, NJ, 1990, pp. 185-211.
3. W. Fulton, Young Tableaux, London Mathematical Society, Student Text 35.
4. M. Kashiwara and T. Nakashima, "Crystal graphs for representations of the q-analogue of classical Lie algebras," J. Algebra 165 (1994), 295-345.
5. M. Kashiwara, "On crystal bases," in Canadian Mathematical Society, Conference Proceedings, 1995, Vol. 16.
6. M. Kashiwara, "Similarity of crystal bases," AMS Contemporary Math. 194 (1996), 177-186.
7. R.C. King, "Weight multiplicities for the classical groups," Lectures Notes in Physics $\mathbf{5 0}$ (New York; Springer, 1975), 490-499.
8. A. Lascoux, B. Leclerc, and J.Y. Thibon, "Crystal graph and q-analogues of weight multiplicities for the roots system A_{n}^{*}," Lett. Math. Phys. 35 (1994), 359-374.
9. A. Lascoux and M.P. Schützenberger, "Le monoïde plaxique," in Non Commutative Structures in Algebra and Geometric Combinatorics, A. de Luca (Ed.), Quaderni della Ricerca Scientifica del C.N.R., Roma, 1981.
10. C. Lecouvey, "Schensted-type correspondence, plactic monoid and Jeu de Taquin for type C_{n}," J. Algebra (to appear).
11. C. Lecouvey, "Algorithmique et combinatoire des algèbres enveloppantes quantiques de type classique," Thèse, Université de caen, 2001.
12. P. Littelmann, "A plactic algebra for semisimple Lie algebras," Adv. in Math. 124 (1996), 312-331.
13. P. Littelmann, "Crystal graph and Young tableaux," J. Algebra 175 (1995), 65-87.
14. P. Littelmann, "A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras," Inv. Math. 116 (1994), 329-346.
15. T. Nakashima, "Crystal base and a generalization of the Littelwood-Richardson rule for the classical Lie algebras," Comm. Math. Phys. 154 (1993), 215-243.
16. J.T. Sheats, "A symplectic jeu de taquin bijection between the tableaux of King and of De Concini," Trans. A.M.S. 351(7) (1999), 3569-3607.
17. S. Sundaran, "Orthogonal tableaux and an insertion scheme for $S_{2 n+1}$," J. Combin. Theory, Ser. A 53 (1990), 239-256.
18. S. Sundaram, "Tableaux in the representation theory of the classical groups," IMA. Volumes in Mathematics and its Applications 19 (Springer-Verlag, 1990).
