The Automorphism Groups of Steiner Triple Systems Obtained by the Bose Construction
G. J. Lovegrove
DOI: 10.1023/B:JACO.0000011935.37751.c5
Abstract
The automorphism group of the Steiner triple system of order v 3 (mod 6), obtained from the Bose construction using any Abelian Group G of order 2 s + 1, is determined. The main result is that if G is not isomorphic to Z 3 n \times Z 9 m , n 0, m 0, the full automorphism group is isomorphic to Hol( G) \times Z 3, where Hol( G) is the Holomorph of G. If G is isomorphic to Z 3 n \times Z 9 m , further automorphisms occur, and these are described in full.
Pages: 159–170
Keywords: Steiner triple system; Bose construction; automorphism
Full Text: PDF
References
1. R.C. Bose, “On the construction of balanced incomplete block designs,” Ann. Eugenics 9 (1939), 353-399.
2. P.J. Cameron, Combinatorics, Cambridge University Press, Cambridge, England, 1994.
3. T.P. Kirkman, “On a problem in combinations,” Cambridge and Dublin Math. Journal 2 (1847), 191-204.
4. S. MacLane and G. Birkhoff, Algebra, MacMillan, London, 1967.
5. A.P. Street and D.J. Street, Combinatorics of Experimental Design, Clarendon Press, Oxford, 1987.
2. P.J. Cameron, Combinatorics, Cambridge University Press, Cambridge, England, 1994.
3. T.P. Kirkman, “On a problem in combinations,” Cambridge and Dublin Math. Journal 2 (1847), 191-204.
4. S. MacLane and G. Birkhoff, Algebra, MacMillan, London, 1967.
5. A.P. Street and D.J. Street, Combinatorics of Experimental Design, Clarendon Press, Oxford, 1987.