Leaves in Representation Diagrams of Bipartite Distance-Regular Graphs

MICHAEL S. LANG

mlang@bradley.edu
Mathematics Department, Bradley University 1501 W. Bradley Ave., Peoria, IL 61625
Received May 22, 2001; Revised January 27, 2003; Accepted February 10, 2003

Abstract

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. Let $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$ denote the eigenvalues of Γ and let $q_{i j}^{h}(0 \leq h, i, j \leq D)$ denote the Krein parameters of Γ. Pick an integer $h(1 \leq h \leq D-1)$. The representation diagram $\Delta=\Delta_{h}$ is an undirected graph with vertices $0,1, \ldots, D$. For $0 \leq i, j \leq D$, vertices i, j are adjacent in Δ whenever $i \neq j$ and $q_{i j}^{h} \neq 0$. It turns out that in Δ, the vertex 0 is adjacent to h and no other vertices. Similarly, the vertex D is adjacent to $D-h$ and no other vertices. We call $0, D$ the trivial vertices of Δ. Let l denote a vertex of Δ. It turns out that l is adjacent to at least one vertex of Δ. We say l is a leaf whenever l is adjacent to exactly one vertex of Δ. We show Δ has a nontrivial leaf if and only if Δ is the disjoint union of two paths.

Keywords: primitive idempotent, eigenvalue, association scheme, Q-polynomial, antipodal

1. Introduction

In recent research on distance-regular graphs, the following theme emerges. Let Γ denote a distance-regular graph and let E and F denote primitive idempotents of Γ. When is the entrywise product $E \circ F$ a linear combination of a "small" number of primitive idempotents of Γ ?

We refer the reader to the articles of MacLean [5-7], Pascasio [9-11], and the present author [4] for work on this theme. In this paper we consider the case where $E \circ F$ is a linear combination of F and one other primitive idempotent. To keep things simple, we assume Γ is bipartite. Before we state our main result, we recall a bit of notation.

Let $\Gamma=(X, R)$ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. (Definitions are contained in the next section.) Let $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$ denote the eigenvalues of Γ. Recall that $\theta_{0}=k$ and $\theta_{D}=-k$; we call θ_{0} and θ_{D} the trivial eigenvalues of Γ. For $0 \leq i \leq D$, let E_{i} denote the primitive idempotent of Γ associated with θ_{i}. Let $q_{i j}^{h}(0 \leq h, i, j \leq D)$ denote the Krein parameters of Γ. Recall that

$$
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{D} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq D),
$$

where \circ denotes entrywise multiplication.

Pick an integer $h(1 \leq h \leq D-1)$. We recall the representation diagram $\Delta=\Delta_{h}$ [12-14]. Δ is an undirected graph with vertices $0,1, \ldots, D$. For $0 \leq i, j \leq D$, vertices i and j are adjacent in Δ whenever $i \neq j$ and $q_{i j}^{h} \neq 0$.

It turns out that in Δ, the vertex 0 is adjacent to h and no other vertices. Similarly, the vertex D is adjacent to $D-h$ and no other vertices. We call 0 and D the trivial vertices of Δ.

Let l denote a vertex of Δ. As we see in the next section, l is adjacent to at least one vertex of Δ. We say l is a leaf whenever l is adjacent to exactly one vertex of Δ. Our main result is the following.

Theorem 1.1 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. Pick an integer $h(1 \leq h \leq D-1)$. The representation diagram Δ_{h} has a nontrivial leaf if and only if Δ_{h} is the disjoint union of two paths.

Hypercubes and doubled Odd graphs have representation diagrams satisfying the conditions of Theorem 1.1. At diameters greater than 5, these are the only such graphs known.

2. Preliminaries

Let $\Gamma=(X, R)$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X, edge set R, path-length distance function ∂, and diameter $D:=\max \{\partial(x, y): x, y \in X\}$. Let k denote a nonnegative integer. We say Γ is regular with valency k whenever for all $x \in X,|\{z \in X: \partial(x, z)=1\}|=k$. We say Γ is distance-regular whenever for all integers $h, i, j(0 \leq h, i, j \leq D)$ and all $x, y \in X$ with $\partial(x, y)=h$, the scalar $p_{i j}^{h}=|\{z \in X: \partial(x, z)=i, \partial(y, \bar{z})=j\}|$ is independent of x and y. For notational convenience, set $c_{i}:=p_{1 i-1}^{i}(1 \leq i \leq D), a_{i}:=p_{1 i}^{i}(0 \leq i \leq D)$, $b_{i}:=p_{1 i+1}^{i}(0 \leq i \leq D-1)$, and $c_{0}:=0, b_{D}:=0$. For the rest of this section, suppose Γ is distance-regular. To avoid trivialities, assume $D \geq 3$ and $k \geq 3$. We observe Γ is regular with valency $k=b_{0}$. Further, we observe $c_{i}+a_{i}+b_{i}=k$ for $0 \leq i \leq D$.

We say Γ is bipartite whenever there exists a partition $X=X^{+} \cup X^{-}$such that no edge joins two vertices in the same cell of the partition. Observe Γ is bipartite if and only if $a_{i}=0(0 \leq i \leq D)$, and in this case,

$$
\begin{equation*}
c_{i}+b_{i}=k \quad(0 \leq i \leq D) . \tag{1}
\end{equation*}
$$

For the rest of this section, suppose Γ is bipartite.
Let \sim denote the binary relation on X such that for any $x, y \in X$, we have $x \sim y$ whenever $x=y$ or $\partial(x, y)=D$. We say Γ is antipodal whenever \sim is an equivalence relation.

Let \mathbb{R} denote the field of real numbers. By $\operatorname{Mat}_{X}(\mathbb{R})$ we mean the \mathbb{R}-algebra consisting of all matrices whose entries are in \mathbb{R} and whose rows and columns are indexed by X.

For each integer $i(0 \leq i \leq D)$, let A_{i} denote the matrix in $\operatorname{Mat}_{X}(\mathbb{R})$ with x, y entry

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i, \\
0 & \text { otherwise }
\end{array} \quad(x, y \in X)\right.
$$

Abbreviate $A:=A_{1}$. We call A the adjacency matrix of Γ. Let M denote the sub-algebra of $\operatorname{Mat}_{X}(\mathbb{R})$ generated by A. We call M the Bose-Mesner algebra of Γ. By [1, Theorem 20.7], $A_{0}, A_{1}, \ldots, A_{D}$ is a basis for M.

By [2, Theorem 2.6.1], M has a second basis $E_{0}, E_{1}, \ldots, E_{D}$ such that $E_{i} E_{j}=\delta_{i j} E_{i}$ ($0 \leq i, j \leq D$). We call $E_{0}, E_{1}, \ldots, E_{D}$ the (primitive) idempotents of Γ.

Observe there exists a sequence of scalars $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ taken from \mathbb{R} such that

$$
A=\sum_{i=0}^{D} \theta_{i} E_{i}
$$

We call θ_{i} the eigenvalue of Γ associated with E_{i}. Note $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ are distinct since A generates M. Throughout this paper, we assume the eigenvalues are labeled so that $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$. By [2, p. 82], $\theta_{0}=k$ and $\theta_{D-i}=-\theta_{i}$ for $0 \leq i \leq D$. We call θ_{0} and θ_{D} the trivial eigenvalues of Γ.

Let θ_{h} denote an eigenvalue of Γ and let E_{h} denote the associated idempotent. Since $A_{0}, A_{1}, \ldots, A_{D}$ is a basis for M, there exist real scalars $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{D}$ such that

$$
\begin{equation*}
E_{h}=m_{h}|X|^{-1} \sum_{i=0}^{D} \sigma_{i} A_{i} \tag{2}
\end{equation*}
$$

where $m_{h}=\operatorname{rank} E_{h}$. We call $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{D}$ the cosine sequence associated with θ_{h}. By [2, p. 128],

$$
\begin{equation*}
c_{i} \sigma_{i-1}+b_{i} \sigma_{i+1}=\theta_{h} \sigma_{i} \quad(0 \leq i \leq D) \tag{3}
\end{equation*}
$$

where σ_{-1} and σ_{D+1} denote indeterminates.
Let \circ denote entrywise multiplication in $M a t_{X}(\mathbb{R})$ and observe

$$
\begin{equation*}
A_{i} \circ A_{j}=\delta_{i j} A_{i} \quad(0 \leq i, j \leq D) \tag{4}
\end{equation*}
$$

This implies M is closed under \circ. Since $E_{0}, E_{1}, \ldots, E_{D}$ is a basis for M, there exist scalars $q_{i j}^{h} \in \mathbb{R}(0 \leq h, i, j \leq D)$ such that

$$
\begin{equation*}
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{D} q_{i j}^{h} E_{h} \tag{5}
\end{equation*}
$$

We call the $q_{i j}^{h}$ the Krein parameters of Γ.

In the next two lemmas, we recall a few basic facts about the product \circ and the Krein parameters.

Lemma 2.1 [9, Lemma 3.3, Theorem 3.6] Let $\Gamma=(X, R)$ denote a bipartite distanceregular graph with diameter $D \geq 3$.
(i) $E_{0} \circ E_{i}=|X|^{-1} E_{i}$ for $0 \leq i \leq D$.
(ii) $E_{D} \circ E_{i}=|X|^{-1} E_{D-i}$ for $0 \leq i \leq D$.
(iii) For $1 \leq i, j \leq D-1, E_{i} \circ E_{j}$ is not a scalar multiple of a single idempotent of Γ.

Lemma 2.2 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$.
(i) $q_{i j}^{h}=q_{j i}^{h}(0 \leq h, i, j \leq D)$.
(ii) $m_{h} q_{i j}^{h}=m_{i} q_{j h}^{i}=m_{j} q_{h i}^{j}(0 \leq h, i, j \leq D)$.
(iii) $q_{0 j}^{h}=\delta_{h j}(0 \leq h, j \leq D)$.
(iv) $q_{D j}^{h}=\delta_{h, D-j}(0 \leq h, j \leq D)$.
(iii) $q_{D-i, j}^{D-h}=q_{i j}^{h}(0 \leq h, i, j \leq D)$.

Proof: (i) Immediate from (5). (ii) [2, Lemma 2.3.1(iv)] (iii) Immediate from Lemma 2.1(i). (iv) Immediate from Lemma 2.1(ii). (v) Taking the entrywise product of both sides of (5) with E_{D} and applying Lemma 2.1(ii), we get the result.

Definition 2.3 [12] Let Γ denote a distance-regular graph with diameter D. Pick an integer $h(0 \leq h \leq D)$. We define the representation diagram $\Delta=\Delta_{h} . \Delta$ is an undirected graph with vertices $0,1, \ldots, D$. For $0 \leq i, j \leq D$, vertices i and j are adjacent in Δ whenever $i \neq j$ and $q_{i j}^{h} \neq 0$. We sometimes say Δ is the representation diagram associated with the eigenvalue θ_{h}.

Let C denote a connected component of Δ. We say C is a path whenever there exists an ordering $v_{0}, v_{1}, \ldots, v_{l}$ of the vertices of C such that for $0 \leq i, j \leq l$, vertices v_{i}, v_{j} are adjacent in Δ if and only if $|i-j|=1$.

Lemma 2.4 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$. With reference to Definition 2.3, the following hold.
(i) For $0 \leq h, i, j \leq D$, vertices i and j are adjacent in Δ_{h} if and only if $D-i$ and $D-j$ are adjacent in Δ_{h}.
(ii) Δ_{0} has no edges.
(iii) In Δ_{D}, vertex $i(0 \leq i \leq D)$ is adjacent to $D-i$ and no other vertices. (If D is even then vertex $D / 2$ is not adjacent to any vertices.)
(iv) Suppose $h \neq 0$. In Δ_{h}, vertex 0 is adjacent to h and no other vertices. Moreover, vertex D is adjacent to $D-h$ and no other vertices.
(v) Suppose $1 \leq h \leq D-1$. Each vertex of Δ_{h} is adjacent to at least one other vertex.

Proof: (i)-(iv) Immediate from Lemma 2.2. (v) Let i denote a vertex of Δ_{h} and suppose i is not adjacent to any vertices of Δ_{h}. By (iv) above, we find $1 \leq i \leq D-1$. By Definition 2.3,
$q_{i j}^{h}=0$ for $j \neq i$. Applying Lemma 2.2(ii), we find $q_{h i}^{j}=0$ for $j \neq i$, which implies
$E_{h} \circ E_{i}$ is a scalar multiple of E_{i}. This contradicts Lemma 2.1(iii).
We call 0 and D the trivial vertices of a representation diagram.
Lemma 2.5 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. The following are equivalent for $1 \leq h \leq D-1$.
(i) Δ_{h} is not connected.
(ii) Γ is antipodal and h is even.

Suppose (i)-(ii) hold. Then Δ_{h} has two connected components, one consisting of the even vertices and one consisting of the odd vertices.

Proof: Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{D}$ denote the cosine sequence associated with θ_{h}.
(i) \rightarrow (ii) Since Δ_{h} is not connected and by [2, Proposition 2.11.1], $\sigma_{i}=1$ for some i $(1 \leq i \leq D)$. By [2, Proposition 4.4.7], Γ is antipodal and $\sigma_{D}=1$. Now h is even by [2, p. 142].
(ii) \rightarrow (i) By [2, p. 142], $\sigma_{D}=1$. Now Δ_{h} is not connected by [2, Proposition 2.11.1].

Suppose (i)-(ii) hold. We already mentioned $\sigma_{D}=1$. By [2, Proposition 4.4.7], $\sigma_{i} \neq 1$ for $1 \leq i \leq D-1$. Now by [2, Proposition 2.11.1], Δ_{h} has two components. By [2, p. 413], $q_{i j}^{h}=0$ if one of i and j is even and the other is odd. The result follows.

Example 2.6 Let Γ denote a bipartite distance-regular graph with diameter 3 and valency $k \geq 3$. With reference to Definition 2.3, the following hold.
(i) Δ_{1} is the path $0,1,2,3$.
(ii) Suppose Γ is not antipodal. Then Δ_{2} is the path $0,2,1,3$.
(iii) Suppose Γ is antipodal. Then Δ_{2} is the disjoint union of the paths 0,2 and 1,3 .

Proof: (i) By Lemma 2.4(iv), vertex 0 is adjacent to 1 and no other vertices. Also, vertex 3 is adjacent to 2 and no other vertices. By Lemma 2.5, Δ_{1} is connected, so 1 is adjacent to 2 and we are done.
(ii), (iii) Similar to the proof of (i).

3. Leaves

Definition 3.1 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. Fix $h(1 \leq h \leq D-1)$ and let $\Delta=\Delta_{h}$ denote a representation diagram of Γ. Let l denote a vertex of Δ. By Lemma 2.4(v), l is adjacent to at least one vertex of Δ. We say l is a leaf whenever l is adjacent to exactly one vertex of Δ. Observe l is a leaf if and only if there exists an idempotent F of Γ with $F \neq E_{l}$ such that

$$
\begin{equation*}
E_{h} \circ E_{l} \in \operatorname{Span}\left\{E_{l}, F\right\} \tag{6}
\end{equation*}
$$

By Lemma $2.4, l$ is a leaf if and only if $D-l$ is a leaf. Also, the trivial vertices 0 and D of Δ are leaves.

Theorem 3.2 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. Let $\Delta_{h}(1 \leq h \leq D-1)$ denote a representation diagram of Γ. Suppose Δ_{h} has at least one nontrivial leaf. Then the following hold.
(i) Δ_{h} is the disjoint union of two paths, one consisting of the even vertices and one consisting of the odd vertices.
(ii) Γ is antipodal and h is even.

Proof: We abbreviate $\Delta:=\Delta_{h}$.
(i) If $D=3$ the result follows from Example 2.6, so suppose $D \geq 4$. Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{D}$ denote the cosine sequence associated with θ_{h}. We show there exists $\beta \in \mathbb{R}$ such that $\sigma_{i-1}-\beta \sigma_{i}+\sigma_{i+1}$ is independent of i for $1 \leq i \leq D-1$.

By assumption, Δ has a nontrivial leaf. Let us denote this leaf by l. Let t denote the vertex of Δ to which l is adjacent. Apparently, $t \neq l$ and there exist $\epsilon, \zeta \in \mathbb{R}$ with $\zeta \neq 0$ such that

$$
\begin{equation*}
E_{h} \circ E_{l}=\epsilon E_{l}+\zeta E_{t} \tag{7}
\end{equation*}
$$

Let $\rho_{0}, \rho_{1}, \ldots, \rho_{D}$ and $\tau_{0}, \tau_{1}, \ldots, \tau_{D}$ denote the cosine sequences associated with θ_{l} and θ_{t}, respectively. We use (2) to eliminate E_{h}, E_{l} and E_{t} from (7) and then apply (4). In the result, we equate coefficients of A_{i} and simplify to find that for $0 \leq i \leq D$,

$$
\begin{equation*}
\sigma_{i} \rho_{i}=x \rho_{i}+y \tau_{i} \tag{8}
\end{equation*}
$$

where $x=|X| m_{h}^{-1} \epsilon$ and $y=|X| m_{t} m_{h}^{-1} m_{l}^{-1} \zeta$. Note $y \neq 0$ because $\zeta \neq 0$.
We use (8) for $0 \leq i \leq 4$. Repeatedly applying (3) and (1), we find for $0 \leq i \leq 4$ that $\sigma_{i}=f_{i}\left(\theta_{h}\right), \rho_{i}=f_{i}\left(\theta_{l}\right)$ and $\tau_{i}=f_{i}\left(\theta_{t}\right)$, where the functions f_{i} are given by

$$
\begin{align*}
& f_{0}(\lambda)=1, \quad f_{1}(\lambda)=\frac{\lambda}{k}, \quad f_{2}(\lambda)=\frac{\lambda^{2}-k}{k b_{1}} \tag{9}\\
& f_{3}(\lambda)=\frac{\lambda^{3}-\left(k+c_{2} b_{1}\right) \lambda}{k b_{1} b_{2}}, \quad f_{4}(\lambda)=\frac{\lambda^{4}-\left(k+c_{2} b_{1}+c_{3} b_{2}\right) \lambda^{2}+c_{3} k b_{2}}{k b_{1} b_{2} b_{3}} \tag{10}
\end{align*}
$$

We set $i=0,1$ in (8) to obtain two linear equations in x and y. To solve this system, we first verify the coefficient matrix is nonsingular. This coefficient matrix is

$$
\left(\begin{array}{cc}
\rho_{0} & \tau_{0} \tag{11}\\
\rho_{1} & \tau_{1}
\end{array}\right)
$$

Evaluating the determinant of (11) using (9), we find this determinant equals $\left(\theta_{t}-\theta_{l}\right) k^{-1}$. This is nonzero, so the coefficient matrix is nonsingular. We now solve the system of equations to find in view of (9) that

$$
\begin{equation*}
x=\frac{\theta_{h} \theta_{l}-\theta_{t} k}{k\left(\theta_{l}-\theta_{t}\right)}, \quad y=\frac{\theta_{l}\left(k-\theta_{h}\right)}{k\left(\theta_{l}-\theta_{t}\right)} \tag{12}
\end{equation*}
$$

Note θ_{l} is a factor of y and so cannot be zero. We set $i=2$ in (8), apply (9) and (12) and solve for θ_{t} to get

$$
\begin{equation*}
\theta_{t}=\frac{\theta_{l}^{2} \theta_{h}+\theta_{l}^{2}-\theta_{h} k-k^{2}}{b_{1} \theta_{l}} \tag{13}
\end{equation*}
$$

We set $i=3$ in (8), apply (9)-(10), (12) and (13), and simplify to find

$$
\begin{equation*}
\frac{\left(k^{2}-\theta_{h}^{2}\right)\left(k^{2}-\theta_{l}^{2}\right)}{\theta_{l} k^{2} b_{1}^{3} b_{2}^{2}}\left(\left(b_{2}-\left(c_{2}-1\right) \theta_{h}\right) \theta_{l}^{2}-b_{2}\left(k+\theta_{h}\right)\right)=0 \tag{14}
\end{equation*}
$$

The fraction is nonzero and $b_{2}\left(k+\theta_{h}\right) \neq 0$, so $b_{2}-\left(c_{2}-1\right) \theta_{h} \neq 0$. We solve (14) for θ_{l}^{2} to get

$$
\begin{equation*}
\theta_{l}^{2}=\frac{\left(k+\theta_{h}\right) b_{2}}{b_{2}-\left(c_{2}-1\right) \theta_{h}} \tag{15}
\end{equation*}
$$

We set $i=4$ in (8) and apply (9)-(10), (12), (13) and (15) to find the left side minus the right is

$$
\begin{equation*}
\frac{\left(k^{2}-\theta_{h}^{2}\right)\left(k+\theta_{h}\right)\left(k^{2}-\theta_{l}^{2}\right) c_{2}}{\theta_{l}^{2}\left(b_{2}-\left(c_{2}-1\right) \theta_{h}\right)^{2} k^{2} b_{1}^{2} b_{2} b_{3}^{2}} \tag{16}
\end{equation*}
$$

times

$$
\begin{equation*}
\left(b_{2}-b_{3}\right) \theta_{h}^{3}+\left(b_{2}-b_{3} c_{2}\right) \theta_{h}^{2}+\left(2 b_{3} b_{2}-b_{3} c_{2} b_{2}-b_{2}^{2}\right) \theta_{h}+b_{2}^{2}\left(b_{3}-1\right) \tag{17}
\end{equation*}
$$

Since (16) is nonzero, (17) must be zero.
By [3, Lemma 9.3] and since (17) is zero, there exists $\beta \in \mathbb{R}$ such that $\sigma_{i-1}-\beta \sigma_{i}+\sigma_{i+1}$ is independent of i for $1 \leq i \leq D-1$. Now, by [4, Theorem 5.4], either Δ is a path or Δ is as in (i). Since Δ has a nontrivial leaf, Δ cannot be a path. So Δ is as in (i), as desired.
(ii) By (i), Δ is not connected. Now the result follows by Lemma 2.5.

Example 3.3 Let Γ denote a bipartite antipodal distance-regular graph with diameter 4 and valency $k \geq 3$. With reference to Definition 2.3, the following hold.
(i) Δ_{2} is the disjoint union of the paths $0,2,4$ and 1,3 .
(ii) Suppose $h=1$ or $h=3$. Then Δ_{h} has no nontrivial leaves.

Proof: (i) Immediate from Lemma 2.4(iv) and Lemma 2.5.
(ii) Since h is odd, Δ_{h} has no nontrivial leaves by Theorem 3.2.

Example 3.4 Let Γ denote a bipartite antipodal distance-regular graph with diameter 5 and valency $k \geq 3$. With reference to Definition 2.3, the following hold.
(i) Δ_{2} is the disjoint union of the paths $0,2,4$ and $5,3,1$.
(ii) Δ_{4} is the disjoint union of the paths $0,4,2$ and $5,1,3$.
(iii) Suppose $h=1$ or $h=3$. Then Δ_{h} has no nontrivial leaves.

Proof: (i) By Lemma 2.5, the even vertices of Δ_{2} comprise a connected component. This component consist of the path $0,2,4$ since vertex 0 is adjacent to 2 but not 4 by Lemma 2.4(iv). Now the odd vertices form the path 5, 3, 1 by Lemma 2.4(i).
(ii) Similar to the proof of (i).
(iii) Since h is odd, Δ_{h} has no nontrivial leaves by Theorem 3.2.

In the next lemma and the following two examples, we recall some information about the D-cube.

Lemma 3.5 [2, Section 9.2] Let Γ denote the D-cube.
(i) Γ is antipodal.
(ii) For $0 \leq h, i, j \leq D, q_{i j}^{h} \neq 0$ if $|i-j|=h$ and $q_{i j}^{h}=0$ if $|i-j|>h$.

Example 3.6 Let D denote an odd integer with $D \geq 3$ and let Γ denote the D-cube. With reference to Definition 2.3, the following hold.
(i) Δ_{2} is the disjoint union of the paths $0,2,4, \ldots, D-1$ and $1,3,5, \ldots, D$.
(ii) Δ_{D-1} is the disjoint union of the paths $0, D-1,2, D-3, \ldots$ and $D, 1, D-2,3, \ldots$.
(iii) Suppose $h \neq 2$ and $h \neq D-1$. Then Δ_{h} has no nontrivial leaves.

Proof: (i) Γ is antipodal by Lemma 3.5 (i), so by Lemma $2.5, \Delta_{2}$ has two connected components, one consisting of the even vertices and one consisting of the odd vertices. For $0 \leq i, j \leq D$, we see by Lemma 3.5(ii) that $q_{i j}^{2} \neq 0$ if $|i-j|=2$ and $q_{i j}^{2}=0$ if $|i-j|>2$. The result follows.
(ii) We mentioned Γ is antipodal, so by Lemma 2.5, Δ_{D-1} has two connected components, one consisting of the even vertices and one consisting of the odd vertices. For $0 \leq i, j \leq D$, we see by Lemma 3.5 (ii) that $q_{i j}^{1} \neq 0$ if $|i-j|=1$ and $q_{i j}^{1}=0$ if $|i-j|>1$. Applying Lemma 2.2(v), we then get $q_{D-i, j}^{D-1} \neq 0$ if $|i-j|=1$ and $q_{D-i, j}^{D-1}=0$ if $|i-j|>1$. The result follows.
(iii) Follows from Theorem 3.2, [4, Theorem 5.4]and [3, Example 17.1]

Example 3.7 Let D denote an even integer with $D \geq 4$ and let Γ denote the D-cube. With reference to Definition 2.3, the following hold.
(i) Δ_{2} is the disjoint union of the paths $0,2,4, \ldots, D$ and $1,3,5, \ldots, D-1$.
(ii) Suppose $h \neq 2$. Then Δ_{h} has no nontrivial leaves.

Proof: (i) By Lemma 2.5, Δ_{2} has two connected components, one consisting of the even vertices and one consisting of the odd vertices. For $0 \leq i, j \leq D$, we see by Lemma 3.5(ii) that $q_{i j}^{2} \neq 0$ if $|i-j|=2$ and $q_{i j}^{2}=0$ if $|i-j|>2$. The result follows.
(ii) Follows from Theorem 3.2, [4, Theorem 5.4]and [3, Example 17.1].

Theorem 3.8 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. Let $\Delta=\Delta_{h}(1 \leq h \leq D-1)$ denote a representation diagram of Γ. Suppose Δ has a nontrivial leaf. Suppose Γ is not one of Examples 2.6, 3.3, 3.4, 3.6, 3.7. Then either $(\mathrm{a}) D$ is odd and $h=D-1$ or $(\mathrm{b}) D \equiv 1(\bmod 4)$ and $h=(D-1) / 2$. In case (a) the nontrivial leaves are $(D-1) / 2$ and $(D+1) / 2$. In case (b) the nontrivial leaves are 1 and $D-1$.

Proof: Let l denote a nontrivial leaf of Δ. Then $D-l$ is also a leaf. Replacing l by $D-l$ if necessary, we assume $l \leq D / 2$. Recall $E_{h} \circ E_{l}$ is a linear combination of E_{l} and one other idempotent of Γ. By [7, Lemma 4.4], Γ is either 2-homogeneous in the sense of Nomura [8] or taut in the sense of MacLean [7].

First suppose Γ is 2-homogeneous. By [8, Theorem 1.2], either Γ is antipodal with $D \leq 5$ or Γ is the D-cube. But this implies Γ is as in one of the examples we excluded.

Next suppose Γ is taut and D is even. Set $d:=D / 2$. By [7, Theorem 4.3], l is either 1 or d. By [7, Corollary 6.6], $l=d-1$. Combining these facts, we find $l=1$ and $d=2$. Now $D=2 d=4$. Recall Γ is antipodal by Theorem 3.2(ii). Now Γ is as in Example 3.3(ii), which is a contradiction.

Finally, suppose Γ is taut and D is odd. Set $d:=(D-1) / 2$. By Theorem 3.3(ii), h is even. By [7, Theorem 4.3], the ordered pair (h, l) is one of $(D-1, d),(d, 1)$, and $(D-d, 1)$. First suppose $(h, l)=(D-1, d)$. Then we have (a). Next suppose $(h, l)=(d, 1)$. Since $D=2 d+1$ and since $d=h$ is even, we have (b). Finally, suppose $(h, l)=(D-d, 1)$. By [7, Theorem 6.2, Corollary 6.3], $E_{D-d} \circ E_{1} \in \operatorname{Span}\left\{E_{R}, E_{S}\right\}$ for some R, S such that $1<S<R$. But this contradicts (6).

Note 3.9 The doubled Odd graph $2 . \mathrm{O}_{\mathrm{k}}$ is the only known graph for which (a) holds in Theorem 3.8. There is no known graph for which (b) holds.

Acknowledgment

This paper is part of the author's dissertation, written at the University of WisconsinMadison under the direction of Paul Terwilliger.

The author would like to thank the anonymous referees for their helpful comments.

References

1. N. Biggs, Algebraic Graph Theory, 2nd edition, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1993.
2. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.
3. M.S. Lang, "A new inequality for bipartite distance-regular graphs." J. Combin. Theory Ser. B. Submitted.
4. M.S. Lang, "Tails of bipartite distance-regular graphs," European J. Combin. 23(8) (2002), 1015-1023.
5. M.S. MacLean, "Taut distance-regular graphs of odd diameter," J. Algebraic Combin., 17(2).
6. M.S. MacLean. "Taut distance-regular graphs with even diameter," J. Combin. Theory Ser. B. Submitted.
7. M.S. MacLean, "An inequality involving two eigenvalues of a bipartite distance-regular graph," Discrete Math. 225(1-3): (2000), 193-216. Formal power series and algebraic combinatorics (Toronto, ON, 1998).
8. K. Nomura, "Spin models on bipartite distance-regular graphs," J. Combin. Theory Ser. B 64(2) (1995), 300-313.
9. Arlene A. Pascasio, "Tight graphs and their primitive idempotents," J. Algebraic Combin. 10(1) (1999), 47-59.
10. A.A. Pascasio, "An inequality on the cosines of a tight distance-regular graph," Linear Algebra Appl. 325(1-3) (2001), 147-159.
11. A.A. Pascasio, "Tight distance-regular graphs and the Q-polynomial property," Graphs Combin. 17(1) (2001), 149-169.
12. P. Terwilliger, "A characterization of P - and Q-polynomial association schemes," J. Combin. Theory Ser. A, 45(1) (1987), 8-26.
13. P. Terwilliger, "Balanced sets and Q-polynomial association schemes," Graphs Combin., 4(1) (1988), 87-94.
14. P. Terwilliger, "A new inequality for distance-regular graphs," Discrete Math. 137(1-3) (1995), 319-332.
