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Abstract. Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and valency k ≥ 3. Let
θ0 > θ1 > · · · > θD denote the eigenvalues of � and let qh

i j (0 ≤ h, i, j ≤ D) denote the Krein parameters of �.
Pick an integer h (1 ≤ h ≤ D − 1). The representation diagram � = �h is an undirected graph with vertices
0, 1, . . . , D. For 0 ≤ i, j ≤ D, vertices i, j are adjacent in � whenever i �= j and qh

i j �= 0. It turns out that in
�, the vertex 0 is adjacent to h and no other vertices. Similarly, the vertex D is adjacent to D − h and no other
vertices. We call 0, D the trivial vertices of �. Let l denote a vertex of �. It turns out that l is adjacent to at least
one vertex of �. We say l is a leaf whenever l is adjacent to exactly one vertex of �. We show � has a nontrivial
leaf if and only if � is the disjoint union of two paths.
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1. Introduction

In recent research on distance-regular graphs, the following theme emerges. Let � denote
a distance-regular graph and let E and F denote primitive idempotents of �. When is the
entrywise product E ◦ F a linear combination of a “small” number of primitive idempotents
of �?

We refer the reader to the articles of MacLean [5–7], Pascasio [9–11], and the present
author [4] for work on this theme. In this paper we consider the case where E ◦ F is a linear
combination of F and one other primitive idempotent. To keep things simple, we assume
� is bipartite. Before we state our main result, we recall a bit of notation.

Let � = (X, R) denote a bipartite distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. (Definitions are contained in the next section.) Let θ0 > θ1 > · · · > θD

denote the eigenvalues of �. Recall that θ0 = k and θD = −k; we call θ0 and θD the trivial
eigenvalues of �. For 0 ≤ i ≤ D, let Ei denote the primitive idempotent of � associated
with θi . Let qh

i j (0 ≤ h, i, j ≤ D) denote the Krein parameters of �. Recall that

Ei ◦ E j = |X |−1
D∑

h=0

qh
i j Eh (0 ≤ i, j ≤ D),

where ◦ denotes entrywise multiplication.
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Pick an integer h (1 ≤ h ≤ D − 1). We recall the representation diagram � = �h

[12–14]. � is an undirected graph with vertices 0, 1, . . . , D. For 0 ≤ i, j ≤ D, vertices i
and j are adjacent in � whenever i �= j and qh

i j �= 0.
It turns out that in �, the vertex 0 is adjacent to h and no other vertices. Similarly, the

vertex D is adjacent to D − h and no other vertices. We call 0 and D the trivial vertices of
�.

Let l denote a vertex of �. As we see in the next section, l is adjacent to at least one
vertex of �. We say l is a leaf whenever l is adjacent to exactly one vertex of �. Our main
result is the following.

Theorem 1.1 Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. Pick an integer h (1 ≤ h ≤ D − 1). The representation diagram �h has a
nontrivial leaf if and only if �h is the disjoint union of two paths.

Hypercubes and doubled Odd graphs have representation diagrams satisfying the con-
ditions of Theorem 1.1. At diameters greater than 5, these are the only such graphs
known.

2. Preliminaries

Let � = (X, R) denote a finite, undirected, connected graph, without loops or multi-
ple edges, with vertex set X , edge set R, path-length distance function ∂ , and diameter
D := max{∂(x, y) : x, y ∈ X}. Let k denote a nonnegative integer. We say � is regu-
lar with valency k whenever for all x ∈ X , |{z ∈ X : ∂(x, z) = 1}| = k. We say � is
distance-regular whenever for all integers h, i, j (0 ≤ h, i, j ≤ D) and all x, y ∈ X with
∂(x, y) = h, the scalar ph

i j = |{z ∈ X : ∂(x, z) = i, ∂(y, z) = j}| is independent of
x and y. For notational convenience, set ci := pi

1i−1 (1 ≤ i ≤ D), ai := pi
1i (0 ≤ i ≤ D),

bi := pi
1i+1 (0 ≤ i ≤ D − 1), and c0 := 0, bD := 0. For the rest of this section, suppose �

is distance-regular. To avoid trivialities, assume D ≥ 3 and k ≥ 3. We observe � is regular
with valency k = b0. Further, we observe ci + ai + bi = k for 0 ≤ i ≤ D.

We say � is bipartite whenever there exists a partition X = X+ ∪ X− such that no edge
joins two vertices in the same cell of the partition. Observe � is bipartite if and only if
ai = 0 (0 ≤ i ≤ D), and in this case,

ci + bi = k (0 ≤ i ≤ D). (1)

For the rest of this section, suppose � is bipartite.
Let ∼ denote the binary relation on X such that for any x, y ∈ X , we have x ∼ y

whenever x = y or ∂(x, y) = D. We say � is antipodal whenever ∼ is an equivalence
relation.

Let R denote the field of real numbers. By MatX (R) we mean the R-algebra consisting
of all matrices whose entries are in R and whose rows and columns are indexed by X .
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For each integer i (0 ≤ i ≤ D), let Ai denote the matrix in MatX (R) with x, y entry

(Ai )xy =
{

1 if ∂(x, y) = i,

0 otherwise
(x, y ∈ X ).

Abbreviate A := A1. We call A the adjacency matrix of �. Let M denote the sub-algebra
of MatX (R) generated by A. We call M the Bose-Mesner algebra of �. By [1, Theorem
20.7], A0, A1, . . . , AD is a basis for M .

By [2, Theorem 2.6.1], M has a second basis E0, E1, . . . , ED such that Ei E j = δi j Ei

(0 ≤ i, j ≤ D). We call E0, E1, . . . , ED the (primitive) idempotents of �.
Observe there exists a sequence of scalars θ0, θ1, . . . , θD taken from R such that

A =
D∑

i=0

θi Ei .

We call θi the eigenvalue of � associated with Ei . Note θ0, θ1, . . . , θD are distinct since
A generates M . Throughout this paper, we assume the eigenvalues are labeled so that
θ0 > θ1 > · · · > θD . By [2, p. 82], θ0 = k and θD−i = −θi for 0 ≤ i ≤ D. We call θ0 and
θD the trivial eigenvalues of �.

Let θh denote an eigenvalue of � and let Eh denote the associated idempotent. Since
A0, A1, . . . , AD is a basis for M , there exist real scalars σ0, σ1, ..., σD such that

Eh = mh |X |−1
D∑

i=0

σi Ai , (2)

where mh = rank Eh . We call σ0, σ1, ..., σD the cosine sequence associated with θh . By [2,
p. 128],

ciσi−1 + biσi+1 = θhσi (0 ≤ i ≤ D), (3)

where σ−1 and σD+1 denote indeterminates.
Let ◦ denote entrywise multiplication in MatX (R) and observe

Ai ◦ A j = δi j Ai (0 ≤ i, j ≤ D). (4)

This implies M is closed under ◦. Since E0, E1, . . . , ED is a basis for M , there exist scalars
qh

i j ∈ R (0 ≤ h, i, j ≤ D) such that

Ei ◦ E j = |X |−1
D∑

h=0

qh
i j Eh . (5)

We call the qh
i j the Krein parameters of �.
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In the next two lemmas, we recall a few basic facts about the product ◦ and the Krein
parameters.

Lemma 2.1 [9, Lemma 3.3, Theorem 3.6] Let � = (X, R) denote a bipartite distance-
regular graph with diameter D ≥ 3.

(i) E0 ◦ Ei = |X |−1 Ei for 0 ≤ i ≤ D.

(ii) ED ◦ Ei = |X |−1 ED−i for 0 ≤ i ≤ D.

(iii) For 1 ≤ i, j ≤ D − 1, Ei ◦ E j is not a scalar multiple of a single idempotent of �.

Lemma 2.2 Let � denote a bipartite distance-regular graph with diameter D ≥ 3.
(i) qh

i j = qh
ji (0 ≤ h, i, j ≤ D).

(ii) mhqh
i j = mi qi

jh = m j q
j

hi (0 ≤ h, i, j ≤ D).
(iii) qh

0 j = δhj (0 ≤ h, j ≤ D).
(iv) qh

Dj = δh,D− j (0 ≤ h, j ≤ D).
(iii) q D−h

D−i, j = qh
i j (0 ≤ h, i, j ≤ D).

Proof: (i) Immediate from (5). (ii) [2, Lemma 2.3.1(iv)] (iii) Immediate from
Lemma 2.1(i). (iv) Immediate from Lemma 2.1(ii). (v) Taking the entrywise product of
both sides of (5) with ED and applying Lemma 2.1(ii), we get the result.

Definition 2.3 [12] Let � denote a distance-regular graph with diameter D. Pick an integer
h (0 ≤ h ≤ D). We define the representation diagram � = �h . � is an undirected graph
with vertices 0, 1, . . . , D. For 0 ≤ i, j ≤ D, vertices i and j are adjacent in � whenever
i �= j and qh

i j �= 0. We sometimes say � is the representation diagram associated with the
eigenvalue θh .

Let C denote a connected component of �. We say C is a path whenever there exists an
ordering v0, v1, . . . , vl of the vertices of C such that for 0 ≤ i, j ≤ l, vertices vi , v j are
adjacent in � if and only if |i − j | = 1.

Lemma 2.4 Let � denote a bipartite distance-regular graph with diameter D ≥ 3. With
reference to Definition 2.3, the following hold.

(i) For 0 ≤ h, i, j ≤ D, vertices i and j are adjacent in �h if and only if D − i and
D − j are adjacent in �h.

(ii) �0 has no edges.
(iii) In �D, vertex i (0 ≤ i ≤ D) is adjacent to D − i and no other vertices.

(If D is even then vertex D/2 is not adjacent to any vertices.)
(iv) Suppose h �= 0. In �h, vertex 0 is adjacent to h and no other vertices. Moreover,

vertex D is adjacent to D − h and no other vertices.
(v) Suppose 1 ≤ h ≤ D − 1. Each vertex of �h is adjacent to at least one other vertex.

Proof: (i)–(iv) Immediate from Lemma 2.2. (v) Let i denote a vertex of �h and suppose i is
not adjacent to any vertices of �h . By (iv) above, we find 1 ≤ i ≤ D − 1. By Definition 2.3,
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qh
i j = 0 for j �= i . Applying Lemma 2.2(ii), we find q j

hi = 0 for j �= i , which implies
Eh ◦ Ei is a scalar multiple of Ei . This contradicts Lemma 2.1(iii).

We call 0 and D the trivial vertices of a representation diagram.

Lemma 2.5 Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. The following are equivalent for 1 ≤ h ≤ D − 1.
(i) �h is not connected.

(ii) � is antipodal and h is even.
Suppose (i)–(ii) hold. Then �h has two connected components, one consisting of the even
vertices and one consisting of the odd vertices.

Proof: Let σ0, σ1, ..., σD denote the cosine sequence associated with θh .
(i) → (ii) Since �h is not connected and by [2, Proposition 2.11.1], σi = 1 for some i

(1 ≤ i ≤ D). By [2, Proposition 4.4.7], � is antipodal and σD = 1. Now h is even by [2,
p. 142].

(ii) → (i) By [2, p. 142], σD = 1. Now �h is not connected by [2, Proposition 2.11.1].
Suppose (i)–(ii) hold. We already mentioned σD = 1. By [2, Proposition 4.4.7], σi �= 1

for 1 ≤ i ≤ D − 1. Now by [2, Proposition 2.11.1], �h has two components. By [2, p. 413],
qh

i j = 0 if one of i and j is even and the other is odd. The result follows.

Example 2.6 Let � denote a bipartite distance-regular graph with diameter 3 and valency
k ≥ 3. With reference to Definition 2.3, the following hold.

(i) �1 is the path 0, 1, 2, 3.
(ii) Suppose � is not antipodal. Then �2 is the path 0, 2, 1, 3.

(iii) Suppose � is antipodal. Then �2 is the disjoint union of the paths 0, 2 and 1, 3.

Proof: (i) By Lemma 2.4(iv), vertex 0 is adjacent to 1 and no other vertices. Also, vertex
3 is adjacent to 2 and no other vertices. By Lemma 2.5, �1 is connected, so 1 is adjacent to
2 and we are done.

(ii), (iii) Similar to the proof of (i).

3. Leaves

Definition 3.1 Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. Fix h (1 ≤ h ≤ D − 1) and let � = �h denote a representation diagram
of �. Let l denote a vertex of �. By Lemma 2.4(v), l is adjacent to at least one vertex of
�. We say l is a leaf whenever l is adjacent to exactly one vertex of �. Observe l is a leaf
if and only if there exists an idempotent F of � with F �= El such that

Eh ◦ El ∈ Span {El , F}. (6)

By Lemma 2.4, l is a leaf if and only if D − l is a leaf. Also, the trivial vertices 0 and D of
� are leaves.
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Theorem 3.2 Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. Let �h (1 ≤ h ≤ D − 1) denote a representation diagram of �. Suppose
�h has at least one nontrivial leaf. Then the following hold.
(i) �h is the disjoint union of two paths, one consisting of the even vertices and one

consisting of the odd vertices.
(ii) � is antipodal and h is even.

Proof: We abbreviate � := �h .
(i) If D = 3 the result follows from Example 2.6, so suppose D ≥ 4. Let σ0, σ1, ..., σD

denote the cosine sequence associated with θh . We show there exists β ∈ R such that
σi−1 − βσi + σi+1 is independent of i for 1 ≤ i ≤ D − 1.

By assumption, � has a nontrivial leaf. Let us denote this leaf by l. Let t denote the vertex
of � to which l is adjacent. Apparently, t �= l and there exist ε, ζ ∈ R with ζ �= 0 such that

Eh ◦ El = εEl + ζ Et . (7)

Let ρ0, ρ1, . . . , ρD and τ0, τ1, . . . , τD denote the cosine sequences associated with θl and
θt , respectively. We use (2) to eliminate Eh , El and Et from (7) and then apply (4). In the
result, we equate coefficients of Ai and simplify to find that for 0 ≤ i ≤ D,

σiρi = xρi + yτi , (8)

where x = |X |m−1
h ε and y = |X |mt m

−1
h m−1

l ζ . Note y �= 0 because ζ �= 0.
We use (8) for 0 ≤ i ≤ 4. Repeatedly applying (3) and (1), we find for 0 ≤ i ≤ 4 that

σi = fi (θh), ρi = fi (θl) and τi = fi (θt ), where the functions fi are given by

f0(λ) = 1, f1(λ) = λ

k
, f2(λ) = λ2 − k

kb1
, (9)

f3(λ) = λ3 − (k + c2b1)λ

kb1b2
, f4(λ) = λ4 − (k + c2b1 + c3b2)λ2 + c3kb2

kb1b2b3
. (10)

We set i = 0, 1 in (8) to obtain two linear equations in x and y. To solve this system, we
first verify the coefficient matrix is nonsingular. This coefficient matrix is

(
ρ0 τ0

ρ1 τ1

)
. (11)

Evaluating the determinant of (11) using (9), we find this determinant equals (θt − θl)k−1.
This is nonzero, so the coefficient matrix is nonsingular. We now solve the system of
equations to find in view of (9) that

x = θhθl − θt k

k(θl − θt )
, y = θl(k − θh)

k(θl − θt )
. (12)
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Note θl is a factor of y and so cannot be zero. We set i = 2 in (8), apply (9) and (12) and
solve for θt to get

θt = θ2
l θh + θ2

l − θhk − k2

b1θl
. (13)

We set i = 3 in (8), apply (9)–(10), (12) and (13), and simplify to find

(
k2 − θ2

h

)(
k2 − θ2

l

)
θl k2b3

1b2
2

(
(b2 − (c2 − 1)θh)θ2

l − b2(k + θh)
) = 0. (14)

The fraction is nonzero and b2(k + θh) �= 0, so b2 − (c2 − 1)θh �= 0. We solve (14) for θ2
l

to get

θ2
l = (k + θh)b2

b2 − (c2 − 1)θh
. (15)

We set i = 4 in (8) and apply (9)–(10), (12), (13) and (15) to find the left side minus the
right is

(
k2 − θ2

h

)
(k + θh)

(
k2 − θ2

l

)
c2

θ2
l (b2 − (c2 − 1)θh)2k2b2

1b2b2
3

(16)

times

(b2 − b3)θ3
h + (b2 − b3c2)θ2

h + (
2b3b2 − b3c2b2 − b2

2

)
θh + b2

2(b3 − 1). (17)

Since (16) is nonzero, (17) must be zero.
By [3, Lemma 9.3] and since (17) is zero, there exists β ∈ R such that σi−1 −βσi +σi+1

is independent of i for 1 ≤ i ≤ D − 1. Now, by [4, Theorem 5.4], either � is a path or �

is as in (i). Since � has a nontrivial leaf, � cannot be a path. So � is as in (i), as desired.
(ii) By (i), � is not connected. Now the result follows by Lemma 2.5.

Example 3.3 Let � denote a bipartite antipodal distance-regular graph with diameter 4
and valency k ≥ 3. With reference to Definition 2.3, the following hold.

(i) �2 is the disjoint union of the paths 0, 2, 4 and 1, 3.
(ii) Suppose h = 1 or h = 3. Then �h has no nontrivial leaves.

Proof: (i) Immediate from Lemma 2.4(iv) and Lemma 2.5.
(ii) Since h is odd, �h has no nontrivial leaves by Theorem 3.2.

Example 3.4 Let � denote a bipartite antipodal distance-regular graph with diameter 5
and valency k ≥ 3. With reference to Definition 2.3, the following hold.



252 LANG

(i) �2 is the disjoint union of the paths 0, 2, 4 and 5, 3, 1.
(ii) �4 is the disjoint union of the paths 0, 4, 2 and 5, 1, 3.

(iii) Suppose h = 1 or h = 3. Then �h has no nontrivial leaves.

Proof: (i) By Lemma 2.5, the even vertices of �2 comprise a connected component.
This component consist of the path 0, 2, 4 since vertex 0 is adjacent to 2 but not 4 by
Lemma 2.4(iv). Now the odd vertices form the path 5, 3, 1 by Lemma 2.4(i).

(ii) Similar to the proof of (i).
(iii) Since h is odd, �h has no nontrivial leaves by Theorem 3.2.

In the next lemma and the following two examples, we recall some information about
the D-cube.

Lemma 3.5 [2, Section 9.2] Let � denote the D-cube.
(i) � is antipodal.

(ii) For 0 ≤ h, i, j ≤ D, qh
i j �= 0 if |i − j | = h and qh

i j = 0 if |i − j | > h.

Example 3.6 Let D denote an odd integer with D ≥ 3 and let � denote the D-cube. With
reference to Definition 2.3, the following hold.

(i) �2 is the disjoint union of the paths 0, 2, 4, . . . , D − 1 and 1, 3, 5, . . . , D.
(ii) �D−1 is the disjoint union of the paths 0, D − 1, 2, D − 3, . . . and D, 1, D − 2, 3, . . ..

(iii) Suppose h �= 2 and h �= D − 1. Then �h has no nontrivial leaves.

Proof: (i) � is antipodal by Lemma 3.5(i), so by Lemma 2.5, �2 has two connected
components, one consisting of the even vertices and one consisting of the odd vertices. For
0 ≤ i, j ≤ D, we see by Lemma 3.5(ii) that q2

i j �= 0 if |i − j | = 2 and q2
i j = 0 if |i − j | > 2.

The result follows.
(ii) We mentioned � is antipodal, so by Lemma 2.5, �D−1 has two connected components,

one consisting of the even vertices and one consisting of the odd vertices. For 0 ≤ i, j ≤ D,
we see by Lemma 3.5(ii) that q1

i j �= 0 if |i − j | = 1 and q1
i j = 0 if |i − j | > 1. Applying

Lemma 2.2(v), we then get q D−1
D−i, j �= 0 if |i − j | = 1 and q D−1

D−i, j = 0 if |i − j | > 1. The
result follows.

(iii) Follows from Theorem 3.2, [4, Theorem 5.4]and [3, Example 17.1]

Example 3.7 Let D denote an even integer with D ≥ 4 and let � denote the D-cube.
With reference to Definition 2.3, the following hold.

(i) �2 is the disjoint union of the paths 0, 2, 4, . . . , D and 1, 3, 5, . . . , D − 1.
(ii) Suppose h �= 2. Then �h has no nontrivial leaves.

Proof: (i) By Lemma 2.5, �2 has two connected components, one consisting of the even
vertices and one consisting of the odd vertices. For 0 ≤ i, j ≤ D, we see by Lemma 3.5(ii)
that q2

i j �= 0 if |i − j | = 2 and q2
i j = 0 if |i − j | > 2. The result follows.

(ii) Follows from Theorem 3.2, [4, Theorem 5.4]and [3, Example 17.1].
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Theorem 3.8 Let � denote a bipartite distance-regular graph with diameter D ≥ 3 and
valency k ≥ 3. Let � = �h (1 ≤ h ≤ D − 1) denote a representation diagram of �.
Suppose � has a nontrivial leaf. Suppose � is not one of Examples 2.6, 3.3, 3.4, 3.6, 3.7.
Then either (a) D is odd and h = D − 1 or (b) D ≡ 1(mod4) and h = (D − 1)/2. In case
(a) the nontrivial leaves are (D − 1)/2 and (D + 1)/2. In case (b) the nontrivial leaves are
1 and D − 1.

Proof: Let l denote a nontrivial leaf of �. Then D − l is also a leaf. Replacing l by D − l
if necessary, we assume l ≤ D/2. Recall Eh ◦ El is a linear combination of El and one other
idempotent of �. By [7, Lemma 4.4], � is either 2-homogeneous in the sense of Nomura
[8] or taut in the sense of MacLean [7].

First suppose � is 2-homogeneous. By [8, Theorem 1.2], either � is antipodal with D ≤ 5
or � is the D-cube. But this implies � is as in one of the examples we excluded.

Next suppose � is taut and D is even. Set d := D/2. By [7, Theorem 4.3], l is either 1
or d . By [7, Corollary 6.6], l = d −1. Combining these facts, we find l = 1 and d = 2. Now
D = 2d = 4. Recall � is antipodal by Theorem 3.2(ii). Now � is as in Example 3.3(ii),
which is a contradiction.

Finally, suppose � is taut and D is odd. Set d := (D − 1)/2. By Theorem 3.3(ii), h is
even. By [7, Theorem 4.3], the ordered pair (h, l) is one of (D−1, d), (d, 1), and (D−d, 1).
First suppose (h, l) = (D − 1, d). Then we have (a). Next suppose (h, l) = (d, 1). Since
D = 2d + 1 and since d = h is even, we have (b). Finally, suppose (h, l) = (D − d, 1).
By [7, Theorem 6.2, Corollary 6.3], ED−d ◦ E1 ∈ Span {ER, ES} for some R, S such that
1 < S < R. But this contradicts (6).

Note 3.9 The doubled Odd graph 2.Ok is the only known graph for which (a) holds in
Theorem 3.8. There is no known graph for which (b) holds.
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