On the Twisted Cubic of $\boldsymbol{P G}(\mathbf{3}, q)$

G. LUNARDON
lunardon@unina.it
Dipartimento di Matematica e Applicazioni, via Cintia, Complesso di Monte S. Angelo, 80126 Napoli, Italy
O. POLVERINO
opolveri@unina.it; olga.polverino@unina2.it
Dipartimento di Matematica, Seconda Università degli Studi di Napoli, via Vivaldi n 43, 81100 Caserta, Italy

Abstract. In this paper we classify the lines of $P G(3, q)$ whose points belong to imaginary chords of the twisted cubic of $P G(3, q)$. Relying on this classification result, we obtain a complete classification of semiclassical spreads of the generalized hexagon $H(q)$.

Keywords: twisted cubics, generalized hexagons, coset geometries, spreads

1. Introduction

The twisted cubic of $P G(3, q), q=p^{h}, p$ prime, can be described as follows

$$
\Sigma=\left\{\left(f_{0}(t), f_{1}(t), f_{2}(t), f_{3}(t)\right): t \in G F(q) \cup\{\infty\}\right\}
$$

where $f_{0}(t), \ldots, f_{3}(t)$ are linearly independent cubic polynomials over $G F(q)$.
Let $\bar{\Sigma}$ be the twisted cubic of $P G(3, \mathbb{F})$ defined by Σ, where \mathbb{F} is the algebraic closure of $G F(q)$. A line of $P G(3, q)$ is a chord of Σ if its extension to $P G(3, \mathbb{F})$ contains two points of $\bar{\Sigma}$ (in the algebraic sense). There are three possibilities: the two points belong to Σ, or they are coincident, or they are conjugate over $G F\left(q^{2}\right)$. This is called a real chord, a tangent or an imaginary chord, respectively. By [4] Lemma 1, every point off Σ lies on exactly one chord. If $p \neq 3$, the tangents to Σ are self-polar lines of a non-singular symplectic polarity ω of $P G(3, q)$. An axis of Σ is a line l of $P G(3, q)$ whose polar line with respect to ω is a chord. We say that l is a real axis or an imaginary axis if l^{ω} is a real chord or an imaginary chord, respectively (for more details, see [7]). If $q \equiv 1(\bmod 3)$ and l is an imaginary axis, then all points on l belong to some imaginary chord (see [6]). In Section 2 we prove the following result

Theorem 1 If l is a line of $P G(3, q)$ whose points belong to imaginary chords of Σ, then either l is an imaginary chord or $q \equiv 1(\bmod 3)$ and l is an imaginary axis.

In Section 3, Theorem 1 is used to study semiclassical spreads of the generalized hexagon $H(q)$. Tits [11] constructs the generalized hexagon $H(q)$ as follows. Let $Q(6, q)$ be the parabolic quadric of $P G(6, q)$ with equation $X_{3}^{2}=X_{0} X_{4}+X_{1} X_{5}+X_{2} X_{6}$. The points of $H(q)$ are all the points of $Q(6, q)$. The lines are those lines of $Q(6, q)$ whose Grassmann coordinates satisfy the equations $p_{34}=p_{12}, p_{35}=p_{20}, p_{36}=p_{01}, p_{03}=p_{56}, p_{13}=p_{64}$
and $p_{23}=p_{45}$. Two elements of $H(q)$ are opposite if they are at distance 6 in the incidence graph of $H(q)$. A spread of $H(q)$ is a set of $q^{3}+1$ mutually opposite lines of $H(q)$.

Let $Q^{-}(5, q)$ be an elliptic quadric intersection of $Q(6, q)$ with a 5-dimensional space. Let \mathcal{S} be the set of lines of $H(q)$ contained in $Q^{-}(5, q) . \mathcal{S}$ is a spread of $H(q)$ called Hermitian [5].

Let \mathcal{S} be a spread of $H(q)$ and let L be a fixed line of \mathcal{S}. For each line M of $\mathcal{S} \backslash\{L\}$, the subspace $\langle L, M\rangle$ has dimension 3 and intersects $Q(6, q)$ in a nonsingular hyperbolic quadric. Let $\mathcal{R}_{L, M}$ be the regulus of $\langle L, M\rangle \cap Q(6, q)$ containing the lines L and M. The spread \mathcal{S} of $H(q)$ is locally Hermitian with respect to L if $\mathcal{R}_{L, M}$ is contained in \mathcal{S} for all lines M of \mathcal{S} different from $L . \mathcal{S}$ is locally Hermitian with respect to all the lines of \mathcal{S} if and only if it is a Hermitian spread (see [3]).

Let x be a fixed point of $Q(6, q)$ and denote by Γ_{x} the polar space whose points are the lines of $Q(6, q)$ incident with x and whose lines are the planes of $Q(6, q)$ incident with x. By construction, $\Gamma_{x} \simeq Q(4, q)$. If \mathcal{S} is a locally Hermitian spread of $H(q)$ with respect to L and x is a point of L, then the set of lines \mathcal{O}_{x}, whose elements are either L or the transversals through x to the reguli of \mathcal{S} containing L, is an ovoid of $\Gamma_{x} \simeq Q(4, q)$ (see [3]). We call \mathcal{O}_{x} a projection along reguli of \mathcal{S}. If \mathcal{O}_{x} is an elliptic quadric for all x in L, the spread \mathcal{S} is called semiclassical.
In [3], Bloemen, Thas and Van Maldeghem have proved that, for q odd, a semiclassical spread of $H(q)$ is either Hermitian or isomorphic to the spread $\mathcal{S}_{[9]}$ constructed in [3]. Recently, there have been two (independent) constructions of non-Hermitian semiclassical spreads \mathcal{S}_{l} in $H(q)$ for q an even power of 2 ; one in [6] by Cardinali, Lunardon, Polverino and Trombetti and one in [9] by Offer. It has first been shown by D. Luyckx (unpublished) that these two families are equivalent. Remark that the construction in [6] is valid for all $q \equiv 1(\bmod 3)$, but for such odd q, the corresponding spreads are equivalent to $\mathcal{S}_{[9]}$.

In this paper, using the representation of $H(q)$ as a coset geometry and as an application of Theorem 1, we extend the classification result of Bloemen, Thas and Van Maldeghem of semiclassical spreads of $H(q)$ to the even characteristic case. We prove that a semiclassical spread of $H(q)$ is either Hermitian or isomorphic to \mathcal{S}_{l}, i.e. there is exactly one non-Hermitian semiclassical spread of $H(q)$ for all prime powers q congruent to 1 modulo 3 .

2. Proof of Theorem 1

Proof: Take the twisted cubic Σ in the canonical form $\Sigma=\left\{\left(t^{3}, t^{2}, t, 1\right): t \in G F(q)\right\} \cup$ $\{(1,0,0,0)\}$ and let l be a line of $P G(3, q)$ whose points belong to imaginary chords of Σ. Let P be the point of $P G(3, q)$ with coordinates $(\alpha-1,1,-1,0)$ and suppose that $t^{2}+t+\alpha$ is an irreducible polynomial over $G F(q)$. This implies that P belongs to the imaginary chord \bar{l} of Σ with equations $x_{0}+x_{1}+\alpha x_{2}=x_{1}+x_{2}+\alpha x_{3}=0$. Under the action of the collineation group K of $\operatorname{PGL}(4, q)$ fixing Σ, there are two orbits of points on an imaginary chord if $q \equiv-1(\bmod 3)$ and there is exactly one orbit if $q \not \equiv-1(\bmod 3)$. In the former case the line l contains points of both orbits ([7], Corollary 5 to Lemma 21.1.3 and Corollary to Lemma 21.1.11). Hence, without loss of generality, we may assume that
the point P belongs to l. Also, since l is not contained in any osculating plane, we can suppose that l contains the point $Q=\left(a, 0, a^{\prime}, 1\right)$ for some $a, a^{\prime} \in G F(q)$. Thus, l has equations

$$
\left\{\begin{array}{l}
x_{1}+x_{2}-a^{\prime} x_{3}=0 \\
x_{0}+(1-\alpha) x_{1}-a x_{3}=0
\end{array}\right.
$$

In this case, l is an imaginary chord if $l=\bar{l}$, i.e. if $a=\alpha^{2}$ and $a^{\prime}=-\alpha$, and it is easy to verify that l is an imaginary axis if $q \equiv 1(\bmod 3), a=(1-\alpha)^{2} / 9$ and $a^{\prime}=(-2-\alpha) / 9$.

Every plane through l meets Σ in exactly one point off l. This implies that the plane $x_{1}+x_{2}-a^{\prime} x_{3}=0$ contains only one point of Σ, namely $(1,0,0,0)$, and hence $t^{2}+t-a^{\prime}$ is an irreducible polynomial over $G F(q)$. Moreover, for each $\lambda \in G F(q)$ there exists exactly one element $t \in G F(q)$ such that $P_{t}=\left(t^{3}, t^{2}, t, 1\right)$ belongs to the plane

$$
\pi_{\lambda}: x_{0}+(1-\alpha) x_{1}-a x_{3}+\lambda\left(x_{1}+x_{2}-a^{\prime} x_{3}\right)=0
$$

Therefore, for each $\lambda \in G F(q)$ there exists $t \in G F(q)$ such that

$$
\lambda=\lambda(t)=\frac{-t^{3}-(1-\alpha) t^{2}+a}{\left(t^{2}+t-a^{\prime}\right)}=\frac{p(t)}{q(t)}
$$

Hence $\lambda(t)=\lambda\left(t^{\prime}\right)$ implies $t=t^{\prime}$. By a direct calculation, we get $\lambda(t)=\lambda\left(t^{\prime}\right)$ if and only if

$$
\begin{aligned}
& G\left(t, t^{\prime}\right)=p\left(t^{\prime}\right) q(t)-p(t) q\left(t^{\prime}\right)=\left(t-t^{\prime}\right) \\
& {\left[t^{2} t^{\prime 2}+t^{2} t^{\prime}+t t^{\prime 2}-a^{\prime}\left(t^{2}+t^{\prime 2}\right)+\left(1-\alpha-a^{\prime}\right) t t^{\prime}+\left(a-a^{\prime}(1-\alpha)\right)\left(t+t^{\prime}\right)+a\right]=0}
\end{aligned}
$$

Then $F\left(t, t^{\prime}\right)=G\left(t, t^{\prime}\right) /\left(t-t^{\prime}\right) \neq 0$ for any distinct $t, t^{\prime} \in G F(q)$. If $F\left(t_{0}, t_{0}\right)=0$, then $\left(t-t_{0}\right)^{2} \mid G\left(t, t_{0}\right)$, and hence $\left(t-t_{0}\right)^{2} \mid\left(p\left(t_{0}\right) q(t)-p(t) q\left(t_{0}\right)\right)=q\left(t_{0}\right)\left(-p(t)+\lambda\left(t_{0}\right) q(t)\right)$. This implies that the plane $\pi_{\lambda\left(t_{0}\right)}$ either contains two points of Σ or is an osculating plane. Hence, $F\left(t, t^{\prime}\right) \neq 0$ for any $t, t^{\prime} \in G F(q)$. Let $X=t$ and $Y=t^{\prime}$ and let Γ be the algebraic curve with affine equation

$$
\begin{align*}
F(X, Y)= & X^{2} Y^{2}+X^{2} Y+X Y^{2}-a^{\prime}\left(X^{2}+Y^{2}\right)+\left(1-\alpha-a^{\prime}\right) X Y \\
& +\left(a-a^{\prime}(1-\alpha)\right)(X+Y)+a=0 \tag{1}
\end{align*}
$$

Since $F(X, Y) \neq 0$ for each $X, Y \in G F(q), \Gamma$ has only two $G F(q)$-rational points: $X_{\infty}=$ $(0,1,0)$ and $Y_{\infty}=(0,0,1)$, which are isolated double points with tangents, respectively, $Y=\varepsilon_{i}$ and $X=\varepsilon_{i}(i=1,2)$, where $\varepsilon_{i}^{2}+\varepsilon_{i}-a^{\prime}=0$. If Γ is absolutely irreducible, then it has genus $g \leq 1$, and, if N_{q} is the number of $G F(q)$-rational points of Γ, by the Hasse-Weil bound ([10]), we get

$$
2=N_{q} \geq q+1-2 g \sqrt{q} \geq q-2 \sqrt{q}+1
$$

which is not possible for $q>5$. Then, if $q>5$, Γ is absolutely reducible. In this case, we may assume Γ is the union of two conics C_{1} and C_{2}, both passing through X_{∞} and Y_{∞}, with affine equations, respectively, $G_{1}(X, Y)=0$ and $G_{2}(X, Y)=0$. Since $F(X, Y)=F(Y, X)$, we have that either $G_{1}(Y, X)=G_{2}(X, Y)$ or $G_{1}(Y, X)=G_{1}(X, Y)$ and $G_{2}(Y, X)=G_{2}(X, Y)$.

Suppose that $G_{1}(Y, X)=G_{2}(X, Y)$ and let $G_{1}(X, Y)=X Y+A X+B Y+C$. Since the tangents to C_{1} and C_{2} at the points X_{∞} and Y_{∞} are, respectively, the lines $Y=\varepsilon_{i}$ and $X=\varepsilon_{i}(i=1,2)$, we may assume $A=-\varepsilon_{1}$ and $B=-\varepsilon_{2}$. Hence, Γ has equation

$$
\begin{equation*}
\left(X Y-\varepsilon_{1} X-\varepsilon_{2} Y+C\right)\left(X Y-\varepsilon_{2} X-\varepsilon_{1} Y+C\right)=0 \tag{2}
\end{equation*}
$$

Comparing the coefficients of Eqs. (1) and (2) and noting that $\varepsilon_{1}+\varepsilon_{2}=-1$ and $\varepsilon_{1} \cdot \varepsilon_{2}=-a^{\prime}$, we obtain

$$
\left\{\begin{array}{l}
2 C=-3 a^{\prime}-\alpha \tag{*}\\
C=a-a^{\prime}(1-\alpha) \\
C^{2}=a
\end{array}\right.
$$

Also, since the affine intersection points of C_{1} and C_{2} are not $G F(q)$-rational points, we have that $X^{2}+X+C$ is irreducible over $G F(q)$. If q is even, from (*) we get either $a=\alpha^{2}$ and $a^{\prime}=-\alpha$ or $a=1+\alpha^{2}=(1-\alpha)^{2} / 9$ and $a^{\prime}=-\alpha=(-2-\alpha) / 9$. In the former case l is an imaginary chord. In the latter case, since $C=1+\alpha$ and $X^{2}+X+C$ is irreducible over $G F(q)$, we have $q \equiv 1(\bmod 3)$ and hence l is an imaginary axis. If q is odd, with some calculation from (*) we get

$$
\left\{\begin{array}{l}
9 a^{\prime 2}+2 a^{\prime}(1+5 \alpha)+\alpha^{2}+2 \alpha=0 \tag{**}\\
a=\frac{-a^{\prime}(1+2 \alpha)-\alpha}{2}
\end{array}\right.
$$

If $q \equiv 0(\bmod 3)$, from $(* *)$ we get $a^{\prime}=-\alpha$ and $a=\alpha^{2}$, so l is an imaginary chord. If $q \not \equiv 0(\bmod 3)$, from $(* *)$ we get either $a^{\prime}=-\alpha$ and $a=\alpha^{2}$ or $a^{\prime}=(-2-\alpha) / 9$ and $a=(1-\alpha)^{2} / 9$. In the latter case, since $X^{2}+X+C$ is irreducible over $G F(q)$, we obtain $q \equiv 1(\bmod 3)$, and hence l is an imaginary axis.

On the other hand, suppose $G_{1}(Y, X)=G_{1}(X, Y)$ and $G_{2}(Y, X)=G_{2}(X, Y)$. Let $G_{1}(X, Y)=X Y+A X+A Y+B$ and $G_{2}(X, Y)=X Y+A^{\prime} Y+A^{\prime} X+B^{\prime}$. We may assume $A=-\varepsilon_{1}$ and $A^{\prime}=-\varepsilon_{2}$ and this implies that Γ has equation

$$
\begin{equation*}
\left(X Y-\varepsilon_{1}(X+Y)+B\right)\left(X Y-\varepsilon_{2}(X+Y)+B^{\prime}\right)=0 \tag{3}
\end{equation*}
$$

With an argument similar to the previous one, we obtain

$$
\left\{\begin{array}{l}
B+B^{\prime}=1-\alpha+a^{\prime} \\
\varepsilon_{1} B^{\prime}+\varepsilon_{2} B=a^{\prime}(1-\alpha)-a \\
B \cdot B^{\prime}=a
\end{array}\right.
$$

From the above system we get

$$
\begin{equation*}
a^{2}+a\left(a^{\prime}+2 a^{\prime} \alpha+\alpha\right)-\left(a^{\prime 3}+a^{\prime 2} \alpha(1-\alpha)\right)=0 \tag{4}
\end{equation*}
$$

If $a^{\prime}=-\alpha$, from (4) we get $a=\alpha^{2}$. If $a^{\prime} \neq-\alpha$, treating (4) as a quadratic equation in a, we find that for q odd its discriminant is

$$
\Delta=\left(1+4 a^{\prime}\right)\left(a^{\prime}+\alpha\right)^{2}
$$

and, since $t^{2}+t-a^{\prime}$ is irreducible over $G F(q), \Delta$ is a non-square over $G F(q)$. For q even, the S-invariant of (4) is

$$
S=\frac{a^{\prime 3}+a^{\prime 2} \alpha+a^{\prime 2} \alpha^{2}}{a^{\prime 2}+\alpha^{2}}
$$

and since $t^{2}+t-a^{\prime}$ is irreducible over $G F(q), \operatorname{Tr}\left(a^{\prime}\right)=1$. So, we get

$$
\operatorname{Tr}(S)=\operatorname{Tr}\left(a^{\prime}\right)+\operatorname{Tr}\left(\alpha+\alpha^{2}\right)+\operatorname{Tr}\left(\frac{\alpha^{2}}{a^{\prime}+\alpha}+\frac{\alpha^{4}}{a^{\prime 2}+\alpha^{2}}\right)=1+0+0=1
$$

Hence in both cases Eq. (4) has no solution in $G F(q)$. This proves the theorem for $q>5$.
Finally, for $q \leq 5$, if we require the function $\lambda(t)$ is one-to-one and none of the planes $\pi_{\lambda(t)}$ is an osculating plane, by a direct calculation we get that either the line l is an imaginary chord or $q=4$ and l is an imaginary axis.

3. Coset geometries and semiclassical spreads

Let L be a fixed line of $H(q)$ and denote by E^{L} the group of automorphisms of $H(q)$ generated by all the collineations fixing L pointwise and stabilizing all the lines through any point of L. The group E^{L} has order q^{5} and acts regularly on the set of the lines of $H(q)$ at distance 6 from L (see, e.g. [2] or [12]). A spread \mathcal{S} of $H(q)$ containing L is a translation spread with respect to L, if for each $x \in L$ there is a subgroup of E^{L} which preserves \mathcal{S} and acts transitively on the lines of \mathcal{S} at distance 4 from M, for all lines M of $H(q)$ incident with x and different from L. By [9] Theorem 5, a spread \mathcal{S} of $H(q)$ is a translation spread with respect to L if and only if the stabilizer of \mathcal{S} in E^{L} has order q^{3}.

Let $[\infty]=\langle(1,0,0,0,0,0,0),(0,0,0,0,0,0,1)\rangle$. The lines of $H(q)$ at distance 6 from $[\infty]$ are the lines

$$
\begin{aligned}
{[a, b, c, d, e]=} & \left\langle\left(c+b d, a, 1, b, 0, d, b^{2}-d a\right),\left(d^{2}+e b,-b, 0,-d, 1, e\right.\right. \\
& -a e-c-2 b d)\rangle
\end{aligned}
$$

of $Q(6, q)$ [3]. Denote by $\theta(a, b, c, d, e)$ the element of $E^{[\infty]}$ which maps the line $[0,0,0,0,0]$ to the line $[a, b, c, d, e]$. The group $Z=\{\theta(0,0, c, 0,0) \mid c \in G F(q)\}$ is contained in the center of $E^{[\infty]}$ when $q=3^{r}$, and it is the center of $E^{[\infty]}$ when $q \neq 3^{r}$. Note that the lines $[\infty]$ and $M=[0,0,0,0,0]$ of $H(q)$ are at distance 6 . Denote by $x_{\infty}=(1,0,0,0,0,0,0)$ and $x_{t}=(t, 0,0,0,0,0,1), t \in G F(q)$, the points of the line
$[\infty]$. For each $t \in \tilde{F}=G F(q) \cup\{\infty\}$, there is a unique chain, say $\left(x_{t}, N_{t}, y_{t}, R_{t}, z_{t}, M\right)$, of lenght 5 joining x_{t} and M. Put

$$
\begin{aligned}
& A_{4}(t)=\left\{g \in E^{[\infty]} \mid N_{t}^{g}=N_{t}\right\} \\
& A_{3}(t)=\left\{g \in E^{[\infty]} \mid y_{t}^{g}=y_{t}\right\} \\
& A_{2}(t)=\left\{g \in E^{[\infty]} \mid R_{t}^{g}=R_{t}\right\} \\
& A_{1}(t)=\left\{g \in E^{[\infty]} \mid z_{t}^{g}=z_{t}\right\} .
\end{aligned}
$$

Then, $A_{1}(t)<A_{2}(t)<A_{3}(t)<A_{4}(t)$ and $A_{3}(t)=A_{2}(t) Z$. Moreover, $\left|A_{1}(t)\right|=q$, $\left|A_{2}(t)\right|=q^{2},\left|A_{3}(t)\right|=q^{3}$ and $\left|A_{4}(t)\right|=q^{4}$ (see, e.g. [2] or [12]).

Define a point-line geometry $H=(\mathbf{P}, \mathbf{L}, I)$ as follows:

$$
\begin{aligned}
& \mathbf{P}=\left\{(t), A_{3}(t) g, A_{1}(t) g: g \in E^{[\infty]}, t \in \tilde{F}\right\} \\
& \mathbf{L}=\left\{[\infty], A_{4}(t) g, A_{2}(t) g, g: g \in E^{[\infty]}, t \in \tilde{F}\right\}
\end{aligned}
$$

where $[\infty]$ and (t) are symbols, and the incidences are: $[\infty] I(t), A_{4}(t) I(t), g I A_{1}(t) g$ for all $t \in \tilde{F}$ and $g \in E^{[\infty]}$, whereas $A_{i}(t) g I A_{i+1}(v) h$ if and only if $t=v$ and $g \in A_{i+1}(v) h$ with $i=1,2,3$ and for all $g, h \in E^{[\infty]}$ and $t, v \in \tilde{F}$. Then, H is isomorphic to $H(q)$ (see, e.g., [2]).

The group

$$
\bar{E}=E^{[\infty]} / Z=\{(x, y, z, t) \mid x, y, z, t \in G F(q)\}
$$

is elementary abelian, and can be regarded as a four-dimensional vector space over $G F(q)$. For each element g of $E^{[\infty]}$, let g^{*} be the preimage in $E^{[\infty]}$ of the 1 -space of \bar{E} spanned by $\bar{g}=g Z$. If \bar{g}, \bar{h} are elements of \bar{E}, then $(\bar{g}, \bar{h})=[g, h]$ defines an alternating $G F(q)$-bilinear form on \bar{E}; if q is even, $\bar{g} \mapsto g^{2}$ defines a quadratic form associated with (,). Thus, \bar{E} is endowed with a symplectic or an orthogonal geometry. If $[g, h]=1$, then $\left[g^{*}, h^{*}\right]=1$. Thus, maximal elementary abelian subgroups of $E^{[\infty]}$ are preimages of maximal totally isotropic (or singular) 2 -spaces of \bar{E}.

Let $P G(3, q)$ be the 3-dimensional projective space associated with the $G F(q)$-vector space \bar{E}. As $A_{3}(t)=A_{2}(t) Z, A_{3}(t)$ is a maximal elementary abelian subgroup of $E^{[\infty]}$ for each $t \in \tilde{F}$. Thus, $L_{t}=A_{3}(t) / Z$ is a totally isotropic (or singular) line of the projective space $P G(3, q)$. Denote by P_{t}, L_{t}, α_{t}, respectively, the point $A_{1}(t) Z / Z$, the line $A_{3}(t) / Z$ and the plane $A_{4}(t) / Z$ of $P G(3, q)$. The set $\Sigma=\left\{P_{t}: t \in \tilde{F}\right\}$ is a twisted cubic of $P G(3, q)$ and L_{t} is the tangent line to Σ at P_{t} and α_{t} is the osculating plane to Σ at P_{t}. Moreover, we may suppose $P_{\infty}=(0,0,0,1)$ and $P_{t}=\left(1,-t, t^{2}, t^{3}\right), t \in G F(q)$ (see [1]).

If τ is an automorphism of $H(q)$ fixing $[\infty]$ then $\tau E^{[\infty]} \tau^{-1}=E^{[\infty]}$. Since the automorphism of $E^{[\infty]}$ defined by $g \mapsto \tau g \tau^{-1}$ preserves the families $\left\{A_{i}(t) \mid t \in \tilde{F}\right\}(i=1,2,3,4)$, the automorphisms τ induce, by conjugation, the collineation group K of $\operatorname{PGL}(4, q)$ fixing the twisted cubic Σ.

Let \mathcal{S} be a locally Hermitian spread of $H \simeq H(q)$ with respect to the line [∞]. Then we can write $\mathcal{S}=G \cup\{[\infty]\}$ where $G=\{\theta(a, b, c, f(a, b), g(a, b)) \mid a, b, c \in G F(q)\}$
and f and g are functions from $G F(q) \times G F(q)$ to $G F(q)$ (see [6] and [9]). If the line $\theta[0,0,0,0,0]$ belongs to \mathcal{S}, then \mathcal{S} is a translation spread with respect to [∞] if and only if G is a subgroup of $E^{[\infty]}$ of order q^{3} ([9] Theorem 5). By [9] Theorem 7, \mathcal{S} is semiclassical if and only if f and g are $G F(q)$-linear functions. From [9] Theorem 5 and Theorem 7, we have the following

Lemma 1 All semiclassical spreads of $H(q)$ are translation spreads.
If G is a subgroup of order q^{3} of $E^{[\infty]}$ containing Z and $\mathcal{S}=G \cup\{[\infty]\}$, then the following results are known:
(a) ([6], Theorem 4) \mathcal{S} is a translation spread of $H \simeq H(q)$ with respect to [∞] if and only if all the points of $S=\{\langle\bar{g}\rangle \mid \bar{g} \in G / Z\} \subset P G(3, q)$ lie on imaginary chords of Σ.
(b) ([6], Corollary 3) \mathcal{S} is a semiclassical spread of $H \simeq H(q)$ if and only if G / Z defines a line of $P G(3, q)$ whose points belong to imaginary chords of Σ.
(c) ([6], Theorem 5) \mathcal{S} is an Hermitian spread of $H \simeq H(q)$ if and only if G / Z defines an imaginary chord of Σ.

If $q \equiv 1(\bmod 3)$ and l is an imaginary axis of Σ, then all the points on l belong to some imaginary chord, and hence, if $l=\{\langle\bar{g}\rangle \mid \bar{g} \in G / Z\}$, the subgroup G defines a semiclassical spread $\mathcal{S}_{l}=G \cup\{[\infty]\}$ of $H \simeq H(q)$ which is not Hermitian (see [6]). Since there is exactly one orbit of imaginary axes under the action of K, the semiclassical spreads \mathcal{S}_{l} are all equivalent. As noted in [6], for q odd, \mathcal{S}_{l} is isomorphic to the spread $\mathcal{S}_{[9]}$ constructed in [3]. Also, as noted in the introduction, the new examples of semiclassical spreads of $H\left(2^{2 e}\right)$ constructed in [9] are equivalent to \mathcal{S}_{l}.

Theorem 2 A semiclassical spread \mathcal{S} of $H(q)$ is either Hermitian or $q \equiv 1(\bmod 3)$ and \mathcal{S} is isomorphic to \mathcal{S}_{l} for l an imaginary axis.

Proof: Let $\mathcal{S}=G \cup\{[\infty]\}$ be a semiclassical spread of $H \simeq H(q)$. Then G / Z defines a line l of $P G(3, q)$ whose points belong to imaginary chords of Σ. By Theorem 1, either l is an imaginary chord or $q \equiv 1(\bmod 3)$ and l is an imaginary axis. In the former case \mathcal{S} is an Hemitian spread; in the latter case $\mathcal{S}=\mathcal{S}_{l}$.

Corollary 1 If \mathcal{S} is a translation spread of $H\left(2^{r}\right)$, then \mathcal{S} is either Hermitian or $q \equiv$ $1(\bmod 3)$ and \mathcal{S} is isomorphic to \mathcal{S}_{l} for l an imaginary axis.

Proof: By [6] Corollary 1, all translation spreads of $H\left(2^{r}\right)$ are semiclassical. Then the proof follows from Theorem 2.

Luyckx and Thas have recently classified the semiclassical 1-systems of $Q(6, q), q=2^{r}$, not contained in an elliptic quadric $Q^{-}(5, q)$ (see [8] for more details), proving there are exactly $\frac{q-2}{2}$ inequivalent examples under the action of the subgroup of $P G L(7, q)$ stabilizing $Q(6, q)$. Applying Theorem 2, exactly one example of such 1-systems of $Q(6, q)$ is a spread of $H(q)$, and this forces $q=2^{2 e}$.

References

1. L. Bader and G. Lunardon, "Generalized hexagons and BLT-sets," in Finite Geometry and Combinatorics, Buekenhout, Beutelspacher, De Clerck, Doyen, Hirschfeld, and Thas (Eds.), Cambridge University Press, Cambridge, 1994, pp. 5-16.
2. L. Bader and G. Lunardon, "Generalized hexagons and polar spaces," Discrete Math. 208/209 (1999), 13-22.
3. I. Bloemen, J.A. Thas, and H. Van Maldeghem, "Translation ovoids of generalized quadrangles and hexagons," Geom. Dedicata 72 (1998), 19-62.
4. A.A. Bruen and J.W.P. Hirschfeld, "Applications of line geometry over finite fields I: The twisted cubic," Geom. Dedicata 6 (1977), 495-509.
5. P.J. Cameron, S.E. Payne, and J.A. Thas, "Polarities of generalized hexagons and perfect codes," Geom. Dedicata, 5 (1976), 525-528.
6. I. Cardinali, G. Lunardon, O. Polverino, and R. Trombetti," Spreads in $H(q)$ and 1 -systems of $Q(6, q)$," European J. Combin., 23 (2002), 367-376.
7. J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions. The Clarendon Press Oxford University Press, New York, 1985.
8. D. Luyckx and J.A. Thas, "On 1-systems of $Q(6, q), q$ even," preprint.
9. A.D. Offer, "Translation spreads of the split Cayley hexagon," Advances in Geometry, 3(2) (2003), 105-121.
10. H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, 1993.
11. J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959), 14-60.
12. H. Van Maldeghem, Generalized Polygons, Monographs in Mathematics, Vol. 93, Birkhäuser Verlag, Basel, 1998.
