ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Automorphism Groups of Steiner Triple Systems Obtained by the Bose Construction

G. J. Lovegrove

DOI: 10.1023/B:JACO.0000011935.37751.c5

Abstract

The automorphism group of the Steiner triple system of order v equiv 3 (mod 6), obtained from the Bose construction using any Abelian Group G of order 2 s + 1, is determined. The main result is that if G is not isomorphic to Z 3 n \times  Z 9 m , n ge 0, m ge 0, the full automorphism group is isomorphic to Hol( G) \times  Z 3, where Hol( G) is the Holomorph of G. If G is isomorphic to Z 3 n \times  Z 9 m , further automorphisms occur, and these are described in full.

Pages: 159–170

Keywords: Steiner triple system; Bose construction; automorphism

Full Text: PDF

References

1. R.C. Bose, “On the construction of balanced incomplete block designs,” Ann. Eugenics 9 (1939), 353-399.
2. P.J. Cameron, Combinatorics, Cambridge University Press, Cambridge, England, 1994.
3. T.P. Kirkman, “On a problem in combinations,” Cambridge and Dublin Math. Journal 2 (1847), 191-204.
4. S. MacLane and G. Birkhoff, Algebra, MacMillan, London, 1967.
5. A.P. Street and D.J. Street, Combinatorics of Experimental Design, Clarendon Press, Oxford, 1987.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition