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Abstract. We use Kashiwara’s theory of crystal bases to study plactic monoids for Uq (so2n+1) and Uq (so2n).
Simultaneously we describe a Schensted type correspondence in the crystal graphs of tensor powers of vector and
spin representations and we derive a Jeu de Taquin for type B from the Sheats sliding algorithm.
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1. Introduction

The Schensted correspondence based on the bumping algorithm yields a bijection be-
tween words w of length l on the ordered alphabet An = {1 ≺ 2 ≺ · · · ≺ n} and pairs
(P A(w), Q A(w)) of tableaux of the same shape containing l boxes where P A(w) is a semi-
standard Young tableau on An and Q A(w) is a standard tableau. By identifying the words
w having the same tableau P A(w), we obtain the plactic monoid Pl(An) whose defining
relations were determined by Knuth:

yzx = yxz and xzy = zxy if x ≺ y ≺ z,

xyx = xxy and xyy = yxy if x ≺ y.

The Robinson-Schensted correspondence has a natural interpretation in terms of
Kashiwara’s theory of crystal bases [2, 5, 8]. Let V A

n denote the vector representation
of Uq (sln). By considering each vertex of the crystal graph of

⊕
l≥0(V A

n )⊗l as a word on
An , we have for any words w1 and w2:

• P A(w1) = P A(w2) if and only if w1 and w2 occur at the same place in two isomorphic
connected components of this graph.

• Q A(w1) = Q A(w2) if and only if w1 and w2 occur in the same connected component of
this graph.

Replacing V A
n by the vector representation V C

n of sp2n whose basis vectors are labelled
by the letters of the totally ordered alphabet

Cn = {1 ≺ · · · ≺ n − 1 ≺ n ≺ n̄ ≺ n − 1 ≺ · · · ≺ 1̄},
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we have obtained in [10] a Schensted type correspondence for type Cn . This correspondence
is based on an insertion algorithm for the Kashiwara-Nakashima’s symplectic tableaux [4]
analogous to the bumping algorithm. It may be regarded as a bijection between words w

of length l on Cn and pairs (PC (w), QC (w)) where PC (w) is a symplectic tableau and
QC (w) an oscillating tableau of type C and length l, that is, a sequence (Q1, . . . , Ql) of
Young diagrams such that two consecutive diagrams differ by exactly one box. Moreover
by identifying the words of the free monoid C∗

n having the same symplectic tableau we also
obtain a monoid Pl(Cn). This is the plactic monoid of type Cn in the sense of [12] and [8].

The vector representations V B
n and V D

n of Uq (so2n+1) and Uq (so2n) have crystal graphs
whose vertices may be respectively labelled by the letters of

Bn = {1 ≺ · · · ≺ n − 1 ≺ n ≺ 0 ≺ n̄ ≺ n − 1 ≺ · · · ≺ 1̄}

and

Dn =
{

1 ≺ · · · ≺ n − 1 ≺ n

n̄
≺ n − 1 ≺ · · · ≺ 1̄

}
.

Let G B
n and G D

n be the crystal graphs of
⊕

l≥0(V B
n )⊗l and

⊕
l≥0(V D

n )⊗l . Then it is possible to
label the vertices of G B

n and G D
n by the words of the free monoidsB∗

n andD∗
n . However the sit-

uation is more complicated than in the case of types A and C . Indeed there exist a fundamen-
tal representation of Uq (so2n+1) and two fundamental representations of Uq (so2n) that do not
appear in the decompositions of

⊕
(V B

n )⊗l and
⊕

l≥0(V D
n )⊗l into their irreducible compo-

nents. They are called the spin representations and denoted respectively by V (�B
n ), V (�D

n )
and V (�D

n−1). In [4], Kashiwara and Nakashima have described their crystal graphs by using
a new combinatorical object that we will call a spin column. Write SPn for the set of spin
columns of height n and set Bn = Bn ∪ SPn, Dn = Dn ∪ SPn . Then each vertex of the
crystal graphs G

B
n and G

D
n of

⊕
l≥0(V B

n ⊕V (�B
n ))⊗l and

⊕
l≥0(V D

n ⊕V (�D
n )⊕V (�D

n−1))⊗l

may be respectively identified with a word on Bn or Dn . We can define two relations
B∼ and

D∼ by:

w1
B∼ w2 if and only if w1 and w2 occur at the same place in two isomorphic connected

components of G
B
n ,

w1
D∼ w2 if and only if w1 and w2 occur at the same place in two isomorphic connected

components of G
D
n .

In this article, we prove that Pl(Bn) = B∗
n/

B∼, Pl(Dn) = D∗
n/

D∼, Pl(Bn) = B
∗
n/

B∼ and
Bl(Dn) = D

∗
n/

D∼ are monoids and we undertake a detailed investigation of the correspond-
ing insertion algorithms. We summarize in part 2 the background on Kashiwara’s theory
of crystals used in the sequel. In part 3, we first recall Kashiwara-Nakashima’s notion of
orthogonal tableau (analogous to Young tableaux for types B and D) and we relate it to
Littelmann’s notion of Young tableau for classical types. Then we derive a set of defin-
ing relations for Pl(Bn) and Pl(Dn) and we describe the corresponding column insertion
algorithms. Using the combinatorial notion of oscillating tableaux (analogous to standard
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tableaux for types B and D), these algorithms yield the desired Schensted type correspon-
dences in G B

n and G D
n . In part 4 we propose an orthogonal Jeu de Taquin for type B based

on Sheats’ sliding algorithm for type C [16]. Finally in part 5, we bring into the picture the
spin representations and extend the results of part 3 to the graphs G

B
n , GD

n and the monoids
Pl(Bn), Pl(Dn). Note that bounds for the length of the plactic relations are given in [12].

Notation 1.0.1 In the sequel, we often write B and D instead of Bn and Dn to simplify
the notation. Moreover, we frequently define similar objects for types B and D. When
they are related to type B (respectively D), we attach to them the label B (respectively the
label D). To avoid cumbersome repetitions, we sometimes omit the labels B and D when
our statements are true for the two types.

2. Conventions for crystal graphs

2.1. Kashiwara’s operators

Let g be simple Lie algebra and αi , i ∈ I its simple roots. Recall that the crystal graphs of
the Uq (g)-modules are oriented colored graphs with colors i ∈ I . An arrow a

i→ b means
that f̃ i (a) = b and ẽi (b) = a where ẽi and f̃ i are the crystal graph operators (for a review
of crystal bases and crystal graphs see [5]). Let V, V ′ be two Uq (g)-modules and B, B ′

their crystal graphs. A vertex v0 ∈ B satisfying ẽi (v0) = 0 for any i ∈ I is called a highest
weight vertex. The decomposition of V into its irreducible components is reflected into
the decomposition of B into its connected components. Each connected component of B
contains a unique vertex of highest weight. We write B(v0) for the connected component
containing the highest weight vertex v0. The crystals graphs of two isomorphic irreducible
components are isomorphic as oriented colored graphs. We will say that two vertices b1 and
b2 of B occur at the same place in two isomorphic connected components 	1 and 	2 of B
if there exist i1, . . . , ir ∈ I such that w1 = f̃ ii · · · f̃ ir (w0

1) and w2 = f̃ ii · · · f̃ ir (w0
2), where

w0
1 and w0

2 are respectively the highest weight vertices of 	1 and 	2.
The action of ẽi and f̃ i on B ⊗ B ′ = {b ⊗ b′; b ∈ B, b′ ∈ B ′} is given by:

f̃ i (u ⊗ v) =
{

f̃ i (u) ⊗ v if ϕi (u) > εi (v)

u ⊗ f̃ i (v) if ϕi (u) ≤ εi (v)
(1)

and

ẽi (u ⊗ v) =
{

u ⊗ ẽi (v) if ϕi (u) < εi (v)

ẽi (u) ⊗ v if ϕi (u) ≥ εi (v)
(2)

where εi (u) = max{k; ẽk
i (u) �= 0} and ϕi (u) = max{k; f̃ k

i (u) �= 0}. Denote by �i , i ∈ I the
fundamental weights of g. The weight of the vertex u is defined by wt(u) = ∑

I (ϕi (u) −
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εi (u))�i . Write si = sαi for i ∈ I . The Weyl group W of g acts on B by:

si (u) = ( f̃ i )ϕi (u)−εi (u)(u) if ϕi (u) − εi (u) ≥ 0,

si (u) = (ẽi )εi (u)−ϕi (u)(u) if ϕi (u) − εi (u) < 0.
(3)

We have the equality wt(σ (u)) = σ (wt(u) for any σ ∈ W and u ∈ B. The following lemma
is a straightforward consequence of (1) and (2).

Lemma 2.1.1 Let u ⊗ v ∈ B ⊗ B ′. Then:

(i) ϕi (u ⊗ v) =
{
ϕi (v) + ϕi (u) − εi (v) if ϕi (u) > εi (v)

ϕi (v) otherwise.
.

(ii) εi (u ⊗ v) =
{
εi (v) + εi (u) − ϕi (u) if εi (v) > ϕi (u)

εi (u) otherwise.
.

(iii) u ⊗ v is a highest weight vertex of B ⊗ B ′ if and only if for any i ∈ I ẽi (u) = 0 (i.e. u
is of highest weight) and εi (v) ≤ ϕi (u).

For any dominant weight λ ∈ P+, write B(λ) for the crystal graph of V (λ), the irreducible
module of highest weight λ and denote by uλ its highest weight vertex. Kashiwara has
introduced in [6] an embedding of B(λ) into B(mλ) for any positive integer m. He uses this
embedding to obtain a simple bijection between Littlemann’s path crystal associated to λ

and B(λ) [14].

Theorem 2.1.2 (Kashiwara) There exists a unique injective map

Sm : B(λ) → B(mλ) ⊂ B(λ)⊗m

uλ �→ u⊗m
λ

such that for any b ∈ B(λ):

(i) Sm(ẽi (b)) = ẽm
i (Sm(b)),

(ii) Sm( f̃ i (b)) = f̃ m
i (Sm(b)),

(iii) ϕi (Sm(b)) = mϕi (b),

(iv) εi (Sm(b)) = mεi (b),

(v) wt(Sm(b)) = mwt(b).

(4)

Corollary 2.1.3 Let λ1, . . . , λk ∈ P+. Then, the map:

Sm : B(λ1) ⊗ · · · ⊗ B(λk) → B(mλ1) ⊗ · · · ⊗ B(mλk)

b1 ⊗ · · · ⊗ bk �→ Sm(b1) ⊗ · · · ⊗ Sm(bk)

is injective and satisfies the relations (4) with b = b1 ⊗ · · · ⊗ bk. Moreover the image
by Sm of a highest weight vertex of B(λ1) ⊗ · · · ⊗ B(λk) is a highest weight vertex of
B(mλ1) ⊗ · · · ⊗ B(mλk).
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Proof: By induction, we can suppose k = 2. Sm is injective because Sm is injective. Let
u ⊗ v ∈ B(λ1) ⊗ B(λ2). Suppose that ϕi (u) ≤ εi (v). We derive the following equalities
from Formulas (1) and (2):

Sm f̃ i (u ⊗ v) = Sm(u ⊗ f̃ iv) = Sm(u) ⊗ Sm( f̃ iv) = Sm(u) ⊗ f̃ m
i Sm(v) and

f̃ m
i (Sm(u ⊗ v)) = f̃ m

i (Sm(u) ⊗ Sm(v)) = Sm(u) ⊗ f̃ m
i Sm(v).

Indeed, εi (Sm(v)) = mεi (v) ≥ mϕi (u) = ϕi (Sm(u)) and for p = 1, . . . , m εi ( f̃ p
i Sm(v)) >

εi (Sm(v)). Hence Sm f̃ i (u ⊗ v) = f̃ m
i (Sm(u ⊗ v)). Now suppose εi (v) < ϕi (u) i.e. εi (u) ≤

ϕi (v) + 1. We obtain:

Sm f̃ i (u ⊗ v) = Sm( f̃ i u ⊗ v) = Sm( f̃ i u) ⊗ Sm(v) = f̃ m
i Sm(u) ⊗ Sm(v) and

f̃ m
i (Sm(u ⊗ v)) = f̃ m

i (Sm(u) ⊗ Sm(v)) = f̃ m
i Sm(u) ⊗ Sm(v)

because εi (Sm(v)) = mεi (v) ≤ mϕi (u) + m = ϕi (Smu)+m. Hence we have Sm f̃ i (u ⊗ v) =
f̃ m

i (Sm(u ⊗ v)).
Similarly we prove that Smẽi (u ⊗ v = ẽm

i (Sm(u ⊗ v)). So Sm satisfies the formulas (i)
and (ii). By Lemma 2.1.1(i) and (ii) we obtain then that Sm satisfies (iii), (iv) and (v).

Suppose that u ⊗ v is a highest weight vertex of B(λ1) ⊗ B(λ2). By Lemma 2.1.1(iii),
u is the highest weight vertex of B(λ1) and εi (v) ≤ ϕi (u) for i ∈ I . Then by definition of
Sm, Sm(u) is the highest weight vertex of B(mλ1). Moreover for any i ∈ I, εi (Sm(v)) =
mεi (v) ≤ mϕi (u) = ϕi (Sm(u)). So Sm(u) ⊗ Sm(v) = Sm(u ⊗ v) is of highest weight in
B(mλ1) ⊗ B(mλ2).

By this corollary, the connected component of B(λ1) ⊗ · · · ⊗ B(λk) of highest weight
vertex u0 = u1 ⊗· · ·⊗uk , may be identified with the sub-graph of B(mλ1)⊗· · ·⊗ B(mλk)
generated by the vertex Sm(u1) ⊗ · · · ⊗ Sm(uk) and the operators f̃ m

i for i ∈ I .

2.2. Tensor powers of the vector representations

We choose to label the Dynkin diagram of so2n+1 by:

1◦ − 2◦ − 3◦ · · · n−2◦ − n−1◦ ⇒ n◦

and the Dynkin diagram of so2n by:
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Write W B
n and W D

n for the Weyl groups of so2n+1 and so2n . Denote by V B
n and V D

n the
vector representations of Uq (so2n+1) and Uq (so2n). Their crystal graphs are respectively:

1
1→ 2 · · · → n − 1

n−1→ n
n→ 0

n→ n̄
n−1→ n − 1

n−2→ · · · → 2̄
1→ 1̄ (5)

and

(6)

By induction, formulas (1), (2) allow to define a crystal graph for the representations (V B
n )⊗l

and (V D
n )⊗l for any l. Each vertex u1 ⊗ u2 ⊗ · · · ⊗ ul of the crystal graph of (V B

n )⊗l will be
identified with the word u1u2 · · · ul on the totally ordered alphabet

Bn = {1 ≺ · · · ≺ n − 1 ≺ n ≺ 0 ≺ n̄ ≺ n − 1 ≺ · · · ≺ 1̄}.

Similarly each vertex v1 ⊗ v2 ⊗ · · · ⊗ vl of the crystal graph of (V D
n )⊗l will be identified

with the word v1v2 · · · vl on the partially ordered alphabet

Dn =
{

1 ≺ · · · ≺ n − 1 ≺ n

n̄
≺ n − 1 ≺ · · · ≺ 1̄

}
.

By convention we set 0̄ = 0 and for k = 1, . . . , n,
=
k = k. The letter x is barred if x � n̄

unbarred if x � n and we set:

|x | =
{

x if x is unbarred

x̄ otherwise.

Write B∗
n and D∗

n for the free monoids on Bn and Dn . If w is a word of B∗
n or D∗

n , we denote
by l(w) its length and by d(w) = (d1, . . . , dn) the n-tuple where di is the number of letters
i in w minus the number of letters ī . Let G B

n and G B
n,l be respectively the crystal graphs of⊕

l(V
B

n )⊗l and (V B
n )⊗l . Then the vertices of G B

n are indexed by the words of B∗
n and those of

G B
n,l by the words of B∗

n of length l. Similarly G D
n and G D

n,l , the crystal graphs of
⊕

l(V
B

n )⊗l

and (V B
n )⊗l are indexed respectively by the words of D∗

n and by the words of D∗
n of length

l. If w is a vertex of Gn , write B(w) for the connected component of Gn containing w.
Denote by �B

1 , . . . , �B
n and �D

1 , . . . , �D
n the fundamental weights of Uq (so2n+1) and

Uq (so2n). Let P B
+ and P D

+ be the sets of dominant weights of their weight lattices. We set

ωB
n = 2�B

n ,

ωB
i = �B

i for i = 1, . . . , n − 1
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and

ωD
n = 2�D

n ,

ω̄D
n = 2�D

n−1,

ωD
n−1 = �D

n + �D
n−1,

ωD
i = �D

i for i = 1, . . . , n − 2.

Then the weight of a vertex w of Gn is given by:

wt(w) = dnωn +
n−1∑
i=1

(di − di+1)ωi .

Thus we recover the well-known fact that there is no connected component of G B
n iso-

morphic to B(�B
n ) and no connected component of G D

n isomorphic to B(�D
n ) or B(�D

n−1).
Recall that in the cases of the types A and C, every crystal graph of an irreducible mod-
ule may be embedded in the crystal graph of a tensor power of the vector representation.
For λ ∈ P B

+ , B B(λ) may be embedded in a tensor power of the vector representation V B
n

if and only if λ lies in the weight sub-lattice �B generated by the ωB
i ’s. Similarly, for

λ ∈ P D
+ , B D(λ) may be embedded in a tensor power of the vector representation V D

n if and
only if λ lies in the weight sub-lattice �D generated by the ωD

i ’s. Set �B
+ = P B

+ ∩ �B and
�D

+ = P D
+ ∩ �D .

Now we introduce the coplactic relation. For w1 and w2 ∈B∗
n (resp. D∗

n), write w1
B↔ w2

(resp. w1
D↔ w2) if and only if w1 and w2 belong to the same connected component of

G B
n (resp. G D

n ). The proof of the following lemma is the same as in the symplectic case
[10].

Lemma 2.2.1 If w1 = u1v1 and w2 = u2v2 with l(u2) and l(v1) = l(v2)

w1 ↔ w2 ⇒
{

u1 ↔ u2

v1 ↔ v2
.

2.3. Crystal graphs of the spin representations

The spin representations of Uq (so2n+1) and Uq (so2n) are V (�B
n ), V (�D

n ) and V (�D
n−1).

Recall that dim V (�B
n ) = 2n and dim V (�D

n ) = dim V (�D
n−1) = 2n−1. Now we review the

description of B(�B
n ), B(�D

n ) and B(�D
n−1) given by Kashiwara and Nakashima in [4]. It is

based on the notion of spin column. To avoid confusion between these new columns and the
classical columns of a tableau that we introduce in the next section, we follow Kashiwara-
Nakashima’s convention and represent spin columns by column shape diagrams of width
1/2. Such diagrams will be called K-N diagrams.

Definition 2.3.1 A spin column C of height n is a K-N diagram containing n letters of Dn

such that the word x1 · · · xn obtained by reading C from top to bottom does not contain a
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pair (z, z̄) and verifies x1 ≺ · · · ≺ xn . The set of spin columns of length n will be denoted
SPn .

• B(�B
n ) = {C; C ∈ SPn} where Kashiwara’s operators act as follows:

if n ∈ C then f̃ nC is obtained by turning n into n̄, otherwise f̃ nC = 0,
if n̄ ∈ C then ẽnC is obtained by turning n̄ into n, otherwise ẽnC = 0,
if (i, i + 1) ∈ C then f̃ iC is obtained by turning (i, i + 1) into (i + 1, ī), otherwise

f̃ iC = 0,
if (i +1, ī) ∈ C then ẽiC is obtained by turning (i +1, ī) into (i, i + 1), otherwise ẽiC = 0.

• B(�D
n ) = {C ∈ SPn; the number of barred letters in C is even} and B(�D

n−1) = {C ∈ SPn;
the number of barred letters in C is odd} where Kashiwara’s operators act as follows:

if (n − 1, n) ∈ C then f̃ nC is obtained by turning (n − 1, n) into (n̄, n − 1), otherwise
f̃ nC = 0,

if (n̄, n − 1) ∈ C then ẽnC is obtained by turning (n̄, n − 1) into (n − 1, n), otherwise
ẽnC = 0, for i �= n, f̃ i and ẽi act like in B(�B

n ).

In the sequel we denote by vB
�n

the highest weight vertex of B(�B
n ), by vD

�n
and vD

�n−1
the

highest weight vertices of B(�D
n ) and B(�D

n−1). Note that vB
�n

and vD
�n

correspond to the
spin column containing the letters of {1, . . . , n} and vD

�n−1
corresponds to the spin column

containing the letters of {1, . . . , n − 1, n̄}.

3. Schensted correspondences in G B
n and G D

n

3.1. Orthogonal tableaux

Let λ ∈ �+. We are going to review the notion of standard orthogonal tableaux introduced
by Kashiwara and Nakashima [4] to label the vertices of B(λ).

3.1.1. Columns and admissible columns. A column of type B is a Young diagram

C =

of column shape filled by letters of Bn such that C increases from top to bottom and 0 is
the unique letter of Bn that may appear more than once.

A column of type D is a Young diagram C of column shape filled by letters of Dn such
that xi+1 �≤ xi for i = 1, . . . , l − 1. Note that the letters n and n̄ are the unique letters that
may appear more than once in C and if they do, these letters are different in two adjacent
boxes.
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Figure 1. The crystal graphs B(�B
n ), B(�D

n ) and B(�D
n−1) for Uq (so7) and Uq (so6).

The height h(C) of the column C is the number of its letters. The word obtained by
reading the letters of C from top to bottom is called the reading of C and denoted by w(C).
We will say that the column C contains a pair (z, z̄) when a letter 0 or the two letters z � n
and z̄ appear in C.

Definition 3.1.1 (Kashiwara-Nakashima) Let C be a column such that w(C) = x1 · · · xh(C).
Then C is admissible if h(C) ≤ n and for any pair (z, z̄) of letters in C satisfying z = x p

and z̄ = xq with z � n we have

|q − p| ≥ h(C) − z + 1. (7)

(Note that 0 � n on Bn and we may have q − p < 0 for type D and z = n).

Example 3.1.2 For n = 4, 404̄2̄ and 34̄43̄ are readings of admissible columns respectively
of type B and D.

Let C be a column of type B or D and z � n a letter of C. We denote by N (z) the number
of letters x in C such that x � z or x � z̄. Then Condition (7) is equivalent to N (z) ≤ z.

Suppose that C is non admissible and does not contain a pair (z, z̄) with z � n and
N (z) > z. Then h(C) > n. Hence C is of type B and 0 ∈ C . Indeed, if 0 /∈ C , C contains
a letter z maximal such that z � n and z̄ ∈ C . It means that for any x ∈ {z + 1, . . . , n},
there is at most one letter y ∈ C with |y| = x . We have a contradiction because in this case
N (z) > n − (n − z). We obtain the
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Remark 3.1.3 A column C is non admissible if and only if at least one of the following
assertions is satisfied:

(i) C contains a letter z � n and N (z) > z
(ii) C is of type B, 0 ∈ C and h(C) > n.

If we set vB
ωk

= 1 · · · k for k = 1, . . . , n, then B(vB
ωk

) is isomorphic to B(ωB
k ). Similarly, if

we set vD
ωk

= 1 · · · k for k = 1, . . . , n and vD
ω̄n

= 1 · · · (n − 1)n̄, then B(vD
ωk

) and B(vD
ω̄n

) are
respectively isomorphic to B(ωD

k ) and B(ω̄D
n ).

Proposition 3.1.4 (Kashiwara-Nakashima)
• The vertices of B(vB

ωk
) are the readings of the admissible columns of type B and length k.

• The vertices of B(vD
ωk

) with k < n are the readings of the admissible columns of type D
and length k.

• The vertices of B(vD
ωn

) are the readings of the admissible columns C of type D such that
w(C) = x1 · · · xn and xk = n (resp. xk = n̄) implies n − k is even (resp. odd).

• The vertices of B(vD
ω̄n

) are the readings of the admissible columns C of type D such that
w(C) = x1 · · · xn and xk = n̄ (resp. xk = n) implies n − k is odd (resp. even).

We can obtain another description of the admissible columns by computing, for each
admissible column C , a pair of columns (lC, rC) without pair (z, z̄). This duplication was
inspired by the description of the admissible columns of type C in terms of De Concini
columns used by Sheats in [16].

Definition 3.1.5 Let C be a column of type B and denote by IC = {z1 = 0, . . . , zr =
0 � zr+1 � · · · � zs} the set of letters z � 0 such that the pair (z, z̄) occurs in C . We will
say that C can be split when there exists (see the example below) a set of s unbarred letters
JC = {t1 � · · · � ts} ⊂ Bn such that: t1 is the greatest letter ofBn satisfying: t1 ≺ z1, t1 /∈ C
and t̄1 /∈ C , for i = 2, . . . , s, ti is the greatest letter of Bn satisfying: ti ≺ min(ti−1, zi ),
ti /∈ C and t̄1 /∈ C .

In this case we write:

• rC for the column obtained first by changing in C z̄i into t̄i for each letter zi ∈ I , next
by reordering if necessary.

• lC for the column obtained first by changing in C zi into ti for each letter zi ∈ I , next by
reordering if necessary.

Definition 3.1.6 Let C be a column of type D. Denote by Ĉ the column of type B obtained
by turning in C each factor n̄n into 00. We will say that C can be split when Ĉ can be split.
In this case we write lC = lĈ and rC = lĈ .

Example 3.1.7 Suppose n = 9 and consider the column C of type B such that w(C) =
4589008̄5̄4̄. We have IC = {0, 0, 8, 5, 4} and JC = {7, 6, 3, 2, 1}. Hence

w(lC) = 1236798̄5̄4̄ and w(rC) = 45897̄6̄3̄2̄1̄.
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Suppose n = 8 and consider the column C ′ of type D such that w(C) = 568̄88̄6̄5̄2̄. Then
w(Ĉ ′) = 56008̄6̄5̄2̄, IĈ ′ = {0, 0, 6, 5} and JĈ ′ = {7, 4, 3, 1}. Hence

w(lC ′) = 13478̄6̄5̄2̄ and w(rC ′) = 568̄7̄4̄3̄2̄1̄.

Lemma 3.1.8 Let C be a column of type B or D which can be split. Then C is admissible.

Proof: Suppose C of type B. We have h(C) ≤ n for C can be split. If there exists a letter
z ≺ 0 in C such that the pair (z, z̄) occurs in C and N (z) ≥ z + 1, C contains at least z + 1
letters x satisfying |x | � z. So rC contains at least z + 1 letters x ′ satisfying |x ′| � z. We
obtain a contradiction because rC does not contain a pair (t, t̄). When C is of type D, by
applying the lemma to Ĉ we obtain that Ĉ is admissible. So C is admissible.

The meaning of lC and rC is explained in the following proposition.

Proposition 3.1.9 Let ω ∈ {ωB
1 , . . . , ωB

n } or ω ∈ {ωD
1 , . . . , ωD

n−1, ω
D
n , ω̄D

n }. The map

S2 : B(vω) → B(vω) ⊗ B(vω)

defined in Theorem 2.1.2 satisfies for any admissible column C ∈ B(vω):

S2(w(C)) = w(rC) ⊗ w(lC).

Example 3.1.10 Consider ω = ωB
2 for Uq (so5). The following graphs are respectively

those of B(ω) and S2(B(ω)).

12
2→ 10

2→ 12̄
1→ 22̄

1→ 21̄
↓ 1 ↓ 2

20
2→ 00

2→ 02̄
1→ 01̄

2→ 2̄1̄

(12) ⊗ (12)
22→ (12̄) ⊗ (12)

22→ (12̄) ⊗ (12̄)
12→ (21̄) ⊗ (12̄)

12→ (21̄) ⊗ (21̄)
↓ 12 ↓ 22

(21̄) ⊗ (12)
22→ (2̄1̄) ⊗ (12)

22→ (2̄1̄) ⊗ (12̄)
12→ (2̄1̄) ⊗ (21̄)

22→ (2̄1̄) ⊗ (2̄1̄)

Proof of Proposition 3.1.9: In this proof we identify each column with its reading to
simplify the notations. When C = vω is the highest weight vertex of B(vω), r (vω) =
l(vω) = vω because vω does not contain a pair (z, z̄). So S2(vω) = rC ⊗ lC . Each vertex C
of B(ω) may be written C = f̃ i1 · · · f̃ ir (vω). By induction on r, it suffices to prove that for
any w(C) ∈ B(vω) such that f̃ i (C) �= 0 we have

S2(C) = rC ⊗ lC ⇒ S2( f̃ i C) = r ( f̃ i C) ⊗ l( f̃ i C).

For any column D we denote by [D]i the word obtained by erasing all the letters x of D
such that f̃ i (x) = ẽi (x) = 0. It is clear that only the letters of [D]i may be changed in D
when we apply f̃ i .
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Suppose ω ∈ {ωB
1 , . . . , ωB

n ). Consider C ∈ B(vω) such that S2(C) = rC ⊗ lC and
f̃ i (C) �= 0.

When i �= n, the letters x /∈ {i + 1, ī, i, i +1} do not interfere in the computation of f̃ i . It
follows from the condition f̃ i (C) �= 0 and an easy computation from (1) and (2) that we need
only consider the following cases: (i) [C]i = i , (ii) [C]i = i + 1, (iii) [C]i = (i +1)(i + 1),
(iv) [C]i = (i)(i + 1), (v) [C]i = i(i + 1)(i + 1) and (vi) [C]i = i(i + 1)i . In the case (i),
if i + 1 /∈ JC , we have [lC]i = i and [rC]i = i . Then [ f̃ i (C)]i = i + 1 and J f̃ i C = JC

(hence i /∈ J f̃ i C ). So [l( f̃ i C)]i = i + 1 and [r ( f̃ i C)]i = i + 1. That means that S2( f̃ i C) =
f̃ 2

i (rC ⊗ lC) = f̃ i (rC) ⊗ f̃ i (lC) = r ( f̃ i C) ⊗ l( f̃ i C) by definition of the map S2. If
i + 1 ∈ JC , we can write [rC]i = (i)(i + 1) and [lC]i = (i)(i + 1). Then [ f̃ i C)]i = i + 1
and J f̃ i C = JC − {i + 1} + {i}. So [r ( f̃ i C)] = (i + 1)(ī) and [l( f̃ i C)] = (i)(i + 1). Hence
S2( f̃ i C) = f̃ 2

i (rC ⊗ lC) = f̃ 2
i (rC) ⊗ lC = r ( f̃ i C) ⊗ l( f̃ i C). The proof is similar in the

cases (ii) to (vi). When i = n, only the letters of {n̄, 0, n} interfere in the computation of
f̃ n . We obtain the proposition by considering the cases: [C]n = 0 · · · 0︸ ︷︷ ︸

0 p times

, [C]n = n 0 · · · 0︸ ︷︷ ︸
0 p times

and [C]n = n.
Suppose ω ∈ {ωD

1 , . . . , ωD
n−1, ω̄

D
n , ωD

n }. When i < n − 1 the proof is the same as above.
When i ∈ {n − 1, n}, the proposition follows by considering successively the cases:

[C]i = n − 1(n̄n)r ,

[C]i = n(n̄n)r n̄,

[C]i = (n − 1)n(n̄n)r n̄,

[C]i = (n̄n)r n̄,

[C]i = (n − 1)(n̄n)r n̄,

[C]i = (n − 1)(n̄n)r n̄(n − 1).

if i = n − 1

and 

[C]i = n − 1(nn̄)r ,

[C]i = n̄(nn̄)r n,

[C]i = (n − 1)n̄(nn̄)r n,

[C]i = (nn̄)r n,

[C]i = (n − 1)(nn̄)r n,

[C]i = (n − 1)(nn̄)r n(n − 1).

if i = n.

where (n̄n)r (resp. (nn̄)r ) is the word containing the factor n̄n (resp. nn̄) repeated r
times.

Using Lemma 3.1.8 we derive immediately the

Corollary 3.1.11 A column C of type B or D is admissible if and only if it can be split.

Example 3.1.12 From Example 3.1.7, we obtain that C is admissible for n = 9 and C ′ is
admissible for n = 8.
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Remark 3.1.13 With the notations of the previous proposition, denote by Wn/Wω the set
of cosets of the Weyl group Wn with respect to the stabilizer Wω of ω in Wn . Then we obtain
a bijection τ between the orbit Oω of vω in B(ω) under the action of Wn defined by (3) and
Wn/Wω. Using Formulas (3) it is easy to prove that Oω consists of the vertices of B(vω)
without the pair (z, z̄). Moreover if C1, C2 are two columns such that w(C1) = x1 · · · x p,
w(C2) = y1 · · · yp ∈ Oω, we have

C1 � C2 ⇔ τw(C1) �ω τw(C2)

where C1 � C2 means that xi � yi , i = 1, . . . , p and “�ω” denotes the projection of
the Bruhat order on Wn/Wω. Then Proposition 3.1.9 may be regarded as a version of
Littelmann’s labelling of B(vω) by pairs (τw(rC), τw(lC)) ∈ Wn/Wω × Wn/Wω satisfying
τw(lC)�ωτw(rC) [13].

3.1.2. Orthogonal tableaux. Every λ ∈ �B
+ has a unique decomposition of the form

λ = ∑n
i=1 λiω

B
i . Similarly, every λ ∈ �D

+ has a unique decomposition of the form (∗)
λ = ∑n

i=1 λiω
D
i or (∗∗) λ = λnω̄

D
n + ∑n−1

i=1 λiω
D
i with λn �= 0, where (λn, . . . , λn) ∈ N

n .
We will say that (λ1, . . . , λn) is the positive decomposition of λ ∈ �+. Denote by Yλ the
Young diagram having λi columns of height i for i = 1, . . . , n. If λ ∈ �D

+ , Yλ may not
suffice to characterize the weight λ because a column diagram of length n may be associated
to ωn or to ω̄n . In Section 3.4 we will need to attach to each dominant weight λ ∈ �+ a
combinatorial object Y (λ). Moreover it will be convenient to distinguish in (∗) the cases
where λn = 0 or λn �= 0. This leads us to set:

(i) Y (λ) = Yλ if λ ∈ �B
+,

(ii) Y (λ) = (Yλ, +) in case (∗) with λn �= 0,

(iii) Y (λ) = (Yλ, 0) in case (∗) with λn = 0,

(iv) Y (λ) = (Yλ, −) in case (∗∗).

(8)

When λ ∈ �D
+ , Y (λ) may be regarded as the generalization of the notion of the shape of

type A associated to a dominant weight. Now write

vB
λ = (

vωB
1

)⊗λ1 ⊗ · · · ⊗ (
vωB

n

)⊗λn in case (i),

vD
λ = (

vωD
1

)⊗λ1 ⊗ · · · ⊗ (
vωD

n

)⊗λn in case (ii),

vD
λ = (

vωD
1

)⊗λ1 ⊗ · · · ⊗ (
vωD

n−1

)⊗λn−1 in case (iii) and

vD
λ = (

vωD
1

)⊗λ1 ⊗ · · · ⊗ (
vω̄D

n

)⊗λn in case (iv).

Then vB
λ and vD

λ are highest weight vertices of G B
n and G D

n . Moreover B(vB
λ ) and B(vD

λ )
are isomorphic to B B(λ) and B D(λ).

A tabloid τ of type B (resp. D) is a Young diagram whose columns are filled to give
columns of type B (resp. D). If τ = C1 · · · Cr , we write w(T ) = w(Cr ) · · · w(C1) for the
reading of τ .
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Definition 3.1.14

• Consider λ ∈ �B
+. A tabloid T of type B is an orthogonal tableau of shape Y (λ) and type

B if w(T ) ∈ B(vB
λ ).

• Consider λ ∈ �D
+ . A tabloid T of type D is an orthogonal tableau of shape Y (λ) and type

D if w(T ) ∈ B(vD
λ ).

The orthogonal tableaux of a given shape form a single connected component of Gn ,
hence two orthogonal tableaux whose readings occur at the same place in two isomorphic
connected components of Gn are equal. The shape of an orthogonal tableau T of type D
may be regarded as a pair [OT , εT ] where OT is a Young diagram and εT ∈ {−, 0, +}.
The {−, 0, +} part of this shape can be read off directly on T . Indeed ε = 0 if T does not
contain a column of height n. Otherwise write w(C1) = x1 · · · xn for the reading of the first
column of T . Since it is admissible, C1 contains at least a letter, say xk of {n, n̄}. Then ε is
given by the parity of n − k according to Proposition 3.1.4.

Consider τ = C1C2 · · · Cr a tabloid whose columns are admissible. The split form of τ is
the tabloid obtained by splitting each column of τ . We write spl(τ ) = (lC1rC1)(lC2rC2) · · ·
(lCrrCr ). With the notations of Proposition 3.1.9, we will have w(spl(T )) = S2w(Cr ) · · ·
S2w(C1). Kashiwara-Nakashima’s combinatorial description [4] of an orthogonal tableau T
is based on the enumeration of configurations that should not occur in two adjacent columns
of T . Considering its split form spl(T ), this description becomes more simple because the
columns of spl(T ) does not contain any pair (z, z̄).

Lemma 3.1.15 Let T = C1C2 · · · Cr be a tabloid whose columns are admissible. Then T
is an orthogonal tableau if and only if spl(T ) is an orthogonal tableau.

Proof: Suppose first that w(T ) is a highest weight vertex of weight λ. Then, by
Corollary 2.1.3, w(spl(T )) is a highest weight vertex of weight 2λ. If T is an orthogo-
nal tableau, w(T ) = vλ and we have w(spl(T )) = v2λ. So spl(T ) is an orthogonal tableau.
Conversely, if spl(T ) is an orthogonal tableau, w(spl(T )) = S2w(Cr ) · · · S2w(C1) is a high-
est weight vertex of weight 2λ by Corollary 2.1.3. Hence we have w(spl(T )) = v2λ be-
cause there exists only one orthogonal tableau of highest weight 2λ. So w(T ) = vλ. In
the general case, denote by T0 the tableau such that w(T0) is the highest weight vertex of
the connected component of Gn containing w(T ). Then w(spl(T0)) is the highest weight
vertex of the connected component containing w(spl(T )) and the following assertions are
equivalent:

(i) spl(T ) is an orthogonal tableau,
(ii) spl(T0) is orthogonal tableau,

(iii) T0 is orthogonal tableau,
(iv) T is orthogonal tableau.

Definition 3.1.16 Let τ = C1C2 be a tabloid with two admissible columns C1 and C2.
We set:
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• C1 � C2 when h(C1) ≥ h(C2) and the rows of C1C2 are weakly increasing from left to
right,

• C1 � C2 when rC1 � lC2.

Definition 3.1.17 (Kashiwara-Nakashima)

Let C1 = and C2 = be admissible columns of type D and p, q, r, s

integers satisfying 1 ≤ p ≤ q < r ≤ s ≤ M .
C1C2 contains an a-odd-configuration (with a /∈ {n̄, n}) when:

• a = x p, n̄ = xr are letters of C1 and ā = ys, n = yq letters of C2 such that r − q + 1 is
odd or

• a = x p, n = xr are letters of C1 and ā = ys, n̄ = yq letters of C2 such that r − q + 1 is
odd C1C2 contains an a-even-configuration (with a /∈ {n̄, n}) when:

• a = x p, n = xr are letters of C1 and ā = ys, n = yq letters of C2 such that r − q + 1 is
even or

• a = x p, n̄ = xr are letters of C1 and ā = ys, n̄ = yq letters of C2 such that r − q + 1 is
even

Then we denote by µ(a) the positive integer defined by:

µ(a) = s − p

Theorem 3.1.18
(i) Consider C1, C2, . . . , Cr some admissible columns of type B. Then the tabloid T =

C1C2 · · · Cr is an orthogonal tableau if and only if Ci � Ci+1 for i = 1, . . . ,

r − 1.
(ii) Consider C1, C2, . . . , Cr some admissible columns of type D. Then the tabloid T =

C1C2 · · · Cr is an orthogonal tableau if and only if, Ci � Ci+1 for i = 1, . . . , r − 1,
and rCilCi+1 does not contain an a-configuration (even or odd ) such that µ(a) =
n − a.

Proof: Kashiwara and Nakashima describe an orthogonal tableau T by listing the configu-
rations that should not occur in two adjacent columns of T . If we except the a-configurations
even or odd, these configurations disappear in spl(T ) because spl(T ) does not contain a col-
umn with a pair (z, z̄). Hence the theorem follows from Lemma 3.1.15 and Theorems 5.7.1
and 6.7.1 of [4].
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Example 3.1.19 Suppose n = 4. Then T = is an orthogonal tobleau of

type B because spl(T ) = . But is not orthogonal of

type D because it contains a 3-even configuration with µ(3) = 1.

3.2. Plactic monoids for types Bn and Dn

Definition 3.2.1 Let w1 and w2 be two words on Bn (resp. Dn). We write w1
B∼ w2 (resp.

w1
D∼ w2) when these two words occur at the same place in two isomorphic connected

components of the crystal G B
n (resp. G D

n ).

The definition of the orthogonal tableaux implies that for any word w ∈ B∗
n (resp. w ∈ D∗

n)
there exists a unique orthogonal tableau P B(w) (resp. P D(w)) such that w ∼ w(P(w)).
So the sets B∗

n/
B∼ and D∗

n/
D∼ can be identified respectively with the sets of orthogonal

tableaux of type B and D. Our aim is now to show that
B∼ and

D∼ are in fact congruencies
B≡

and
D≡ so that B∗

n/
B∼ and Dn/

D∼ are in a natural way endowed with a multiplication.

Definition 3.2.2 The monoid Pl(Bn) is the quotient of the free monoid B∗
n by the

relations:

RB
1 : if x �= z̄ and x ≺ y ≺ z:

yzx
B≡ yxz and xzy

B≡ zxy.

RB
2 : If x �= ȳ and x ≺ y:

xyx
B≡ xxy for x �= 0 and xyy

B≡ yxy for y �= 0.

RB
3 : If 1 ≺ x � n and x � y � x̄ :

y(x − 1)(x − 1)
B≡ yx x̄, and x x̄ y

B≡ (x − 1)(x − 1)y,

0n̄n ≡ n̄n0.

RB
4 : If x � n:

00x
B≡ 0x0 and 0x̄0

B≡ x̄00.
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RB
5 : Let w = w(C) be a non admissible column word each strict factor of which is admissi-
ble. When C satisfies the assertion (i) of Remark 3.1.3, let z be the lowest unbarred letter
of w such that the pair (z, z̄) occurs in w and N (z) > z, otherwise set z = 0. The w

B≡ w̃

where w̃ is the column word obtained by erasing the pair (z, z̄) in w if z � n, by erasing
0 otherwise.

Definition 3.2.3 The monoid Pl(Dn) is the quotient of the free monoidD∗
n by the relations:

R1: If x �= z̄

yzx
D≡ yxz for x � y ≺ z and xzy

D≡ zxy for x ≺ y � z.

R2: If 1 ≺ x � n and x � y � x̄

y(x − 1)(x − 1)
D≡ yx x̄ and x x̄ y

D≡ (x − 1)(x − 1)y.

RD
3 : If x � n − 1:{

n̄ x̄n
D≡ x̄ n̄n

nx̄ n̄
D≡ x̄nn̄

and

{
n̄nx

D≡ n̄xn

nn̄x
D≡ nxn̄

.

RD
4 : {

nn̄n̄
D≡ (n − 1)(n − 1)n̄

n̄nn
D≡ (n − 1)(n − 1)n

and

{
n̄(n − 1)(n − 1)

D≡ n̄n̄n

n(n − 1)(n − 1)
D≡ nnn̄

.

RD
5 : Consider w a non admissible column word each strict factor of which is admissible.
Let z be the lowest unbarred letter such that the pair (z, z̄) occurs in w and N (z) > z (see
Remark 3.1.3). Then w

D≡ w̃ where w̃ is the column word obtained by erasing the pair
(z, z̄) in w if z ≺ n, by erasing a pair (n, n̄) of consecutive letters otherwise.

The relations RB
5 and RD

5 are called the contraction relations. When the letter 0 or a pair
(n, n̄) disappears, we have l(C) = n + 1 and in RD

5 the word w̃ does not depend on the factor
nn̄ or n̄n erased. Moreover w̃ is an admissible column word. Note that w1 ≡ w2 implies
d(w1) = d(w2), that is, ≡ is compatible with the grading given by d.

Theorem 3.2.4 Given two words w1 and w2

w1 ∼ w2 ⇔ w1 ≡ w2 ⇔ P(w1) = P(w2) (9)

This theorem is proved in the same way as in the symplectic case [10], and we will only
sketch the arguments. Note first that we have

w1 ∼ w2 ⇔ P(w1) = P(w2)
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immediately from the definition of P. For any word w occurring in the left hand side of a
relation RB

1 , . . . , RB
4 (resp. RD

1 , . . . , RD
4 ), write ξ B(w) (resp. ξ D(w)) for the word occurring

in the right hand side of this relation. Similarly for p = 1, . . . , n and w a word of length
p + 1 occurring in the left hand side of RB

5 (resp. RD
5 ), denote by ξ B

p (w) (resp. ξ D
p (w)) the

word occurring in the right hand side of this relation. By using similar arguments to those
of [10], we obtain the following assertions:

• The map ξ B : w �→ ξ (w) is the crystal isomorphism from B B(121) to B B(112).
• If n > 2, the map ξ D : w �→ ξ (w) is the crystal isomorphism from B D(121) to

B D(112) otherwise ξ D is the crystal isomorphism from B D(121)∪B D(12̄1) to B D(112) ∪
B D(112̄).

• For p = 2, . . . , n − 1, ξp: �→ ξp(w) is the crystal isomorphism from B (12 · · · p p̄) to
B(12 · · · p − 1).

• The map ξ B
n :w �→ ξ B

n (w) is the crystal isomorphism from B B (12 · · · nn̄) ∪ B B(12 · · ·
n0) to B B(12 · · · n − 1) ∪ B B(12 · · · n).

• The words w of length n + 1 occurring in the left hand side of RD
5 are the vertices of

B D(12 · · · nn̄) ∪ B D(12 · · · n̄n). Moreover the restriction of the map ξ D
n : w �→ ξ D

n (w)
to B D(12 · · · nn̄) (resp. to B D(12 · · · n̄n)) is the crystal isomorphism from B D(12 · · · nn̄)
(resp. B D(12 · · · n̄n)) to B D(12 · · · n − 1).

The crystals B B(121) and B B(112) in G B
2
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The crystals B D(121) and B D(112) in G D
2

The crystals B D(12̄1) and B D(112̄) in G D
2

By (1) and (2), this implies that the plactic relations above are compatible with
Kashiwara’s operators, that is, for any words w1 and w2 such that w1 ≡ w2 one has:{

ẽi (w1) ≡ ẽi (w2) and εi (w1) = εi (w2)

f̃ i (w1) ≡ f̃ i (w2) and ϕi (w1) = ϕi (w2).
(10)

Hence:

w1 ≡ w2 ⇒ w1 ∼ w2.

To obtain the converse we show that for any highest weight vertex w0

w(P(w0)) ≡ w0. (11)

This follows by induction on l(w0). When l(w0) = 1, w(P(w0)) = w0. By writing w0 =
v0x0, it is possible (see the proof of Lemma 3.2.6 in [10]) to show that w(P(w0)) may
be obtained from the word w(P(v0))x0 by applying only Knuth relations and contraction
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relations of type 12 · · · rp̄ ≡ 12 · · · p̂ · · · r with p ≤ r ≤ n (the hat means removal the
letter p).

From (11), we obtain that two highest weight vertices w0
1 and w0

2 with the same weight
λ verify w0

1 ≡ w0
2. Indeed there is only one orthogonal tableau whose reading is a highest

vertex of weight λ. Now suppose that w1 ∼ w2 and denote by w0
1 and w0

2 the highest weight
vertices of B(w1) and B(w2). We have w0

1 ≡ w0
2. Set w1 = F̃w0

1 where F̃ is a product of
Kashiwara’s operators f̃ i , i = 1, . . . , n. Then w2 = F̃w0

2 because w1 ∼ w2. So by (10) we
obtain

w0
1 ≡ w0

2 ⇒ F̃w0
1 ≡ F̃w0

2 ⇒ w1 ≡ w2.

3.3. A bumping algorithm for types B and D

Now we are going to see how the orthogonal tableau P(w) may be computed for each
vertex w by using an insertion scheme analogous to bumping algorithm for type A. As a
first step, we describe P(w) when w = w(C)x , where x and C are respectively a letter and
an admissible column. This will be called “the insertion of the letter x in the admissible
column C” and denoted by x → C. Then we will be able to obtain P(w) when w = w(T)x
with x a letter and T an orthogonal tableau. This will be called “the insertion of the letter x
in the orthogonal tableau T” and denoted by x → T. Our construction of P will be recursive,
in the sense that if P(u) = T and x is a letter, then P(ux) = x → T.

3.3.1. Insertion of a letter in an admissible column. Consider a word w = w(C)x , where
x and C are respectively a letter and an admissible column of height p. When w = w(Cx )
is the reading of a column Cx , we have:

x → C = Cx if Cx is admissible or

x → C = C̃ x where C̃ x is the column whose reading correspondsto w̃ otherwise.

Indeed, x → C must be an orthogonal tableau such that w(x → C) ≡ w.
When w is not a column word, by Lemma 2.1.1 the highest weight vertex w0 of B(w) may

be written w0 = v01 where v0 ∈ {bωp ; p = 1, . . . , n}∪ {bω̄n }. Then u0 = 1v0 is the reading
of an orthogonal tableau and u0 ≡ w0. So u0 is the highest weight vertex of the connected
component containing w(x → C). Moreover there exists a unique sequence of highest
weight vertices w0

1, . . . , w
0
p such that w0

1 = w0, wp = u0 and for i = 2, . . . , pw0
i differs

from w0
i−1 by applying one relation R1 from left to right. This implies that there exists a

unique sequence of vertices w1, . . . , wp such that w1 = w and for i = 2, . . . , p−1 B(wi ) =
B(w0

i ). Each wi differs from wi−1 by applying one relation R1, R2, R3 or R4 from left
to right. The word wp is the reading of an orthogonal tableau and can be factorized as
wp = v′x ′ where v′ = w(C ′) is a column word an x ′ a letter. We will have x → C =
C ′x ′.



SCHENSTED-TYPE CORRESPONDENCES 119

Example 3.3.1

Suppose n = 7. Let w(C) = 67007̄6̄ be an admissible column word of type B. Choose
x = 6. Then by applying relations RB

i i = 1, . . . , 4 we obtain successively:

67007̄6̄6 ≡ 67007̄77̄ ≡ 6707̄707̄ ≡ 677̄7007̄ ≡ 66̄67007̄ ≡ 5̄567007̄

Suppose n = 7. Let w(C) = 677̄77̄6̄ be an admissible column word of type D. Choose
x = 6. Then by applying relations RD

i i = 1, . . . , 4 we obtain successively:

677̄77̄6̄6 ≡ 677̄77̄7̄7 ≡ 677̄6̄677 ≡ 677̄7̄77̄7 ≡ 66̄67̄77̄7 ≡ 5̄5677̄77̄.

Hence

6 → and 6 →

3.3.2. Insertion of a letter in an orthogonal tableau. Consider an orthogonal tableau
T = C1C2 · · · Cr . We can prove as in [10] that the insertion x → T is characterized as
follows:

• If w(C1)x is an admissible column word, then x → T = Cx
1 C2 · · · Cr where Cx

1 is the
column of reading w(C1)x .

• If w(C1)x is a non admissible column word each strict factor of which is admissible
and such that xw̃(C1) = x1 · · · xs , then x → T = xs → (xs−1 → (· · · x1 → T ′))
where T ′ = C2 · · · Cr . Moreover the insertion of x1, . . . , xs in T ′ does not cause a new
contraction.

• If w(C1)x is not a column word, the insertion of x in C1 gives a column C ′
1 and a letter x ′

(with the notation of 3.3.1). Then x → T = C ′
1(x ′ → T ′), that is, x → T is the tableau

defined by C ′
1 and the columns of x ′ → T ′.

Notice that the algorithm terminates because in the last two cases we are reduced to the
insertion of a letter in a tableau whose number of boxes is strictly less than that of T. Finally
for any vertex w ∈ Gn , we will have:

P(w) = w if w is a letter,

P(w) = x → P(u) if w = ux with u a word and x a letter.

3.4. Schensted-type correspondences

In this section a bijection is established between words w of length l on Bn and pairs
(P B(w), Q B(w)) where P B(w) is the orthogonal tableau defined above and Q B(w) is an
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oscillating tableau of type B. Similarly we obtain a bijection between words w of length
l on Dn and pairs (P D(w), Q D(w)) where P D(w) is an oscillating tableau of type D. For
type B, such a one-to-one correspondence has already been obtained by Sundaram [17]
using another definition of orthogonal tableaux and an appropriate insertion algorithm.
Unfortunately it is not known if this correspondence is compatible with a monoid structure.
Our bijection based on the previous insertion algorithm for admissible orthogonal tableaux
of type B will be different from Sundaram’s one but compatible with the plactic relations
defining Pl(Bn).

Definition 3.4.1 An oscillating tableau Q of type B and length l is a sequence of Young
diagrams (Q1, . . . , Ql) whose columns have height ≤n and such that any two consecutive
diagrams are equal or differ by exactly one box (i.e. Qk+1 = Qk, Qk+1/Qk = ( ) or
Qk/Qk+1 = ( )).

An oscillating tableau Q of type D and length l is a sequence (Q1, . . . , Ql) of pairs
Qk(Ok, εk) where Ok is a Young diagram whose columns have height ≤n and εk ∈
{−, 0, +}, satisfying for k = 1, . . . , l

• Ok+1/Ok = ( ) or Ok/Ok+1 = ( ),
• εk+1 �= 0 and εk �= 0 implies εk+1 = εk .
• εk = 0 if and only if Ok has no columns of height n.

Let w = x1 · · · xl be a word. The construction of P(w) involves the construction of the
l orthogonal tableaux defined by Pi = P(x1 · · · xi ). For w ∈ B∗

n (resp. w ∈ D∗
n) we denote

by Q B(w) (resp. Q D(w)) the sequence of shapes of the orthogonal tableaux P1, . . . , Pl .

Proposition 3.4.2 Q B(w) and Q D(w) are respectively oscillating tableaux of type B
and D.

Proof: Each Qi is the shape of an orthogonal tableau so it suffices to prove that for any
letter x and any orthogonal tableau T , the shape of x → T differs from the shape of T by
at most one box according to Definition 3.4.1.

The highest weight vertex of the connected component containing w(T )x may be written
w(T 0)x0 where T 0 is an orthogonal tableau. It follows from Lemma 2.2.1(ii) that w(T ) ↔
w(T 0). So wt(w(T 0)) is given by the shape of T. Then the shape of x → T is given by the
coordinates of wt(w(T 0)x0) on the basis (ωB

1 , . . . , ωB
n ) for type B, on the base (ωD

1 , . . . , ωD
n )

or (ωD
1 , . . . , ωD

n−1, ω̄
D
n ) for type D.

Suppose that x ∈ B∗
n and T is orthogonal of type B. Let (λ1, . . . , λn) be the coordinates

of wt(T 0) on the basis of the ωB’
i s. If x0 = ī � 0 then wt(x0) = ωB

i−1 − ωB
i . So λi > 0

and wt(w(T 0)x0) = (λ1, . . . , λi−1 + 1, λi − 1, . . . , λn−1). Hence during the insertion of the
letter x in T, a column of height i (corresponding to the weight ωi ) is turned into a column
of height i − 1 (corresponding to the weight ωi−1). So the shape of x → T is obtained by
erasing one box to the shape of T. If x0 = i ≺ 0, then we can prove by similar arguments
that the shape of x → T is obtained by adding one box to the shape of T. When x0 = 0,
wt(x0) = 0, so wt(w(T 0)x0) = wt(w(T 0)). Hence the shapes of T and x → T are the same.
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Suppose x ∈ D∗
n and T orthogonal of type D. When |x0| �= n, the proof is the same as

above. If x0 = n, wt(x0) = �n − �n−1 = ωn − ωn−1 = ωn−1 − ω̄n . We have to consider
three cases, (i) εT = −; (ii) εT = 0 and (iii) εT = +. Denote by (λ1, . . . , λn) the positive
decomposition of wt(w(T 0)) on the basis (ωD

1 , . . . , ωD
n ) or on the basis (ωD

1 , . . . , ω̄D
n ).

In the first case, λn > 0 and the positive decomposition of wt(x0w(T 0)) on the base
(ωD

1 , . . . , ω̄D
n ) is (λ1, . . . , λn−2, λn−1 + 1, λn − 1). It means that during the insertion of x

in T a column of height n (corresponding to ω̄n) is turned into a column of height n − 1
(corresponding to ωn−1). Moreover εx→T = εT if λn > 1 and εx→T = 0 otherwise.

In the second case, λn−1 > 0, λn = 0 and the positive decomposition of wt(x0w(T 0)) on
the base (ωD

1 , . . . , ωD
n ) is (λ1, λ2, . . . , λn−1 − 1, 1). It means that during the insertion of x

in T a column of height n − 1 (corresponding to ωn−1) is turned into a column of height n
(corresponding to ωn). Moreover εx→T = +.

In the last case, λn−1 > 0, λn > 0 and the positive decomposition of wt(x0w(T 0)) on
(ωD

1 , . . . , ωD
n ) is (λ1, λ2, . . . , λn−1 − 1, λn + 1). It means that during the insertion of x in

T a column of height n − 1 (corresponding to ωn−1) is turned into a column of height n
(corresponding to ωn). Moreover εx→T = εT .

When x0 = n̄, the proof is similar.

Theorem 3.4.3 For any vertices w1 and w2 of Gn:

w1 ↔ w2 ⇔ Q(w1) = Q(w2).

Proof: The proof is analogous to that of Proposition 5.2.1 in [10].

Corollary 3.4.4 Let B∗
n,l and OB

l (resp. D∗
n,l and OD

l ) be the set of words of length l on
Bn (resp. Dn) and the set of pairs (P, Q) where P is an orthogonal tableau of type B (resp.
D) and Q an oscillating tableau of type B (resp. D) and length l such that P has shape Ql

(Ql is the last shape of Q). Then the maps:

�B : B∗
n,l → O B

l

w �→ (P B(w), Q B(w))
and

�D : D∗
n,l → OD

l

w �→ (P D(w), Q D(w))

are bijections.

Proof: For type �B the proof is analogous to that of Theorem 5.2.2 in [10]. By Theo-
rems 3.2.4 and 3.4.3, we obtain that �D is injective. Consider an oscillating tableau Q of
length l and type D. Set x1 = 1 and for i = 2, . . . , l

– xi = k if Oi differs from Oi−1 by adding a box in row k of height <n,
– xi = k̄ if Qi differs from Qi−1 by removing a box in row k of height <n,
– xi = n if Oi differs from Oi−1 by adding a box in row n and εi = +,
– xi = n̄ if Qi differs from Qi−1 by adding a box in row n and εi = −,
– xi = n̄ if Oi differs from Oi−1 by removing a box in row n and εi = +,
– xi = n if Oi differs from Oi−1 by removing a box in row n and εi = −,



122 LECOUVEY

– Consider wQ = xl · · · x21. Then Q(wQ) = Q. By Theorem 3.1.18, the image of B(wQ)
by �D consists in the pairs (P, Q) where P is a symplectic tableau of shape Ql . We
deduce immediately that � is surjective.

3.5. Jeu de Taquin for type B

In [16], J.T. Sheats has developed a sliding algorithm for type C acting on the skew ad-
missible symplectic tableaux. This algorithm is analogous to the classical Jeu de Taquin of
Lascoux and Schützenberger for type A [9]. Each inner corner of the skew tableau consid-
ered is turned into an outside corner by applying vertical and horizontal moves. We have
shown in [10] how to extend it to take into account the contraction relation of the plactic
monoid Pl(Cn) (analogous to Pl(Bn) and Pl(Dn) for type C). Then we have proved that
the tableau obtained does not depend on the way the inner corners disappear. In this section
we propose a sliding algorithm for type B. The main idea is that the split form of any skew
orthogonal tableau T of type B may be regarded as a symplectic skew tableau.

Set Cn = {1 ≺ · · · ≺ n ≺ n̄ ≺ · · · ≺ 1̄} ⊂ Bn . The symplectic tableaux are, for type C ,
the combinatorial objects analogous to the orthogonal tableaux. They can be regarded as
orthogonal tableaux of type B on the alphabet Cn instead of Bn . The plactic monoid Pl(Cn)
is the quotient of the free monoid C∗

n by relations RB
1 , RB

2 and RB
5 . We denote by

C≡ the
congruence relation in Pl(Cn). Then for w1 and w2 two words of C∗

n we have:

w1
C≡ w2 ⇒ w1

B≡ w2.

A skew orthogonal tableau of type B is a skew Young diagram filled by letters of Bn whose
columns are admissible of type B and such that the rows of its split form (obtained by
splitting its columns) are weakly increasing from left to right. Skew orthogonal tableaux
are the combinatorial objects analogous to the admissible skew tableaux introduced by
Sheats in [16] for type C . Note that two different skew tableaux may have the same reading.

Example 3.5.1 For n = 3,

T = is a skew orthogonal tableau of type B because

spl(T ) = .

The relation 0n̄n ≡ n̄n0 has no natural interpretation in terms of horizontal or vertical
slidings in skew orthogonal tableaux. To overcome this problem we are going to work on
the split form of the skew tableaux instead of the skew tableaux themselves that is, we are
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going to obtain a Jeu de Taquin for type B by applying the symplectic Jeu de Taquin on the
split form of the skew orthogonal tableaux of type B.

Lemma 3.5.2 Let T and T ′ be two skew orthogonal tableaux of type B. Then:

w(T )
B≡ w(T ′) ⇔ w[spl(T )]

B≡ w[spl(T ′)].

Proof: We can write w(T ) = w(C1) · · · w(Cr ) and w(T ′) = w(C ′
1) · · · w(C ′

s) where Ck

and C ′
k, k = 1, . . . , r are admissible columns. All the vertices w ∈ B(w(T )) and w′ ∈

B(w(T ′)) can be respectively written on the form w = cτ · · · c1 and w′ = c′
s · · · c′

1 where
ci , i = 1, . . . , r and c′

j , j = 1, . . . , s are readings of admissible columns of type B.
Consider the maps:

θ2:

{
B(w(T )) → B(spl(w(T ))

w = cτ · · · c1 �→ S2(cτ ) · · · S2(c1)
and

θ ′
2:

{
B(w(T ′)) → B(spl(w(T ))

w′ = c′
s · · · c1 �→ S2(c′

τ ) · · · S2(c′
1)

where S2 is the map defined in Proposition 3.1.9. We have w[spl(T )] = θ2(w(T )) and
w[spl(T ′)] = θ ′

2(w(T ′)). By using Corollary 2.1.3 we obtain

w(T )
B≡ w(T ′) ⇔ w(T )

B∼ w(T ′) ⇔ w[spl(T )]
B∼ w[spl(T ′)]

⇔ w[spl(T )]
B≡ w[spl(T ′)].

If T is a skew orthogonal tableau of type B with r columns, then spl(T ) is a symplectic
skew tableau with 2r columns. We can apply the symplectic Jeu de taquin to spl(T ) to obtain a
symplectic tableau spl(T )′. We will have w[spl(T )′]

C≡ w[spl(T )] so w[spl(T )′]
B≡ w[spl(T )].

Proposition 3.5.3 spl(T )′ is the split form of the orthogonal tableau P B(T ).

Proof: It follows from w(T )
B≡ w(PB(T )) and the lemma above that w[spl(T )]

B≡
w[spl(P B(T ))]. So we obtain w[spl(T )′]

B≡ w[spl(P B(T ))]. But spl(T ′) and spl(pB(T )) are
orthogonal tableaux, hence spl(T )′ = spl(P B(T )).

The columns of the split form of a skew orthogonal tableau T of type B contain no letters
0 and no pairs of letters (x, x̄) with x � n. In this particular case most of the elementary
steps of the symplectic Jeu de Taquin applied on T are simple slidings identical to those
of the original Jeu de Taquin of Lascoux and Schützenberger (that is complications of the
symplectic Jeu de taquin are not needed in these slidings).
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Example 3.5.4 From spl = we compute suc-

cessively:

,

,

= spl .

Note that the sliding applied in the fourth duplicated tableau above is the unique sliding
which is not identical to an original Jeu de taquin step.

The split form of a skew orthogonal tableau of type D (defined in the same way than for
type B) is still a symplectic skew tableau. But

w1
C≡ w2 �=⇒ w1

D≡ w2

so we can not use the same idea to obtain an Jeu de Taquin for type D. Moreover the
examples (computed by using P D with n = 3)

and

show that it is not enough to know what letter x slides from the second column C2 to the
first C1 to be able to compute an horizontal sliding. Indeed the result depends on the whole
column C2. Thus, to give a combinatorial description of a sliding algorithm for type D
would probably be very complicated.

4. Plactic monoid for Gn

Write G
B
n and G

D
n for the crystal graphs of the direct sums⊕

l≥0

(
V

(
�B

1

) ⊕ V
(
�B

n

))⊗l
and

⊕
l≥0

(
V

(
�D

1

) ⊕ V
(
�D

n

) ⊕ V
(
�D

n−1

))⊗l
.
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We call Bn = Bn ∪ SPn and Dn = Dn ∪ SPn the sets of generalized letters of type B
and D. Then we identify the vertices of G

B
n and G

D
n respectively with the words of the

free monoid B
∗
n and D

∗
n . If w is a vertex of Gn , we write wt(w) for the weight of w.

The spin representations are minuscule, hence every spin column is determined by its
weight.

We can extend the Definition 3.2.1 to vertices of Gn . Consider two vertices b1 and b2

of G
B
n (resp. G

D
n ). We write b1 ∼B b2 (resp. b1 ∼D b2) when these vertices occur at the same

place in two isomorphic connected components of G
B
n (resp. GD

n ). Our aim is now to extend
the results of Section 3.2 to the vertices of Gn .

4.1. Tensor products of spin representations

Write B(0) for the connected component of Gn containing only the empty word. Let C0 be
the spin column containing only barred letters. For p = 1, . . . , n, denote by Cp the spin
column containing exactly the unbarred letters x � p. For any admissible column C, set
|C | = {x � n, x ∈ lC or x̄ ∈ lC} = {x � n, x ∈ rC or x̄ ∈ rC}.

Lemma 4.1.1
1. There exists a unique crystal isomorphism SB

B(0) ∪ B
(
vωB

n

) ∪
(

n−1⋃
i=1

B
(
vωB

i

)) SB→ B
(
v�B

n

)⊗2
.

2. Let w be the reading of an admissible column C of type B. Write
– lC for the spin column of height n obtained by adding to lC the barred letters x̄ such

that x �∈ |C |,
– rC for the spin column of height n obtained by adding to rC the unbarred letters x

such that x �∈ |C |.
Then

SB(w) = rC ⊗ lC.

Proof:

1. From Lemma 2.1.1 we obtain that the highest weight vertices of B(v�B
n
)⊗2 are the

vertices vB
p = Cn ⊗ Cp with p = 0, . . . , n. We have wt(vB

p ) = ωB
p for p = 1, . . . , n

and wt(vD
0 ) = 0. Hence SB is the crystal isomorphism which sends B(vωB

p
) on B(vB

p )
for p = 1, . . . , n and B(0) on B(vB

0 ).
2. When w = vωB

p
, the equality SB(w) = rC ⊗ lC is true. Consider w ∈ B(vωB

p
) and i =

1, . . . , n such that w′ = f̃ i (w) �= 0. Write w = w(C) and w′ = w(C ′) where C and
C ′ are two admissible columns of height p. The lemma will be proved if we show the
implication

SB(w) = rC ⊗ lC ⇒ SB(w′) = rC
′ ⊗ lC′
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where rC
′ and lC′ are defined from C ′ in the same manner than rC and lC from C . This

is equivalent to

f̃ i (rC ⊗ lC) = rC
′ ⊗ lC′. (12)

Suppose i �= n. Set Ei = {i, i + 1, i + 1, ī}.
(i) If {i, i + 1} ⊂ |C |, lC and lC coincide on Ei . Similarly rC and rC, lC ′ and lC′, rC ′

and lC′ coincide on Ei . By Proposition 3.1.9, we know that

f̃ 2
i (rC ⊗ lC) = rC ′ ⊗ lC ′.

The action of f̃ 2
i on rC ⊗ lC is analogous to that of f̃ i on rC ⊗ lC. It means that f̃ i

changes a pair (i, i + 1) of rC (resp lC) into a pair (i + 1, ī) if and only if f̃ 2
i changes

a pair (i, i + 1) of rC (resp. lC) into a pair (i + 1, ī). So (12) is true because only the
letters of Ei may be modified when we apply f̃ i .

(ii) If {i, i + 1} ∩ |C | = {i + 1}, we have [rC]i = [lC]i = i + 1 with the notation of the
proof of Proposition 3.1.9. Then rC∩ Ei = {i + 1, i} and lC∩ Ei = {i + 1, ī}. More-
over [C ′]i = ī, rC

′ ∩ Ei = {ī, i + 1} and lC′ ∩ Ei = {i + 1, ī}. Hence f̃ i (rC⊗ lC)
and rC

′ ⊗lC′ coincide on Ei . So they are equal because f̃ i does not modify the letters
x �∈ Ei .

(iii) If {i, i + 1} ∩ |C | = {i}, the proof is analogous to case (ii).

Suppose i = n. Set En = {n, n̄}. Then n ∈ |C | because f̃ i (w) �= 0. We obtain (12) by
using similar arguments to those of (i).

Lemma 4.1.2
1. There exists two crystal isomorphisms SD

n and SD
n−1

B(0) ∪ B
(
vωD

n

) ∪
(

n−1⋃
i=1

B
(
vωD

i

)) SD
n→ B

(
v�D

n

) ⊗ (
B

(
v�D

n

) ∪ B
(
v�D

n−1

))
,

B(0) ∪ B
(
vω̄D

n

) ∪
(

n−1⋃
i=1

B
(
vωD

i

)) SD
n−1→ B

(
v�D

n−1

) ⊗ (
B

(
v�D

n−1

) ∪ B
(
v�D

n

))
.

2. Let w be the reading of an admissible column C of type D. If h(C) ≺ n, denote by t the
greatest unbarred letter such that t �∈ |C |. Write
– lC for the spin column of height n obtained by adding to lC the barred letters x̄ such

that x �∈ |C |.
– rC for the spin column of height n obtained by adding to rC the unbarred letters x

such that x �∈ |C |.
– ltC for the spin column of height n obtained by adding to lC the letter t and the barred

letters x̄ such that x �∈ |C | ∪ {t}.
– rtC for the spin column of height n obtained by adding to rC the letter t̄ and the

unbarred letters x such that x �∈ |C | ∪ [t}.
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Then we have

(i)

{
SD

n (w) = rC ⊗ lC if rC ∈ B
(
v�D

n

)
SD

n (w) = rtC ⊗ ltC otherwise
and

(ii)

{
SD

n−1(w) = rC ⊗ lC if rC ∈ B
(
v�D

n−1

)
SD

n−1(w) = rtC ⊗ ltC otherwise

(recall that rC ∈ B(v�D
n

) if and only if it contains an even number of barred letters).

Proof: We only sketch the proof for SD
n , the arguments are analogous for SD

n−1.

1. The highest weight vertices of B(v�D
n

) ⊗ (B(v�D
n

) ∪ B(v�D
n−1

)) are the vertices vD
p =

Cn ⊗ Cp with p = 0, . . . , n. We have wt(vD
p ) = ωD

p for p = 1, . . . , n and wt(vD
0 ) = 0.

Hence SD
n is the crystal isomorphism which sends B(vωD

p
) on B(vD

p ) for p = 1, . . . , n
and B(0) on vD

0 .
2. When w = vωD

p
, the equality SD

n (w) = rC ⊗ lC is true. Consider w ∈ B(vωD
p
) and i =

1, . . . , n such that w′ = f̄ i (w) �= 0. Write w = w(C) and w′ = w(C ′) where C and C ′

are two admissible columns of height p. Let t ′ be the greatest unbarred letter such that
t ′ �∈ |C ′|. If the number of barred letters of C is equal to that of C ′, rC and rC

′ belongs
together in B(v�D

n
) or in B(v�D

n−1
). In these cases we can prove that

SD
n (w) = rC ⊗ lC ⇒ SD

n (w′) = rC
′ ⊗ lC′ and

(13)
SD

n (w) = rtC ⊗ ltC ⇒ SD
n (w′) = rt ′C′ ⊗ lt ′C′

as we have done for SB . Otherwise we have i = n and rC ∩ En = {n −1} or rC ∩ En =
{n}.

Suppose i = n and n ∈ |C |. Then n−1 is the unique letter of En = {n−1, n, n̄, n − 1}
that occurs in C . We have t = n and t ′ = n − 1 because lC ′ ∩ En = n̄. So rC ∩ En =
{n, n − 1}, rtC ∩ En = {n̄, n − 1}, lC ∩ En = {n̄, n − 1} and ltC ∩ En = {n, n − 1}.
Similarly rC

′ ∩ En = {n̄, n − 1}, rtC
′ ∩ En = {n̄, n − 1}, lC′ ∩ En = {n̄, n − 1} and

ltC
′ ∩ En = {n̄, n −1}. Hence f̃ i (rC⊗ lC) = rt ′C′ ⊗ lt ′C′ and f̃ i (rtC⊗ ltC) = rC

′ ⊗ lC′.
We have

SD
n (w) = rC ⊗ lC ⇒ SD

n (w′) = rt ′C′ ⊗ lt ′C′ and
(14)

SD
n (w) = rtC ⊗ ltC ⇒ SD

n (w′) = rC
′ ⊗ lC′.

When i = n and n − 1 ∈ |C |, we obtain (14) by similar arguments. Finally (i) follows
from (13) and (14).
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Figure 2. The connected components of V (�D
3 )⊗2 and V (�D

2 )⊗2 isomorphic to V (ωD
1 ) for Uq (so6).

Example 4.1.3 Suppose n = 7 and consider the admissible column C of type D such
that w(C) = 677̄76̄. Then w(lC) = 34576̄, w(rC) = 675̄4̄3̄. So (t, t̄) = (2, 2̄) and,
by identifying the spin columns with the set of letters that they contain, we have lC =
{34576̄2̄1̄}, rC = {12675̄4̄3̄}, ltC = {234576̄1̄}, rtC = {1675̄4̄3̄2̄}. We have SD

n (w(C)) =
rtC ⊗ ltC and SD

n−1(w(C)) = rC ⊗ lC for rC /∈ B(v�D
n

).

Although C must be the empty column in Lemmas 4.1.1 and 4.1.2, we only use these
lemmas with h(C) ≥ 1 in the sequel. Figure 2 below describe the connected components
of V (�D

3 )⊗2 and V (�D
2 )⊗2 isomorphic to the vector representation V (�D

1 ) of Uq (so6) (see
also (5)).

Note that it is possible to describe explicitly the isomorphisms (SB)−1, (SD
n )−1 and

(SD
n−1)−1. The reader interested by this subject is referred to [11].

4.2. Plactic monoid for Gn

Let λ be a dominant weight such that λ /∈ �+. If λ ∈ P B
+ then λ has a unique decomposition

λ = �B
n +λ′ with λ′ ∈ �B

+. We set vB
λ = vλ′ ⊗v�B

n
. Then vB

λ is the highest weight vector of
B(vB

λ ), a connected component of G
B
n isomorphic to B B(λ). Denote by Y (λ) the diagram

obtained by adding a K.N-diagram of height n to Y (λ′).
When λ ∈ P D

+ , λ has a unique decomposition of type λ = �D
n + λ′ with λ′ ∈ �D

−
and ω̄D

n not appearing in λ′ or λ = �D
n−1 + λ′ with λ′ ∈ �D

+ and ωD
n not appearing in λ′.

According to this decomposition we set vD
λ = vλ′ ⊗ v�D

n
or vλ = vλ′ ⊗ v�D

n−1
. Then vD

λ is
the highest weight vector of B(vD

λ ), a connected component of G
D
n isomorphic to B D(λ).

If Y (λ′) = (Y ′, ε) (see 8) with ε ∈ {−, 0, +}, we set Y (λ) = (Y, ε) where Y is the diagram
obtained by adding a K.N diagram of height n to Y ′.
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Given a tabloid τ and a spin column C, the spin tabloid [C, T ] is obtained by adding C in
front of τ . The reading of the spin tabloid [C, τ ] is w([C, τ ]) = w(τ ) ⊗ C = w(τ )C. Note
that the vertices of B(vλ) are readings of spin tabloids.

Definition 4.2.1

• Let λ ∈ P B
+ such that λ /∈ �B

+. A spin tabloid is a spin tableau of type B and shape Y (λ)
if its reading is a vertex of B(vB

λ ).
• Let λ ∈ P D

+ such that λ /∈ �D
+ . A spin tabloid is a spin tableau of type D and shape Y (λ)

if its reading is a vertex of B(vD
λ ).

It follows from this definition that for T1 and T2 two spin tableaux T1 ∼ T2 ⇔ T1 = T2.
It is possible to extend Definition 3.1.17 to a spin tableau [C, C] of type D with C an
admissible column of type D. We will say that [C, C] contains an a-configuration even
or odd when this configuration appears in the tableau of two columns CCC where CC is
the admissible column of type D and height n containing the letters of C. Kashiwara and
Nakashima have obtained in [4] a combinatorial description of the orthogonal spin tableaux
equivalent to the following:

Theorem 4.2.2
• T = [C, T ] is a spin tableau of type B if and only if T is a tableau of type B and the rows

of [C, lC1] weakly increase from left to right.
• T = [C, T ] is a spin tableau of type D if and only if T is a tableau of type D, the

rows of [C, lC1] weakly increase from left to right and [C, lC1] does not contain an
a-configuration (even or odd ) with q(a) = n − a.

It follows from the definition above that for any spin tableau [C, T ] of type D

C ∈ B
(
�D

n

)
implies that the shape of T is (Y, ε) with ε �= −,

C ∈ B
(
�D

n−1

)
implies that the shape of T is (Y, ε) with ε �= +.

A generalized tableau is an orthogonal tableau or a spin orthogonal tableau. Similarly to
Section 3.2, the quotient sets Gn/

B∼ and Gn/
D∼ can be respectively identified with the sets

of generalized tableaux of type B and D. For x a letter of Bn or Dn and C a spin column of
height n whose greatest letter is z, we write x�C when x ≤/ z.

Definition 4.2.3 The monoid Pl(Bn) is the quotient set of B
∗
n by the relations:

• RB
i , i = 1, . . . , 5 defining Pl(Bn),

• RB
6 : for x ∈ Bn and C a spin column such that x � C; Cx ≡ C

′ where C
′ is the spin column

such that wt(C′) = wt(C) + wt(x),
• RB

7 : for x ∈ Bn and C a spin column such that x �/ C; Cx ≡ x ′C′ where{
x ′ = min{t ∈ C; t � x} if x � 0

x ′ = min{t ∈ C; t � x} ∪ {0} if x � n

and C
′ is the spin column such that wt(C′) = wt(C) + wt(x) − wt(x ′),

• RB
8 : for C an admissible column of type B, SB(w(C)) ≡ w(C).
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Lemma 2.1.1 implies that the highest weight vertex of the connected component contain-
ing a word Cx with x ∈ Bn and C a spin column may be written Cn x0 where x0 ∈ {0, 1}.
So Cx ∈ B(v�B

n
⊗ 0) or Cx ∈ B(v�B

n
⊗ 1). The following lemma gives the interpretation of

relations RB
6 and RB

7 in terms of crystal isomorphisms.

Lemma 4.2.4
1. The vertices of B(v�B

n
⊗ 0) are the words of the form Cx where C is a spin column and

x ∈ Bn such that x�C.
2. The vertices of B(v�B

n
⊗ 1) are the words of the form Cx where C is a spin column and

x ∈ Bn such that x�/ C.
3. Denote by � and � ′ the crystal isomorphisms:

�: B
(
v�B

n
⊗ 0

) → B
(
v�B

n

)
� ′: B

(
v�B

n
⊗ 1

) → B
(
1 ⊗ v�B

n

)
.

Then if the word Cx occurs in the left hand side a relation RB
6 (resp. of RB

7 ), �(Cx)
(resp. � ′(Cx)) is the word occurring in the right hand side of this relation.

Proof:

1. Consider a word Cx such that x � C and f̃ i (Cx) �= 0. Let y be the greatest letter of
C. Set f̃ i (Cx) = Ut where U is a spin column and t a letter of Bn . We are going to
show that t � U. If y is the greatest letter of U then t � x � y, hence t � U. Otherwise
f̃ i (Cx) = f̃ i (C)x thus εi (x) = 0 by (1). When i �= n, we must have y = i + 1, x � y
and x /∈ {ī, i + 1} because εi (x) = 0. Hence x � ī and x = t � U for ī is the greatest
letter of U. When i = n, y = n and x � n̄ because εn(x) = 0. We obtain similarly t � U.
Hence the set of words Cx such that x � C is closed under the action of the f̃ i . By similar
arguments we can prove that this set is also closed under the action of the ẽi . Moreover
v�B

n
⊗ 0 is the unique highest weight vertex among these words Cx . Hence B(v�B

n
⊗ 0)

contains exactly the words of the form Cx such that x � C.
2. Follows immediately from 1.
3. If x�C, �(Cx) is the unique spin column of weight wt(Cx), that is �(Cx) = C

′ with the
notation of RB

6 . When x �/ C, we consider the following cases:

(i) x ∈ C. Set �(Cx) = yD. Then we deduce from the equality wt(yD) = wt(Cx)
that y = x and D = C. Indeed xC is the unique vertex of B(1) ⊗ B(v�B

n
) of weight

wt(Cx). Hence y = x = t and D = C
′ with the notation of RB

6 .
(ii) x /∈ C. When x � 0, set x = p̄ and k̄ = min{t ∈ C; t � x}. Then {p, p −1, . . . , k +

1} ⊂ C. By using the formulas (1) and (2) we obtain

f̃ k · · · f̃ p−2 f̃ p−1(C p̄) = Ck̄

So, by (i), Ck̄ ∼ k̄C which implies

C p̄ ∼ ẽ p−1 · · · ẽk(k̄C) = k̄ẽ p−1 · · · ẽk(C) = k̄C
′
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with the notation of RB
7 . It means that �(Cx) = k̄C

′. When x = 0, we have
f̃ x ′−1 · · · f̃ 1 f̃ n(C0) = Ck̄. Because {n, n − 1, . . . , k + 1} ⊂ C and we terminate
as above. When x = p ≺ 0 and min{t ∈ C; t � x} ∪ {0} = k ≺ 0, we have
{ p̄, p + 1, . . . , k − 1} ⊂ C. So f̃ k−1 · · · f̃ p+1 f̃ p(Cp) = Ck and the proof is similar.
If min{t ∈ C; t � p}∪{0} = 0, { p̄, p + 1, . . . , n̄} ⊂ C. Then f̃ n · · · f̃ p+1 f̃ p(Cp) =
C0 ∼ n̄C

◦ with C
◦ = C−{n̄}+{n} by the case x = 0. So formulas (1) and (2) imply

that Cx ∼ ẽ p · · · ẽn(n̄C
◦) = ẽn(n̄)ẽ p · · · ẽn−1(C◦) = 0C

′ with the notation of RB
7 . It

means that �(Cx) = 0C
′.

Definition 4.2.5 The monoid Pl(Dn) is the quotient set of D
∗
n by the relations:

• RD
i , i = 1, . . . , 5 defining Pl(Dn),

• RD
6 : for x ∈ Dn and C a spin column such that x�C; Cx ≡ C

′ where C
′ is the spin column

such that wt(C′) = wt(C) + wt(x),
• RD

7 : for x ∈ Dn and C a spin column such that x �/ C; Cx ≡ x ′C′ where x ′ = min{t ∈
C; t � x} and C

′ is the spin column such that wt(C′) = wt(C) + wt(x) − wt(x ′),
• RD

8 : for C an admissible column of type D, SD
n (w(C)) ≡ w(C) and SD

n−1(w(C)) ≡ w(C).

We can prove by using similar arguments to those of Lemma 4.2.4 that the relations RD
6

and RD
7 read from left to right describe respectively the crystal isomorphisms{

B
(
v�D

n
⊗ n̄

) → B
(
v�D

n−1

)
B

(
v�D

n−1
⊗ n

) → B
(
v�D

n

) and

{
B

(
v�D

n
⊗ 1

) → B
(
1 ⊗ v�D

n

)
B

(
v�D

n−1
⊗ 1

) → B
(
1 ⊗ v�D

n−1

) . (15)

Lemma 4.2.6 Let w1 and w2 be two vertices of Gn such that w1 ≡ w2. Then for i =
1, . . . , n:

ẽi (w1) ≡ ẽi (w2) and εi (w1) = εi (w2),

f̃ i (w1) ≡ f̃ i (w2) and ϕi (w1) = ϕi (w2).

Proof: By induction we can suppose that w2 is obtained from w1 by applying only one
plactic relation. In this case we write w1 = uŵ1v and w2 = uŵ2v where u, v, ŵ1, ŵ2 are
factors of w1 and w2 such that ŵ1 ≡ ŵ2 by one of the relations Ri . Formulas (1) and (2)
imply that it is enough to prove the lemma for ŵ1 and ŵ2. This last point is immediate
because we have seen that each plactic relation may be interpreted in terms of a crystal
isomorphism.

So we obtain w1 ≡ w2 ⇒ w1 ∼ w2. To establish the implication w1 ∼ w2 ⇒ w1 ≡ w2,
it suffices, as in Section 3.2 to prove that two highest weight vertices of G

B
n (resp. GD

n ) with
the same weight are congruent in Pl(Bn) (resp. Pl(Dn)). Given a vertex w ∈ Gn , we know
by Theorems 4.2.2 and 3.1.18 that there exists a unique generalized tableau P(w) such that

w(P(w)) ∼ w.

Lemma 4.2.7 Let w be a highest weight vertex of Gn. Then w(P(w)) ≡ w.
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Proof: By using relations R6 and R7, w is congruent to a word uU such that u ∈ Gn and
U ∈ Gn . Relation R8 implies that any word consisting in an even number of spin columns
is congruent to a vertex of Gn . If U contains an even number of spin columns, there exists
v ∈ Gn such that w ≡ v. We have P(w) = P(v) because w ≡ v ⇒ w ∼ v. Thus
w(P(w)) = w(P(v)) ≡ v ≡ w and the lemma is proved. If w contains an odd number of
spin columns, there exists a vertex v ∈ Gn and a spin column C such that w ≡ vC. Set
P(v) = T . Then w ≡ w(T )C. Write T = CT̂ where C is the first column of T and T̂
the tableau obtained by erasing C in T . By Lemma 2.1.1, w(T ) is a highest weight vertex
because w is a highest weight vertex of Gn . In particular, w(C) is a highest weight vertex.
Set p = h(C).

Suppose first w ∈ G
B
n . We have SB(w(C)) = CnCp (see Lemma 4.1.1). So w ≡

w(T̂ )CnCpC. By Lemma 2.1.1 we must have εi (C) = 0 for i = p + 1, . . . , n. This implies
that the letters of {p + 1, . . . , n̄} do not appear in C. Indeed n̄ /∈ C otherwise εn(C) �= 0 and
if q̄ � n̄ is the lowest barred letter of {p + 1, . . . , n̄} appearing in C we obtain εq (C) = 1 �= 0
because q + 1 ∈ C. So C contains the letters of {p + 1, . . . , n}. Let {x1 ≺ · · · ≺ xs} be the
set of unbarred letters �p that occur in C. By Lemma 4.1.1, we have

SB(x1 · · · xs 0 · · · 0︸ ︷︷ ︸
n−p times

) = CpC.

Hence

w ≡ w(T̂ )Cn(x1 · · · xs 0 · · · 0︸ ︷︷ ︸
n−p times

)

and by applying relations RB
6 and RB

7 we havew ≡ w(T̂ )(x1 · · · xs)Cn . Write T ′ = xs → (→
· · · x1 → T̂ ). Then [Cn, T ′] is a spin orthogonal tableau and w(T ′)Cn ≡ w. So T ′ = P(w)
and the lemma is true.

Suppose now w ∈ G
D
n . If the shape of T̂ is (Y, ε) with ε �= −, we consider SD

n (w(C)) =
CnCp. Then [Cn, T̂ ] is a spin tableau and the proof is similar to that of the type B case. If
the shape of T̂ is (Y, ε) with ε = −, it suffices to consider SD

n−1(w(C)) = Cn−1Cn−1 where
instead of SD

n (w(C)).

Now if w1 and w2 are two highest weight vertices of Gn with the same weight λ, we have
P(w1) = P(w2) because there is only one orthogonal tableau of highest weight λ. Then
the lemma above implies that w1 ≡ w2. We can state the

Theorem 4.2.8 Let w1 and w2 be two vertices of Gn. Then w1 ∼ w2 if and only if w1 ≡ w2.

For any vertex w ∈ Gn , it is possible to obtain P(w) by using an insertion algorithm anal-
ogous to that described in Section 3. Considering the sequence of shape of the intermediate
generalized tableaux appearing during the computation of P(w), we obtain a Q-symbol
Q(w). Then for w1 and w2 two vertices of Gn we have:

w1 ↔ w2 ⇔ Q(w1) = Q(w1)
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where w1 ↔ w2 means that w1 and w2 occur in the same connected component of Gn . The
reader interested in this subject is referred to [11].
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