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Abstract. We use Kashiwara’s theory of crystal bases to study plactic monoids for Uy (s02,+1) and U, (so2,).
Simultaneously we describe a Schensted type correspondence in the crystal graphs of tensor powers of vector and
spin representations and we derive a Jeu de Taquin for type B from the Sheats sliding algorithm.
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1. Introduction

The Schensted correspondence based on the bumping algorithm yields a bijection be-
tween words w of length / on the ordered alphabet A, = {I < 2 < --- < n} and pairs
(PA(w), Q*(w)) of tableaux of the same shape containing / boxes where P4 (w) is a semi-
standard Young tableau on A, and Q*(w) is a standard tableau. By identifying the words
w having the same tableau P4 (w), we obtain the plactic monoid PI(A,) whose defining
relations were determined by Knuth:

yzx = yxz and xzy =zxy ifx<y<zg,
xyx =xxy and xyy =yxy ifx <y.

The Robinson-Schensted correspondence has a natural interpretation in terms of
Kashiwara’s theory of crystal bases [2, 5, 8]. Let VnA denote the vector representation
of U,(sl,). By considering each vertex of the crystal graph of @Z>O(VnA)®l as a word on
A, we have for any words w; and wy: -

e PA(w;) = P*(w,) if and only if w; and w, occur at the same place in two isomorphic
connected components of this graph.

e 04w;) = Q*(w,) if and only if w; and w, occur in the same connected component of
this graph.

Replacing VA by the vector representation V¢ of sp,, whose basis vectors are labelled
by the letters of the totally ordered alphabet

Ch={l<---<n—l<n=<in<n—1<---<1},
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we have obtained in [10] a Schensted type correspondence for type C,,. This correspondence
is based on an insertion algorithm for the Kashiwara-Nakashima’s symplectic tableaux [4]
analogous to the bumping algorithm. It may be regarded as a bijection between words w
of length [ on C, and pairs (P€(w), Q¢(w)) where PC(w) is a symplectic tableau and
Q€ (w) an oscillating tableau of type C and length [, that is, a sequence (Q1, ..., Q;) of
Young diagrams such that two consecutive diagrams differ by exactly one box. Moreover
by identifying the words of the free monoid C; having the same symplectic tableau we also
obtain a monoid PI(C,). This is the plactic monoid of type C,, in the sense of [12] and [8].

The vector representations VnB and VnD of U,(s02,41) and U, (s02,) have crystal graphs
whose vertices may be respectively labelled by the letters of

B,={1<---<n—1<n=<0<n<n—-1<---<1}
and

Dn={1<~~<n—1<r_l<n—1<~~~<1}.
i

Let GE and GP be the crystal graphs of @,. o(V,2)®' and @, ,(V,”)®'. Thenitis possible to
label the vertices of G2 and G2 by the words of the free monoids B} and D;. However the sit-
uation is more complicated than in the case of types A and C. Indeed there exist a fundamen-
tal representation of U, (s02,+1) and two fundamental representations of U, (s0,,) that do not
appear in the decompositions of @(Vn3)®’ and @, (VP )® into their irreducible compo-
nents. They are called the spin representations and denoted respectively by V(AZ), V(AP)
and V(AP _)).In[4], Kashiwara and Nakashima have described their crystal graphs by using
a new combinatorical object that we will call a spin column. Write SP,, for the set of spin
columns of height n and set B, = B, U SP,, ©,, = D, U SP,. Then each vertex of the
crystal graphs &5 and &2 of @, (V2 @ V(AL)® and P, (VL @ V(ALY@ V(AL ))®!
may be respectively identified with a word on B, or ®,,. We can define two relations ~ and
D

~ by:

B . . . . .
w; ~ wy if and only if w; and w, occur at the same place in two isomorphic connected
components of &7

n’
D . . . . .
w; ~ wy if and only if w; and w, occur at the same place in two isomorphic connected
components of &

In this article, we prove that PI(B,) = B}/ 'li, PI(D,) =D;/ 2, BUB,) =B/ R and
BI(D,) = D/~ are monoids and we undertake a detailed investigation of the correspond-
ing insertion algorithms. We summarize in part 2 the background on Kashiwara’s theory
of crystals used in the sequel. In part 3, we first recall Kashiwara-Nakashima’s notion of
orthogonal tableau (analogous to Young tableaux for types B and D) and we relate it to
Littelmann’s notion of Young tableau for classical types. Then we derive a set of defin-
ing relations for PI(B,) and PI(D,) and we describe the corresponding column insertion
algorithms. Using the combinatorial notion of oscillating tableaux (analogous to standard
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tableaux for types B and D), these algorithms yield the desired Schensted type correspon-
dences in G2 and GP. In part 4 we propose an orthogonal Jeu de Taquin for type B based
on Sheats’ sliding algorithm for type C [16]. Finally in part 5, we bring into the picture the
spin representations and extend the results of part 3 to the graphs ®f , (’Sf and the monoids
PUB,), BIU(D,). Note that bounds for the length of the plactic relations are given in [12].

Notation 1.0.1 In the sequel, we often write B and D instead of B, and D, to simplify
the notation. Moreover, we frequently define similar objects for types B and D. When
they are related to type B (respectively D), we attach to them the label # (respectively the
label P). To avoid cumbersome repetitions, we sometimes omit the labels B and P when
our statements are true for the two types.

2. Conventions for crystal graphs
2.1. Kashiwara’s operators

Let g be simple Lie algebra and «;, i € [ its simple roots. Recall that the crystal graphs of
the U, (g)-modules are oriented colored graphs with colors i € I. An arrow a ~> b means
that f;(a) = b and é;(b) = a where é; and f; are the crystal graph operators (for a review
of crystal bases and crystal graphs see [5]). Let V, V' be two U,(g)-modules and B, B’
their crystal graphs. A vertex v° € B satisfying &;(v°) = 0 for any i € I is called a highest
weight vertex. The decomposition of V into its irreducible components is reflected into
the decomposition of B into its connected components. Each connected component of B
contains a unique vertex of highest weight. We write B(v°) for the connected component
containing the highest weight vertex v°. The crystals graphs of two isomorphic irreducible
components are isomorphic as oriented colored graphs. We will say that two vertices b, and
b, of B occur at the same place in two isomorphic connected components I'; and ', of B
if there exist iy, ..., i, € I such that w; = fi, cee fir(w(l)) and w, = fi/. e f,-,(wg), where
w! and w) are respectively the highest weight vertices of 'y and T'y.
The action of & and f; on B® B’ = {b®b';b € B, b’ € B’} is given by:

fiwy®@v if ;) > &(v)

x . (1)
u® fi(v) if gi(u) < &(v)

.fi(u®v)={

and

) (4 @& i g < &)
e"(m”)_{é,-(u)@v if i) = &(v) @

where &;(u) = max{k; E;‘(u) # 0} and ¢; (1) = max{k; ff.‘(u) # 0}. Denote by A;,i € I the
fundamental weights of g. The weight of the vertex u is defined by wt(u) = ), (¢;(u) —
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ei(u))A;. Write s; = s,, for i € 1. The Weyl group W of g acts on B by:

si@) = (F)# O~ @) if g;(u) — () = 0,

5:) = (@) OO if g () — £4(u) < 0. ®)

We have the equality wt(o (1)) = o(wt(u) forany 0 € W and u € B. The following lemma
is a straightforward consequence of (1) and (2).

Lemma2.1.1 Letru®v € BQ® B'. Then:

@i(v) + @i(u) — &) if gi(u) > &)

¥i(v) otherwise. '

&) + &) — i) ifei(v) > @;i(u)
&i(u) otherwise. '

) gi(u®v)= {

(i) &i(u @ v) = {

(iii) u ® v is a highest weight vertex of B ® B’ if and only if for any i € 1é&;(u) =0 (i.e. u
is of highest weight) and ¢;(v) < ¢;(u).

For any dominant weight A € P, write B()) for the crystal graph of V' (1), the irreducible
module of highest weight A and denote by u; its highest weight vertex. Kashiwara has
introduced in [6] an embedding of B(}) into B(mA) for any positive integer m. He uses this
embedding to obtain a simple bijection between Littlemann’s path crystal associated to A
and B(A) [14].

Theorem 2.1.2 (Kashiwara) There exists a unique injective map

Sy : B(L) — B(m) C B(L)®™

up > ud"

such that for any b € B()):

@) Sw(ei(b)) = & (Su(D)),

(i) Su(fi(b)) = F1'(Su(b)),

(i) @i(Sm(b)) = me;(D), “4)
(V) &(Su(D)) = mei(b),

) wt(S, (b)) = mwt(b).

—

Corollary 2.1.3 Let Ay, ..., A, € P,. Then, the map:
Sp:BA)®---® B(A) — B(mA) ® --- @ B(mAy)
b1®®bk = Sm(b1)®®sm(bk)

is injective and satisfies the relations (4) with b = by ® --- ® by. Moreover the image
by S, of a highest weight vertex of B(A1) ® --- ® B(Ay) is a highest weight vertex of
B(mi) ® - - - ® B(mAy).
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Proof: By induction, we can suppose k = 2. S, is injective because S, is injective. Let
u v € B(A) ® B(Ay). Suppose that ¢; (1) < &;(v). We derive the following equalities
from Formulas (1) and (2):

S fiu ®v) =S, u® fiv) = S u) ® Su(fiv) = Suw)® f'S,(v) and
FrSnu @v)) = F7(Su@) ® S (V) = Su(u) ® F7Su(v).

Indeed, &;(S,(v)) = me;(v) > me;(u) = ;(Syu(u)) and for p = 1,...,m &(fS,(v) >
&i(S,(v)). Hence S, fi(u ® v) = f7(S,(u ® v)). Now suppose &;(v) < ¢;(u) i.e. &;(u) <
@;(v) + 1. We obtain:

Smfz(u Q) = Sm(fiu ®v) = Sm(ftu) ® Sm(v) = f:nsm(u) ® Su(v) and
FrSu @) = F1(Su) @ Su(v) = f7'Suu) ® Su(v)

because €;(S,,(v)) = me;(v) < me;(u) +m = ¢;(S,,u)+m.Hence we have S,, f,- (H®v) =
Fr(Sm(u ® v).

Similarly we prove that S,,é;(u ® v = é/'(S,,(u ® v)). So S,, satisfies the formulas (i)
and (ii). By Lemma 2.1.1(i) and (ii) we obtain then that S,, satisfies (iii), (iv) and (v).

Suppose that u ® v is a highest weight vertex of B(A;) ® B(A;). By Lemma 2.1.1(iii),
u is the highest weight vertex of B(A;) and €;(v) < ¢;(u) for i € I. Then by definition of
S, Sm(u) is the highest weight vertex of B(mA;). Moreover for any i € I, ;(S,(v)) =
me;(v) < me;(u) = ¢;(Sw)). So S,,(u) ® S,(v) = S,(# ® v) is of highest weight in
B(mAi1) @ B(mAy). O

By this corollary, the connected component of B(A;) ® - - - ® B(A;) of highest weight
vertex u’ = u; ® - - - ® ug, may be identified with the sub-graph of B(mA;)® - - - ® B(mAy)
generated by the vertex S,,(u1) ® - - - ® S, (ux) and the operators f7" fori € I.

2.2.  Tensor powers of the vector representations
We choose to label the Dynkin diagram of 50,41 by:

n—2

1 2 3 — n—1 n
0o—0—0:++ 0 — 0 = O

and the Dynkin diagram of so0,, by:
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Write W2 and WP for the Weyl groups of 502,41 and s0,. Denote by V5 and VP the
vector representations of U, (s02,+1) and U, (s02,). Their crystal graphs are respectively:

1520 1S s 08 aS o1 %.52 451 (5)
and
n
} n—1
A
1h23 ... p-2"5 a1 n-1 $¥¥n-23...5341
/\
n~1 n
n

(6)

By induction, formulas (1), (2) allow to define a crystal graph for the representations (V.2 )@l
and (V.2)®! for any /. Each vertex u; ® u» ® - - - ® u; of the crystal graph of (V.2)®' will be
identified with the word uu; - - - u; on the totally ordered alphabet

B, ={l<---<n—1<n=<0<ni<n—1<---<1}.

Similarly each vertex v; @ v, ® - - - ® v; of the crystal graph of (VnD )@ will be identified
with the word v v, - - - v; on the partially ordered alphabet

n
Dn={1<-~-<n—1<_
i

<n—1<-~-<i}.
By convention we set O=0andfork =1,...,n, ]j =k. The letter x is barred if x > 7
unbarred if x < n and we set:

x| {x if x is unbarred
X| =

X otherwise.

Write B} and D} for the free monoids on B, and D,. If w is a word of B} or D}, we denote
by 1(w) its length and by d(w) = (di, . . ., d,) the n-tuple where d; is the number of letters
i in w minus the number of letters i. Let G2 and Gf. , be respectively the crystal graphs of
@, (V,5)® and (V.B)®'. Then the vertices of G2 are indexed by the words of B;* and those of
G%, by the words of B} of length /. Similarly G and G, the crystal graphs of P, (V,7)®!
and (V2 )® are indexed respectively by the words of D; and by the words of D} of length
. If w is a vertex of G,, write B(w) for the connected component of G, containing w.
Denote by A%, ..., AB and AP, ..., AP the fundamental weights of U, (s02,+1) and
U,(s02,). Let P? and PP be the sets of dominant weights of their weight lattices. We set

B _HAB
w, =2A,,

of =AP fori=1,...,n—1
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and
D _ A aD
wn _2An’
-D __ D
@y _2An71’
D _ AD D
Wy = An + An—l’
a)iDzAiD fori=1,...,n—2.

Then the weight of a vertex w of G, is given by:
n—1
Wi(w) = dyw, + Y _(di — diy1)o;.
i=1

Thus we recover the well-known fact that there is no connected component of G2 iso-
morphic to B(A?) and no connected component of G? isomorphic to B(A?) or B(AP ).
Recall that in the cases of the types A and C, every crystal graph of an irreducible mod-
ule may be embedded in the crystal graph of a tensor power of the vector representation.
For Ae P f , BB(1) may be embedded in a tensor power of the vector representation V2
if and only if A lies in the weight sub-lattice Q% generated by the »?’s. Similarly, for
1€ PP, BP()) may be embedded in a tensor power of the vector representation V,” if and
only if A lies in the weight sub-lattice 2” generated by the w?’s. Set Q% = Pf N Q% and
QP = PP NQP.

Now we introduce the coplactic relation. For w; and w, € B} (resp. D), write w; £> ws
(resp. w 2 wy) if and only if w; and w, belong to the same connected component of
G2 (resp. GP). The proof of the following lemma is the same as in the symplectic case
[10].

Lemma 2.2.1 Ifw; = ujv; and wy = uyvy with l(u;) and [(vy) = [(vy)

up <> Uy
w) <> Wy = .
V] <> U

2.3.  Crystal graphs of the spin representations

The spin representations of U, (s02,+1) and U,(s02,) are V(AE), V(AP) and V(AP ).
Recall that dim V(AZ) = 2" and dim V(AP) = dim V(AP ) = 2"~!. Now we review the
description of B(AZ), B(AP)and B(AP ) given by Kashiwara and Nakashima in [4]. It is
based on the notion of spin column. To avoid confusion between these new columns and the
classical columns of a tableau that we introduce in the next section, we follow Kashiwara-
Nakashima’s convention and represent spin columns by column shape diagrams of width

1/2. Such diagrams will be called K-N diagrams.

Definition 2.3.1 A spin column € of height » is a K-N diagram containing » letters of D,
such that the word x - - - x, obtained by reading € from top to bottom does not contain a
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pair (z, Z) and verifies x; < - - - < x,. The set of spin columns of length n will be denoted
SP,.

e B(AB)={¢; ¢ € SP,} where Kashiwara’s operators act as follows:

if n € € then f,¢ is obtained by turning n into 71, otherwise f,& = 0,

if 7 € € then &,¢ is obtained by turning 7 into n, otherwise &,& = 0,

if (i,i +1) € ¢ then f;C is obtained by turning (i,i + 1) into (i + 1, 1), otherwise
fie=0,

if(i4+1,7) e ¢then ;¢ is obtained by turning (i +1, 7) into (i, i + 1), otherwise &;¢ = 0.

e B(AP)={€ € SP,; the number of barred letters in € is even } and B(AnD_l) ={C€ e SP,;
the number of barred letters in € is odd} where Kashiwara’s operators act as follows:

if n — 1,n) € ¢ then f,¢ is obtained by turning (n — 1, n) into (i, n — 1), otherwise
f~n€ =0,

if (1,n — 1) € € then é,¢ is obtained by turning (7, n — 1) into (n — 1, n), otherwise
¢,& =0, fori # n, f; and & act like in B(AZ).

In the sequel we denote by vy the highest weight vertex of B(A?), by vy and vy  the
highest weight vertices of B(A})) and B(A._,). Note that v} and vy correspond to the
spin column containing the letters of {1, ...,n} and v KH corresponds to the spin column
containing the letters of {1,...,n — 1, n1}.

3. Schensted correspondences in GZ and G?
3.1. Orthogonal tableaux

Let A € 2. We are going to review the notion of standard orthogonal tableaux introduced
by Kashiwara and Nakashima [4] to label the vertices of B()).

3.1.1. Columns and admissible columns. A column of type B is a Young diagram

I

Z

of column shape filled by letters of B, such that C increases from top to bottom and 0 is
the unique letter of B, that may appear more than once.

A column of type D is a Young diagram C of column shape filled by letters of D,, such
that x;11 £ x; fori = 1,...,1 — 1. Note that the letters n and 7 are the unique letters that
may appear more than once in C and if they do, these letters are different in two adjacent
boxes.
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o,
3
2 =~ 13

Figure 1. The crystal graphs B(Af), B(A,l,)) and B(AP ) for U, (so7) and Uy (s06).

n—1

The height 4(C) of the column C is the number of its letters. The word obtained by
reading the letters of C from top to bottom is called the reading of C and denoted by w(C).
We will say that the column C contains a pair (z, Z) when a letter O or the two letters z < n
and Z appear in C.

Definition 3.1.1 (Kashiwara-Nakashima) Let C be a column such that w(C) =x; - - - xp(c).
Then C is admissible if #(C) < n and for any pair (z, Z) of letters in C satisfying z = x,
and zZ = x, with z < n we have

lg — pl = h(C)—z+ L (7
(Note that 0 > n on B, and we may have ¢ — p < 0 for type D and z = n).

Example3.1.2 Forn = 4,4042 and 3443 are readings of admissible columns respectively
of type B and D.

Let C be a column of type B or D and z < n a letter of C. We denote by N(z) the number
of letters x in C such that x < z or x > Z. Then Condition (7) is equivalent to N(z) < z.

Suppose that C is non admissible and does not contain a pair (z, 7) with z < n and
N(z) > z. Then h(C) > n. Hence Cis of type Band 0 € C. Indeed, if 0 ¢ C, C contains
a letter z maximal such that z < n and 7z € C. It means that forany x € {z + 1,...,n},
there is at most one letter y € C with |y| = x. We have a contradiction because in this case
N(z) > n — (n — z). We obtain the
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Remark 3.1.3 A column C is non admissible if and only if at least one of the following
assertions is satisfied:

(i) C contains aletter z < n and N(z) > z
(i) Cisoftype B,0 € C and h(C) > n.

Ifwesetv? =1..-kfork=1,...,n,then B(v}) isisomorphic to B(w}). Similarly, if
wesetv) =1---kfork=1,...,nandv) =1---(n— i, then B(v)))and B(v} ) are

respectively isomorphic to B(wP) and B(®P).

Proposition 3.1.4 (Kashiwara-Nakashima)

e The vertices of B(vgk) are the readings of the admissible columns of type B and length k.

e The vertices of B(vgk ) with k < n are the readings of the admissible columns of type D
and length k.

o The vertices of B (vfn ) are the readings of the admissible columns C of type D such that
w(C) = xy - - x,, and x; = n (resp. x;y = ii) implies n — k is even (resp. odd).

e The vertices of B(vgn ) are the readings of the admissible columns C of type D such that
w(C) = xy -+ x, and x; = 1 (resp. x; = n) implies n — k is odd (resp. even).

We can obtain another description of the admissible columns by computing, for each
admissible column C, a pair of columns (/C, rC) without pair (z, 7). This duplication was
inspired by the description of the admissible columns of type C in terms of De Concini
columns used by Sheats in [16].

Definition 3.1.5 Let C be a column of type B and denote by Ic = {z1 = 0,...,z, =
0 > z,41 > -+ > z,} the set of letters z < 0 such that the pair (z, z) occurs in C. We will
say that C can be split when there exists (see the example below) a set of s unbarred letters
Joc ={t1 > -+ > t;} C B, such that: t, is the greatest letter of 3, satisfying: t| < z,# ¢ C
and ) ¢ C,fori = 2,...,s,t is the greatest letter of 3, satisfying: #; < min(t;_y, z;),
t ¢ C and 7, ¢ C.

In this case we write:

e rC for the column obtained first by changing in C Z; into 7; for each letter z; € I, next
by reordering if necessary.

e [C for the column obtained first by changing in C z; into #; for each letter z; € I, next by
reordering if necessary.

Definition 3.1.6 Let C be a column of type D. Denote by € the column of type B obtained
by turning in C each factor iin into 00. We will say that C can be split when C can be split.
In this case we write [C = [C and rC = IC.

Example 3.1.7 Suppose n = 9 and consider the column C of type B such that w(C) =
458900854. We have I = {0, 0,8, 5,4} and Jc = {7, 6, 3,2, 1}. Hence
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w(C’) = 56008632, I~ = {0,0, 6,5} and Js = {7, 4, 3, 1}. Hence

Lemma 3.1.8 Let C be a column of type B or D which can be split. Then C is admissible.

Proof: Suppose C of type B. We have h(C) < n for C can be split. If there exists a letter
Z < 0in C such that the pair (z, Z) occurs in C and N(z) > z + 1, C contains at least z + 1
letters x satisfying |x| < z. So rC contains at least z + 1 letters x” satisfying |x’| < z. We
obtain a contradiction because rC does not contain a pair (¢, 7). When C is of type D, by
applying the lemma to € we obtain that € is admissible. So C is admissible. O

The meaning of /C and rC is explained in the following proposition.

Proposition 3.1.9 Letw € {08, ..., 0B} orw e {oP, ... 0P

D ~D
1> @y 5 @y }. The map

SZ : B(vw) g B(Uw) ® B(Uw)
defined in Theorem 2.1.2 satisfies for any admissible column C € B(v,):
S(w(C)) = w(rC) @ w(lC).

Example 3.1.10 Consider ® = w? for U,(sos). The following graphs are respectively
those of B(w) and S>(B(w)).

-
-

12310512 21
Il 12

2 2 = 1 -

20 3 00 > 02 > 01

1212 35 13 @ 12) 5 13) @ (12) 5 @) @ (12) 5 @1) & 21)
IRt V2
ehe 123 e 123 3hedd) S e @) 3 Gl)  31)

Proof of Proposition 3.1.9: In this proof we identify each column with its reading to
simplify the notations. When C = v, is the highest weight vertex of B(v,), r(v,) =
I(v,) = v, because v,, does not contain a pair (z, ). So S2(v,) = rC ® [C. Each vertex C
of B(w) may be written C = f i f i, (Vy). By induction on r, it suffices to prove that for
any w(C) € B(v,) such that fi(C) # 0 we have

$(C)=rC®IC = S(fiC) =r(fiC)I(fiO).
For any column D we denote by [ D]; the word obtained by erasing all the letters x of D

such that f i(x) = &;(x) = 0. It is clear that only the letters of [ D]; may be changed in D
when we apply f;.
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Suppose @ € {wf, ..., w®). Consider C € B(v,) such that $,(C) = rC ® IC and

Fi©) #0. - )
Wheni # n,thelettersx ¢ {i + 1, i, 7, i + 1} do not interfere in the computation of f;. It
follows from the condition f;(C) # 0and an easy computation from (1) and (2) that we need
only consider the following cases: (i) [C]; =i, (ii) [C]; =i + 1, (iil) [C]; = G+ 1)@ + 1),
(V) [Cli = ()G + 1), W) [Cl: = i(i + D@ + 1) and (vi) [C]; = i(i + 1)i. In the case (i),
ifi +1 ¢ Jo, we have [[C]; =i and [rC]; = i. Then [f;(C)]; =i + 1 and Jrc = Jc
(hencei ¢ J7,c). So [I(f;C)]; =i+ 1and [r(f;C)]; = i + 1. That means that S;(f;C) =
2rC ®IC) = f;(rC) ® fi(IC) = r(f;C) ® I(f;C) by definition of the map S,. If
i+ 1€ Jc, wecan write [rCl; = (()(i + 1) and [IC]; = (i)(i + 1). Then [f;C)]; =i + 1
and J7,c = Jo — {i + 1} + {i}. So [r(f;O)] = (i + (@) and [I(f;C)] = (i)(i + 1). Hence
Sy(fiC) = FA(rC®IC) = f2(rC) ®IC = r(f;C) ® I(f;C). The proof is similar in the
cases (ii) to (vi). When i = n, only the letters of {7, 0, n} interfere in the computation of
f,,. We obtain the proposition by considering the cases: [C], = 0---0, [C], =n0---0
—_— —_—

0 p times 0 p times
and [C], = n.
Suppose w € {wP, ..., ®P |, ®P, »P}. Wheni < n — 1 the proof is the same as above.
When i € {n — 1, n}, the proposition follows by considering successively the cases:

[Cli =n — L@an)",
[C]; = n(an)'n,
[C]; = (n = Dn(an)'n,

(C]; = GinY7, fi=n—
[Cl; = (n — D(@En)'7,
[Cl; = (n — D@n) i(n — 1).
and
[Cl; =n — 1(nn)",
[C]; = n(ni) n,
[Cl; = (n — Di(nn)'n, o
ifi = n.

[C]; = (i)' n,
[Cl; = (n — D(nn)n,
[Cli = (n — D(ni) n(n — 1).

where (7in)" (resp. (n71)") is the word containing the factor nn (resp. nin) repeated r
times. O

Using Lemma 3.1.8 we derive immediately the
Corollary 3.1.11 A column C of type B or D is admissible if and only if it can be split.

Example 3.1.12 From Example 3.1.7, we obtain that C is admissible forn = 9 and C’ is
admissible for n = 8.
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Remark 3.1.13  With the notations of the previous proposition, denote by W,/ W, the set
of cosets of the Weyl group W,, with respect to the stabilizer W,, of w in W,,. Then we obtain
a bijection t between the orbit O, of v,, in B(w) under the action of W,, defined by (3) and
W,/ W,. Using Formulas (3) it is easy to prove that O, consists of the vertices of B(v,,)
without the pair (z, 7). Moreover if C;, C, are two columns such that w(Cy) = x; - - - X,
w(Cy) =y -+ yp € Oy, we have

C1 2 C2 & Twie)) <o Tw(cy)

where C; < C, means that x; < y;, i = 1,..., p and “<,” denotes the projection of
the Bruhat order on W,/ W,,. Then Proposition 3.1.9 may be regarded as a version of
Littelmann’s labelling of B(v,) by pairs (Twc), Twic)) € Wi/ W, x W,/ W, satistying
Tw(ic)lwTw(rc) [13].

3.1.2. Orthogonal tableaux. Every A € Qf has a unique decomposition of the form
A= X", AP, Similarly, every A € Qf has a unique decomposition of the form (x)
A=Y P or (k%) A = AP 4+ 377! AP with A, # 0, where (b, ..., A,) € N
We will say that (A4, ..., A,) is the positive decomposition of A € Q.. Denote by Y, the
Young diagram having A; columns of height i fori = 1,...,n. If A € Qf, Y, may not
suffice to characterize the weight A because a column diagram of length n may be associated
to w, or to @,. In Section 3.4 we will need to attach to each dominant weight A € 2, a
combinatorial object Y (1). Moreover it will be convenient to distinguish in () the cases
where A, = 0 or A, # 0. This leads us to set:

(i) Y =Yyifa e QF,

(i) Y(A) = (Y, +)in case (x) with A,, # 0,
(iii) Y(A) = (Y5, 0) in case (%) with A, = 0,
@iv) Y(A) = (Y,, —) in case (k).

()

When A € Qf , Y(A) may be regarded as the generalization of the notion of the shape of
type A associated to a dominant weight. Now write

vP = (vwf)w' ® - ® (vwg)@" in case (i),

v) = (vwln)@‘ R (vwf)m” in case (ii),

P = (v,0)"" ® - ® (v,p,)®"" in case (iii) and
vP = (vwlu)m' R (v&)g)@'\” in case (iv).

Then vZ and v? are highest weight vertices of G® and GP. Moreover B(vf) and B(v?)
are isomorphic to B8(1) and BP(1).

A tabloid 7 of type B (resp. D) is a Young diagram whose columns are filled to give
columns of type B (resp. D). If T = C; --- C,, we write w(T) = w(C,)---w(C)) for the
reading of 7.
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Definition 3.1.14

e Consider A € Qf. A tabloid T of type B is an orthogonal tableau of shape Y (1) and type
Bif w(T) € B(vP).

e Consider A € Qf . Atabloid T of type D is an orthogonal tableau of shape Y (1) and type
D if w(T) € B(vP).

The orthogonal tableaux of a given shape form a single connected component of G,,,
hence two orthogonal tableaux whose readings occur at the same place in two isomorphic
connected components of G, are equal. The shape of an orthogonal tableau T of type D
may be regarded as a pair [Or, 7] where Oy is a Young diagram and ey € {—, 0, +}.
The {—, 0, 4} part of this shape can be read off directly on 7. Indeed ¢ = 0 if T does not
contain a column of height n. Otherwise write w(C) = x; - - - x,, for the reading of the first
column of 7. Since it is admissible, C; contains at least a letter, say x; of {n, i1}. Then ¢ is
given by the parity of n — k according to Proposition 3.1.4.

Consider r = C|C; - - - C, atabloid whose columns are admissible. The split form of 7 is
the tabloid obtained by splitting each column of t. We write spl(t) = ({CrC)(CorCy) - - -
(IC,rC,). With the notations of Proposition 3.1.9, we will have w(spl(T)) = S,w(C,) - - -
S, w(Cy). Kashiwara-Nakashima’s combinatorial description [4] of an orthogonal tableau T’
is based on the enumeration of configurations that should not occur in two adjacent columns
of T. Considering its split form spl(7’), this description becomes more simple because the
columns of spl(7') does not contain any pair (z, ).

Lemma3.1.15 LetT = C,C,---C, be a tabloid whose columns are admissible. Then T
is an orthogonal tableau if and only if spl(T') is an orthogonal tableau.

Proof: Suppose first that w(7") is a highest weight vertex of weight A. Then, by
Corollary 2.1.3, w(spl(T)) is a highest weight vertex of weight 2A. If T is an orthogo-
nal tableau, w(7') = v; and we have w(spl(T')) = vy,. So spl(T) is an orthogonal tableau.
Conversely, if spl(T') is an orthogonal tableau, w(spl(T)) = S,w(C,) - - - S,w(Cy) is a high-
est weight vertex of weight 2\ by Corollary 2.1.3. Hence we have w(spl(T')) = vy, be-
cause there exists only one orthogonal tableau of highest weight 2A. So w(7T') = v;. In
the general case, denote by Ty the tableau such that w(7p) is the highest weight vertex of
the connected component of G, containing w(7"). Then w(spl(7p)) is the highest weight
vertex of the connected component containing w(spl(7')) and the following assertions are
equivalent:

(1) spl(T) is an orthogonal tableau,
(ii) spl(7Tp) is orthogonal tableau,
(iii) Tp is orthogonal tableau,
(iv) T is orthogonal tableau. 0

Definition 3.1.16 Let t = C,C, be a tabloid with two admissible columns C; and C,.
We set:
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e C| < C, when h(Cy) > h(C,) and the rows of C;C, are weakly increasing from left to
right,
e C;<CywhenrCy <I1C,.

Definition 3.1.17 (Kashiwara-Nakashima)

I n

Let C; = and C, = be admissible columns of type D and p,q,r,s

N YN
integers satisfying 1l < p <g <r <s < M.
C,C; contains an a-odd-configuration (with a ¢ {n, n}) when:

® a = xp, i1 = x, are letters of C; and a = y;, n = y, letters of C; such thatr — g + 1 is
odd or

® a = x,,n = x, are letters of C; and a@ = y;, 1 = y, letters of C; such thatr — g + 11is
odd C,C; contains an a-even-configuration (with a ¢ {7, n}) when:

® a =x,,n = x, are letters of C; and @ = y,, n = y, letters of C; such thatr — g + 11is
even or

® a = x,,ii = x, are letters of C; and @ = y;, 1 = y, letters of C; such thatr — g + 1is
even

Then we denote by p(a) the positive integer defined by:

u@ =s—p

Theorem 3.1.18

(i) Consider Cy, C,, ..., C, some admissible columns of type B. Then the tabloid T
CiCy---C, is an orthogonal tableau if and only if C; <ICijyq for i = 1,...,
r—1.

(1) Consider Cy, C3, ..., C, some admissible columns of type D. Then the tabloid T =
CCy---C, is an orthogonal tableau if and only if, C; I Ciyy fori = 1,...,r — 1,
and rC;lC;4y does not contain an a-configuration (even or odd) such that pu(a) =
n—a.

Proof: Kashiwara and Nakashima describe an orthogonal tableau 7 by listing the configu-
rations that should not occur in two adjacent columns of T'. If we except the a-configurations
even or odd, these configurations disappear in spl(7") because spl(7") does not contain a col-
umn with a pair (z, 7). Hence the theorem follows from Lemma 3.1.15 and Theorems 5.7.1
and 6.7.1 of [4]. O
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313]4
4a]0f4].
Example 3.1.19 Suppose n = 4. Then T = 013 is an orthogonal tobleau of
0
113|333 |4
ARBRBREEE 3141,
type B because spl(T) = 3121313 . But mz71737 is not orthogonal of
4|1

type D because it contains a 3-even configuration with ©(3) = 1.

3.2.  Plactic monoids for types B, and D,

. . B
Definition 3.2.1 Let w; and w, be two words on 5, (resp. D,,). We write w; ~ w, (resp.
w; ~ wy) when these two words occur at the same place in two isomorphic connected
components of the crystal GZ (resp. GP).

The definition of the orthogonal tableaux implies that for any word w € B (resp. w € D})
there exists a unilglue orthogolr)lal tableau P8 (w) (resp. PP(w)) such that w ~ w(P(w)).
So the sets B}/ ~ and D}/ ~ can be identified respectively with the sets of orthogonal

o . B
tableaux of type B and D. Our aim is now to show that ~ and ~ are in fact congruencies =
and = so that B}/ ~ and D,/ ~ are in a natural way endowed with a multiplication.

Definition 3.2.2 The monoid PI/(B,) is the quotient of the free monoid B} by the
relations:

RB:ifx #Zandx <y < z:
B B
yzx = yxz and xzy = zxy.
RE:1fx # yandx < y:
B B
xyx =xxy for x#0 and xyy=yxy for y#0.

RE:If1l <x <nandx <y <X:

yE&—Dx — 1) 2 yx%, and xiy = (x — Dx — Dy,

Onn = nn0.

RE: 1fx < n:

00x 2 0x0 and 0%0 = %00.
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Rf: Let w = w(C) be a non admissible column word each strict factor of which is admissi-
ble. When C satisfies the assertion (i) of Remark 3.1.3, let z be the lowest unbarred letter
of w such that the pair (z, Z) occurs in w and N(z) > z, otherwise set z = 0. The w = @
where @ is the column word obtained by erasing the pair (z, Z) in w if z < n, by erasing
0 otherwise.

Definition 3.2.3 The monoid PI(D,) is the quotient of the free monoid D} by the relations:
Ri:Ifx #7%
D D
yzx =yxz for x <y<z and xzy=zxy for x <y =<z
Rylfl<x=<nandx <y =<xXx
D _ _ D ——
yx —1Dx -1 =yxx and xxy=(x—1x—1)y.

RY:Ifx <n—1:

rm——
N|
[
S

s s
=1

_ _ D _
nn nnx = nxn
and

__ D _
nnx =nxn

=1
N

n

>

rm——
S
Si
|

o lils

G=Dn-i [fz(n =T — 1) 2 fin

ann=m-—1)n—n nn—1n — l)énnﬁ

RSD : Consider w a non admissible column word each strict factor of which is admissible.
Let z be the lowest unbarlged letter such that the pair (z, Z) occurs in w and N(z) > z (see
Remark 3.1.3). Then w = @ where @ is the column word obtained by erasing the pair

(z,7) in w if z < n, by erasing a pair (n, i7) of consecutive letters otherwise.

The relations RS and R? are called the contraction relations. When the letter 0 or a pair
(n, in) disappears, we have [(C) =n + 1 and in RSD the word @ does not depend on the factor
nii or iin erased. Moreover @ is an admissible column word. Note that w; = w, implies
d(wy) = d(wy), that is, = is compatible with the grading given by d.

Theorem 3.2.4 Given two words wy and w,

w; ~wy & w =wy < P(w) = P(wy) 9

This theorem is proved in the same way as in the symplectic case [10], and we will only
sketch the arguments. Note first that we have

w; ~ wy & P(wp) = P(wy)
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immediately from the definition of P. For any word w occurring in the left hand side of a
relation RE, ..., RP (resp. RP, ..., RP), write £B(w) (resp. £ P(w)) for the word occurring
in the right hand side of this relation. Similarly for p = 1, ..., n and w a word of length
p + 1 occurring in the left hand side of RZ (resp. RY), denote by &7 (w) (resp. & ?(w)) the
word occurring in the right hand side of this relation. By using similar arguments to those
of [10], we obtain the following assertions:

e The map £% : w — &(w) is the crystal isomorphism from B#(121) to B5(112).

o If n > 2, the map £ : w — £(w) is the crystal isomorphism from BP(121) to
BP(112) otherwise £ ? is the crystal isomorphism from B?(121)UBP(121)to BP(112) U
BP(112).

e Forp=2,...,n—1,§,: = &,(w) is the crystal isomorphism from B (12--- pp) to
B(12---p—1).

e The map £%:w > &P (w) is the crystal isomorphism from B® (12---nit) U BB(12---
n0)to BE(12+--n — 1)U BB(12---n).

e The words w of length n + 1 occurring in the left hand side of R2 are the vertices of
BP(12---ni) U BP(12 - - - iin). Moreover the restriction of the map &P : w > &P(w)
to BP(12- - - nit) (resp. to BP(12 - - - iin)) is the crystal isomorphism from B?(12 - - - nii)
(resp. BP(12---7in)) to BP(12---n —1).

121 112
1 2 1 2
4 hY e pY
122 101 212 110
2 2 2 2
v N v 4N
102 201 121 012 210 112
1 1
2l el u 2l VR 1
122 202 001 221 212 220 010 212
1 1 1 1
zi_ N ) 2] N 2.l_ :J: 2} N B 24 v 3 1)
120 222 002 021 211 210 112 020 012 222
1 2 1 2
2{_ N ZJ: 7L_ x,l; Vg 11: 2} v 2_l 24 i) <
122 220 022 011 212 212 110 220 022 221
2 1 2 1
A 2 AN e L s AN e
222 210 020 211 012 112 120 200 222 021
1 1 1 1
i A el AV s il o oozl
212 010 022 212 122 100 202 221
1 1
A R ad W Ao 2
211 012 210 121 102 201
2 2 2 2
N Y N e
011 212 101 221
2 1 2 1
N N
211 121

The crystals BZ(121) and B5(112) in G%
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121 112
2 2
N N
122 221 212 212
1 1
A e e
222 211 112 222
1 1
a4 e 4 e
212 212 122 221
1 1
37 d
211 121

The crystals B?(121) and BP(112) in G?

121 112
2 2
doN N
221 122 212 212
2 2
N N
211 222 222 112
i A 1Jr_ i
212 212 221 122
1 1
2l il
211 121

117

The crystals B”(121) and BP(112) in G?

By (1) and (2), this implies that the plactic relations above are compatible with
Kashiwara’s operators, that is, for any words w; and w, such that w; = w; one has:

{ ff(wl) = fz‘(wz) and &;(w;) = &;(w») (10)
fiw) = fi(wz) and @;(w1) = @i(ws).
Hence:
W = wy = wy ~ w.
To obtain the converse we show that for any highest weight vertex w®
w(Pw?) = w’. (11)

This follows by induction on /(w®). When I(w®) = 1, w(P(w")) = w’. By writing w° =
v0x0, it is possible (see the proof of Lemma 3.2.6 in [10]) to show that w(P(w?)) may
be obtained from the word w(P(v%))x° by applying only Knuth relations and contraction
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relations of type 12---rp = 12--- p---r with p < r < n (the hat means removal the
letter p).

From (11), we obtain that two highest weight vertices w‘l) and wg with the same weight
A verify w? = wg. Indeed there is only one orthogonal tableau whose reading is a highest
vertex of weight 1. Now suppose that w; ~ w; and denote by w? and w9 the highest weight

vertices of B(w;) and B(w,). We have w) = w9. Set w; = Fw? where F is a product of
Kashiwara’s operators f;,i = 1,...,n. Then w, = ng because w; ~ w,. So by (10) we
obtain

3.3. A bumping algorithm for types B and D

Now we are going to see how the orthogonal tableau P(w) may be computed for each
vertex w by using an insertion scheme analogous to bumping algorithm for type A. As a
first step, we describe P(w) when w = w(C)x, where x and C are respectively a letter and
an admissible column. This will be called “the insertion of the letter x in the admissible
column C” and denoted by x — C. Then we will be able to obtain P(w) when w = w(T)x
with x a letter and 7T an orthogonal tableau. This will be called “the insertion of the letter x
in the orthogonal tableau 7" and denoted by x — T Our construction of P will be recursive,
in the sense that if P(«) = T and x is a letter, then P(ux) = x — T.

3.3.1. Insertion of a letter in an admissible column. Consider a word w = w(C)x, where
x and C are respectively a letter and an admissible column of height p. When w = w(C*)
is the reading of a column C*, we have:

x — C=C* if C* is admissible or

x — C = C* where C*is the column whose reading correspondsto @ otherwise.

Indeed, x — C must be an orthogonal tableau such that w(x — C) = w.

When w is not a column word, by Lemma 2.1.1 the highest weight vertex w® of B(w) may
be written w” = v°1 where v € {b,,,; p =1, ...,n}U{bg,}. Then u® = 11° is the reading
of an orthogonal tableau and u° = w®. So u” is the highest weight vertex of the connected
component containing w(x — C). Moreover there exists a unique sequence of highest

weight vertices w?, - wg such that w? = w?, w, = u®and fori =2, ..., pw? differs
from w?_, by applying one relation R; from left to right. This implies that there exists a
unique sequence of vertices wy, ..., wp suchthatw; = wandfori =2,..., p—1B(w;) =

B(u)?). Each w; differs from w;_; by applying one relation R, R,, R3 or R4 from left
to right. The word w,, is the reading of an orthogonal tableau and can be factorized as
w, = v'x" where v = w(C’) is a column word an x’ a letter. We will have x — C =
C'x'.
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Example 3.3.1
Suppose n = 7. Let w(C) = 670076 be an admissible column word of type B. Choose
x = 6. Then by applying relations R?i = 1, ..., 4 we obtain successively:

6700766 = 6700777 = 6707707 = 6777007 = 6667007 = 5567007

Suppose n = 7. Let w(C) = 677776 be an admissible column word of type D. Choose
x = 6. Then by applying relations R” i = 1, ..., 4 we obtain successively:

6777766 = 6777777 = 6776677 = 6777777 = 6667777 = 5567777.

Hence

5]

5 |

and 6 —

|on| ~1|| ~l| ﬂll sll o>|

EEEEED

|'\II|O|O|-I|O') w
|NI|\I|\II| ~l|03 ]

3.3.2. Insertion of a letter in an orthogonal tableau. Consider an orthogonal tableau
T = C,C;---C,. We can prove as in [10] that the insertion x — T is characterized as
follows:

o If w(Cy)x is an admissible column word, then x — T = C{C;---C, where C7 is the
column of reading w(C)x.

e If w(C))x is a non admissible column word each strict factor of which is admissible
and such that xW(C;) = x;---xg, thenx - T = x;, — (X1 — (--x1 — T))
where T’ = C, - - - C,.. Moreover the insertion of xi, ..., x, in T’ does not cause a new
contraction.

e If w(C)x is not a column word, the insertion of x in C; gives a column C} and a letter x’
(with the notation of 3.3.1). Then x — T = C{(x’ — T"), thatis, x — T is the tableau
defined by C{ and the columns of x’ — T

Notice that the algorithm terminates because in the last two cases we are reduced to the
insertion of a letter in a tableau whose number of boxes is strictly less than that of 7. Finally
for any vertex w € G, we will have:

P(w) = if w is a letter,

P(w)=x — P(u) if w = ux with u a word and x a letter.

3.4.  Schensted-type correspondences

In this section a bijection is established between words w of length [ on B, and pairs
(PB(w), 0B(w)) where PB(w) is the orthogonal tableau defined above and Q% (w) is an
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oscillating tableau of type B. Similarly we obtain a bijection between words w of length
I on D, and pairs (PP (w), QP (w)) where PP (w) is an oscillating tableau of type D. For
type B, such a one-to-one correspondence has already been obtained by Sundaram [17]
using another definition of orthogonal tableaux and an appropriate insertion algorithm.
Unfortunately it is not known if this correspondence is compatible with a monoid structure.
Our bijection based on the previous insertion algorithm for admissible orthogonal tableaux
of type B will be different from Sundaram’s one but compatible with the plactic relations
defining PI(B,).

Definition 3.4.1 An oscillating tableau Q of type B and length [ is a sequence of Young
diagrams (Qjy, ..., Q;) whose columns have height <z and such that any two consecutive
diagrams are equal or differ by exactly one box (i.e. Qry1 = O, Or+1/0r = @O or
Or/ Qk+1 = (O)).

An oscillating tableau Q of type D and length [ is a sequence (Qj, ..., Q;) of pairs
Qi (O, g¢) where Oy is a Young diagram whose columns have height <n and ¢, €
{—, 0, +}, satisfying fork =1, ...,1

® Oy1/Ox = (@ or O/ Ory1 = (D),
o &+ # 0and g # 0 implies g,y = &.
e g, = 0if and only if Oy has no columns of height n.

Let w = x; - - - x; be a word. The construction of P(w) involves the construction of the
[ orthogonal tableaux defined by P; = P(x; - - - x;). For w € B (resp. w € D}) we denote
by Q8(w) (resp. QP (w)) the sequence of shapes of the orthogonal tableaux P, ..., P,.

Proposition 3.4.2 Qpg(w) and Qp(w) are respectively oscillating tableaux of type B
and D.

Proof: Each Q; is the shape of an orthogonal tableau so it suffices to prove that for any
letter x and any orthogonal tableau T, the shape of x — T differs from the shape of T by
at most one box according to Definition 3.4.1.

The highest weight vertex of the connected component containing w(7")x may be written
w(T?)x? where T? is an orthogonal tableau. It follows from Lemma 2.2.1(ii) that w(T') <>
w(T?). So wt(w(T?)) is given by the shape of T. Then the shape of x — T is given by the

coordinates of wt(w(T%)x%) on the basis (w?, . .., w?) for type B, on the base (0?, ..., wP)
or (wP, ..., &P, ®P) for type D.
Suppose that x € B} and T is orthogonal of type B. Let (A1, ..., A,) be the coordinates

of wt(T?) on the basis of the a)f’s. If x* =7 > 0 then wt(x?) = w? | —®8.Sox; > 0
and wt(w(Tx%) = (A, ..., A1+ 1,4 —1,..., A,_1). Hence during the insertion of the
letter x in 7, a column of height i (corresponding to the weight ;) is turned into a column
of height i — 1 (corresponding to the weight w;_). So the shape of x — T is obtained by
erasing one box to the shape of 7. If x° = i < 0, then we can prove by similar arguments
that the shape of x — T is obtained by adding one box to the shape of 7. When x° = 0,
wt(x?) = 0, so wt(w(T)x%) = wt(w(T?)). Hence the shapes of T and x — T are the same.
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Suppose x € D} and T orthogonal of type D. When |xO| # n, the proof is the same as
above. If x0 = n, wt(x*) = A, — A,_| = 0, — Wp_] = ®p_1 — @,. We have to consider
three cases, (i) e7 = —; (ii) &7 = 0 and (iii) &7 = +. Denote by (11, ..., A,) the positive
decomposition of wi(w(T?)) on the basis (o, ..., ®P) or on the basis (o, ..., &P).

In the first case, A, > 0 and the positive decomposition of wt(x’w(7?)) on the base
(wf), o ,d),?) is (A1, ..oy Ap—2, Ap—1 + 1, A, — 1). It means that during the insertion of x
in T a column of height n (corresponding to @,) is turned into a column of height n — 1
(corresponding to w,—;). Moreover ¢,_,7 = e7 if A, > 1 and &, = 0 otherwise.

In the second case, A,_; > 0, A, = 0 and the positive decomposition of wt(x’w(T°)) on
the base (P, ..., ®P)is (A1, A2, ..., Ay—1 — 1, 1). It means that during the insertion of x
in T a column of height n — 1 (corresponding to w,_1) is turned into a column of height n
(corresponding to w,). Moreover ;.7 = +.

In the last case, A,_; > 0, A, > 0 and the positive decomposition of wt(x’w(7°)) on
(a)lD, e, a)nD) is (A1, A2, ..o, Ay — 1, A, + 1). It means that during the insertion of x in
T a column of height n — 1 (corresponding to w,_1) is turned into a column of height n
(corresponding to w,). Moreover ;.7 = €r.

When x° = 1, the proof is similar. U

Theorem 3.4.3 For any vertices wy and wy of G,:
w; < wy < Q(wy) = Q(wy).
Proof: The proof is analogous to that of Proposition 5.2.1 in [10]. O

Corollary 3.4.4 Let B, and OF (resp. D;, , and OP) be the set of words of length | on
B, (resp. D,)) and the set of pairs (P, Q) where P is an orthogonal tableau of type B (resp.
D) and Q an oscillating tableau of type B (resp. D) and length [ such that P has shape Q,
(Qq is the last shape of Q). Then the maps:

vB. B — Of vl pr > Op
’ and ’
w > (PB(w), 08(w)) w > (PP(w), 0P(w))

are bijections.

Proof: For type W5 the proof is analogous to that of Theorem 5.2.2 in [10]. By Theo-
rems 3.2.4 and 3.4.3, we obtain that W? is injective. Consider an oscillating tableau Q of
length [ and type D. Set x; = 1 and fori =2, ...,!

— x; = k if O; differs from O;_; by adding a box in row k of height <n,

— x; = k if Q; differs from Q;_; by removing a box in row k of height <n,
— x; = n if O; differs from O;_; by adding a box in row n and &; = +,

— x; = n if Q; differs from Q;_; by adding a box inrow n and ¢; = —,

— x; = i if O; differs from O;_; by removing a box in row n and ¢; = +,
— x; = n if O; differs from O;_; by removing a box in row n and &; = —,
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— Consider wy = x; - - - x21. Then Q(wg) = Q. By Theorem 3.1.18, the image of B(wg)
by WP consists in the pairs (P, Q) where P is a symplectic tableau of shape Q;. We
deduce immediately that W is surjective. O

3.5. Jeu de Taquin for type B

In [16], J.T. Sheats has developed a sliding algorithm for type C acting on the skew ad-
missible symplectic tableaux. This algorithm is analogous to the classical Jeu de Taquin of
Lascoux and Schiitzenberger for type A [9]. Each inner corner of the skew tableau consid-
ered is turned into an outside corner by applying vertical and horizontal moves. We have
shown in [10] how to extend it to take into account the contraction relation of the plactic
monoid PI(C,) (analogous to PI(B,) and PI(D,) for type C). Then we have proved that
the tableau obtained does not depend on the way the inner corners disappear. In this section
we propose a sliding algorithm for type B. The main idea is that the split form of any skew
orthogonal tableau T of type B may be regarded as a symplectic skew tableau.

SetC, ={l <---<n<i <---=< 1} C B,. The symplectic tableaux are, for type C,
the combinatorial objects analogous to the orthogonal tableaux. They can be regarded as
orthogonal tableaux of type B on the alphabet C, instead of 3,,. The plactic monoid P/ (C )
is the quotient of the free monoid C; by relations R, RY and RZ. We denote by = the
congruence relation in PI(C,). Then for wy and w; two Words of C * we have:

C B
W =Wy = W] =Wy.

A skew orthogonal tableau of type B is a skew Young diagram filled by letters of 13, whose
columns are admissible of type B and such that the rows of its split form (obtained by
splitting its columns) are weakly increasing from left to right. Skew orthogonal tableaux
are the combinatorial objects analogous to the admissible skew tableaux introduced by
Sheats in [16] for type C. Note that two different skew tableaux may have the same reading.

Example 3.5.1 Forn =3,

2
3[0].
T =513 [1|1saskew orthogonal tableau of type B because
[ 0 |
2|2
213]13[3
P =213 [3[2[1[1
312

The relation Orin = 710 has no natural interpretation in terms of horizontal or vertical
slidings in skew orthogonal tableaux. To overcome this problem we are going to work on
the split form of the skew tableaux instead of the skew tableaux themselves that is, we are
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going to obtain a Jeu de Taquin for type B by applying the symplectic Jeu de Taquin on the
split form of the skew orthogonal tableaux of type B.

Lemma 3.5.2 Let T and T’ be two skew orthogonal tableaux of type B. Then:
B ’ B /
w(T)=w(T") < wlspl(T)] =w[spl(T")].

Proof: We can write w(T') = w(Cy)---w(C,) and w(T") = w(C})--- w(C;) where Cy

and Ci,k = 1,...,r are admissible columns. All the vertices w € B(w(T)) and w’ €
B(w(T")) can be respectively written on the form w = ¢; ---¢; and w’ = ¢| - - - ¢| where
c,i = 1,...,r and c},j = 1,...,s are readings of admissible columns of type B.

Consider the maps:

o, Bw(T)) — B(spl(w(T))
*lw=croc1 > Saler) - Saler)

o1, | BOVT) = B(spl(w(T))
2 w = C; ceeCl > Sz(C;) e S2(C/1)

where S, is the map defined in Proposition 3.1.9. We have w[spl(T)] = 6,(w(T)) and
w[spl(T")] = 05(w(T")). By using Corollary 2.1.3 we obtain

W(T)ZW(T') & W(T) X w(T") < wispl(T)] = w[spl(T")]
& wispl(T)] 2 wlspl(T")]. O

If T is a skew orthogonal tableau of type B with r columns, then spl(7') is a symplectic
skew tableau with 2r columns. We can apply the sym]%lectic Jeudetaquinto spl(]l;) toobtaina
symplectic tableau spl(7")'. We will have w([spl(T')'] = w[spl(T)] so w[spl(T)'] = w[spl(T)].

Proposition 3.5.3 spl(T') is the split form of the orthogonal tableau P5(T).

Proof: It follows from w(T) 2 w(Pp(T)) and the lemma above that w[spl(7T)] 2
w[spl(P2(T))]. So we obtain w[spl(T)'] = w[spl(PZ(T))]. But spl(T’) and spl(p?(T)) are
orthogonal tableaux, hence spl(T) = spl(PZ(T)). O

The columns of the split form of a skew orthogonal tableau T of type B contain no letters
0 and no pairs of letters (x, X) with x < n. In this particular case most of the elementary
steps of the symplectic Jeu de Taquin applied on T are simple slidings identical to those
of the original Jeu de Taquin of Lascoux and Schiitzenberger (that is complications of the
symplectic Jeu de taquin are not needed in these slidings).
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112 * [+ [ 1] 112
Example3.54 Fromspl{[ 1|0 |3 |J=[1]1]2[3]3]3 |wecomputesuc-
3|2 3 3221
cessively:
« | 1[1]1]|1]2 * 1] 1(1[1]2 « [ 11112
2 [« [3[3|3](1[2]3[3[3|3[1]2]3]3[3]3],
333|221 3|2+ ]2|1|[3]3|2f2]*]|1
11 (1]2]|2 t{1f(1]1]2]|2 11|t ]1]2)|2
23331 2- 3333233333},
3222 |~ 3(3(2(2(2]=* 3(2[x]|2]2]«
1]1]1]11]2]2 1111 ]1]2]2 111]2
2133|333 |[2[3]3]|3]|3|3]|=sp{[3]3]3
3122 [*«[2 = |[3|2]2|2(x*]|=x 02

Note that the sliding applied in the fourth duplicated tableau above is the unique sliding
which is not identical to an original Jeu de taquin step.

The split form of a skew orthogonal tableau of type D (defined in the same way than for
type B) is still a symplectic skew tableau. But

C D
W= wy = W =w;

so we can not use the same idea to obtain an Jeu de Taquin for type D. Moreover the
examples (computed by using PP with n = 3)

NI Wi

3
2| and

* | ol —
1| b ol
i
|(A)| [V WM

* | L =
=i NI o
I
|Ml wif N

show that it is not enough to know what letter x slides from the second column C to the
first C; to be able to compute an horizontal sliding. Indeed the result depends on the whole
column C,. Thus, to give a combinatorial description of a sliding algorithm for type D
would probably be very complicated.

4. Plactic monoid for &,

Write (‘55 and QBnD for the crystal graphs of the direct sums

@ (v(aP) @ v(aD)" and ,@ (V(aP) e v(aD) @ v(ar,)™.
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We call %8, = B, U SP, and ©, = D, U SP, the sets of generalized letters of type B
and D. Then we identify the vertices of &2 and &” respectively with the words of the
free monoid B, and D). If w is a vertex of &,, we write wt(w) for the weight of w.
The spin representations are minuscule, hence every spin column is determined by its
weight.

We can extend the Deﬁmtlon 32.1to veruces of &,. Consider two vertices b; and b,
of QSB (resp. Qﬁ ). We write b, £ by (resp. by L b,) when these vertices occur at the same
place in two 1somorphlc connected components of &7 (resp. ). Our aim is now to extend
the results of Section 3.2 to the vertices of &,,.

4.1. Tensor products of spin representations

Write B(0) for the connected component of &,, containing only the empty word. Let &€, be
the spin column containing only barred letters. For p = 1, ..., n, denote by €, the spin
column containing exactly the unbarred letters x < p. For any admissible column C, set
ICl={x=<n,xelCorxelC}={x=<n,xerCorx erC}.

Lemma 4.1.1
1. There exists a unique crystal isomorphism S®

n—1 B
B(0)U B(v,p) U (U B(vw;,)) % B(var)®
i=1

2. Let w be the reading of an admissible column C of type B. Write
— 1€ for the spin column of height n obtained by adding to IC the barred letters X such
that x & |C|,
— 1€ for the spin column of height n obtained by adding to r C the unbarred letters x
such that x & |C|.
Then

SBwy=re®le.

Proof:

1. From Lemma 2.1.1 we obtain that the highest weight vertices of B(v A5)®2 are the
vertices v} = €, ® €, with p = 0,...,n. We have wt(v)) = @) for p =1,....n
and Wt(vo ) = 0. Hence S? is the crystal isomorphism which sends B(vwe) on B(vB )
for p=1,...,nand B(0) on B(v¥).

2. When w = Vot the equahty SB(w) = r€ ® I¢ is true. Consider w € B(vwg) and i =
1,...,n such that w' = = fi(w) # 0. Write w = w(C) and w’ = w(C") where C and
C’ are two admissible columns of height p. The lemma will be proved if we show the
implication

SBwy=re®ic= sPw)=rd ®1¢
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where @’ and [¢’ are defined from C’ in the same manner than »€ and /¢ from C. This
is equivalent to

fire®I1¢) =r¢’ ®1¢. (12)

Supposei #n.Set E; = {i,i +1,i +1,i}.

(i) If {i,i + 1} C |C|,IC and [€ coincide on E;. Similarly rC and r&, [C’ and [&', rC’
and /€’ coincide on E;. By Proposition 3.1.9, we know that

ffrCceIC)=rC' ®IC'.

The action of flz on rC ® IC is analogous to that of f; on 7¢ ® I¢. It means that f;
changes a pair (i, i + 1) of 7€ (resp [€) into a pair (i + 1, i) if and only if flz changes
apair (i, i + 1) of rC (resp. [C) into a pair (i + 1, i). So (12) is true because only the
letters of E; may be modified when we apply £;.

@) If{i,i +1}N|C| = {i + 1}, we have [rC]; = [IC]; = i + 1 with the notation of the
proof of Proposition 3.1.9. Thenr¢NE; = {i + 1,i}andI€NE; = {i + 1, i}. More-
over [C'l; =1,r& NE; ={i,i+1}and &' N E; = {i + 1,i}. Hence f;(r&®I¢)
and r¢’ ®1¢’ coincide on E;. So they are equal because f; does not modify the letters
X ¢ E,‘.

(i) If {i,i + 1} N |C| = {i}, the proof is analogous to case (ii).

Suppose i = n. Set E, = {n, i1}. Then n € |C| because f;(w) # 0. We obtain (12) by
using similar arguments to those of (i). O

Lemma 4.1.2
1. There exists two crystal isomorphisms SP and Sf_l

n

i=1

000000 8001 % 801000 (301000 601

n D

B(vw[u)) S B(vyr ) ® (B(UA}%]) U B(vap)).

B(0)U B(vzp) U (

i=1

2. Let w be the reading of an admissible column C of type D. If h(C) < n, denote by t the

greatest unbarred letter such that t & |C|. Write

— 1€ for the spin column of height n obtained by adding to IC the barred letters X such
that x & |C|.

— 1€ for the spin column of height n obtained by adding to rC the unbarred letters x
such that x & |C|.

— 1, € for the spin column of height n obtained by adding to IC the letter t and the barred
letters X such that x ¢ |C| U {t}.

— 1€ for the spin column of height n obtained by adding to rC the letter t and the
unbarred letters x such that x & |C| U [t}.
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Then we have

D — ) D

S,f)(w) =r¢C®I[E otherwise

(i) {S,?_,(w) =r€®IC  ifr¢e B )
S,?fl(w) =rCQ®I1,C otherwise

(recall that r&€ € B(vpp) if and only if it contains an even number of barred letters).

Proof: We only sketch the proof for S2, the arguments are analogous for S |

1. The highest weight vertices of B(var) ® (B(vpap) U B(vyp. )) are the vertices vp =
¢, ®¢,withp=0,...,n. Wehavewt(vD)—w forp—l ,nand wt(v)) =0
Hence S, D is the crystal 1som0rph1sm Wthh sends B(vwo) on B(vD Yforp=1,...,n
and B(0) on v0

2. When w = = Vy?, the equahty SP(w) = r& ® I€ is true. Consider w € B(va) andi =
1,...,nsuch that w' = = fi(w) # 0. Write w = w(C) and w’ = w(C’) where C and C’
are two admissible columns of height p. Let ¢’ be the greatest unbarred letter such that
t' ¢ |C’'|. If the number of barred letters of C is equal to that of C’, r€ and r€ belongs
together in B(v,p) or in B(v,\’rxil ). In these cases we can prove that

SP(w) =re®I1¢ = SPw') =r¢ ®1¢ and

(13)

SP(w) =re®L¢= SPWw)=rd el
as we have done for S8. Otherwise wehavei = nandrCNE, ={n—1}orrCNE, =
{n}.

Supposei = nandn € |C|. Thenn—1istheuniqueletterof £, = {n—1,n,n,n — 1}
that occurs in C. We have r = nandt' =n — 1 because IC' N E, = . Sor€NE, =
n,n—-1},n€NE, =nn—-1}LICNE, ={n,n—1}and ,CNE, = {n,n — 1}.
Similarly r¢' N E, = {i,n — 1}, ¢ NE, = {i,n—1},I€ NE, = {i,n — 1} and
L,&'NE, = {ii,n—1}.Hence f;(r€®1¢) = r,¢' ®@1,¢ and f;(r,¢®1,¢) = r¢' I¢.
We have

SP(w)=re®I1¢ = SPw)=r¢ ®,¢ and

(14)
SP(w) =re®L¢= SPWw)=r¢Ic.

When i =nandn — 1 € |C|, we obtain (14) by similar arguments. Finally (i) follows
from (13) and (14). O



128 LECOUVEY

Figure 2. The connected components of V(A3D )82 and V(Ag )82 isomorphic to V(w1 ) for U, (s06).

Example 4.1.3 Suppose n = 7 and consider the admissible column C of type D such
that w(C) = 67776. Then w(IC) = 34576, w(rC) = 67543. So (t,7) = (2,2) and,
by identifying the spin columns with the set of letters that they contain, we have /€ =
(3457621}, r&€ = (1267543}, 1,& = {2345761}, r,€ = {1675432}. We have SP(w(C)) =
r€®1,¢and SP | (W(C)) =r& @ IC for r& ¢ B(upp).

Although C must be the empty column in Lemmas 4.1.1 and 4.1.2, we only use these
lemmas with 2(C) > 1 in the sequel. Figure 2 below describe the connected components
of V(AP)®? and V(ALD)®? isomorphic to the vector representation V(AP) of U, (s06) (see
also (5)).

Note that it is possible to describe explicitly the isomorphisms (S%)~!, (§P)~!
(SD 1)_ The reader interested by this subject is referred to [11].

4.2.  Plactic monoid for &,

Let A be a dominant weight such that A ¢ Q. If A € PB then X has a unique decomposition
A=AB+ ) with)' € QB We set v? = vy ® UpB. Then v¥ is the highest weight vector of
B(v ), a connected component of @B isomorphic to BZ(1). Denote by Y (1) the diagram
obtained by adding a K.N-diagram of height n to Y(1').

When A € PP, ) has a unique decomposition of type 1 = A,? + A with M € QP
and &P not appearing in A" or A = AP | + A with 2 € QP and »? not appearing in A
Accordmg to this decomposition we set Ux = Uy @ Upp OT V3 = Uy @ VpD . Then vA is
the highest weight vector of B(v?”), a connected component of GSD 1somorphlc to BP()).
IfY(\) = (Y, ¢) (see 8) withe € {—, 0, +}, we set Y(1) = (¥, s) where Y is the diagram
obtained by adding a K.N diagram of height ntoY'.
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Given a tabloid 7 and a spin column €, the spin tabloid [€, T'] is obtained by adding € in
front of t. The reading of the spin tabloid [, 7] is w([€, T]) = w(7) ® € = w(7)E&. Note
that the vertices of B(v,) are readings of spin tabloids.

Definition 4.2.1

o Leth e Pf such that A ¢ Qf. A spin tabloid is a spin tableau of type B and shape Y (1)
if its reading is a vertex of B(v){3 ).

e Letd € PP suchthat A ¢ QP. A spin tabloid is a spin tableau of type D and shape Y (1)
if its reading is a vertex of B(v?).

It follows from this definition that for ¥ and T, two spin tableaux ¥; ~ %, & %) = 3,.
It is possible to extend Definition 3.1.17 to a spin tableau [&, C] of type D with C an
admissible column of type D. We will say that [€, C] contains an a-configuration even
or odd when this configuration appears in the tableau of two columns C;C where Cy is
the admissible column of type D and height n containing the letters of €. Kashiwara and
Nakashima have obtained in [4] a combinatorial description of the orthogonal spin tableaux
equivalent to the following:

Theorem 4.2.2

e T =[C&, T]isa spin tableau of type B if and only if T is a tableau of type B and the rows
of [€, IC ] weakly increase from left to right.

e T = [&,T] is a spin tableau of type D if and only if T is a tableau of type D, the
rows of [&€, [C] weakly increase from left to right and [€,[C ] does not contain an
a-configuration (even or odd) with q(a) = n — a.

It follows from the definition above that for any spin tableau [€, T'] of type D

¢ € B(AP) implies that the shape of T is (Y, &) with & # —,

Ce B(A,?_l) implies that the shape of T'is (Y, ¢) with & # +.
A generalized tableau is an orthogé)nal tableau or a spin orthogonal tableau. Similarly to
Section 3.2, the quotient sets &,/ ~ and &,/ ~ can be respectively identified with the sets

of generalized tableaux of type B and D. For x a letter of 3, or D,, and € a spin column of
height n whose greatest letter is z, we write xA€ when x < z.

Definition 4.2.3 The monoid BI(B,) is the quotient set of B by the relations:

e R i=1,...,5 defining PI(B,),
° R(If : for x € B, and € a spin column such that x A ¢; €x = ¢’ where ¢’ is the spin column
such that wt(€) = wt(¢) + wt(x),
e RZ:forx € B, and € a spin column such that x £ €; €x = x'¢’ where
x' =min{r € €; t > x} ifx >0
xX'=min{t € €; t > x}U{0} ifx <n
and ¢’ is the spin column such that wt(€') = wt(€) + wt(x) — wt(x’),
e R¥:for C an admissible column of type B, SZ(w(C)) = w(C).
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Lemma 2.1.1 implies that the highest weight vertex of the connected component contain-

ing a word €x with x € B, and € a spin column may be written €,x, where xo € {0, 1}.
So €x € B(vps ® 0) or €x € B(vas @ 1). The following lemma gives the interpretation of
relations RZ and R in terms of crystal isomorphisms.

Lemma 4.2.4

1.

The vertices of B(vas @ 0) are the words of the form Cx where € is a spin column and
x € B, such thatXAé.

The vertices of B(vpaz ® 1) are the words of the form €x where € is a spin column and
x € B, such that x /.

Denote by V and V' the crystal isomorphisms:

W: B(var ® 0) — B(vas)
v’ B(vAf [ l) — B(l ® vAf).

Then if the word €x occurs in the left hand side a relation RE (resp. of R%), W(€x)
(resp. W'(€x)) is the word occurring in the right hand side of this relation.

Proof:

1. Consider a word €x such that x o ¢ and f;(€x) # 0. Let y be the greatest letter of

€. Set fi(¢€x) = Ut where il is a spin column and ¢ a letter of 3,. We are going to
show that r a $L. If y is the greatest letter of il then r > x > y, hence r A 4l. Otherwise
fi(€x) = fi(€)x thus &;(x) = 0 by (1). When i # n, we musthave y =i + [, x > y
and x ¢ {i,i 4+ 1} because &;(x) = 0. Hence x > i and x = ¢ a 4l for i is the greatest
letter of 1. Wheni = n, y = n and x > 7 because &,(x) = 0. We obtain similarly ¢ a LI.
Hence the set of words €x such that x » € is closed under the action of the f;. By similar
arguments we can prove that this set is also closed under the action of the &;. Moreover
vas ® 0 is the unique highest weight vertex among these words €x. Hence B(vaz ® 0)
contains exactly the words of the form €x such that x A €.

. Follows immediately from 1.
. If xA@, U(Cx) is the unique spin column of weight wt(€x), that is ¥(€x) = ¢ with the

notation of RZ. When x /£ €, we consider the following cases:

(1) x € €. Set ¥(€x) = y®. Then we deduce from the equality wt(y®) = wt(Cx)
that y = x and © = C. Indeed x € is the unique vertex of B(1) ® B(v,#) of weight
wt(€x). Hence y = x =t and © = ¢ with the notation of Rf.

(i) x ¢ €. Whenx > 0,setx = [JandE =min{r € €;¢ > x}. Then{p, p—1,..., k+
1} C €. By using the formulas (1) and (2) we obtain

fio Foafp1(€p) = Ck
So, by (i), €k ~ k€ which implies

Cp~ép 1 &k€) =kép_y - (€)= ke
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with the notation of RZ. It means that W(€x) = k€. When x = 0, we have
fxr_l -~-f1fn(¢0) = Ck. Because {n,n — 1,...,k + 1} C € and we terminate
as above. When x = p < 0 and min{r € €;¢r > x} U {0} = k < 0, we have
(p.p+1,....k—1}CC.So fry--- prfP(Gp) = Ck and the proof is similar.
Ifmin{t € €;1 > p}U{0} =0,{p,p+ 1,...,7i} C €. Then f,--- fps1 fp(€p) =
€0 ~ n€° with €° = € — {i} + {n} by the case x = 0. So formulas (1) and (2) imply
that €x ~ &, - 8,(i€°) = &,()é, - - - &,—1(€°) = 0€" with the notation of RZ. It
means that ¥(¢x) = 0¢". O

Definition 4.2.5 The monoid PI(D,) is the quotient set of D by the relations:

e RP,i=1,...,5defining PI(D,),

e RP:forx € D, and € a spin column such that xa€; €x = € where €’ is the spin column
such that wt(¢') = wt(€) + wi(x),

e RP:for x € D, and € a spin column such that x £ €; €x = x'¢’ where x’ = min{r €
¢;t > x} and € is the spin column such that wt(¢") = wt(€) + wt(x) — wt(x’),

e RY:for C an admissible column of type D, SP?(w(C)) = w(C) and S” ,(w(C)) = w(C).

We can prove by using similar arguments to those of Lemma 4.2.4 that the relations R?
and R? read from left to right describe respectively the crystal isomorphisms

Bloap®) = B(vap,)  [B(oap®1) > B(1®@vap) -
B(vyp ®n) — B(vap) an B(vpr ®1) = B(1®upp )’
Lemma 4.2.6 Let w and w, be two vertices of &,, such that w, = w;. Then fori =

1,...,n:

ei(wy) = é;(wy) and g (wr) = &(wy),
fitw) = fi(wy) and  @i(wr) = @i(wy).

Proof: By induction we can suppose that w; is obtained from w; by applying only one
plactic relation. In this case we write w; = uw;v and w, = uw,v where u, v, w;, W, are
factors of w; and w, such that W; = W, by one of the relations R;. Formulas (1) and (2)
imply that it is enough to prove the lemma for w; and ;. This last point is immediate
because we have seen that each plactic relation may be interpreted in terms of a crystal
isomorphism. O

So we obtain w; = wy; = w; ~ w,. To establish the implication w; ~ wy, = w; = w,,
it suffices, as in Section 3.2 to prove that two highest weight vertices of Qﬁf (resp. Qﬁf ) with
the same weight are congruent in BI(B,,) (resp. ‘BI(D,)). Given a vertex w € &,,, we know
by Theorems 4.2.2 and 3.1.18 that there exists a unique generalized tableau ‘B(w) such that

w(B(w)) ~ w.

Lemma 4.2.7 Let w be a highest weight vertex of ®,,. Then w(B(w)) = w.
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Proof: By using relations Rs and R, w is congruent to a word u4l such that u € G, and
i € &,. Relation Rg implies that any word consisting in an even number of spin columns
is congruent to a vertex of G,,. If [ contains an even number of spin columns, there exists
v € G, such that w = v. We have L(w) = P(v) because w = v = w ~ v. Thus
w(B(w)) = w(P(v)) = v = w and the lemma is proved. If w contains an odd number of
spin columns, there exists a vertex v € G, and a spin column € such that w = v€. Set
P(w) = T. Then w = w(T)€. Write T = CT where C is the first column of 7 and T
the tableau obtained by erasing C in 7. By Lemma 2.1.1, w(T') is a highest weight vertex
because w is a highest weight vertex of &,,. In particular, w(C) is a highest weight vertex.
Set p = h(C).

Suppose first w € Qﬁf. We have SB(w(C)) = ¢,€, (see Lemma 4.1.1). So w =
w(f)@in@p(’:. By Lemma 2.1.1 we must have ¢;(¢) =0 fori = p + 1, ..., n. This implies
that the letters of {p + 1, ..., 7} do not appear in €. Indeed i1 ¢ € otherwise &,(¢) # 0 and
ifg > nisthelowestbarred letterof {p + 1, ..., i1} appearing in € we obtain g,(&) = 1 # 0
because g + 1 € €. So € contains the letters of {p + 1, ...,n}. Let {x; < --- < x;} be the
set of unbarred letters < p that occur in €. By Lemma 4.1.1, we have

SPxi-xs 0---0)=¢€,¢.

n—p times
Hence

w=wDeE,x - x 0:--0)

n—p times

and by applying relations Rf and R? wehave w = w(f")(xl oo x)E, Write T = x; — (—
.«.x; — T). Then [€,, T'] is a spin orthogonal tableau and w(T")¢, = w. So T’ = P(w)
and the lemma is true.

Suppose now w € QS,?. If the shape of T is (Y, ¢) with ¢ # —, we consider S?(w(C)) =
¢,¢,. Then [¢,, f‘] is a spin tableau and the proof is similar to that of the type B case. If
the shape of T is (Y, ) with ¢ = —, it suffices to consider Sf_l(w(C)) =, 1¢,_, where
instead of S2(w(C)). O

Now if w; and w; are two highest weight vertices of &,, with the same weight A, we have
P(w;) = P(w,) because there is only one orthogonal tableau of highest weight A. Then
the lemma above implies that w; = w,. We can state the

Theorem 4.2.8 Let wi and w, be two vertices of &,,. Then wy ~ wy ifand only if w, = w;.

For any vertex w € &, it is possible to obtain 3(w) by using an insertion algorithm anal-
ogous to that described in Section 3. Considering the sequence of shape of the intermediate
generalized tableaux appearing during the computation of PB(w), we obtain a Q-symbol

(w). Then for w; and w, two vertices of &, we have:

wy < wy & Qw;) = Qw)
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where w; <> w, means that w; and w, occur in the same connected component of &,,. The
reader interested in this subject is referred to [11].
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