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Abstract. In this paper we classify the lines of PG(3, q) whose points belong to imaginary chords of the twisted
cubic of PG(3, q). Relying on this classification result, we obtain a complete classification of semiclassical spreads
of the generalized hexagon H (q).
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1. Introduction

The twisted cubic of PG(3, q), q = ph , p prime, can be described as follows

� = {( f0(t), f1(t), f2(t), f3(t)) : t ∈ G F(q) ∪ {∞}},

where f0(t), . . . , f3(t) are linearly independent cubic polynomials over GF(q).
Let �̄ be the twisted cubic of PG(3, F) defined by �, where F is the algebraic closure of

GF(q). A line of PG(3, q) is a chord of � if its extension to PG(3, F) contains two points
of �̄ (in the algebraic sense). There are three possibilities: the two points belong to �, or
they are coincident, or they are conjugate over GF(q2). This is called a real chord, a tangent
or an imaginary chord, respectively. By [4] Lemma 1, every point off � lies on exactly one
chord. If p �= 3, the tangents to � are self-polar lines of a non-singular symplectic polarity
ω of PG(3, q). An axis of � is a line l of PG(3, q) whose polar line with respect to ω is a
chord. We say that l is a real axis or an imaginary axis if lω is a real chord or an imaginary
chord, respectively (for more details, see [7]). If q ≡ 1 (mod 3) and l is an imaginary axis,
then all points on l belong to some imaginary chord (see [6]). In Section 2 we prove the
following result

Theorem 1 If l is a line of PG(3, q) whose points belong to imaginary chords of �, then
either l is an imaginary chord or q ≡ 1 (mod 3) and l is an imaginary axis.

In Section 3, Theorem 1 is used to study semiclassical spreads of the generalized hexagon
H (q). Tits [11] constructs the generalized hexagon H (q) as follows. Let Q(6, q) be the
parabolic quadric of PG(6, q) with equation X2

3 = X0 X4 + X1 X5 + X2 X6. The points of
H (q) are all the points of Q(6, q). The lines are those lines of Q(6, q) whose Grassmann
coordinates satisfy the equations p34 = p12, p35 = p20, p36 = p01, p03 = p56, p13 = p64
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and p23 = p45. Two elements of H (q) are opposite if they are at distance 6 in the incidence
graph of H (q). A spread of H (q) is a set of q3 + 1 mutually opposite lines of H (q).

Let Q−(5, q) be an elliptic quadric intersection of Q(6, q) with a 5-dimensional space.
Let S be the set of lines of H (q) contained in Q−(5, q). S is a spread of H (q) called
Hermitian [5].

Let S be a spread of H (q) and let L be a fixed line of S. For each line M of S \ {L},
the subspace 〈L , M〉 has dimension 3 and intersects Q(6, q) in a nonsingular hyperbolic
quadric. Let RL ,M be the regulus of 〈L , M〉 ∩ Q(6, q) containing the lines L and M. The
spread S of H (q) is locally Hermitian with respect to L if RL ,M is contained in S for all
lines M of S different from L . S is locally Hermitian with respect to all the lines of S if
and only if it is a Hermitian spread (see [3]).

Let x be a fixed point of Q(6, q) and denote by �x the polar space whose points are the
lines of Q(6, q) incident with x and whose lines are the planes of Q(6, q) incident with x .

By construction, �x 	 Q(4, q). If S is a locally Hermitian spread of H (q) with respect
to L and x is a point of L , then the set of lines Ox , whose elements are either L or the
transversals through x to the reguli of S containing L , is an ovoid of �x 	 Q(4, q) (see
[3]). We call Ox a projection along reguli of S. If Ox is an elliptic quadric for all x in L ,

the spread S is called semiclassical.
In [3], Bloemen, Thas and Van Maldeghem have proved that, for q odd, a semiclas-

sical spread of H (q) is either Hermitian or isomorphic to the spread S[9] constructed in
[3]. Recently, there have been two (independent) constructions of non-Hermitian semiclas-
sical spreads Sl in H (q) for q an even power of 2; one in [6] by Cardinali, Lunardon,
Polverino and Trombetti and one in [9] by Offer. It has first been shown by D. Luyckx
(unpublished) that these two families are equivalent. Remark that the construction in [6] is
valid for all q ≡ 1 (mod 3), but for such odd q, the corresponding spreads are equivalent
to S[9].

In this paper, using the representation of H (q) as a coset geometry and as an application
of Theorem 1, we extend the classification result of Bloemen, Thas and Van Maldeghem
of semiclassical spreads of H (q) to the even characteristic case. We prove that a semi-
classical spread of H (q) is either Hermitian or isomorphic to Sl , i.e. there is exactly
one non-Hermitian semiclassical spread of H (q) for all prime powers q congruent to 1
modulo 3.

2. Proof of Theorem 1

Proof: Take the twisted cubic � in the canonical form � = {(t3, t2, t, 1) : t ∈ G F(q)}∪
{(1, 0, 0, 0)} and let l be a line of PG(3, q) whose points belong to imaginary chords
of �. Let P be the point of PG(3, q) with coordinates (α − 1, 1, −1, 0) and suppose that
t2 + t + α is an irreducible polynomial over GF(q). This implies that P belongs to the
imaginary chord l̄ of � with equations x0 + x1 + αx2 = x1 + x2 + αx3 = 0. Under the
action of the collineation group K of PGL(4, q) fixing �, there are two orbits of points on
an imaginary chord if q ≡ −1 (mod 3) and there is exactly one orbit if q �≡ −1 (mod 3). In
the former case the line l contains points of both orbits ([7], Corollary 5 to Lemma 21.1.3
and Corollary to Lemma 21.1.11). Hence, without loss of generality, we may assume that
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the point P belongs to l. Also, since l is not contained in any osculating plane, we can
suppose that l contains the point Q = (a, 0, a′, 1) for some a, a′ ∈ G F(q). Thus, l has
equations

{
x1 + x2 − a′x3 = 0

x0 + (1 − α)x1 − ax3 = 0

In this case, l is an imaginary chord if l = l̄, i.e. if a = α2 and a′ = −α, and it is easy to
verify that l is an imaginary axis if q ≡ 1 (mod 3), a = (1 − α)2/9 and a′ = (−2 − α)/9.

Every plane through l meets � in exactly one point off l. This implies that the plane
x1 + x2 −a′x3 = 0 contains only one point of �, namely (1, 0, 0, 0), and hence t2 + t −a′ is
an irreducible polynomial over GF(q). Moreover, for each λ ∈ G F(q) there exists exactly
one element t ∈ G F(q) such that Pt = (t3, t2, t, 1) belongs to the plane

πλ : x0 + (1 − α)x1 − ax3 + λ(x1 + x2 − a′x3) = 0.

Therefore, for each λ ∈ G F(q) there exists t ∈ G F(q) such that

λ = λ(t) = −t3 − (1 − α)t2 + a

(t2 + t − a′)
= p(t)

q(t)
.

Hence λ(t) = λ(t ′) implies t = t ′. By a direct calculation, we get λ(t) = λ(t ′) if and only if

G(t, t ′) = p(t ′)q(t) − p(t)q(t ′) = (t − t ′) ·
[t2t ′2 + t2t ′ + t t ′2 − a′(t2 + t ′2) + (1 − α − a′)t t ′ + (a − a′(1 − α))(t + t ′) + a] = 0.

Then F(t, t ′) = G(t, t ′)/(t − t ′) �= 0 for any distinct t, t ′ ∈ G F(q). If F(t0, t0) = 0, then
(t − t0)2 | G(t, t0), and hence (t − t0)2 | (p(t0)q(t) − p(t)q(t0)) = q(t0)(−p(t) + λ(t0)q(t)).
This implies that the plane πλ(t0) either contains two points of � or is an osculating plane.
Hence, F(t, t ′) �= 0 for any t, t ′ ∈ G F(q). Let X = t and Y = t ′ and let � be the algebraic
curve with affine equation

F(X, Y ) = X2Y 2 + X2Y + XY 2 − a′(X2 + Y 2) + (1 − α − a′)XY

+ (a − a′(1 − α))(X + Y ) + a = 0 (1)

Since F(X, Y ) �= 0 for each X, Y ∈ G F(q), � has only two GF(q)-rational points: X∞ =
(0, 1, 0) and Y∞ = (0, 0, 1), which are isolated double points with tangents, respectively,
Y = εi and X = εi (i = 1, 2), where ε2

i + εi − a′ = 0. If � is absolutely irreducible, then it
has genus g ≤ 1, and, if Nq is the number of GF(q)-rational points of �, by the Hasse-Weil
bound ([10]), we get

2 = Nq ≥ q + 1 − 2g
√

q ≥ q − 2
√

q + 1
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which is not possible for q > 5. Then, if q > 5,� is absolutely reducible. In this case, we may
assume � is the union of two conics C1 and C2, both passing through X∞ and Y∞, with affine
equations, respectively, G1(X, Y ) = 0 and G2(X, Y ) = 0. Since F(X, Y ) = F(Y, X ), we
have that either G1(Y, X ) = G2(X, Y ) or G1(Y, X ) = G1(X, Y ) and G2(Y, X ) = G2(X, Y ).

Suppose that G1(Y, X ) = G2(X, Y ) and let G1(X, Y ) = XY + AX + BY + C . Since
the tangents to C1 and C2 at the points X∞ and Y∞ are, respectively, the lines Y = εi and
X = εi (i = 1, 2), we may assume A = −ε1 and B = −ε2. Hence, � has equation

(XY − ε1 X − ε2Y + C)(XY − ε2 X − ε1Y + C) = 0 (2)

Comparing the coefficients of Eqs. (1) and (2) and noting that ε1+ε2 = −1 and ε1 ·ε2 = −a′,
we obtain


2C = −3a′ − α

C = a − a′(1 − α)

C2 = a

(∗)

Also, since the affine intersection points of C1 and C2 are not GF(q)-rational points, we
have that X2 + X + C is irreducible over GF(q). If q is even, from (∗) we get either a = α2

and a′ = −α or a = 1 + α2 = (1 − α)2/9 and a′ = −α = (−2 − α)/9. In the former case
l is an imaginary chord. In the latter case, since C = 1 + α and X2 + X + C is irreducible
over GF(q), we have q ≡ 1(mod 3) and hence l is an imaginary axis. If q is odd, with some
calculation from (∗) we get

{
9a′2 + 2a′(1 + 5α) + α2 + 2α = 0

a = −a′(1 + 2α) − α
2

(∗∗)

If q ≡ 0(mod 3), from (∗∗) we get a′ = −α and a = α2, so l is an imaginary chord. If
q �≡ 0(mod 3), from (∗∗) we get either a′ = −α and a = α2 or a′ = (−2 − α)/9 and
a = (1 − α)2/9. In the latter case, since X2 + X + C is irreducible over GF(q), we obtain
q ≡ 1(mod 3), and hence l is an imaginary axis.

On the other hand, suppose G1(Y, X ) = G1(X, Y ) and G2(Y, X ) = G2(X, Y ). Let
G1(X, Y ) = XY + AX + AY + B and G2(X, Y ) = XY + A′Y + A′ X + B ′. We may
assume A = −ε1 and A′ = −ε2 and this implies that � has equation

(XY − ε1(X + Y ) + B)(XY − ε2(X + Y ) + B ′) = 0 (3)

With an argument similar to the previous one, we obtain




B + B ′ = 1 − α + a′

ε1 B ′ + ε2 B = a′(1 − α) − a

B · B ′ = a
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From the above system we get

a2 + a(a′ + 2a′α + α) − (a′3 + a′2α(1 − α)) = 0. (4)

If a′ = −α, from (4) we get a = α2. If a′ �= −α, treating (4) as a quadratic equation in a,
we find that for q odd its discriminant is

� = (1 + 4a′)(a′ + α)2

and, since t2 + t − a′ is irreducible over GF(q), � is a non-square over GF(q). For q even,
the S-invariant of (4) is

S = a′3 + a′2α + a′2α2

a′2 + α2

and since t2 + t − a′ is irreducible over GF(q), T r (a′) = 1. So, we get

T r (S) = T r (a′) + T r (α + α2) + T r

(
α2

a′ + α
+ α4

a′2 + α2

)
= 1 + 0 + 0 = 1.

Hence in both cases Eq. (4) has no solution in GF(q). This proves the theorem for q > 5.
Finally, for q ≤ 5, if we require the function λ(t) is one-to-one and none of the planes

πλ(t) is an osculating plane, by a direct calculation we get that either the line l is an imaginary
chord or q = 4 and l is an imaginary axis.

3. Coset geometries and semiclassical spreads

Let L be a fixed line of H (q) and denote by E L the group of automorphisms of H (q)
generated by all the collineations fixing L pointwise and stabilizing all the lines through
any point of L . The group E L has order q5 and acts regularly on the set of the lines of H (q)
at distance 6 from L (see, e.g. [2] or [12]). A spread S of H (q) containing L is a translation
spread with respect to L , if for each x ∈ L there is a subgroup of E L which preserves S
and acts transitively on the lines of S at distance 4 from M , for all lines M of H (q) incident
with x and different from L . By [9] Theorem 5, a spread S of H (q) is a translation spread
with respect to L if and only if the stabilizer of S in E L has order q3.

Let [∞] = 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1)〉. The lines of H (q) at distance 6 from
[∞] are the lines

[a, b, c, d, e] = 〈(c + bd, a, 1, b, 0, d, b2 − da), (d2 + eb, −b, 0, −d, 1, e,

−ae − c − 2bd)〉

of Q(6, q) [3]. Denote by θ (a, b, c, d, e) the element of E [∞] which maps the line
[0, 0, 0, 0, 0] to the line [a, b, c, d, e]. The group Z = {θ (0, 0, c, 0, 0) | c ∈ G F(q)} is
contained in the center of E [∞] when q = 3r , and it is the center of E [∞] when q �= 3r .

Note that the lines [∞] and M = [0, 0, 0, 0, 0] of H (q) are at distance 6. Denote by
x∞ = (1, 0, 0, 0, 0, 0, 0) and xt = (t, 0, 0, 0, 0, 0, 1), t ∈ G F(q), the points of the line
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[∞]. For each t ∈ F̃ = G F(q) ∪ {∞}, there is a unique chain, say (xt , Nt , yt , Rt , zt , M),
of lenght 5 joining xt and M. Put

A4(t) = {
g ∈ E [∞]

∣∣ N g
t = Nt

}
A3(t) = {

g ∈ E [∞]
∣∣ yg

t = yt
}

A2(t) = {
g ∈ E [∞]

∣∣ Rg
t = Rt

}
A1(t) = {

g ∈ E [∞]
∣∣ zg

t = zt
}
.

Then, A1(t) < A2(t) < A3(t) < A4(t) and A3(t) = A2(t)Z . Moreover, |A1(t)| = q,

|A2(t)| = q2, |A3(t)| = q3 and |A4(t)| = q4 (see, e.g. [2] or [12]).
Define a point-line geometry H = (P, L, I ) as follows:

P = {
(t), A3(t)g, A1(t)g : g ∈ E [∞], t ∈ F̃

}
L = {

[∞], A4(t)g, A2(t)g, g : g ∈ E [∞], t ∈ F̃
}

where [∞] and (t) are symbols, and the incidences are: [∞]I (t), A4(t)I (t), gI A1(t)g for
all t ∈ F̃ and g ∈ E [∞], whereas Ai (t)gI Ai+1(v)h if and only if t = v and g ∈ Ai+1(v)h
with i = 1, 2, 3 and for all g, h ∈ E [∞] and t, v ∈ F̃ . Then, H is isomorphic to H (q) (see,
e.g., [2]).

The group

Ē = E [∞]
/

Z = {(x, y, z, t) | x, y, z, t ∈ G F(q)}

is elementary abelian, and can be regarded as a four-dimensional vector space over GF(q).
For each element g of E [∞], let g∗ be the preimage in E [∞] of the 1-space of Ē spanned by
ḡ = gZ . If ḡ, h̄ are elements of Ē , then (ḡ, h̄) = [g, h] defines an alternating GF(q)-bili-
near form on Ē ; if q is even, ḡ �→ g2 defines a quadratic form associated with (, ). Thus, Ē
is endowed with a symplectic or an orthogonal geometry. If [g, h] = 1, then [g∗, h∗] = 1.

Thus, maximal elementary abelian subgroups of E [∞] are preimages of maximal totally
isotropic (or singular) 2-spaces of Ē .

Let PG(3, q) be the 3-dimensional projective space associated with the GF(q)-vector
space Ē . As A3(t) = A2(t)Z , A3(t) is a maximal elementary abelian subgroup of E [∞] for
each t ∈ F̃ . Thus, Lt = A3(t)/Z is a totally isotropic (or singular) line of the projective
space PG(3, q). Denote by Pt , Lt , αt , respectively, the point A1(t)Z/Z , the line A3(t)/Z
and the plane A4(t)/Z of PG(3, q). The set � = {Pt : t ∈ F̃} is a twisted cubic of PG(3, q)
and Lt is the tangent line to � at Pt and αt is the osculating plane to � at Pt . Moreover, we
may suppose P∞ = (0, 0, 0, 1) and Pt = (1, −t, t2, t3), t ∈ G F(q) (see [1]).

If τ is an automorphism of H (q) fixing [∞] then τ E [∞]τ−1 = E [∞]. Since the automor-
phism of E [∞] defined by g �→ τgτ−1 preserves the families {Ai (t) | t ∈ F̃} (i = 1, 2, 3, 4),
the automorphisms τ induce, by conjugation, the collineation group K of PGL(4, q) fixing
the twisted cubic �.

Let S be a locally Hermitian spread of H 	 H (q) with respect to the line [∞]. Then
we can write S = G ∪ {[∞]} where G = {θ (a, b, c, f (a, b), g(a, b)) | a, b, c ∈ G F(q)}
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and f and g are functions from GF(q) × G F(q) to GF(q) (see [6] and [9]). If the line
θ [0, 0, 0, 0, 0] belongs to S, then S is a translation spread with respect to [∞] if and only if
G is a subgroup of E [∞] of order q3 ([9] Theorem 5). By [9] Theorem 7, S is semiclassical
if and only if f and g are GF(q)-linear functions. From [9] Theorem 5 and Theorem 7, we
have the following

Lemma 1 All semiclassical spreads of H (q) are translation spreads.

If G is a subgroup of order q3 of E [∞] containing Z and S = G ∪ {[∞]}, then the
following results are known:

(a) ([6], Theorem 4) S is a translation spread of H 	 H (q) with respect to [∞] if and only
if all the points of S = {〈ḡ〉 | ḡ ∈ G/Z} ⊂ PG(3, q) lie on imaginary chords of �.

(b) ([6], Corollary 3) S is a semiclassical spread of H 	 H (q) if and only if G/Z defines
a line of PG(3, q) whose points belong to imaginary chords of �.

(c) ([6], Theorem 5) S is an Hermitian spread of H 	 H (q) if and only if G/Z defines an
imaginary chord of �.

If q ≡ 1 (mod 3) and l is an imaginary axis of �, then all the points on l belong to
some imaginary chord, and hence, if l = {〈ḡ〉 | ḡ ∈ G/Z}, the subgroup G defines a
semiclassical spread Sl = G ∪ {[∞]} of H 	 H (q) which is not Hermitian (see [6]).
Since there is exactly one orbit of imaginary axes under the action of K , the semiclassical
spreads Sl are all equivalent. As noted in [6], for q odd, Sl is isomorphic to the spread S[9]

constructed in [3]. Also, as noted in the introduction, the new examples of semiclassical
spreads of H (22e) constructed in [9] are equivalent to Sl .

Theorem 2 A semiclassical spread S of H (q) is either Hermitian or q ≡ 1 (mod 3) and S
is isomorphic to Sl for l an imaginary axis.

Proof: Let S = G ∪ {[∞]} be a semiclassical spread of H 	 H (q). Then G/Z defines
a line l of PG(3, q) whose points belong to imaginary chords of �. By Theorem 1, either l
is an imaginary chord or q ≡ 1 (mod 3) and l is an imaginary axis. In the former case S is
an Hemitian spread; in the latter case S = Sl .

Corollary 1 If S is a translation spread of H (2r ), then S is either Hermitian or q ≡
1 (mod 3) and S is isomorphic to Sl for l an imaginary axis.

Proof: By [6] Corollary 1, all translation spreads of H (2r ) are semiclassical. Then the
proof follows from Theorem 2.

Luyckx and Thas have recently classified the semiclassical 1-systems of Q(6, q), q = 2r ,
not contained in an elliptic quadric Q−(5, q) (see [8] for more details), proving there are
exactly q−2

2 inequivalent examples under the action of the subgroup of PGL(7, q) stabilizing
Q(6, q). Applying Theorem 2, exactly one example of such 1-systems of Q(6, q) is a spread
of H (q), and this forces q = 22e.
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