ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Sturmian Words and the Permutation that Orders Fractional Parts

Kevin O'Bryant
University of California, San Diego, USA

DOI: 10.1023/B:JACO.0000022568.96268.12

Abstract

A Sturmian word is a map W : \mathbb N {\mathbb{N}} \mathbb N {\mathbb{N}} } has cardinality exactly n + 1 for each positive integer n. Our main result is that the volume of the simplex whose n + 1 vertices are the n + 1 points in F n( W) does not depend on W. Our proof of this motivates studying algebraic properties of the permutation pgr agr, n (where agr is any irrational and n is any positive integer) that orders the fractional parts { agr}, {2 agr},...,{ n agr}, i.e., 0 <> pgr agr, n (1) agr} <> pgr agr, n (2) agr} < ;;;=""> <> pgr agr, n ( n) agr} < 1.="" we="" give="" a="" formula="" for="" the="" sign="" of=""> pgr agr, n , and prove that for every irrational agr there are infinitely many n such that the order of pgr agr, n (as an element of the symmetric group S n) is less than n.

Pages: 91–115

Keywords: Sturmian word; Beatty sequence; quasi crystal; sos permutation

Full Text: PDF

References

1. P. Alessandri and V. Berthé, “Three distance theorems and combinatorics on words,” Enseign. Math. (2) 44(1/2) (1998), 103-132.
2. D.W. Boyd and J.M. Steele, “Monotone subsequences in the sequence of fractional parts of multiples of an irrational,” J. Reine Angew. Math. 306 (1979), 49-59.
3. T.C. Brown, “Descriptions of the characteristic sequence of an irrational,” Canad. Math. Bull. 36 (1) (1993), 15-21.
4. J.N. Cooper, “Quasirandom permutations,” arXiv:math.CO/0211001, 2002.
5. H. Eves, A Survey of Geometry, revised edition, Allyn and Bacon Inc., Boston, Mass., 1972.
6. M. Lothaire, Algebraic Combinatorics on Words, 1st edn., Cambridge University Press, Cambridge, U.K.,
2002. Currently available online at http://www-igm.univ-mlv.fr/\sim berstel/Lothaire/.
7. B.E. Sagan, The Symmetric Group, 2nd edn., Springer-Verlag, New York,
2001. Representations, combinatorial algorithms, and symmetric functions.
8. J. Schoißengeier, On the discrepancy of (nα), Acta Arith. 44(3) (1984), 241-279.
9. M. Senechal, Quasicrystals and Geometry, Cambridge University Press, Cambridge, 1995.
10. N.B. Slater, “Gaps and steps for the sequence nθmod 1,” Proc. Cambridge Philos. Soc. 63(1967), 1115-1123.
11. V.T. Sós, “A lánct\ddot ortek egy geometriai interpretációja és alkalmazásai [On a geometrical theory of continued fractions],” Mat. Lapok 8 (1957), 248-263.
12. K.B. Stolarsky, “Beatty sequences, continued fractions, and certain shift operators,” Canad. Math. Bull. 19(4) (1976), 473-482,.
13. J.-P. Sydler, “Conditions nécessaires et suffisantes pour l'équivalence des poly`edres de l'espace euclidien `a trois dimensions,” Comment. Math. Helv. 40 (1965), 43-80.
14. R. Tijdeman, “Exact covers of balanced sequences and Fraenkel's conjecture,” in Algebraic Number Theory and Diophantine Analysis (Graz, 1998), de Gruyter, Berlin, 2000, pp. 467-483.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition