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Abstract. A d-dimensional dual arc in PG(n, q) is a higher dimensional analogue of a dual arc in a projective
plane. For every prime power q other than 2, the existence of a d-dimensional dual arc (d ≥ 2) in PG(n, q) of
a certain size implies n ≤ d(d + 3)/2 (Theorem 1). This is best possible, because of the recent construction of
d-dimensional dual arcs in PG(d(d + 3)/2, q) of size

∑d−1
i=0 qi , using the Veronesean, observed first by Thas and

van Maldeghem (Proposition 7). Another construction using caps is given as well (Proposition 10).
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1. Introduction

Let q = pe be a power of a prime p with e ≥ 1, and let G F(q) be the field of q elements.
To distinguish the dimension as a projective space and that as a vector space, we use the
terminology rank to refer to the latter. For a vector space V of rank n + 1 over G F(q),
PG(V ) denotes the associated Desarguesian projective space of dimension n. We denote
by PG(n, q) the isomorphism class of PG(V ). Sometimes PG(V ) is used to indicate the
set of projective points of PG(V ). The number of projective points of PG(n, q) is denoted

θq (n) := qn + qn−1 + · · · + 1 = (qn+1 − 1)/(q − 1),

or simply θ (n).
A familyA of d-dimensional subspaces of PG(n, q) with n ≥ 2 is called a d-dimensional

dual arc in PG(n, q), if it satisfies the following three axioms:

(D A1) every two distinct members of A intersect at a projective point,
(D A2) every three distinct members of A intersect trivially, and
(D A3) all members of A span the whole space PG(n, q).

The space PG(n, q) is called the ambient space of the dual arc A. The dual arc A is called
complete if there is no d-dimensional dual arc containing A properly.

A d-dimensional dual arc A consists of at most θq (d) + 1 members, because for a
member X of A, the map A \ {X} � Y �→ X ∩ Y ∈ PG(X ) (the set of projective points
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of PG(X ) ∼= PG(d, q)) is well-defined and injective by the axioms (D A1) and (D A2). A
d-dimensional dual arc A in PG(n, q) is called a dual hyperoval, if this upper bound is
attained: |A| = θq (d) + 1.

It is not difficult to see that the existence of a 1-dimensional dual arc (of at least three
members) in PG(n, q) implies n = 2, and that the notion of 1-dimensional dual arcs coin-
cides with that of dual arcs in PG(2, q), that is, a set of lines no three of which contains a
point in common. Thus the notion of dual hyperovals and arcs can be thought of as a higher
dimensional analogue of that of dual hyperovals and dual arcs in a projective plane. Hence,
we only consider the case d ≥ 2, throughout the paper.

The notion of dual hyperovals was first appeared in the paper by Huybrechts and Pasini [6],
and that of dual arc was introduced by the author [12, Section 2] as its generalization. See
[7, 8] for relations of dual hyperovals with semibiplanes and a class of distance regular
graphs.

Several fundamental properties of dual hyperovals were obtained by Del Fra [3] as well
as the classification of 2-dimensional dual hyperovals. Specifically, he succeeded in charac-
terizing the remarkable 2-dimensional dual hyperoval in PG(5, 4) with the automorphism
group the Mathieu group M22, in a geometric property, the property (T ) (Proposition 11).
Characterization of d-dimensional dual hyperovals in PG(2d, q) was achieved by
Cooperstein and Thas [2].

As for constructions, Huybrechts [5] gave a d-dimensional dual hyperoval in PG(D, 2),
where D = d(d + 3)/2, for every d, and the author gave a family of them in PG(2d + 1, 2)
[11] which is doubly indexed by the numbers m, n with 1 ≤ m, n ≤ d coprime to d + 1
for every d . The former can be thought of as an example of the “cap construction” of dual
arcs (Section 3.2). Recently, Thas and van Maldeghem provide several characterizations of
the Veronesean [9, 10], the “second” of which [10, Section 3] is based on the following
observation: for every prime power q and d ≥ 2, using the Veronesean, we can construct
a d-dimensional dual arc of size θq (d) in PG(D, q), D = d(d + 3)/2. (Note that the
properties (V Si) (i = 1, 2, 3) given in [10, Section 3] are the dual form of the axioms
(D Ai) (i = 1, 2, 3) above.) It can be extended to a dual hyperoval if and only if q is even
(Corollary 8 in Section 3). Remark that for q = 2 the d-dimensional dual hyperoval in
PG(D, 2) constructed by Huybrechts is not isomorphic to the dual hyperoval by Thas and
van Maldeghem (Proposition 11).

When there exists a d-dimensional dual arc in PG(n, q), then we have an obvious lower
bound 2d ≤ n, because 2d is the dimension of the subspace of PG(n, q) spanned by two
members of the dual arc by the axiom (D A1). Then it is natural to ask:

Find an upper bound on the dimension n of the ambient space PG(n, q) of a d-dimensional
(complete) dual arc, in terms of d and q.

Del Fra [3, Proposition 2.3] gave the following bound when there exists a d-dimensional
dual hyperoval in PG(n, q):

n < 2d +
d−1∑
i=1

iqd−i .

The main aim of the present paper is to provide an improvement of his bound.
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Theorem 1 Assume that A is a d-dimensional dual arc in PG(n, q).
(i) If q > 2 and |A| ≥ θ (d) − α(q), where

α(q) = {(q − 3)qd+1 + (qd − q2) + (q − 1)d + (3q − 1)}/(q − 1)2,

then n ≤ d(d + 3)/2 =: D.
(ii) If q = 2 and A is a dual hyperoval, then n ≤ D + 2.

Observe that the number α(q) in the statement (i) above is positive for every prime
power q other than 2 and every d ≥ 2. The upper bound in (i) is specifically valid
for dual hyperovals as well as dual arcs of second-maximum size θq (d). In view of the
construction by Thas and van Maldeghem mentioned above, we conclude that the upper
bound for n given in (i) is best possible for every prime power q other than 2 and every
d ≥ 2.

As every d-dimensional dual arc in PG(n, q) of size θq (d) can be uniquely extended to
a dual hyperoval if q is even (Proposition 9), the upper bound in (ii) is valid for a dual arc
A of size θ2(d) as well. It is likely that n ≤ D even in the case q = 2, though the author
has not yet succeeded to show that. When 1 ≤ d ≤ 5, we have the bound n ≤ D (see
Proposition 5).

The proof of theorem will be given in Section 2. In Section 3, several constructions
of dual arcs will be given, including expositions for the construction by Thas and van
Maldeghem.

2. Proof of theorem

Straightforward calculations give the following, which gives an account for the value α(q)
in Theorem 1(i).

Lemma 2 We have α(q) = θ (d) − θ (d − 1) − ∑d−1
l=1 θ (l) − 2.

(Note that the value α(q) is positive if q ≥ 3, while it is negative when q = 2.)
We now prepare two lemmas on the intersections of members of a dual arc in PG(n, q)

with subspaces of PG(n, q). Note that Lemma 4 below is valid only for a dual hyperoval,
and will not be used in the proof of Theorem 1(i).

Lemma 3 Let A be a d-dimensional dual arc in PG(n, q). Assume that a subspace W
of PG(n, q) contains at least θ (m) + 1 distinct members of A for some 0 ≤ m ≤ d − 1.
Then every member X of A intersects W in a subspace of dimension at least m + 1:
dim(X ∩ W ) ≥ m + 1. In particular, if m = d − 1, then W = PG(n, q).

Proof: Let Xi (i = 0, . . . , θ(m)) be distinct members of A contained in W . Then for
every X ∈ A, either X = Xi for some i = 0, . . . , θ(m) or X contains θ (m) + 1 distinct
points X ∩ Xi (i = 0, . . . , θ(m)). In either case, dim(X ∩ W ) ≥ m + 1, as no subspace of
dimension at most m contains θ (m) + 1 distinct points.
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When m = d −1, we have dim(X ∩ W ) = dim(X ) = d. Thus X ⊆ W for every member
X ∈ A, and hence W = 〈A〉 = PG(n, q).

Lemma 4 Let H be a d-dimensional dual hyperoval in PG(n, q). Assume that every
member of H intersects a subspace W of PG(n, q) in a subspace of dimension at least
d − 1. Then n ≤ dim(W ) + 1.

Proof: If W contains all members of H, then W = 〈H〉 = PG(n, q) and the lemma
follows. Thus we may assume that there exists a member Y of H with dim(Y ∩ W ) = d −1.
Then there are precisely θ (d) − θ (d − 1) = qd points in Y outside Y ∩ W . For such a point
P , there is a unique member X (P) of H distinct from Y with Y ∩ X (P) = {P}, as H is a
dual hyperoval. As dim(X (P) ∩ W ) ≥ d − 1 by our assumption, we have

X (P) = 〈X (P) ∩ W, P〉 ⊂ 〈W, Y 〉.

Thus the subspace 〈W, Y 〉 of PG(n, q) contains at least qd (> θ (d −1) = (qd −1)/(q −1))
distinct members of H, and hence PG(n, q) = 〈W, Y 〉 by Lemma 3. Then n = dim W +
dim Y − dim(W ∩ Y ) = dim(W ) + 1.

We now begin the proof of Theorem 1. Let A be a d-dimensional dual arc in PG(n, q)
with n ≥ 2. First, we fix two distinct members A and B of A, and define

R0 := A − {A, B}, U0 := 〈A, B〉, and

d − l0 := the smallest dimension of the subspaces U0 ∩ X for X ranging over R0.

If l0 = 0, then dim(U0 ∩ X ) = d for every X ∈ A− {A, B}, or equivalently U0 contains
all members of A, as dim(X ) = d for X ∈ A. Then U0 coincides with 〈A〉 = PG(n, q)
and n = dim(U0) = dim(A) + dim(B) − dim(A ∩ B) = 2d. Hence we may assume that
l0 ≥ 1.

Furthermore, observe that d − 1 ≥ l0: for, each X ∈ R0 intersects U0 in a subspace of
dimension at least 1 = d − (d − 1), as U0 ∩ X contains the line through two distinct points
A ∩ X and B ∩ X ; and therefore

d − l0 = min{dim(U0 ∩ X ) | X ∈ R0} ≥ d − (d − 1).

Next, we inductively define subsetsRi ofA, subspaces Ui of PG(n, q), and non-negative
integers li as follows, until we reach at the stage when li = 0.

Assume that Ri and Ui are given. Let d − li be the smallest dimension of Ui ∩ X
for X ranging over Ri . We may assume li ≥ 1. Let Xi be a member of Ri satisfying
dim(Ui ∩ Xi ) = d − li . Then define

Ri+1 := {X ∈ Ri − {Xi } | X ∩ Xi �∈ Ui ∩ Xi },
Ui+1 := 〈Ui , Xi 〉, and

d − li+1 := min{dim(Ui+1 ∩ X ) | X ∈ Ri+1}.
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Remark that dim(Ui+1∩ X ) ≥ d −li +1 for every X ∈ Ri+1: for, X contains the subspace
X ∩ Ui of dimension at least d − li (as X ∈ Ri+1 ⊂ Ri ) as well as a point X ∩ Xi which
is outside X ∩ Ui by the definition of Ri+1. Thus li > li+1.

Hence we have a properly decreasing sequence of non-negative integers

d > l0 > l1 > . . . ,

and therefore there exists a positive integer k such that

1 ≤ k ≤ d − 1, lk−1 ≥ 1 but lk = 0.

(Note that l0 ≥ 1.)
By the definition of li , the condition lk = 0 implies that d = dim(Uk ∩ X ) for every X ∈

Rk , and hence the subspace Uk contains all members of Rk (and Rk+1 = ∅). Conversely,
the condition Ri+1 = ∅ implies that li = 0.

For every i = 1, . . . , k, the subspace Ui also contains 2+ i members A, B, X0, . . ., Xi−1,
none of which is a member of Ri . This remark with the above observation implies that the
subspace Uk contains at least |Rk | + k + 2 distinct members of A.

Furthermore, we inductively have

dim(Ui ) = dim(Ui−1) + dim(Xi−1) − dim(Ui−1 ∩ Xi−1)

= dim(Ui−1) + li−1 = · · ·

= dim(U0) + l0 + · · · + li−1 = 2d +
i−1∑
j=0

l j ,

for i = 1, . . . , k.
We will now find a lower bound for the size of Ri for 1 ≤ i ≤ k − 1 (so that li ≥ 1).

The map sending each member X of Ri − {Xi } to the point X ∩ Xi is an injective map
from Ri − {Xi } into the set of points of Xi . As no three distinct members of A contain
a common point, no member of Ri − {Xi } intersects Xi at one of the following i + 2
points:

A ∩ Xi , B ∩ Xi , X0 ∩ Xi , . . . , Xi−1 ∩ Xi .

Thus there are at most θ (d − li ) − (i + 2) members of Ri − {Xi } intersecting Xi at some
points of the (d − li )-dimensional subspace Ui ∩ Xi of Xi . As Ri+1 consists of the members
of Ri − {Xi } intersecting Xi at points outside Ui ∩ Xi , we have

|Ri+1| ≥ (|Ri | − 1) − {θ (d − li ) − (i + 2)}
= |Ri | − θ (d − li ) + i + 1.

Therefore, we inductively have the following estimate:

(∗) |Ri | ≥ |Ri−1| − θ (d − li−1) + i ≥ · · ·
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≥ |R0| −
i−1∑
j=0

θ (d − l j ) +
i∑

m=1

m

= (|A| − 2) −
i−1∑
j=0

θ (d − l j ) + i(i + 1)/2.

We now separate the cases according as q > 2 or q = 2. First let q > 2 and assume the
condition in Theorem 1(i).

Proof of Theorem 1(i): From the above estimate (∗) for i = k ≥ 1, we have

|Rk | ≥ θ (d) − α(q) − 2 −
k−1∑
j=0

θ (d − l j ) + k(k + 1)/2.

The right hand side of this inequality is at least

θ (d) − α(q) − 2 −
d−1∑
l=1

θ (l) + 1,

because k(k + 1)/2 ≥ 1 and the sequence (l0, l1, . . . , lk−1) is a subsequence of (d − 1, d −
2, . . . , 1). Now it follows from Lemma 2 that the above value coincides with θ (d − 1) + 1.
Thus we have |Rk | ≥ θ (d − 1) + 1.

As the subspace Uk of PG(n, q) contains all members of Rk , it follows from the above
estimate for |Rk | and Lemma 3 that Uk = PG(n, q). Then n = dim(Uk) = 2d + ∑k−1

j=0 l j .
As (l0, l1, . . . , lk−1) is a subsequence of (d − 1, d − 2, . . . , 1), we conclude that

n = 2d +
k−1∑
j=0

l j ≤ 2d +
d−1∑
l=1

l = 2d + d(d − 1)/2 = d(d + 3)/2.

Proof of Theorem 1(ii): In the remainder of this section, we assume that q = 2 and A is a
d-dimensional dual hyperoval in PG(n, 2). To stress on the fact that A is a dual hyperoval,
we use the letter H instead of A. Then |H| = θ (d) + 1 and the previous estimate (∗) for
|Ri | can be read as follows:

(∗∗) |Ri | ≥ θ (d) −
i−1∑
j=0

θ (d − l j ) + (i2 + i)/2 − 1.

In order to prove that n ≤ D + 2, D = d(d + 3)/2, we separate the proof into several steps.

Step 1. If lk−1 ≥ 2, then n < d(d + 3)/2.
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Proof: By assumption, (d + 1 − l0, . . . , d + 1 − lk−1) is a subsequence of (2, 3, . . . ,

d − 1). Thus it follows from the above estimate (∗∗) for i = k and q = 2 that

|Rk | ≥ 2d+1 − (22 + · · · + 2d−1) + d + (k2 + k − 4)/2

= 2d+1 − (2d − 1 − 3) + d + (k2 + k − 4)/2

= 2d + d + (k2 + k + 4)/2 > 2d = θ (d − 1) + 1.

As Uk contains all members ofRk , this together with Lemma 3 implies that Uk = PG(n, q).
Hence n = dim(Uk) = 2d + (l0 +· · ·+ lk−1) ≤ 2d + ((d − 1) +· · ·+ 2) < d(d + 3)/2.

Thus in the following, we assume that lk−1 = 1.

Step 2. If k = 1 and lk−1 = 1, then n ≤ d(d + 3)/2. Equality holds if and only if d = 2.

Proof: Suppose k = 1. Then l0 = lk−1 = 1 by our assumption, and dim(U0 ∩ X ) ≥ d −
l0 = d −1 for every member X ofH by the definition of l0. Then n ≤ dim(U0)+1 = 2d +1
by Lemma 4. As 2d + 1 ≤ d(d + 3)/2 for d ≥ 2 (the equality holds iff d = 2), the claim
follows.

Hence in the following, we assume that lk−1 = 1 and k ≥ 2. In particular, the notationRk−2,
Uk−2, and lk−2 make sense. Furthermore, as (l0, . . . , lk−3) with k ≥ 3 (resp. (l0, . . . , lk−2)
with k ≥ 2 and (l0, . . . , lk−1) with k ≥ 1) is a subsequence of (d − 1, . . . , 3) (resp.
(d − 1, . . . , 2) and (d − 1, . . . , 1)), the previous estimate (∗∗) for |Ri | to q = 2 and
i = k − 2 shows that:

|Rk−2| ≥ (2d+1 − 1) − {(2(d+1)−(d−1) − 1) + · · · + (2(d+1)−3 − 1)} + (k2 − 3k)/2

= 2d+1 − (22 + · · · + 2d−2) − 1 + (d − 3) + (k2 − 3k)/2

= 2d+1 − (2d−1 − 4) + (d − 4) + (k2 − 3k)/2

= 3 · 2d−1 + d + (k2 − 3k)/2

for k ≥ 2 (note that this is trivially true for k = 2), and similarly,

|Rk−1| ≥ (2d+1 − 1) − {(2(d+1)−(d−1) − 1) + · · · + (2(d+1)−2 − 1)} + (k2 − k − 2)/2

= 2d+1 − (22 + · · · + 2d−1) − 1 + (d − 2) + (k2 − k − 2)/2

= 2d+1 − (2d − 4) + (d − 3) + (k2 − k − 2)/2

= 2d + d + (k2 − k)/2

for k ≥ 1.
We now divide the cases according as there is a member Y of Rk−2 with dim(Y ∩ Uk−1) <

d − 1.
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Step 3. If there is a member Y of Rk−2 with dim(Y ∩ Uk−1) < d − 1, then

n ≤ 2d +
k−2∑
j=0

l j + lk−2 + 1.

Proof: Assume that a member Y of Rk−2 satisfies dim(Y ∩Uk−1) = d − l for some l ≥ 2.
As Y ∈ Rk−2 and Uk−2 ⊂ Uk−1, we have

d − l = dim(Y ∩ Uk−1) ≥ dim(Y ∩ Uk−2) ≥ d − lk−2,

or equivalently lk−2 ≥ l ≥ 2. As Y ∩ Uk−1 contains θ (d − l) (≤ θ (d − 2)) points, there are
at least |Rk−1| − θ (d − 2) members of Rk−1 intersecting Y at points outside Uk−1. As such
a member X (∈ Rk−1) intersects Uk−1 in a subspace of dimension at least d − 1 = d − lk−1,
we have

X = 〈X ∩ Uk−1, X ∩ Y 〉 ⊂ 〈Uk−1, Y 〉.

As |Rk−1| − θ (d − 2) ≥ 2d − (2d−1 − 1) > 2d−1 = θ (d − 2) + 1 by the estimate of |Rk−1|
above, it follows from Lemma 3 that every member of H intersects the subspace 〈Uk−1, Y 〉
in a subspace of dimension at least d − 1. Then we have

n ≤ dim(〈Uk−1, Y 〉) + 1 = dim(Uk−1) + l + 1

≤ 2d +
k−2∑
j=0

l j + lk−2 + 1

from Lemma 4.

Step 4. If every member X of Rk−2 satisfies dim(X ∩ Uk−1) ≥ d − 1, then

n ≤ 2d +
k−2∑
j=0

l j + 2.

Proof: Suppose every member X of Rk−2 is contained in Uk−1. As |Rk−2| ≥ 3.2d−1 >

2d = θ (d − 1) + 1 by the estimate of |Rk−2| previous to Step 3, we have Uk−1 = PG(n, 2)
by Lemma 3. Then

n ≤ 2d + (l0 + · · · + lk−2)

≤ 2d + (2 + · · · + (d − 1)) < d(d + 3)/2.

Thus we may assume that there is a member Y of Rk−2 not contained in Uk−1. By our
assumption, this implies that dim(Y ∩ Uk−1) = d − 1. Then there are at least |Rk−2| −
θ (d − 1) distinct members X of Rk−2 with X ∩ Y �∈ Uk−1. As dim(X ∩ Uk−1) ≥ d − 1 by
our assumption, we have X = 〈X ∩ Uk−1, X ∩ Y 〉 ⊂ 〈Uk−1, Y 〉. As |Rk−2| − θ (d − 1) >
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3.2d−1−2d = 2d−1 = θ (d−2)+1, it follows from Lemma 3 that dim(〈Uk−1, Y 〉∩X ) ≥ d−1
for every X ∈ H. Then it follows from Lemma 4 that

n ≤ dim(〈Uk−1, Y 〉) + 1 = dim(Uk−1) + 2

≤ 2d +
k−2∑
j=0

l j + 2.

We now complete the proof of Theorem 1(ii). As lk−2 ≥ 1 + lk−1 = 2, we may write
lk−2 = 2 + m for some nonnegative integer m. As (l0, . . . , lk−2) is a subsequence of
(d − 1, . . . , 2 + m), we have

2d + (l0 + · · · + lk−2) ≤ 2d + ((2 + m) + · · · + (d − 1))

= 2d + d(d − 1)/2 − (m + 1)(m + 2)/2.

Thus if the assumption of Step 3 is satisfied, then

n ≤ d(d + 3)/2 − (m + 1)(m + 2)/2 + (m + 2) + 1

= d(d + 3)/2 + (m + 2)(1 − m)/2 + 1

The last value is less than d(d + 3)/2 (resp. is equal to d(d + 3)/2 + 1 and d(d + 3)/2 + 2),
if m ≥ 2 (resp. m = 1 and m = 0). Thus the claim follows in this case.
(We may verify the following: if n = d(d + 3)/2 + 2, then m = 0, k = d − 1 and
li = d −1− i for every i = 0, . . . , d −1; and if n = d(d +3)/2+1, then m = 1, k = d −2
and li = d − 1 − i for i = 0, . . . , d − 4 but ld−3 = 1.)

On the other hand, if the assumption of Step 4 is satisfied, then

n ≤ d(d + 3)/2 − (m + 1)(m + 2)/2 + 2.

The right hand side of this inequality is less than d(d + 3)/2, if m ≥ 1, and it is equal to
d(d + 3)/2 + 1 if m = 0.
(If the latter holds, then k = d − 1 and li = d − 1 − i for i = 0, . . . , d − 1.)

Observing |Rk |, we have the following refinement of Theorem 1(ii) when d ≤ 5.

Proposition 5 Assume that H is a d-dimensional dual hyperoval in PG(n, 2). Let k be
the integer defined above. If 2 ≤ d ≤ 5 or 0 ≤ k ≤ 2, then n ≤ d(d + 3)/2.

Proof: By Step 1 and Step 2 of the proof of Theorem 1(ii), we may assume that lk−1 = 1
and k ≥ 2. As k ≤ d − 1, this implies that d ≥ 3.

Assume that k = 2. Then, from the estimate of |Ri | with the fact that l1 = 1 and l0 ≥ 0,
we have

|R2| ≥ (2d+1 − 1) − (θ (d − l0) + θ (d − l1)) + 2



14 YOSHIARA

≥ 2d+1 − 1 − (2d+1−2 + 2d − 2) + 2

= 2d−1 + 3.

As U2 contains all members of R2, it follows from Lemma 3 that U2 = PG(n, q). Hence
n ≤ dim(U2) = 2d + l0 + l1 ≤ 2d + 1 + (d − 1) = 3d. As 3d ≤ d(d + 3)/2 for every
d ≥ 3, we have n ≤ d(d + 3)/2.

Thus we may assume that k ≥ 3. As d − 1 ≥ k, we have d ≥ 4. As (l0, . . . , lk−1) is a
subsequence of (d − 1, . . . , 1), we have the following estimate of |Rk |:

|Rk | ≥ (2d+1 − 1) − {(22 − 1) + · · · + (2d − 1)} + (k2 + k − 2)/2

= 2d+1 − (2d+1 − 4) + (d − 1) − 1 + (k2 + k − 2)/2

= d + (k2 + k + 2)/2.

Thus the subspace Uk contains at least |Rk |+k+2 (≥ d +(k2+3k+6)/2) distinct members
of H. As k ≥ 3 and d ≥ 4, we have d + (k2 + 3k + 6)/2 ≥ d + 12 ≥ 16 > θ (4) = 15.
Then it follows from Lemma 3 that Uk = PG(n, 2) if d = 4 or 5. Then n = dim(Uk) ≤
2d + (1 + · · · + (d − 1)) = d(d + 3)/2.

3. Constructions of dual arcs

3.1. Veronesean construction

Let V (resp. W ) be a vector space over G F(q) of rank d +1 (resp. D + 1 = d + 1 + ( d+1
2 ),

D = d(d + 3)/2) with basis ei , i = 0, . . . , d (resp. ei j , 0 ≤ i ≤ j ≤ d). The Veronesean
map ζ is the map from PG(V ) ∼= PG(d, q) into PG(W ) ∼= PG(D, q) defined by

[
d∑

i=0

xi ei

]
�→

[ ∑
0≤i≤ j≤d

xi x j ei j

]
,

where [x] is the projective point represented by a vector x. The image of ζ is called the
quadric Veronesean and denoted by Vd . See [4, Section 25.1] for fundamental properties of
the Veronesean.

We denote by b and B the nondegenerate symmetric bilinear forms on V and W defined
respectively by

b

(
d∑

i=0

xi ei ,

d∑
i=0

yi ei

)
:=

d∑
i=0

xi yi ,

B

( ∑
0≤i≤ j≤d

xi j ei j ,
∑

0≤i≤ j≤d

yi j ei j

)
:=

∑
0≤i≤ j≤d

xi j yi j .
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For a vector x ∈ V , we denote by x⊥ the subspace of V orthogonal to x with respect to b:

x⊥ := {y ∈ V | b(x, y) = 0}.

For a projective point P = [x] of PG(V ), we now define the subspace A(P) of PG(W )
by

A(P) := {z ∈ W | B(z, (y)ζ ) = 0 for every y ∈ x⊥}.

We give an explicit description of the subspace A(P).

Lemma 6 If P = [x] with 0 �= x = ∑d
i=0 xi ei ∈ V, then A(P) is a subspace of W of

rank d + 1 with a basis

f j :=
d∑

i=0

xi ei j for j = 0, . . . , d, where ei j denotes e j i if j > i.

Proof: Take any vector y = ∑d
i=0 yi ei of x⊥. Then b(x, y) = ∑d

i=0 xi yi = 0 and (y)ζ =∑
0≤i≤ j≤d yi y j ei j . As f j = x0e0 j + · · · + x j e j j + x j+1e j j+1 + · · · + xde jd for every j =

0, . . . , d , we have B((y)ζ, f j ) = (
∑d

i=0 xi yi )y j = 0. Thus f j ∈ A(P) for every j = 0 . . . , d.
To show that the vectors f j ( j = 0 . . . , d) are linearly independent, assume

∑d
j=0 β j f j =

0. In the expression of
∑d

j=0 β j f j as a linear combination of the basis ei j (0 ≤ i ≤ j ≤ d),
the coefficient of ei i for i = 0 . . . , d (resp. ei j for 0 ≤ i < j ≤ d) is βi xi (resp. βi x j +β j xi ).
Thus βi xi = 0 for every i = 1, . . . , d and βi x j + β j xi = 0 for every 0 ≤ i < j ≤ d. As
0 �= x, we may assume x0 �= 0, without loss of generality. Then the above equations imply
that β0 = 0 and β j x0 = 0 for every j = 1, . . . , d, and hence β j = 0 for all j = 0 . . . , d.

Now it remains to show that A(P) is a subspace of W of rank d + 1. As PG(x⊥) ∼=
PG(d − 1, q), its image by the Veronesean map ζ is isomorphic to Vd−1, which spans the
subspace of PG(W ) of dimension (d − 1)(d + 2)/2, and hence its orthogonal complement
A(P) is a subspace of PG(W ) of dimension d(d +3)/2− (d −1)(d +2)/2−1 = d.

Proposition 7 With the notation above, the following hold.
(1) The set AVd := {A(P) | P ∈ PG(V )} is a d-dimensional dual arc in PG(D, q),

D = d(d + 3)/2, of size |AVd | = θq (d).
(2) For three distinct members A(P), A(Q) and A(R) of AVd , we have

either 〈A(P), A(Q)〉 ⊇ A(R) or dim(〈A(P), A(Q)〉 ∩ A(R)) = 1.

The former holds if and only if P, Q and R lie on a line of PG(V ).
(3) For P = [

∑d
i=0 xi ei ], the point

h(P) :=
[

d∑
i=0

x2
i ei i + 2

∑
0≤i< j≤d

xi x j ei j

]
=

[
d∑

i=0

xi fi

]
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is the unique point of the subspace A(P) which cannot be expressed as A(P) ∩ A(Q)
for any point Q ∈ PG(V ) distinct from P.

Proof: From Lemma 6, the d-dimensional subspace A([ei ]) contains [ei j ] for every j =
0, . . . , d . Thus the subspace of PG(W ) spanned by all A([ei ]) (i = 0, . . . , d) contains a
basis of PG(W ), and the axiom (D A3) is satisfied.

Now take two distinct points P and Q of PG(V ). As the automorphism group of the
Veronesean Vd is a subgroup of Aut(PG(W )) induced by Aut(PG(V )) (see [4, 25.1.10]),
we may assume that P = [e0] and Q = [e1]. Then Lemma 6 shows that A(P) ∩ A(Q) =
[e01], which verifies the axiom (D A1). In particular, AVd consists of θ (d) = |PG(V )|
members.

Let R be a point of PG(V ) distinct from P and Q. If R does not lie in the line through
P and Q, we may assume that P = [e0], Q = [e1] and R = [e2] under the action
of Aut(Vd ) ∼= Aut(PG(V )). Then it is immediate to see A(P) ∩ A(Q) ∩ A(R) = ∅.
Furthermore, 〈A(P), A(Q)〉 has a basis e00, e01, e11, e0i , e1i (i = 2, . . . , d), and hence
〈A(P), A(Q)〉 ∩ A(R) = 〈e02, e12〉.

If R lies on the line through P = [e0] and Q = [e1], we may assume R = [e0 + e1].
Then it follows from Lemma 6 that A(R) has a basis e0i + e1i (i = 0, . . . , d), all vectors
of which are contained in 〈A(P), A(Q)〉. On the other hand, we have A(P) ∩ A(R) =
[e00 + e01] and A(P) ∩ A(Q) ∩ A(R) = ∅ in this case as well. Thus the axiom (D A2) is
verified.

The calculations in the above paragraphs show the claim (2).
To check the claim (3), we set x := ∑d

i=0 xi ei and h(x) := ∑d
i=0 x2

i ei i + 2∑
0≤i< j≤d xi x j ei j . It is easy to see that h(x) = ∑d

j=0 x j f j , where f j is a basis of A(P)
given in Lemma 6. In particular, h(P) := [h(x)] ∈ A(P).

Suppose h(P) = [h(x)] ∈ A(Q) for some Q = [x′] = [
∑d

i=0 x ′
i ei ] distinct from P = [x].

Then for every y = ∑d
i=0 yi ei with b(x′, y) = 0, the definition of A(Q) implies that

B(h(x), (y)ζ ) = 0. Now we have

B(h(x), (y)ζ ) =
d∑

i=0

x2
i y2

i + 2
∑

0≤i< j≤d

xi x j yi y j

=
(

d∑
i=0

xi yi

)(
d∑

j=0

x j y j

)
=

(
d∑

i=0

xi yi

)2

.

Thus 0 = (
∑d

i=0 xi yi )2. That is, b(x, y) = 0 for all y ∈ (x′)⊥. Then the nondegeneracy of b
yields x ∈ ((x′)⊥)⊥ = [x′], which contradicts the hypothesis. Hence there is no point Q of
PG(V ) other than P with h(P) = A(P) ∩ A(Q).

In view of the above explicit model AVd , the following claim is easy to check.

Corollary 8 The above d-dimensional dual arc AVd in PG(D, q), D = d(d + 3)/2, of
size θ (d) can be extended to a dual hyperoval if and only if q is even.
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If q is even, the dual hyperoval containing AVd is unique, which we denote by HVd . The
additional member H of HVd to AVd satisfies dim(〈A(P), A(Q)〉 ∩ H ) = 1 for any two
distinct members A(P), A(Q) of AVd .

Proof: As AVd has the second-maximum size θ (d), it is extendible to a dual hyperoval if
and only if the set H := {h(P) | P ∈ PG(V )} of the “holes” h(P) forms a d-dimensional
subspace of PG(W ) (see also the first paragraph of the proof of Proposition 9). Since
h([ei ]) = [ei i ] for i = 0 . . . , d , if H is a subspace, then it coincides with {∑d

i=0 yii ei i | yii ∈
G F(q)}. If q is odd, then h([e0 + e1]) = [e00 + e11 + 2e01] does not lie in this subspace.
Hence if q is odd, then AVd cannot be extended to any dual hyperoval. On the other hand,
if q is even, then h(P) = [

∑d
i=0 x2

i ei i ] for every P = [
∑d

i=0 xi ei ] and hence H is in fact a
d-dimensional subspace of PG(W ).

The last statement is easily verified by Lemma 6.

As for the extendibility to a dual hyperoval, the following result holds in general. (This is a
straightforward generalization of [2, Theorem 4.2], which treats d-dimensional hyperovals
in PG(2d, q) only.)

Proposition 9 Let A be an arbitrary d-dimensional dual arc in PG(n, q) of size |A| =
θ (d). If q is even, then A can be uniquely extended to a d-dimensional dual hyperoval.

Proof: Let A be any member of A. The map sending each member X of A − {A} to the
intersection X∩A is an injective map fromA−{A} into the set PG(A) of projective points of
A by (D A1) and (D A2). Thus all points of P(A) except one are realized as the intersections
X ∩ A for X ∈ A−{A}. Let h(A) (the hole in A) denote the unique exceptional point on A.
Then the set H := {h(A) | A ∈ A} consists of θ (d) = |A| points, and H coincides with the
set of points P of PG(n, q) with the property that c(P) := |{X ∈ A | P ∈ X}| = 1. Thus
A can be completed to a dual hyperoval if and only if H is a subspace, and then A ∪ {H}
is the only dual hyperoval containing A.

We now show that every (n − d)-dimensional subspace L intersects with H nontrivially.
Suppose there is a (n − d)-dimensional subspace L which does not contain any point of H .
Then it follows from the first paragraph that L does not contain any point P of PG(n, q)
with c(P) = 1. As c(P) ≤ 2 for every point P of PG(n, q), then the set P(L) of points on
L is a disjoint union of two subsets L0 and L2, where

Li := {P ∈ P(L) | c(P) = i} for i = 0, 2.

We count the following set in two ways:

{(P, X ) ∈ P(L) × A | P ∈ X}.

Fixing P ∈ P(L) first, the size of this set is calculated to be 0 · |L0| + 2|L2|, in particular, it
is even. On the other hand, denoting by d(X ) the dimension of the intersection L ∩ X , the
size is calculated to be

∑
X∈A θq (d(X )). Note that as L is of dimension (n − d), we have
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d(X ) ≥ 0. Then, as q is even, we have θq (d(X )) = qd(X ) + · · · + q + 1 ≡ 1 (mod 2).
Thus the equation 2|L2| = ∑

X∈A θq (d(X )) implies that

0 ≡
∑
X∈A

1 = |A| = θq (d) ≡ 1 (mod 2),

which is a contradiction.
Hence, applying a remarkable characterization of subspaces by Bose and Burton [1], we

conclude that H is a subspace of PG(n, q) of dimension d. Then it is immediate to see that
A ∪ {H} is a d-dimensional dual hyperoval in PG(n, q).

3.2. Cap construction and field extension

Let V be a vector space of rank d + 2 over G F(q). Assume that κ is a cap of PG(V ) ∼=
PG(d + 1, q) generating PG(V ), that is, κ is a subset of projective points of PG(V ) such
that

(1) for any distinct points P and Q of κ , there is no point of κ \ {P, Q} on the line of
PG(V ) through P and Q, and

(2) κ has d + 2 linearly independent points.

Consider the exterior square W := V ∧ V of V . It has rank ( d+1
2 ) = (d + 2)(d + 1)/2, and

hence PG(W ) ∼= PG(D, q), D = d(d + 3)/2. For every point P = [p] of κ , we set

X (P) := {p ∧ x | x ∈ V }.

Then X (P) does not depend on the choice of a vector p generating P , and is a subspace of
W of rank d + 1, as the map V � x �→ p ∧ x ∈ X (P) is a linear surjection with kernel [p].

Proposition 10 For every cap κ of PG(V ) ∼= PG(d + 1, q) generating PG(V ), the
following hold with the notation above.
(i) The family A(κ) := {X (P) | P ∈ κ} is a d-dimensional dual arc in PG(W ) ∼=

PG(D, q) of size |κ|.
(ii) The dual arc A(κ) satisfies the following property (Property (T ) in [DF]):

dim(〈X (P), X (Q)〉 ∩ X (R)) = 1 for any mutually distinct three members

X (P), X (Q), X (R) of A(κ).

Proof: (i) As we saw above, each member X (P) of A(κ) is a d-dimensional subspace of
PG(W ). By the definition of X (P), it is easy to see that X (P) ∩ X (Q) coincides with the
point [p∧q], where [p] = P and [q] = Q. (This corresponds to the line through P and Q in
PG(V )). As κ is a cap, there is no point on the line through P and Q other than P and Q. Thus
for a point R ∈ κ \{P, Q}, the point X (P)∩ X (R), which corresponds to the line of PG(V )
through P and R, is distinct from X (P) ∩ X (Q). Thus X (P) ∩ X (Q) ∩ X (R) = ∅. As κ



AMBIENT SPACES OF DIMENSIONAL DUAL ARCS 19

generates PG(V ), it contains points [ei ] (i = 0, . . . , d+1) with ei (i = 0, . . . , d+1) a basis
of V . Then the subspace of W spanned by X ([ei ]) contains a basis ei ∧ e j (0 ≤ i < j ≤ d)
of W , and hence A(κ) generates PG(W ).

(ii) Let P = [e0], Q = [e1], R = [e2] be three mutually distinct points of PG(V ). As κ is
a cap, ei (i = 0, 1, 2) can be extended to a basis ei (i = 0, . . . , d+1) of V . Assume that w is a
vector of W lying in both 〈X (P), X (Q)〉 and X (R). We write w = (e0∧x)+(e1∧y) = e2∧z
for x = α0e1 + β0e2 + x′, y = α1e0 + β1e2 + y′, z = α2e0 + β2e1 + z′, where x′, y′

and z′ belong to 〈ei | i = 3, . . . , d + 1〉 and αi , βi ∈ G F(q) (i = 0, 1, 2). As ei ∧ e j

(0 ≤ i < j ≤ d + 1) form a basis of W = V ∧ V , we find x′ = y′ = z′ = 0, α0 = α1,
β0 = −α2, β1 = −β2. In particular, w = β0(e0 ∧ e2) + β1(e1 ∧ e2), which lies in the
line through X (P) ∩ X (R) = [e0 ∧ e2] and X (Q) ∩ X (R) = [e1 ∧ e2]. Hence we have
〈X (P), X (Q)〉 ∩ X (R) = 〈X (P) ∩ X (R), X (Q) ∩ X (R)〉 and the claim follows.

Remark If A(κ) is complete, then κ is maximal with respect to inclusion. However, the
converse may not hold in general. Many examples of maximal caps are known. With each
of them, a dual arc satisfying property (T ) can be associated from Proposition 10(ii). It is
an interesting problem whether or not it is complete.

Example When q = 2, the complement κd+1 of a hyperplane of PG(V ) ∼= PG(d +1, 2)
forms a maximal cap of size 2d+1 = θ2(d) + 1. Hence the resulting d-dimensional dual
arc A(κd+1) in PG(D, 2), D = d(d + 2)/2, is a dual hyperoval. This is nothing more than
the Huybrechts dual hyperoval [5] (see also the expositions after [7, Proposition 6.5]). We
denote it by H(κd+1).

Both HVd for q = 2 (see Corollary 8) and H(κd+1) are d-dimensional dual hyperovals in
PG(D, 2), D = d(d + 3)/2. However, the latter satisfies property (T ) from Proposition 10
(ii) but the former does not from Proposition 7(2). Thus we obtain:

Proposition 11 Let q = 2. If d ≥ 2, there is no automorphism of PG(d(d + 3)/2, 2)
bijectively sending H(κd+1) to HVd .

Remark Del Fra [3, Theorems 2 and 3] showed that there are two isomorphism classes of
2-dimensional dual hyperovals in PG(5, q) for q = 2 (note that D = d(d + 3)/2 = 5 for
d = 2). For q = 4, he also showed [3, Theorem 4] that such a dual hyperoval satisfying
property (T ) is isomorphic to the one with the automorphism group M22 acting triply
transitively on the 22 = θ4(2) + 1 members. The dual hyperoval HV2 for q = 4 belongs to
the other class from Proposition 7(2).

As for the field extension, the dual arcs behave nicely. The following is straightforward
to verify.

Proposition 12 Let A be a d-dimensional dual arc in PG(V ) ∼= PG(n, q), and let
e ≥ 1. For each member X of A, its field extension X ⊗ G F(qe) is a d-dimensional
subspace of PG(V ⊗ G F(qe)) ∼= PG(n, qe), and the family A⊗ G F(qe) consisting of d-
dimensional subspaces X ⊗G F(qe) for X ∈ A is a d-dimensional dual arc in PG(n, qe) of
size |A|.
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Remark It may be an interesting problem to examine when A ⊗ G F(qe) is complete.

3.3. Quotients

For completeness, we give some remark on the dimensions of ambient spaces of the quotients
of dual arcs we constructed above. However, we do not attempt to be best possible here.
We first recall a definition, which was first given in [Hu] to dual hyperovals.

Definition Let A (resp. Ā) be a d-dimensional dual arc in PG(U ) ∼= PG(n, q) (resp.
PG(V ) ∼= PG(m, q) with n ≥ m). We say that A covers Ā (or Ā is a quotient of A), if
there exists a linear map ρ from U onto V such that (X )ρ ∈ Ā for every member X of A
and that the map A � X �→ (X )ρ ∈ Ā is a bijection.

Proposition 13 Let A be a d-dimensional dual arc in PG(U, q) ∼= PG(n, q). Then there
exists a d-dimensional dual arc Ā in PG(m, q) with some 2d ≤ m < n covered by A if and
only if there is a nonzero subspace K of U of rank n − m such that 〈X, Y 〉 ∩ K = {0} for
any two distinct members X, Y of A. In particular, if such an arc Ā exists, then for every
integer l with m ≤ l ≤ n, there is a d-dimensional dual arc in PG(l, q) covered by A.

Proof: Assume that there is a d-dimensional dual arc Ā in PG(m, q) with some 2d ≤
m < n covered by A. Let V be the underlying vector space of PG(m, q), and let ρ be
a linear surjection from U to V satisfying the conditions in the definition above. We may
identify V with the quotient space U/K , where K = K er (ρ). Then the dual arc Ā is given
as {(X + K )/K | X ∈ A}. As these are subspaces of U/K of rank d + 1, we should have
X ∩ K = {0} for every X ∈ A. Moreover, as Ā satisfies the axioms (D A1) and (D A2), we
have

(X + K ) ∩ (Y + K ) = (X ∩ Y ) + K , and (X + K ) ∩ (Y + K ) ∩ (Z + K )

= K for any three distinct members X, Y, Z of A.

As A satisfies the axiom (D A2), the latter condition is automatically satisfied if the former
holds. Hence the existence of Ā implies the existence of a nonzero subspace K of U such
that

X ∩ K = {0} and (X + K ) ∩ (Y + K ) = (X ∩ Y ) + K

for any two distinct members X, Y of A.

Conversely, if there exists such a subspace K of U , then Ā := {(X + K )/K | X ∈ A} is a
family of d-dimensional subspaces of PG(U/K ) satisfying the axioms (D Ai) (i = 1, 2, 3).

We will verify that the above two conditions are equivalent to the condition

〈X, Y 〉 ∩ K = {0} for any two distinct members X, Y of A.

Assume first that the previous two conditions are satisfied. Then for any vector x+y = k ∈
〈X, Y 〉 ∩ K (x ∈ X , y ∈ Y ) we have x = −y + k ∈ (X + K ) ∩ (Y + K ) = (X ∩ Y ) + K
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from the second condition, and hence x = z + k′ for some k′ ∈ K , where [z] = X ∩ Y .
Thus z + y = k − k′ ∈ Y ∩ K = {0} from the first condition, and hence x + y = x − z ∈
X ∩ K = {0}.

Conversely, if the above condition is satisfied, then we clearly have X ∩ K = {0} for
every X ∈ A. For x + k = y + k′ ∈ (X + K ) ∩ (Y + K ) with x ∈ X , y ∈ Y and k, k′ ∈ K ,
we have x − y = k′ − k ∈ 〈X, Y 〉 ∩ K = {0}, and hence x = y ∈ X ∩ Y , as required. Thus
the former part of the claim is established.

The latter remark follows by observing that the condition above is satisfied by any nonzero
subspace L of K as well.

Now observe that in the proof of [7, Propositon 6.8] the following fact is shown: the Huy-
brechts dual hyperovalH(κd+1) in PG(D, 2) covers a certain d-dimensional dual hyperoval
Sd+1

m,m in PG(2d + 1, 2). This together with the above remark implies:

Theorem 14 Let d be any integer with d ≥ 2, and n be any integer with 2d + 1 ≤ n ≤
D = d(d + 3)/2. Then there exists a d-dimensional dual hyperoval in PG(n, 2), which is
a quotient of the Huybrechts dual hyperoval H(κd+1).

As for the dual arcs covered by the Veronesean dual arc AVd , the following is verified,
though it would be improved much.

Proposition 15 Let d ≥ 5 and l be any integer with 4d −2 ≤ l ≤ D = d(d +3)/2. Then,
for every prime power q with q > 2, there is a d-dimensional dual arc in PG(l, q), which
is a quotient of AVd (or HVd if q is even).

Proof: We use the notation in Section 3.1. We also use the symbol ( n
m )q to denote the

number of subspaces of rank m in a vector space of rank n over G F(q):

(
n

m

)
q

:= (qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)/(q − 1)(q2 − 1) · · · (qm − 1).

From Proposition 7(2), for pairs {P, Q} and {P ′, Q′} of distinct points of PG(V ), we
have 〈A(P), A(Q)〉 = 〈A(P ′), A(Q′)〉 if and only if the line through P and Q coincides
with that through P ′ and Q′. Thus the 2d-dimensional subspace A(l) := 〈A(P), A(Q)〉
of PG(W ) ∼= PG(D, q) does not depend on the pair {P, Q} of points on a line l. We
denote by L the set of all such subspaces: L := {A(l) | l : lines of PG(V )}. Then
|L| = ( d+1

2 )q = (qd+1 − 1)(qd − 1)/(q − 1)(q2 − 1) = θ (d)θ (d − 1)/(q + 1).
From Proposition 13, to establish the claim for dual arcs covered by AVd , it suffices to

show the existence of a subspace K of W of rank D−(4d−2) which satisfies K ∩ A(l) = {0}
for any A(l) ∈ L. Suppose not. We derive a contradiction by counting the number of triples
(P, K , A(l)) of projective points P of PG(W ), subspaces K of PG(W ) of dimension m :=
D − 4d + 1 and members A(l) of L with P ∈ K ∩ A(l). Note that m = d(d − 5)/2 + 1 ≥ 1
as d ≥ 5.
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First fix a member A(l) of L. The 2d-dimensional subspace A(l) has exactly θ (2d) points
P , each of which is contained in exactly ( D

m )q subspaces K of PG(W ) of dimension m.
Thus the number of such triples is

|L|θ (2d)

(
D

m

)
q

= θ (d)θ (d − 1)θ (2d)

(
D

m

)
q

/
(q + 1).

On the other hand, it follows from our hypothesis that for every subspace K of PG(W ) of
dimension m, there is at least one member A(l) of L such that K ∩ A(l) contains a point.
Thus the above number is at least ( D+1

m+1 )q = ( D
m

)q (q D+1 − 1)/(qm+1 − 1), and hence we
have

θ (d)θ (d − 1)θ (2d)θ (m) ≥ (q + 1)θ (D).

Now, as q > 2, it is easy to see that θ (a)θ (b) < (q/(q − 1))θ (a + b) for every a, b ≥ 1.
Applying this to the left hand side of the inequality above, we get (q/(q − 1))θ (2d +
m) · (q/(q − 1))θ (2d − 1) > (q + 1)θ (D), and hence (q3/(q − 1)3)θ (4d + m − 1) =
(q3/(q − 1)3)θ (D) > (q + 1)θ (D), as m = D − 4d + 1. This implies that q3 > (q + 1)(q −
1)3 = q4 − 2q3 + 2q − 1, that is, q3(q − 3) + (2q − 1) < 0 and q = 2. This is against that
q > 2. (Note that no contradiction is obtained when q = 2, because in this case the above
inequality holds for every d ≥ 5.) Hence there exists a subspace K of rank D − (4d − 2)
with K ∩ A(l) = {0} for all members A(l) of L, and the claim on the quotients of AVd

holds.
To show the claim on quotients of HVd , assume that q is even with q > 2. As a quotient

of AVd in PG(l, q) with 4d − 1 ≤ l ≤ D has θ (d) members, it follows from Proposition 9
that it can be uniquely extended to a dual hyperoval H̄ in PG(l, q). The additional d-
dimensional subspace is the set of holes (see the proof of Proposition 9), and hence it
bijectively corresponds to the unique member {h(P) | P ∈ PG(V )} of HVd\AVd . Thus
the dual hyperoval H̄ is covered by HVd .
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