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1. Introduction

1.1. Motivation. Identities considered in this paper connect different enumerators of
circulant graphs mainly of prime, twice prime and prime-squared orders. The idea of this
paper goes back to the article [10], where we counted uniformly circulants of five kinds and
derived several identities. Here we consider six types of circulants: directed, undirected and
oriented circulants (specified by valency or not), and self-complementary circulants of the
same types. Most of the obtained identities may be called analytical (or formal) in the sense
that they rest exclusively on the enumerative formulae and follow from special properties
of the cycle indices of regular cyclic groups. It is more difficult to discover such an identity
than to prove it analytically. Almost all of the identities were first revealed and conjectured
based on numerical observations.

From the combinatorial point of view, the identities look rather strange. They are very
simple but no structural or algebraic properties of circulants are used to derive them (with
few exceptions), nor do we establish bijective proofs. The latter task is challenging al-
though in some cases the existence of a natural bijection between participating circulants
seems unlikely. Of course there may exist other combinatorial or algebraic explanations or
interpretations of the identities.

Several identities hold only for a special type of prime orders p, namely, those for which
p+1

2 is also prime. Such primes are familiar in number theory. Probably this is the first
combinatorial context where they play a substantial role.
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We cover here numerous identities that have been obtained previously and deduce about
ten new ones. We deliberately represent new identities in different equivalent forms and for-
mulate simple corollaries keeping in mind possible future generalizations and combinatorial
proofs. Some of the derived identities look more elegant than the original ones.

The present paper is partially based upon the work [11] that contains detailed enumerative
formulae for circulants, extensive tables and several identities. We reproduce all necessary
results from it, and our exposition is basically self-contained.

1.2. Definitions. Let n be a positive integer, Zn := {0, 1, 2, . . . , n − 1}. We denote by
Z

∗
n the set of numbers in Zn relatively prime to n (that is invertible elements modulo n).

So, |Z∗
n| = φ(n), where φ(n) is the Euler totient function. Z (n) denotes a regular cyclic

permutation group of order and degree n, i.e., the group generated by an n-cycle.
The cycle index of Z (n) is the polynomial

In(x) = 1

n

∑
r |n

φ(r )xn/r
r , (1.1)

where x stands for the sequence of variables x1, x2, x3, . . .

The term “graphs” means both undirected and directed graphs. We consider only simple
graphs, that is graphs without loops, multiple edges, or multiple arcs. An n-graph means a
graph of order n, where the order means the number of vertices. We refer to Harary [9] for
terminology concerning graphs.

An (undirected) edge is identified with the pair of the corresponding oppositely directed
arcs. Accordingly, an undirected graph is considered to be a (symmetric) digraph. On the
contrary, a digraph is oriented if it has no pair of oppositely directed arcs.

A circulant graph of order n, or simply a circulant, means a graph � on the vertex set Zn

which is invariant with respect to the cyclic permutation (0, 1, 2, . . . , n − 1), i.e., if (u, v)
is an edge of � then so is (u + 1, v + 1). In other words, this is a Cayley graph with respect
to the cyclic group Zn . Every circulant is a regular graph of some valency r .

A circulant � is specified by the set X = X (�) (called its connection set) of all vertices
adjacent to the vertex 0. � is undirected iff X is symmetric, which means that −X = X ,
where −X := {−v | v ∈ X}. On the contrary, � is oriented iff X is anti-symmetric, that is,
X ∩ (−X )= ∅. Such a circulant is a tournament iff X is complete, that is, X ∪ (−X ) = Z

′
n ,

where Z
′
n := Zn \ {0}. The complement of � is the circulant �′ with the connection set

X ′ := Z
′
n \ X .

Regular self-complementary graphs are of valency r = (n −1)/2 and, thus, exist only for
odd n. Moreover, an undirected self-complementary n-circulant can exist only if 4 | (n − 1)
since it contains n(n − 1)/4 edges. It is easy to see that any circulant tournament is self-
complementary.

Graphs are considered here up to isomorphism. We deal with the enumerators of (non-
isomorphic) circulants of several types. For convenience, the type is written as the subscript.
Henceforth:

• Cd(n) denotes the number of directed circulant graphs;
• Cu(n) denotes the number of undirected circulant graphs;
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• Co(n) denotes the number of oriented circulant graphs;
• Csd(n) and Csu(n) denote the numbers of self-complementary directed and undirected

circulant graphs respectively;
• Ct(n) denotes the number of circulant tournaments;
• Cd(n, r ), Cu(n, r ) and Co(n, r ) denote the corresponding numbers of circulants of order

n and valency r while cd(n, z), cu(n, z) and co(n, r ) are their generating functions by
valency (polynomials in z):

cd(n, z) :=
∑
r≥0

Cd(n, r )zr , cu(n, z) :=
∑
r≥0

Cu(n, r )zr ,

co(n, z) :=
∑
r≥0

Co(n, r )zr .

Clearly

Cd(n) = cd(n, 1), Cu(n) = cu(n, 1) and Co(n) = co(n, 1). (1.2)

These quantities and the corresponding circulants are considered in more detail in [10, 11].
In particular, the following simple uniform enumerative formulae have been obtained there:

1.3 Theorem (counting circulants of prime and twice prime order) For p an odd prime,

cd(p, z) = Ip−1(x)|{xr :=1+zr }r=1,2,...

cu(p, z) = I p−1
2

(x)|{xr :=1+z2r }r=1,2,...

co(p, z) = Ip−1(x)|{xr :=1}r even, {x2
r :=1+2zr }r odd

Csd(p) = Ip−1(x)|{xr :=2}r even, {xr :=0}r odd

Csu(p) = I p−1
2

(x)|{xr :=2}r even, {xr :=0}r odd

Ct(p) = Ip−1(x)|{xr :=0}r even, {x2
r :=2}r odd

cd(2p, z) = Ip−1(x)|{xr :=(1+zr )2 }r=1,2,...
· (1 + z)

cu(2p, z) = I p−1
2

(x)|{xr :=(1+z2r )2}r=1,2,...
· (1 + z)

co(2p, z) = Ip−1(x)|{xr :=1}r even, {xr :=1+2zr }r odd .

2. Cycle indices of cyclic groups

2.1. There are several technical formulae connecting the cycle indices I p−1
2

and Ip−1.
They are interesting per se and will be used in the proofs of subsequent identities.

For any natural m, we set

m := 2km ′

where m ′ is odd.
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In the polynomial I2m we first distinguish the terms corresponding to the divisors r with
the highest possible power of 2, i.e., k + 1:

I2m(x) = 1

2m

∑
r |2m

φ(r )x2m/r
r = 1

2m

( ∑
r |m

φ(r )x2m/r
r +

∑
r |m ′

φ(2k+1r )xm ′/r
2k+1r

)
.

After easy transformations taking into account that φ(2k+1r ) = 2kφ(r ) for odd r and k ≥ 0
we obtain

2.2 Lemma

2 I2m(x) = Im(x2) + Im ′
(
x(k+1)

)
(2.1)

where x2 := x2
1 , x2

2 , x2
3 , . . . and x(k+1) := x2k+1 , x2·2k+1 , x3·2k+1 . . .

Now in Im(x) we partition the set of divisors with respect to powers of 2:

Im(x) = 1

m

( ∑
r |m ′

φ(r )x2k m ′/r
r +

k∑
i=1

∑
r |m ′

2i−1φ(r )x2k−i m ′/r
2i r

)

and we do the same for I2m(x). Comparing similar terms in both formulae, we easily arrive
at the following:

Im(x) = I2m(0, x1, 0, x2, 0, x3, 0, . . .) + 1

2m

∑
r |m ′

φ(r )xm/r
r . (2.2)

The second summand on the right-hand side of formula (2.2) can be represented in
different useful forms. First of all, it is evidently equal to 1

2m

∑
r |m

r odd
φ(r )xm/r

r and also to
1
2Im(x1, 0, x3, 0, x5, 0, . . .). Hence

Im(x) = I2m(0, x1, 0, x2, 0, x3, 0, . . .) + 1

2
Im(x1, 0, x3, 0, x5, 0, . . .). (2.3)

Every term in Im contains only one variable. Therefore

Im(x1, 0, x3, 0, x5, 0, . . .) = Im(x) − Im(0, x2, 0, x4, 0, x6, 0, . . .).

Hence by (2.3) we have

2.3 Lemma

2 I2m(0, x1, 0, x2, 0, x3, 0, . . .) = Im(x) + Im(0, x2, 0, x4, 0, x6, 0, . . .), (2.4)
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that is,

2 I2m(y)|{yr :=0}r odd, {yr :=xr/2}r even = Im(x) + Im(y)|{yr :=0}r odd, {yr :=xr }r even .

Now Im(x1, 0, x3, 0, x5, 0, . . .) = 2 I2m(
√

x1, 0,
√

x3, 0,
√

x5, 0, . . .). Therefore by (2.3),

Im(x) = I2m(0, x1, 0, x2, 0, x3, 0, . . .) + I2m(
√

x1, 0,
√

x3, 0,
√

x5, 0, . . .). (2.5)

Since the non-zero variables in both right-hand side summands alternate, one may join them
into a single cycle index. This transformation gives rise to the following expression:

2.4 Lemma

Im(x) = I2m(
√

x1, x1,
√

x3, x2,
√

x5, x3, . . .). (2.6)

In other words, Im(x) = I2m(y)|{y2
r :=xr }r odd, {yr :=xr/2}r even .

Finally we need one further formula. Substituting (2.5) into (2.4) we obtain

I2m(0, x1, 0, x2, 0, x3, . . .) = I2m(
√

x1, 0,
√

x3, 0,
√

x5, . . .)

+ Im(0, x2, 0, x4, 0, x6, . . .). (2.7)

3. Known identities

3.1. Let p > 3 be a prime such that q = p+1
2 is also prime. Then by Klin–Liskovets–

Pöschel [10],

cu(p, z) = cd

(
p + 1

2
, z2

)
, (3.1)

that is, Cu(p, 2r ) = Cd( p+1
2 , r ), r ≥ 0, and

Csu(p) = Csd

(
p + 1

2

)
. (3.2)

These equalities follow directly from Theorem 1.3 and are in fact the first formal (i.e.,
analytically proved) identities for enumerators of circulants.

We note that

p − 1 = 2(q − 1),

which explains the particular role of such primes in our considerations.
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It follows from (3.1) that

Cu(p) = Cd

(
p + 1

2

)
. (3.1′)

As a matter of fact, these identities are valid for p = 3 as well.

3.2. If p > 3 is a prime such that q = p+1
2 is also prime, then

2co(p, z) = co(p + 1, z) + 1. (3.3)

Proof (cf. [11]): Identity (3.3) follows directly from Theorem 1.3 (the third and ninth
formulae) and from the polynomial equality

2 I′
2m(x) = I′

m(x2) + 1

for an arbitrary m where I′
m(x) := Im(x)|{xr :=1}r even . This equality is a particular case of

expression (2.1) since Im(1, 1, 1, . . .) = 1. Here we put 2m := p − 1 (hence m = q − 1).

Putting z := 1 in (3.3) we obtain

2Co(p) = Co(p + 1) + 1. (3.3′)

3.3. According to [10],

Csu(n) = 0 (3.4)

and

Csd(n) = Ct(n) (3.5)

if n = p or p2 and p ≡ 3 (mod 4).
Next, combining (3.5) with (3.2) we obtain

Csu(p) = Ct

(
p + 1

2

)
(3.6)

if both p and p+1
2 are primes and p ≡ 5 (mod 8).

3.4. For any prime p,

Csd(p) = Ct(p) + Csu(p). (3.7)



IDENTITIES FOR ENUMERATORS OF CIRCULANT GRAPHS 195

Since tournaments and undirected self-complementary circulants are particular cases of
directed self-complementary circulants (hence in general Csd(n) ≥ Ct(n)+Csu(n)), equal-
ity (3.7) has a simple interpretation: any directed self-complementary circulant graph of
prime order is either anti-symmetric (a tournament) or symmetric (an undirected graph).
This beautiful claim was first established by Chia–Lim [4] by means of simple algebraic
arguments. But in view of Theorem 1.3 (the fourth, fifth and sixth formulae), identity (3.7)
for odd p is a direct consequence of formula (2.7): merely substitute 2 for all variables
x1, x2, x3, . . . (and (3.7) is trivial for p = 2).

3.5. According to Fronček–Rosa–Šiŕaň [8] (see also [1]), undirected self-complementary
circulants of order n exist if and only if all prime divisors p of n are congruent to 1 modulo 4.
Hence (3.4) holds if there is a prime p | n, p ≡ 3 (mod 4).

3.6. For composite orders, directed self-complementary circulants that are neither tour-
naments nor undirected graphs do exist but are comparatively rare. They are called mixed.
The least suitable order is 15: Cmixed

sd (15) := Csd(15)−Csu(15)−Ct(15) = 20−0−16 = 4
(see Table 1 in the Appendix). We will return to mixed circulants in Sections 5 and 7.

3.7. The last known non-trivial identity concerns undirected circulants of even order and
odd valency:

Cu(2n, 2r + 1) = Cu(2n, 2r ) (3.8)

for any n and r . This identity is known to hold for square-free n. Moreover it has been
verified for all orders less 54 and is conjectured to be valid for all even orders [16]. We will
return to this conjecture in the last section.

3.8. There are also two useful but trivial valency-dependent identities:

Cu(2n + 1, 2r + 1) = 0, (3.9)

which is valid since an undirected graph of odd order cannot have all vertices of odd valency,
and

Ci(n, n − r − 1) = Ci(n, r ), i = u or d, (3.10)

which is valid by graph complementation.

4. New identities for circulants of prime order

4.1 Proposition For prime p,

2Csd(p) = Cu(p) + Csu(p). (4.1)

In particular,

Cu(p) = 2Csd(p) = 2Ct(p) if p ≡ 3 (mod 4). (4.1a)
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Proof: For p > 2, substitute 2 for all variables in formula (2.4) with p − 1 = 2m. By
Theorem 1.3 (the fourth, second and fifth formulae) and formula (1.2), we immediately
obtain (4.1). Clearly the second summand in (2.4) vanishes if m is odd (see (3.4)).

In Section 6.2 we will obtain a generalization of (4.1a) to p ≡ 1 (mod 4).

4.2 Remarks

1. Despite the fact that all participating quantities (and the corresponding numerical values
for small p) have been known long ago, this striking identity has evidently escaped
attention of the previous researchers including the present author. I do not know whether
it can be generalized to non-prime orders.

2. In view of equation (3.7), identity (4.1) can be represented equivalently in the following
form:

Cu(p) = Csd(p) + Ct(p) = Csu(p) + 2Ct(p). (4.1b)

3. It is easy to see that

Cu(n) + Csu(n)

2
= Cũ(n)

where Cũ(n) is the number of circulants up to complementarity (and isomorphism), that
is, different unordered pairs consisting of an undirected circulant and its complement [13].
Therefore identity (4.1) can be represented in the following simpler form:

Csd(p) = Cũ(p). (4.1c)

It turns into

Ct(p) = Cũ(p) if p ≡ 3 (mod 4). (4.1d)

4.3. We return to identity (3.3). There are subtler analogues of it for undirected and directed
circulants. By straightforward observations of numerical data and subsequent numerical ver-
ifications with the help of the formulae for prime and twice prime orders (Theorem 1.3, the
second, eighth, first and seventh formulae) we arrived at the following somewhat unusual
formulae:

4.4 Proposition If p and q = p+1
2 are both odd primes, then

4Cu(p) = Cu(p + 1) + 2Cu(2 p̃ + 1), (4.2)

2cu(p, z) = cu(p + 1, z)

1 + z
+ cu

(
2 p̃ + 1, z2k )

, (4.3)

4Cd(p) = Cd(p + 1) + 2Cu(2 p̃ + 1) (4.4)



IDENTITIES FOR ENUMERATORS OF CIRCULANT GRAPHS 197

and

2cd(p, z) = cd(p + 1, z)

1 + z
+ cu

(
2 p̃ + 1, z2k )

. (4.5)

In these equations, p̃ denotes the maximal odd divisor of p − 1 and

p − 1 := 2k+1 p̃.

Now cu(2 p̃ + 1, z) := cu(2 p̃ + 1, z) if 2 p̃ + 1 is a prime, otherwise cu is calculated by
the same formula (the second formula in Theorem 1.3) although in this case it does not
represent the number of non-isomorphic undirected circulants of order 2 p̃ + 1.

Proof: It is clear that formulae (4.2) and (4.4) follow directly from (4.3) and (4.5) respec-
tively. Formula (4.3) is a direct consequence of (2.1) with 2m = q −1 and the corresponding
formulae of Theorem 1.3 for orders p and p + 1 = 2q. So in the terminology of Section 2,
p̃ = m ′, where p−1 = 2(q−1) := 4m. Formula (4.5) follows similarly but with m = q−1.

For instance, by data in Table 2 one can verify that 2cd(37, z) = cd(38, z)/ (1 + z) +
cu(19, z2). Hence for the valency r = 4 we have numerically 2(1641 + 199) = 3679 + 1,
etc.

In particular, by (4.3),

2Cu(p, 4r + 2) = Cu(p + 1, 4r + 2) (4.3′)

when p and p+1
2 are both odd primes since other terms correspond to undirected circulants

of odd orders and odd valency and, thus, vanish.
From (4.2) and (4.4) we obtain the following identity not depending on p̃:

4.5 Corollary

4Cd(p) − Cd(p + 1) = 4Cu(p) − Cu(p + 1), p and
p + 1

2
odd primes. (4.6)

For example, for p = 13, 4 · 352 − 1400 = 4 · 14 − 48 = 8 (= 2Cu(7)). For p = 73
we obtain rather spectacularly 4 · 65588423374144427520 − 262353693496577709960 =
4 · 1908881900 − 7635527480 = 120 (= 2Cu(19)) (moreover, 120 = 4 · 14602 − 58288 =
4Cu(37) − Cu(38)).

Identity (4.6) can also be written as

4(Cd(p) − Cu(p)) = Cd(p + 1) − Cu(p + 1)
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or

4Cd\u(p) = Cd\u(p + 1), p and
p + 1

2
odd primes, (4.6′)

where Cd\u(n) denotes the number of directed circulant graphs that are not undirected
graphs.

Similarly from (4.3) and (4.5) we obtain

2(1 + z)cd\u(p, z) = cd\u(p + 1, z), p and
p + 1

2
odd primes, (4.7)

or, equivalently,

2(Cd\u(p, r )+Cd\u(p, r −1)) = Cd\u(p+1, r ), p and
p + 1

2
odd primes. (4.7′)

Thus, for example, for p = 13 and r = 5 we have Cd\u(13, 5) = 66 − 0 = 66,
Cd\u(13, 4) = 43 − 3 = 40, 66 + 40 = 106 and Cd\u(14, 5) = 217 − 5 = 2 · 106.

4.6 Remark Some number theoretic aspects of identities (4.2)–(4.7) together with (3.1)–
(3.3) are worth considering. There are 21 such pairs of primes p = 2q − 1 less 1000. The
first six p are 3, 5, 13, 37, 61 and 73 with their corresponding q = 2, 3, 7, 19, 31 and 37.
These are the sequences M2492 and M0849 in Sloane’s Encyclopedia [19] (resp., A005383
and A005382 in its extended on-line version [18]). In number theory, these numbers are
called nearly doubled primes, and pairs (q, p) are also known as Cunningham chains of
the second kind of length 2 (see, e.g., [7, 15]). By definition, such primes q resemble the
familiar Sophie Germain primes, that is, primes q such that p = 2q + 1 is also prime.
The latter primes play a different role in our formulae: the polynomial Ip−1 = I2q contains
the minimal possible (for p > 3) number of terms, four. In Section 7.8 we will discuss
some more advanced data concerning nearly doubled primes.

5. Circulants of prime-squared order

Throughout this section, p denotes an arbitrary odd prime.

5.1 Theorem [10, 11]

cd(p2, z) = C(p2; x, y)|{xr :=1+zr ,yr :=1+z pr }r=1,2,...

cu(p2, z) = C∗(p2; x, y)|{xr :=1+z2r ,yr :=1+z2pr }r=1,2,...

co(p2, z) = C(p2; x, y)|{xr :=1,yr :=1}r even,{x2
r :=1+2zr ,y2

r :=1+2z pr }r odd

Csd(p2) = C(p2; x, y)|{xr :=2,yr :=2}r even,{xr :=0,yr :=0}r odd

Csu(p2) = C∗(p2; x, y)|{xr :=2,yr :=2}r even,{xr :=0,yr :=0}r odd

Ct(p2) = C(p2; x, y)|{xr :=0,yr :=0}r even,{x2
r :=2,y2

r :=2}r odd
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where

C(p2; x, y) := 1

p
Ip−1(xp+1) − 1

p
Ip−1(xy) + Ip−1(x)Ip−1(y)

and

C∗(p2; x, y) := 1

p
I p−1

2
(xp+1) − 1

p
I p−1

2
(xy) + I p−1

2
(x)I p−1

2
(y)

with xp+1 := x p+1
1 , x p+1

2 , x p+1
3 , . . . and xy := x1 y1, x2 y2, x3 y3, . . .

5.2. Mixed self-complementary circulant graphs. By definition (see Section 3.6),

Cmixed
sd (p2) := Csd(p2) − Csu(p2) − Ct(p2). (5.1)

According to [11, 14], the number of non-CI (non-Cayley isomorphic) circulants of order
p2 is

Di(p2) = Ci(p)2, (5.2)

where i ∈ {sd, su, t}. We recall that a circulant is said to be non-CI if there exists a circulant
isomorphic but not Cayley isomorphic to it. A Cayley isomorphism means an isomorphism
that is induced by an automorphism of the underlying group Zn .

5.3 Proposition

Cmixed
sd (p2) = 2Csu(p)Ct(p) (5.3)

and

Cmixed
sd (p2) = Dsd(p2) − Dsu(p2) − Dt(p2), (5.4)

that is, the mixed self-complementary circulants of order p2 are exactly the non-CI mixed
self-complementary circulants.

Proof: We make use of an algebraic property of self-complementary circulants of prime-
power order. According to a result announced by Li [12] (Theorem 3.3), if � is a self-
complementary circulant of order p2 then one of the following holds.

• � can be obtained by means of the well-known (alternating cycle) construction discovered
by Sachs and Ringel.

• � = �1[�2] where �1 and �1 are self-complementary circulants of order p. Here �1[�2]
is the composition (called also the wreath or lexicographic product) defined as follows:
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in �1 we replace each vertex by a copy of �2; each edge of �1 gives rise to the edges
connecting all pairs of vertices from the two corresponding copies of �2.

The first construction generates only undirected circulants or tournaments (cf. [14]); more-
over, all of them are CI. Now, there is no mixed self-complementary circulant of order p
(this is identity (3.7)). Therefore the second construction gives rise to a mixed graph if and
only if one of the factors is an undirected self-complementary circulant and the other factor
is a tournament. This proves (5.3). Further, all self-complementary circulants � = �1[�2]
are non-CI [14]. This, together with (5.2), proves (5.4) (moreover, this proves (5.2) since
the composition of two undirected circulants is undirected and the composition of two
tournaments is a tournament).

It would be interesting to find an analytical derivation of these equations with the help of
Theorem 5.1.

By (5.1) we have

5.4 Corollary

Csd(p2) − Csu(p2) − Ct(p2) = Csd(p)2 − Csu(p)2 − Ct(p)2. (5.5)

5.5 Example p = 13. By Theorem 5.1, Csd(132) = 123992391755402970674764,
Csu(132) = 56385212104 and Ct(132) = 123992391755346585462636. It follows that
Cmixed

sd (132) = 24. Now Csd(13)2 = 82 = 64, Csu(13)2 = 22 = 4, Ct(13)2 = 62 = 36 and
64 − 4 − 36 = 24 = 2 · 2 · 6.

By (3.7) (or, instead, by (5.1) and (5.3)), identity (5.5) can be represented as follows:

Csd(p2) = Csu(p2) + Ct(p2) + 2Csu(p)Ct(p). (5.6)

We note also that if p ≡ 3 (mod 4), then Csu(p) and Csu(p2) vanish by (3.4), and iden-
tity (5.6) turns into (3.5) for n = p2.

6. Alternating sums

Alternating sums serve as one further source of formal identities. First consider directed cir-
culants of prime order. Take the generating function cd(p, t) and put t := −1. By Theorem 1.3
we see that the result is equal to Csd(p). By Theorem 5.1, the same equality is valid for the
orders n = p2. Moreover, by formulae given in [11] it is valid for arbitrary odd square-free
orders. Thus, for prime-squared and square-free n we have

cd(n, −1) = Csd(n). (6.1)
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The corresponding result holds for the same n for undirected circulants with respect to
the substitution t2 := −1, or t := √−1:

cu(n, t)|t2:=−1 = Csu(n). (6.2)

It is natural to suggest that both formulae are valid in general:

6.1. Conjecture. Identities (6.1) and (6.2) hold for any odd order n.

Trivially (by complementation), identity (6.1) holds also for even n, and (6.2) holds for
n ≡ 3 (mod 4), see (3.9) and (3.10). Identity (6.2) is also valid for n = 45 as numerical
data [16] show.

The behaviour of oriented circulant graphs is different. Numerical observations show
that

co(n, −1) = 0 (6.3a)

if n has at least one prime divisor p ≡ 3 (mod 4), otherwise

co(n, −1) = 1. (6.3b)

These identities hold for prime n = p by Theorem 1.3, for odd square-free n by [11] and
for n = p2 by Theorem 5.1. Again we conjecture them to be valid for all odd n.

For even square-free n we found that identity (6.3b) holds if n = 2n′, n′ odd, and (6.3a)
holds if n = 4n′, n′ square-free. The behaviour of co(n, −1) for n = 8n′, n′ > 1, remains
unknown.

Identities (6.1) and (6.2) for prime n = p transform (4.1) into the following equality:

2cd(p, −1) = cu(p, 1) + cu(p,
√−1). (6.4)

6.2. Even- and odd-valent circulants. Due to (6.1) and (6.2) we can find simple expres-
sions for the numbers of circulants of (non-specified) even (and, resp., odd) valency; for
undirected circulants we consider only odd orders and mean even and odd semi-valencies,
that is, valencies congruent, respectively, to 0 and 2 modulo 4. We use the superscript e and
o to denote these numbers. Now, formula (6.1) is nothing than Ce

d(n) − Co
d (n) = Csd(n).

Since Ce
d(n) + Co

d (n) = Cd(n), we obtain

Ce
d(n) = Cd(n) + Csd(n)

2
(6.5e)

and

Co
d (n) = Cd(n) − Csd(n)

2
. (6.5o)

So, these expressions hold for square-free, prime-squared and even n and are assumed
to hold for all orders.
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Similarly, (6.2) gives rise to

Ce
u(n) = Cu(n) + Csu(n)

2
, (6.6e)

and

Co
u (n) = Cu(n) − Csu(n)

2
(6.6o)

for undirected circulants of odd orders and even and, resp., odd semi-valency. Equations
(6.6e) and (6.6o) remain unproven unless n is square-free or prime-squared or congruent
to 3 modulo 4.

Clearly the respective expressions can be extracted from (6.3a) and (6.3b) for oriented
circulants.

Comparing formula (6.6e) for prime n = p with (4.1) we obtain the following curious
identity:

Ce
u(p) = Csd(p). (6.7)

This equation directly generalizes identity (4.1a) to p ≡ 1 (mod 4) because Ce
u(p) =

Cu(p)/2 for p ≡ 3 (mod 4). By (6.1), this may also be written as Ce
u(p) = cd(p, −1).

Finally, identities (4.1c) and (6.7) imply

Ce
u(p) = Cũ(p). (6.7′)

7. Discussion

As we saw above, the enumerative theory of circulants is full of hidden inter-dependencies.
Table 3 in the Appendix contains a summary of previous and new identities.

We expect that there should exist further generalizations of the obtained identities for
other classes of circulant graphs, first of all, for multigraphs and graphs with coloured or
marked edges.

7.1. Let C ′
sd(n) denote the number of directed self-complementary n-circulants whose

automorphism group coincides with Z (n). Such circulants are called strong. The numbers
of strong circulants can be counted for prime n = p by the following simple formula [4]
(cf. also [3]):

C ′
sd(p) = 1

p − 1

∑
d| p−1

2 , d odd

µ(d)2(p−1)/2d

where µ(d) is the number theoretic Möbius function. A similar formula is valid for undi-
rected self-complementary circulants without additional automorphisms [14]. Every strong
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self-complementary circulant digraph is a tournaments, and as calculations show, the val-
ues of C ′

sd(p) are close to those of Ct(p). Are there any interesting identities containing
C ′

sd(p)?

7.2. Is it possible to give a bijective proof of identity (4.1) or one of its clones (includ-
ing (6.7) and (6.7′))? This question looks especially intriguing in view of the fact that general
circulant graphs, unlike self-complementary circulants, are naturally partitioned by valency.
Hence such a bijection would introduce a certain external graduation (“pseudo-valency”)
into the class of self-complementary circulant digraphs of prime order. Self-complementary
circulants possess their own natural graduations. Such is, for instance, the one defined by the
number of orbits of the automorphism group in its action on the set of arcs. Is there a natural
graduation that corresponds to the valency of undirected circulants? We could put formally
xr := 1 + zr , r = 1, 2, . . . , in (2.4) instead of xr := 2. But is there a natural combinatorial
interpretation of the coefficients of the left hand-side polynomial thus obtained?

7.3. In general, analytical identities are characteristic for enumerators of self-
complementary graphs of diverse classes. Such results can be found in numerous publi-
cations. We refer to surveys by Robinson [17] and Farrugia [6]. In the latter, several open
questions are also posed. In particular, the problem K in Sect. 7.64 is just the problem of
finding a natural bijection for identity (3.2).

7.4. Open question for mixed circulants. Is identity (3.5) valid for the orders all
whose prime divisors are congruent to 3 modulo 4? In other words (in view of (3.4)), are
there mixed self-complementary circulants of such orders? We conjecture that mixed self-
complementary circulants of order n exist if and only if n is odd composite and has a prime
divisor p ≡ 1 (mod 4). If so, then, moreover, identity (3.7) holds if and only if all prime
divisors of n are congruent to 3 modulo 4.

This conjecture is valid for square-free orders, and it can also be proved for the prime-
power orders n = pk .

7.5. Here are the four non-isomorphic mixed self-complementary circulants of order 15
mentioned in Section 3.6:

X (�1) = {1, −2, 4, −8, 3, −3, 5}, X (�3) = {1, −1, 4, −4, 6, −6, 5},
X (�2) = {1, −2, 4, −8, 3, −3, −5}, X (�4) = {1, −1, 4, −4, 6, −6, −5}.

It is easy to see that �2
∼= −→

Z3[Z5] and �3
∼= Z5[

−→
Z3], where [ ] denotes the compositions

(see 5.3),
−→
Z3 a directed triangle and Z5 an undirected 5-cycle.

The next suitable order is 25; there are only 2 = 214 − 205 − 7 mixed self-complementary
circulants.

7.6. Conjectural (for arbitrary n) identity (3.8) can be interpreted as follows. Let � be
an arbitrary undirected circulant graph of order 2n and even valency. This means that its
connection set X does not contain n. Let �′ be another circulant graph isomorphic to �.
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Then the corresponding odd-valent circulant graphs with the connection sets X (�) ∪ {n}
and X (�′) ∪ {n} are, presumably, also isomorphic. We assume that the following stronger
assertion is valid:

Conjecture. If � and �′ are two isomorphic undirected circulant graphs of order 2n, then
there exists an isomorphism between them which is also an automorphism of the 1-valent
circulant graph �0 with the connection set X (�0) = {n}.

The graph �0 is a perfect matching (the set of “spokes” in Z2n). The point is that an
undirected circulant of odd valency can contain a lot of perfect matchings, and a particular
isomorphism of it does not have to preserve this specific matching. Moreover, the assertion
of the conjecture is not valid for Cayley graphs in general.

The conjecture is evident for CI circulant graphs and it is in conformity with the well-
known smallest example of a non-CI circulant graph constructed by Elspas and Turner [5].
Namely, the undirected circulant graphs of order 16 and valency 6 with the connection
sets X = {1, 2, 7, 9, 14, 15} and X ′ = {2, 3, 5, 11, 13, 14} are isomorphic but not Cayley
isomorphic. The isomorphism

{
i �→ i for even i

i �→ i + 4 for odd i

between them [5] clearly preserves the set of spokes �0, where X (�0) = {8}.

7.7. Can identities (4.2)–(4.7) (as well as (3.1)–(3.3)) be treated bijectively? What is then
the meaning of the sum or the corresponding difference? This question is particularly cu-
rious for (4.2) and (4.4) in the case of small p̃. The existence of such a treatment seems
doubtful at least for composite 2 p̃ + 1. In this respect, identities (4.6) and (4.7) appear to
be more promising.

7.8. Number theoretic digression. Return to 4.6. It is commonly believed that the set of
nearly doubled primes is infinite. Moreover, there is a conjecture that the number πndp(N )
of such primes p < N grows asymptotically with N as C N

(log N )2 where C = 1.320 . . . is
twice the familiar twin prime constant (curiously, for N = 10s , this fraction is close to 10s

4s2 ).
Recall that the number π (N ) of all primes p < N grows approximately as N

log N−1 .
At present, a lot of efforts in computational number theory are devoted to the search for

Cunningham chains of huge numbers, especially long chains (see, e.g., [7]). In particular,
the familiar program proth.exe by Y. Gallot allows to effectively verify the primality of
numbers m · 2k + 1 with a fixed m. Keeping in mind identities (4.2)–(4.5) we are especially
interested in nearly doubled primes q = m ·2k +1 and p = m ·2k+1 +1 with small m := p̃.
In general it is easy to see that such a pair q, p can exist only if 3 | m. Here are the current
numerical results for m ≤ 27.

Pairs of primes q, p of the form 3 · 2k + 1 occur twice for k ≤ 2000000: only with
k = 1, 2 and k = 5, 6 (p = 193); see the sequence M1318 in [19] (or A002253
[18]).
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Pairs of primes q, p of the form 9 · 2k + 1 occur four times for k ≤ 350000: with
k = 1, 2, k = 2, 3, k = 6, 7 and k = 42, 43; see M0751 (A002256).

Pairs of primes q, p of the form 15 · 2k + 1 occur three times for k ≤ 270000: with
k = 1, 2, k = 9, 10 and k = 37, 38; see M1165 (A002258).

Pairs of primes q, p of the form 21 · 2k + 1 occur three times for k ≤ 262000: with
k = 4, 5, k = 16, 17 and k = 128, 129 (see A032360 [18]).

Pairs of primes q, p of the form 27 · 2k + 1 occur twice for k ≤ 265000: with k = 19, 20
and k = 46, 47 (see A032363 [18]). This case gives rise to the least possible composite
value of 2 p̃+1, 55. So, for the first time it arises for p = 2q −1 = 27 ·220 +1 = 28311553.

Clearly 2 p̃ + 1 = q if 8 does not divide p − 1. For p < 2000, 2 p̃ + 1 turns out to
be composite only in three cases. q = 229, p = 457 is the least case; here p̃ = 57 and
2 p̃ + 1 = 115.

By numerical data we found out that no Cunningham chain exists for m = 51, 87 and
93 at least for k < 170000. Actually there are multipliers m = p̃, called the Sierpinski
numbers, such that all n = m ·2k +1, k = 1, 2, . . . , are composite, and Sierpinski numbers
may be divisible by 3. But are there other odd m divisible by 3 such that no Cunningham
chain exists for them? The answer to this question is affirmative, and m = 66741 is the
least known value (found by Y. Gallot, private communication; the point is that if k is an
even number, then 66741 · 2k + 1 is divisible by 5, 7, 13, 17 or 241).1

Here are two remarkable nearly doubled primes:2

141 · 2k + 1 are prime for k = 555, 556;
975 · 2k + 1 are prime for k = 6406, 6407.

7.9. For alternating sums, identities (6.1), (6.2), (6.5) and (6.6) are rather typical; cf., e.g.,
the paper [13], where other examples of even- and odd-specified quantities and the corre-
sponding half-sum expressions for them are given.

7.10. Finally, instead of equalities, we touch one important type of inequalities which
are frequently proved analytically. I conjecture that the sequence of the numbers Cu(p, 2r ),
1 < r < (p − 1)/2, is logarithmically concave, that is

Cu(n, 2r )2 ≥ Cu(n, 2r − 2)Cu(n, 2r + 2)

for any prime order n = p and 1 < r < (n − 1)/2. In other words, the sequence of ratios
Cu(p, 2r )/Cu(p, 2r +2) is increasing except for the first and the last member. For composite
orders this does not necessarily hold. In particular, the opposite inequality holds for r = 2
when n = 27, 121 and 169. However I do not know counterexamples for square-free
orders.

Appendix: Numerical results and summary

Tables 1 and 2 contain relevant numerical data obtained by Theorems 1.3 and 5.1 (they
partially reproduce data from [11]).
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Table 1. Non-isomorphic circulant graphs.

n Cd(n) Cu(n) Co(n) Csd(n) Csu(n) Ct(n)

2 2 2 1 0 0 0

3 3 2 2 1 0 1

4 6 4 2 0 0 0

5 6 3 3 2 1 1

6 20 8 5 0 0 0

7 14 4 6 2 0 2

8 46 12 7 0 0 0

9 51 8 16 3 0 3

10 140 20 21 0 0 0

11 108 8 26 4 0 4

12 624 48 64 0 0 0

13 352 14 63 8 2 6

14 1400 48 125 0 0 0

15 2172 44 276 20 0 16

17 4116 36 411 20 4 16

18 22040 192 1105 0 0 0

19 14602 60 1098 30 0 30

20 68016 336 2472 0 0 0

21 88376 200 4938 88 0 88

22 209936 416 5909 0 0 0

23 190746 188 8054 94 0 94

25 839094 423 26577 214 7 205

26 2797000 1400 44301 0 0 0

28 11276704 3104 132964 0 0 0

29 9587580 1182 170823 596 10 586

30 67195520 8768 597885 0 0 0

31 35792568 2192 478318 1096 0 1096

33 214863120 6768 2152366 3280 0 3280

34 536879180 16460 2690421 0 0 0

35 715901096 11144 5381028 5560 0 5472

37 1908881900 14602 10761723 7316 30 7286

38 7635527480 58288 21523445 0 0 0

39 11454711464 44424 48427776 21944 0 21856

41 27487816992 52488 87169619 26272 56 26216

42 183264019200 355200 290566525 0 0 0

43 104715443852 99880 249056138 49940 0 49940

44 440020029120 432576 523020664 0 0 0

46 1599290021720 762608 1426411805 0 0 0

47 1529755490574 364724 2046590846 182362 0 182362

49 6701785562464 798952 6724513104 399472 0 399472

50 28147499352824 3356408 14121476937 0 0 0
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Table 2. Enumeration of circulant graphs by valency (for selective orders).

Cu(n, r ), r even

n

r 7 13 14 19 37 38 61 62 73 74

0 1 1 1 1 1 1 1 1 1 1
2 1 1 2 1 1 2 1 2 1 2
4 1 3 5 4 9 17 15 29 18 36
6 1 4 8 10 46 92 136 272 199 398
8 3 5 14 172 340 917 1827 1641 3281

10 1 2 14 476 952 4751 9502 10472 20944
12 1 1 10 1038 2066 19811 39591 54132 108264
14 4 1768 3536 67860 135720 231880 463760
16 1 2438 4862 195143 390195 840652 1681300
18 1 2704 5408 476913 953826 2615104 5230208
20 2438 4862 1001603 2003005 7060984 14121968
22 1768 3536 1820910 3641820 16689036 33378072
24 1038 2066 2883289 5766243 34769374 69538738
26 476 952 3991995 7983990 64188600 128377200
28 172 340 4847637 9694845 105453584 210907168
30 46 92 5170604 10341208 154664004 309328008
32 9 17 4847637 9694845 202997670 405995326
34 1 2 3991995 7983990 238819350 477638700
36 1 1 2883289 5766243 252088496 504176992
38 1820910 3641820 238819350 477638700
40 1001603 2003005 202997670 405995326

Cd(n, r ) Co(n, r )

n n

r 7 13 14 19 31 37 38 13 14 37 38

0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 3 1 1 1 3 1 2 1 2
2 3 6 14 9 15 18 38 5 10 17 34
3 4 19 50 46 136 199 434 14 28 182 364
4 3 43 123 172 917 1641 3679 20 40 1360 2720
5 1 66 217 476 4751 10472 24225 16 32 7616 15232
6 1 80 292 1038 19811 54132 129208 6 12 33006 66012
7 66 292 1768 67860 231880 572024 113152 226304
8 43 217 2438 195143 840652 2145060 311168 622336
9 19 123 2704 476913 2615104 6911508 691494 1382988

10 6 50 2438 1001603 7060984 19352176 1244672 2489344
11 1 14 1768 1820910 16689036 47500040 1810432 3620864
12 1 3 1038 2883289 34769374 102916810 2112184 4224368
13 1 476 3991995 64188600 197915938 1949696 3899392
14 172 4847637 105453584 339284368 1392640 2785280
15 46 5170604 154664004 520235176 742752 1485504
16 9 4847637 202997670 715323334 278528 557056
17 1 3991995 238819350 883634026 65536 131072
18 1 2883289 252088496 981815692 7286 14572
19 1820910 238819350 981815692
20 1001603 202997670 883634026
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Table 3. Systematized list of identities.

No. Formula Ordersa Restrictions Types Proof Ref.

For self-complementary circulants:
1 (3.4) n ∃p|n, p ≡ 3 (mod 4) su Combin. [8]

Algebraic [1]
p or p2 p ≡ 3 (mod 4) Analytical [10]

2 (3.5) p or p2 p ≡ 3 (mod 4)b t, sd Analytical [10]
⇐(3.4), (5.3) (New)

3 (3.7) p – su, t, sd Algebraic [4]
n n = p, . . .b Analytical New

4 (4.1) p – u, su, sd Analytical New
5 (4.1a) p p ≡ 3 (mod 4) u, sd ⇐(4.1), (3.4) (New)
6 (4.1b) p – u, su, t ⇐(4.1), (3.7) (New)
7 (4.1c) p – ũ, sd ⇐(4.1) (New)
8 (4.1d) p p ≡ 3 (mod 4) ũ, t ⇐(4.1c) (New)
9 (5.5) p, p2 – su, t, sd ⇐(5.2), (5.4) (New)

10 (5.6) p, p2 – su, t, sd ⇐(3.7), (5.5) (New)
11 (3.6) p, q p+1=2q ≡ 6 (mod 8) su, t ⇐(3.2), (3.7) (New)
12 (3.2) p, q p + 1 = 2q su, sd Analytical [10]

Other valency independent:
13 (3.1′) p, q p + 1 = 2q u, d ⇐(3.1) [10]
14 (3.3′) p, p + 1 p + 1 = 2q o ⇐(3.3) (New)
15 (4.2) p, p + 1 p + 1 = 2q u ⇐(4.3) (New)
16 (4.4) p, p + 1 p + 1 = 2q u, d ⇐(4.5) (New)
17 (4.6) p, p + 1 p + 1 = 2q u, d ⇐(4.2), (4.4) (New)
18 (4.6′) p, p + 1 p + 1 = 2q d\u ⇐(4.6) (New)

By valency:
19 (3.1) p, q p + 1 = 2q u, d Analytical [10]
20 (3.3) p, p + 1 p + 1 = 2q o Analytical New
21 (4.3) p, p + 1 p + 1 = 2q u Analytical New
22 (4.3′) p, p + 1 p + 1 = 2q u ⇐(4.3) (New)
23 (4.5) p, p + 1 p + 1 = 2q u, d Analytical New
24 (4.7) p, p + 1 p + 1 = 2q d\u ⇐(4.3), (4.5) (New)
25 (3.8) 2n n < 27 u Exh. search [16]

square-freec Analytical [11]
26 (3.9) 2n + 1 – u Trivial –
27 (3.10) n – u; d Trivial –

Alternating:
28 (6.1) n p2 or sq. freed d, sd Analytical New
29 (6.2) n p2 or sq. freed u, su Analytical New
30 (6.3) n p2 or sq. freed,e o Analytical New
31 (6.4) p – u, d ⇐(6.1), (4.1) (New)

Miscellaneous (non-CI, mixed, of even semi-valency, . . .):
32 (5.2) p, p2 – su; t; sd Algebraic [14]
33 (5.3) p, p2 – su, t, sd Algebraic New
34 (5.4) p2 – su, t, sd Algebraic New
35 (6.7) p – ue, sd ⇐(6.1), (4.1) (New)
36 (6.7′) p – ue, ũ ⇐(6.7), (4.1c) (New)

a p and q are odd primes.
bHolds also for n = pk and square-free n with all prime divisors p ≡ 3 (mod 4).
Is conjectured to hold for arbitrary n with all such prime divisors.
cIs conjectured to hold for arbitrary even orders and odd valencies.
dIs conjectured to hold for arbitrary odd orders.
eThere is a corresponding conjecture for arbitrary even orders n, 8 �| n.
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Notes

1. Other details can be found at the site www.primepuzzles.net/problems/prob 036.htm (Problem 36. The
Liskovets—Gallot numbers) maintained by C. Rivera.

2. They, together with the latest bounds for k given above, are taken from the corresponding lists maintained in
the WWW by W. Keller and N. S. A. Melo, see www.prothsearch.net/riesel.html; cf. also [2].
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