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Abstract. We study a box-ball system from the viewpoint of combinatorics of words and tableaux. Each state
of the box-ball system can be transformed into a pair of tableaux (P, Q) by the Robinson-Schensted-Knuth
correspondence. In the language of tableaux, the P-symbol gives rise to a conserved quantity of the box-ball
system, and the Q-symbol evolves independently of the P-symbol. The time evolution of the Q-symbol is
described explicitly in terms of the box-labels.
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1. Introduction

The box-ball system (BBS), introduced in [6, 8], is a class of soliton cellular automata
(ultra-discrete integrable systems). On this subject, remarkable progress has been made in
connection with the discretization of nonlinear integrable systems [7, 9], and also with the
crystal theory of representations of quantum algebras [1, 3]. In this paper, we study the box-
ball system from the viewpoint of combinatorics of words and tableaux. Our discussion is
based on the fact that each state of the BBS can be identified with a pair of tableaux (P, Q)
by means of the Robinson-Schensted-Knuth (RSK) correspondence. The main points of
this paper are as follows:

• The P-symbol provides a conserved quantity under the time evolution of BBS.
• The Q-symbol evolves independently of the P-symbol; the time evolution of the Q-

symbol can be described combinatorially in terms of the box-labels.

The second statement implies that equivalent states (which have the same Q-symbol) evolve
similarly, giving rise to equivalent states after any number of steps.

This paper is organized as follows. In Section 2, we review some necessary facts from
combinatorics of words and tableaux; the bi-word defined in Section 2 plays a crucial role in
this paper. In Section 3, we consider a standard version of the BBS, and formulate our main
results in terms of the standard BBS. Section 4 is devoted to the proofs of the main results
which will be introducecd in Section 3 for the standard BBS. In Section 5, we consider two
generalizations of the standard BBS, and extend the results in Section 3 to those cases. The
final section is devoted to a summary with examples.
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We remark that there is another way due to Torii et al. [10] to construct conserved
quantities for the BBS by the Robinson-Schensted correspondence. Their procedure and
result, however, are essentially different from those we are going to discuss below.

2. Preliminaries

In this section we recall from the textbook of Fulton [2] (or Knuth [4]) some fundamental
facts on combinatorics of words and tableaux, which we will freely use throughout this paper.

2.1. Tableau word

A Young diagram (a) is a finite collection of boxes, arranged in left-justified rows, with
a weakly decreasing number of boxes in each row. We usually identify a partition, say
λ = (λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0), with the corresponding diagram. A Young tableau (b), or
simply tableau, is a way of putting an integer in each box of a Young diagram that is weakly
increasing across each row and strictly increasing down each column (column-strict tableau
in the terminology of Macdonald [5]). We say that λ is the shape of the tableau. In the figure
below, each shape is as follows; (a) : λ = (4, 3, 1), (b) : λ = (4, 3, 2), (c) : λ = (3, 2, 1).
A standard tableau (c) is a tableau in which the entries are numbers from 1 to n, each
occurring once. See the figure below.

We now recall the algorithm of bumping (row-bumping, or row-insertion), for construct-
ing a new tableau from a tableau by inserting an integer.

The rule of bumping T ← i (for inserting an integer i in a tableau T ): If there are no in-
tegers larger than i in the first row, add a new empty box at the right end, and put i in it.
Otherwise, among the integers larger than i , find the leftmost one, say j , and put i in the
box by bumping j out (i.e., replace j with i). Then, insert j , the bumped number, into the
second row in the same way. Repeat this procedure until the bumped number can be put in
a new box at the right end of the row.

Given a word (sequence of numbers) w = w1w2 . . . wn , we define the tableau Tab(w)
of w by bumping the entries of w from left to right, in the empty tableau ∅: Tab(w) =
(· · · ((∅ ← w1) ← w2) ← · · ·) ← wn . Conversely, given a tableau T , we define the word
W(T ) of T by reading the entries of T from left to right and bottom to top (see figure 1).

Figure 1. Reading route of a tableau word W(T ).
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Note that Tab(W(T )) = T . We say that a word w is a tableau word if it is the word of a
tableau (see the example below).

Any tableau word w can be expressed in the form

w = wn
1wn

2 . . . wn
λn

wn−1
1 . . . wn−1

λn−1
. . . w1

1 . . . w1
λ1

,

where λ = (λ1, . . . , λn) (λ1 ≥ · · · ≥ λn) is the shape of w and wi
j ≤ wi

j+1, wi
j < wi+1

j (see
the figure below.) We remark that there is a bijection between the tableaux and the tableau
words.

2.2. Knuth equivalence

We next describe the bumping algorithm in the language of words. The basic rule is given
by

(u x ′ v) x −→ x ′ u x v (u ≤ x < x ′ ≤ v). (1)

Here, x and x ′ are two numbers, and u and v are weakly increasing words; inequality u ≤ v

means that every letter in u is smaller than or equal to every letter in v. In this expression, x
stands for the number to be inserted into the row (ux ′v), and x ′ for the number to be bumped
out from the row. This rule of bumping is decomposed into a sequence of rearrangements
of three numbers of the following two types:

yzx −→ yxz (x < y ≤ z), (2)

xzy −→ zxy (x ≤ y < z). (3)
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These two transformations, as well as their inverses, are called elementary Knuth trans-
formations.

Definition 1 We call two words w and w′ Knuth equivalent if they can be transformed
into each other by a sequence of elementary Knuth transformations. We write w ≈ w′ to
denote that words w and w′ are Knuth equivalent.

The following lemma will be used in the argument of Section 4.

Lemma 1 If w and w′ are Knuth equivalent words, and w0 and w′
0 are the results of

removing the p largest numbers from each, for any p, then w0 and w′
0 are Knuth equivalent

words.

We refer the proof of this lemma to [2], for example.

Example 1

5152431245 ≈ 5415213245.

A sequence of elementary Knuth transformations between these two Knuth equivalent words
is given as follows:

5152431245 ≈ 5512431245 (1 ≤ 2 < 5)

= 5512431245 ≈ 5514231245 (2 ≤ 3 < 4) · · · ∗1

= 5514231245 ≈ 5541231245 (1 ≤ 2 < 4) · · · ∗2

= 5541231245 ≈ 5451231245 (4 < 5 ≤ 5)

= 5451231245 ≈ 5451213245 (1 < 2 ≤ 3) · · · ∗3

= 5451213245 ≈ 5415213245 (1 < 4 ≤ 5)

Consider the two words 1243124 and 4121324, obtained by removing 5’s from
5152431245 and 5415213245, respectively. These two words are again Knuth equivalent:

1243124 ≈ 4121324.

1243124 ≈ 1423124 (2 ≤ 3 < 4) · · · ∗1

= 1423124 ≈ 4123124 (1 ≤ 2 < 4) · · · ∗2

= 4123124 ≈ 4121324 (1 < 2 ≤ 3) · · · ∗3

2.3. Biword

We say that a two-rowed array

w =
(

i1 i2 · · · ik · · · in

j1 j2 · · · jk · · · jn

)
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is a biword if the columns are arranged according to the lexicographic order:

{
i1 ≤ i2 ≤ · · · ≤ in,

jk ≤ jk+1 if ik = ik+1 (k = 1, . . . , n − 1).

Then we define the dual biword w∗ of w as follows, first by interchanging the top and the
bottom rows, and by rearranging the columns so that w∗ should be in lexicographic order:

w∗ =
(

jσ (1) jσ (2) · · · jσ (k) · · · jσ (n)

iσ (1) iσ (2) · · · iσ (k) · · · iσ (n)

)
,

where σ ∈ Sn is a permutation of indices 1, 2, . . . , n such jσ (1) ≤ jσ (2) ≤ · · · ≤ jσ (n) and
that iσ (k) ≤ iσ (k+1) if jσ (k) = jσ (k+1).

Example 2 The dual biword of

w =
(

1 2 2 4 5 7

3 1 5 2 2 1

)

is

w∗ =
(

1 1 2 2 3 5

2 7 4 5 1 2

)
.

2.4. RSK correspondence

There is a bijection between the biwords w and the pairs of tableaux (P, Q) of the same
shape (RSK correspondence). The P-symbol P is the tableau obtained from the bottom row
( j1, j2, . . . , jn) by bumping. The Q-symbol Q is another tableau of the same shape which
keeps the itinerary of the bumping procedure; it is obtained by filling the number ik at each
step in the box that has newly appeared when the number jk is inserted.

Example 3 For the biword

w =
(

1 2 2 4 5 7

3 1 5 2 2 1

)
,

the corresponding pair of tableaux (P, Q) is obtained as in figure 2 on the next page.

Remark 1 The RSK correspondence can also be formulated as a bijection between the
matrices with nonnegative integer entries and the pair of tableaux of the same shape. Note
that the matrix A = (ai j ) corresponding to a biword w is defined by setting ai j to be the
number of columns of the form ( i

j ) in w .
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Figure 2. Bumping procedure.

It is known that the P-symbol and the Q-symbol are interchanged if we switch the roles
of the top and the bottom rows in the biword (see [2], for example).

Proposition 2.1 If a biword w corresponds to the pair of tableaux (P, Q), then the dual
biword w∗ of w corresponds to the pair (Q, P).

3. Box-ball system

In this section, we formulate the main results of this paper in terms of the standard version
of the box-ball system (BBS), corresponding to the standard tableaux in the context of the
RSK correspondence. A BBS is a system of finite number of balls of n colors evolving in
the infinite array of boxes indexed by Z. By a “standard” BBS, we mean a BBS in which
n balls of n different colors are placed in the infinite array of boxes and all the boxes have
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capacity one. We use the numbers 1, 2, . . . , n to denote the colors of balls, and the symbol
e = n + 1 to indicate a vacant place.

3.1. Standard BBS: Original algorithm

We first formulate the standard version of the BBS. A state of this system is a way to
arrange n balls of different colors 1, 2, . . . , n in the array of boxes indexed by Z, under the
condition that at most one ball can be placed in each box. One step of time evolution of the
standard BBS, from time t to t + 1, is defined as follows:

1. Every ball should be moved only once within the interval between time t and t + 1.
2. Move the ball of color 1 to the nearest right empty box.
3. In the same way, move the balls of colors 2, 3, . . . , n, in this order.

We refer to this rule as the original algorithm of the standard BBS.

Example 4 The following figure shows an example with n = 5.

In the following figure, we show how Example 4 evolves as a BBS.

Observe that there are groups of numbers behaving like solitons. For a study of the BBS
from the viewpoint of solitons, we refer the reader to [1] and the references therein.

Remark 2 We remark that the BBS is a reversible system. In the original algorithm
described above, exchange the roles of left and right, and move the balls according to the
reversed order n, n−1, . . .. Then we obtain the state at time t−1 (see the figure in Example 4
upside down).

Remark 3 A generalization of the standard BBS can be given by using more than one
ball for some colors. One can also formulate a BBS such that more than one ball can
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be put in some boxes. A detailed description of such generalizations will be given in
Section 5.

3.2. Biword formulation

We next attach a biword to each state of the standard BBS and formulate our main
theorem.

Each state of the standard BBS can be represented by a doubly infinite sequence
· · · a−1 a0a1 · · · of numbers 1, . . . , n and e = n + 1 such that ai = e except for a fi-
nite number of i’s; if the box i is not empty, we define ai to be the color of the ball contained
in the box i , and set ai = e otherwise. Then we make a record of all pairs ( i

ai
) of box-labels

i and ball-colors ai (such that ai 
= e), by scanning the sequence from left to right:

w =
(

i1 i2 · · · ik · · · in

ai1 ai2 · · · aik · · · ain

)

We read ( ik
aik

) in w as:

“ The box of label ik contains a ball of color aik .”

In this way, we obtain a bijection between the possible states of the standard BBS and
the biwords

w =
(

i1 i2 · · · in

j1 j2 · · · jn

)

such that i1 < i2 < · · · < in and that { j1, j2, . . . , jn} = {1, 2, . . . , n}. When w is the
biword attached to a state of the standard BBS, the dual biword w∗ is of the form

w∗ =
(

1 2 · · · k · · · n

b1 b2 · · · bk · · · bn

)

We remark that the bottom row

b = (b1, b2, . . . , bk, . . . , bn)

of the dual biword w∗ represents the sequence of the box-labels of all nonempty boxes,
arranged according to the ordering of colors. We refer to b = (b1, . . . , bn) as the box-label
sequence associated with the state · · · a−1a0a1 · · ·.

Example 5 The two states of Example 4, at time t and at t + 1, are rewritten as follows
in terms of the biwords, respectively:

w =
(

1 2 3 5 6

2 3 4 1 5

)
⇒ w ′ =

(
4 5 7 8 9

2 3 1 4 5

)
.



BOX-BALL SYSTEMS 75

The corresponding dual biwords are given by

w∗ =
(

1 2 3 4 5

5 1 2 3 6

)
⇒ (w ′)∗ =

(
1 2 3 4 5

7 4 5 8 9

)
.

In terms of the box-label sequences, the same time evolution is expressed as

b = (5, 1, 2, 3, 6) ⇒ b′ = (7, 4, 5, 8, 9).

Given a state · · · a−1a0a1 · · · of the standard BBS, we denote by (P, Q) the pair of
tableaux assigned to the biword w through the RSK correspondence. The P-symbol P
(resp. Q-symbol Q) is by definition the tableau obtained by bumping from the bottom row
of w (resp. from the bottom row of the dual biword w∗ of w). Note also that P is a standard
tableau of n boxes, and that Q is a tableau of the same shape in which the entries are
mutually distinct integers.

The time evolution of the standard BBS is then translated into the time evolution of the
corresponding biword, and also, via the RSK correspondence, into the time evolution of the
pair of tableaux (P, Q) of the same shape.

Theorem 3.1 We regard the standard BBS as the time evolution of the pairs of tableaux
(P, Q) through the RSK correspondence in the way explained above. Then,

1. The P-symbol is a conserved quantity under the time evolution of the BBS.
2. The Q-symbol evolves independently of the P-symbol.

As we will see below, the time evolution of the standard BBS can be described locally by
the so-called carrier algorithm; Theorem 3.1 will be proved in Section 4 by applying the
carrier algorithm. We remark that the time evolution of the Q-symbol can also be described
by using the carrier algorithm (see Proposition 4.1).

3.3. Carrier algorithm

The carrier algorithm is a way to transform a finite sequence w = (w1, w2, . . . wn) of
numbers into another sequence w′ = (w′

1, w
′
2, . . . , w

′
n), by means of a weakly increasing

sequence C = (c1, . . . , cm), called the carrier. In this transformation, the carrier moves
along the word w from left to right; while the carrier passes each number wk , the carrier
loads wk and unloads w′

k :
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The rule of loading and unloading is defined as follows:

The rule of loading/unloading: Let Ck−1 = (c(k−1)
1 , c(k−1)

2 , . . . , c(k−1)
m ) (c(k−1)

1 ≤ c(k−1)
2 ≤

· · · ≤ c(k−1)
m ) be the sequence of numbers which have already been loaded on the carrier.

Let wk be the number to be loaded. Compare wk with the numbers in Ck−1. If there are
some numbers larger than wk in Ck−1, then one of the smallest among them is unloaded,
and wk is loaded instead. If there is no such number, a minimum in Ck−1 is unloaded, and
wk is loaded instead (see the figure below).

�� �� �� ��
� � � �

Ck−1 Ck

wk

w′
k

�
·········�

w′
k =

{
min

{
c(k−1)

i ∈ Ck−1

∣∣ c(k−1)
i > wk

}
if

{
c(k−1)

i ∈ Ck−1

∣∣ c(k−1)
i > wk

} 
= ∅,

c(k−1)
1 otherwise.

Ck = the sequence of numbers obtained from Ck−1 by replacing a w′
k by wk .

Given two finite sequences C = (c1, c2, . . . , cm) (c1 ≤ c2 ≤ · · · ≤ cm) and w =
(w1, w2, . . . , wn), from C0 = C , we obtain the new sequences C ′ = Cn and w′ by repeating
the rule of loading/unloading above. We call this transformation (C, w) → (C ′, w′) the
carrier algorithm.

Remark 4 The carrier algorithm can be understood as a repetition of Knuth transfor-
mations. We apply the basic rule (1) of Section 2.2, to the k-th step of loading/unloading
mentioned above. When Ck−1 contains a number greater than wk , we have

Ck−1wk = (ux ′v)x → x ′(uxv) = w′
kCk (u ≤ x < x ′ ≤ v),

where x ′ = wk and x = w′
k ; otherwise,

Ck−1wk = (x ′v)x → x ′(vx) = w′
kCk (x ′ ≤ v ≤ x)

is the trivial transformation. Hence we have Ck−1wk ≈ w′
kCk for each k = 1, . . . , n:

Cw = C0w1w2w3 . . . wn ≈ w′
1C1w2w3 . . . wn

≈ w′
1w

′
2C2w3 . . . wn

≈ ...

≈ w′
1w

′
2w

′
3 . . . w′

nCn = w′C ′
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3.4. Time evolution with a carrier

In the following, we give two propositions that will be used in the proof of Theorem 3.1.
The time evolution of the standard BBS from one state to the next can be described in two
different ways; the original algorithm and the transformation of the box-label sequences.
We describe these two algorithms by using the carrier as introduced above.

We take an interval [p, q] of Z so that it contains all i with ai 
= e, and all i with
a′

i 
= e as well. A choice of such an interval is given by p = min{i ∈ Z | ai 
= e},
q = max{i ∈ Z | ai 
= e} + n.

Proposition 3.2 For a given state of the standard BBS, by ignoring the infinite sequences
of e’s on both sides, let A = (ap, ap+1, . . . , aq−1, aq ) be the remaining sequence of numbers;
with p, q defined as above. Then, the original algorithm A → A′ from time t to t + 1, can
be described by the carrier algorithm with a sequence C = (e, e, . . . , e) of n e’s chosen as
the initial state.

We remark that, in this procedure, the final state of the carrier is identical to the initial
state: C ′ = (e, . . . , e). The proof of this proposition will be given in Section 4.

Remark 5 This algorithm with a carrier was introduced for the first time in 1997 by
Takahashi-Matsukidaira [7]. As for the one-colored version (in which each box has an
arbitrary finite capacity, and all balls have the same color), they proved in [7] that the
original algorithm and carrier algorithm provide the same time evolution of BBS.

Example 6 Take the same example as in Example 4. With n = 5, we take the interval
[p, q] = [1, 11], and set

C = (e, e, e, e, e), A = (2, 3, 4, e, 1, 5, e, e, e, e, e).

After eleven times of loading/unloading, we obtain

A′ = (e, e, e, 2, 3, e, 1, 4, 5, e, e), C ′ = (e, e, e, e, e).

The following figure shows the intermediate steps of the procedure.

Next, we discuss the transformation of the box-label sequences. Recall that the box-label
sequence b = (b1, . . . , bk, . . . , bn) is defined as the bottom row of the dual biword w∗
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(see Section 3.2). Notice that bk ∈ [p, q] for all k = 1, 2, . . . , n, with p, q defined as
before.

Proposition 3.3 For a given state of the standard BBS, the transformation of the box-label
sequence b → b′ from time t to t + 1 can be described by the carrier algorithm with the
initial state of the carrier C = (l1, l2, . . . , lm) defined as the increasing sequence consisting
of the labels of all empty boxes in the interval [p, q].

We refer to the procedure of Proposition 3.3 as the box-label algorithm. The proof of this
proposition will be given in Section 4.

Example 7 Take the same example as in Example 4. With n = 5, we take the interval
[p, q] = [1, 11], and set

C = (4, 7, 8, 9, 10, 11), b = (5, 1, 2, 3, 6).

After five times of loading/unloading, we obtain

b′ = (7, 4, 5, 8, 9), C ′ = (1, 2, 3, 6, 10, 11).

The following figure shows the intermediate steps of the procedure.

4. Proof of the main results

4.1. Proof of Proposition 3.3

Note that a state of the standard BBS, represented as an infinite sequence · · · a−1a0a1 . . .,
is identified with a function a : Z → {1, . . . , n, n + 1 = e} of finite support; the support
of a is defined by supp(a) = {i ∈ Z; ai 
= e}. The time evolution a′ of a is determined
by the injective mapping f : supp(a) → Z such that a′

f (i) = ai for i ∈ supp(a), and by
a′

j = e for j 
∈ Im( f ). We first describe how the mapping f is defined by the original
algorithm.

We now visualize the original algorithm of BBS by means of a 2-dimensional diagram
as in figure 3. First, write the state a at time t at the top (a); write each ai again, down in
the same column at the row corresponding to the number itself (b)–(g); here we are using
the datum of Example 4. Then, following the original algorithm of BBS, connect “1” to its
partner, nearest e on the right as in figure 3(i). Then look at “2”, draw lines by the same
method (j). In this example, “3” should be moved to the empty box which had originally
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Figure 3. Two-dimensional illustration.

been occupied by the 1 on the right. Considering this 1 as the partner of the 3, connect the
3 to it (k). Do the same thing until all ai (
= e) have been connected to their partners a′

f (i).
The general rule for drawing lines can be described as follows:

(∗) Connect each number with the leftmost one among all the smaller numbers on the right
that have not been connected from above.

In the original algorithm, the values f (i) are determined in increasing order of ai . There-
fore, assume that f ( j) is known for all j such that a j < ai ; let Xi = { f ( j) | a j < ai } and
Yi := {k | k ∈ Z \ Xi , ak < ai or ak = e}. Then f (i) is determined as follows,

f (i) = min{k | k ∈ Yi , k > i}; (4)

the minimum exists because ak = e for infinitely many k > i while Xi is finite.
Here, we notice that a state of the standard BBS can be described as a dual biword

w∗ =
( ab1 ab2 · · · abk · · · abn

b1 b2 · · · bk · · · bn

)
.

in which abk = k for all k = 1, 2, . . . , n (recall the latter half of Section 3.4). From the
explanation above, we can use the carrier algorithm with the initial state Y = Yb1 for deriving
the values f (i)’s (box-labels). We remark that Ybk represents the carrier for k = 1, 2, . . . , n;
see the following chart.
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Figure 4. Example for the proof of Proposition 3.3.

Notice that Y ′ = Y f (b1) is the next initial state for the carrier algorithm from time t + 1 to
t + 2. In this way, we can describe the box-label algorithm as the carrier algorithm, namely,
we have the transformation of the box-label sequences: (b1, . . . , bn) → ( f (b1), . . . , f (bn)).
We have thus proved Proposition 3.3 (see the example in figure 4).

4.2. Proof of Proposition 3.2

Look at figure 3 again. The state a′ at time t + 1 can be determined by means of this
diagram (h). In what follows, by a chain, we mean a decreasing sequence of numbers that
are connected together by lines (ai → a f (i) → a f ( f (i)) → · · ·), and by a perfect chain a
chain whose bottom is e: ai0 → ai1 → · · · → air such that i0 
∈ Im ( f ), f (ik) = ik+1 for
k = 1, 2, . . . , r − 1, and air = e. We analyze how a′

i is determined from ai by looking
locally at the i-th column.

(i) If an e is alone, it remains at the same position at time t + 1. Note that each ai (
= e)
belongs to a unique perfect chain.

(ii) If ai (
=e) is at the top of a perfect chain, namely i /∈ Im( f ), it is replaced with
e (i.e., a′

k = e).
(iii) If ai (
=e) belongs to a perfect chain and it is not at the top, it is replaced at time t + 1

with a′
i = ak connected with it from above.

Notice that the perfect chains never intersect with each other. In view of this fact, we
see that the same set of non-intersecting perfect chains can be obtained by observing the
sequence of numbers at time t from left to right, rather than from bottom to top as in the
rule (∗).

In the algorithm with a carrier, the function f is determined instead by increasing values
of f ( j). Let i be a value for which we search a k such that f (k) = i and assume that
the set Ai = { j | j ∈ Z, a j 
= e, f ( j) < i} is known; put Bi = { j | j ∈ Z, j <

i, j /∈ Ai }. If a j = e or a j ≤ ai for all j ∈ Bi , then we have i /∈ Im( f ); otherwise
with k = min{a j | j ∈ Bi , a j > ai and a j 
= e}, the index k is the unique one with
f (k) = i . This defines the same function f as the original definition, as can be proved by
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Figure 5. Example for the proof of Proposition 3.2.

an induction on i . We remark that each set Ci = {a j | j ∈ Bi } corresponds to a carrier
(C = C p):

We have thus completed Proposition 3.2 (see the example in figure 5).

4.3. Proof of Theorem 3.1

In the notation of Proposition 3.2, we get C A ≈ A′C from Remark 4.

C A = C p(ap, ap+1, . . . , aq−1, aq )

≈ a′
pC p+1(ap+1, ap+2, . . . , aq−1, aq )

≈ (a′
p, a′

p+1)C p+2(ap+2, ap+3, . . . , aq−1, aq )
...

≈ (a′
p, a′

p+1, . . . , a′
q−1, a′

q )C ′ = A′C

We know that Knuth equivalent words correspond to the same tableau. Since e is thought
of as larger than any other number, by virtue of Lemma 1, we see that the results Ae and A′

e
of removing e’s from CA and A′C , respectively, are Knuth equivalent, i.e., Ae ≈ A′

e. Hence
the bumping of Ae and A′

e give the same tableau P; this P-symbol is conserved by the time
evolution. We remark that the sequence Ae is nothing but the bottom row of the biword w
we introduced before. We have completed the proof of the first statement of Theorem 3.1.

We next consider the box-label algorithm in order to prove the second statement of
Theorem 3.1. We denote by T ∗ the time evolution of box-label sequences, so that T ∗(b) =
b′. With the notation in the proof of Proposition 3.3, we obtain the following sequence of
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Knuth equivalent words:

Y b = Yb1 b1 . . . bn ≈ b′
1Yb2 b2 . . . bn ≈ · · · ≈ b′

1 . . . b′
nY ′ = b′Y ′.

We now look at the tableau Tab(Y b). From the definition of the carrier algorithm, it is
clear that, while inserting b into Y , the first row of the tableau is kept track of by the
carrier. Hence we see that the first row of the resulting tableau Tab(Y b) is identical to
Y ′, and that the tableau obtained from Tab(Y b) by removing the first row is identical to
Tab(b′). This implies that both Y ′ and Tab(b′) depend only on the Knuth equivalence class of
Y b.

Supposing that a word a is Knuth equivalent to b (i.e., Tab(a) = Tab(b)), consider
the time evolution Y a → a′Y ′′ by the carrier algorithm with the same initial state of the
carrier Y . Since Y a ≈ Y b, from the consideration above, we conclude that Y ′ = Y ′′ and
Tab(a′) = Tab(b′), hence a′ ≈ b′.

Lemma 2 If a and b are two Knuth equivalent words, then so are the resulting T ∗(a) and
T ∗(b).

Let w1 and w2 be the biwords corresponding to the states at time t and t +1, respectively;
let w1, w2 (resp. w∗

1, w
∗
2) be the bottom rows of the biwords w1, w2 (resp. the dual biwords

w∗
1, w∗

2). The tableaux Q1 and Q2 are the Q-symbols for time t and t + 1, respectively.
From Proposition 2.1, we see that Qi = Q(wi ) = P(w∗

i ) for each i = 1, 2 (see figure 6).
By the theory of the RSK correspondence, among the words that correspond to tableaux

of a given shape, the tableau words are precisely those for which the tableaux go thorough
a specific sequence of shapes during insertion, and which therefore have a specific type

Figure 6. Time evolution T ∗ in the dual version.
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of Q-symbol. Then if w∗
1 is a tableau word, namely w∗

1 = W(P(w∗
1)), this means that

its Q-symbol Q(w∗
1) is that specific Q-symbol, but since Q(w∗

1) = P1 = P2 = Q(w∗
2),

this shows that w∗
2 = T ∗(w∗

1) is also a tableau word. Hence we obtain the following
lemma:

Lemma 3 If b is a tableau word, T ∗(b) is a tableau word of the same shape.

See figure 6 again; put b = W(Q1) = W(Q(w1)), then b is Knuth equivalent to w∗
1 , which

is the box-label sequence of a possible state of the BBS, so that T ∗(b) is defined. Then by
Lemma 2 T ∗(b) is Knuth equivalent to T ∗(w∗

1) = w∗
2 while by Lemma 3 it is a tableau

word; since there is only one tableau word Knuth equivalent to w∗
2 , namely W(P(w∗

2)) =
W(Q2), this shows that T ∗(b) = W(Q2) = W(Q(w2)), i.e., that W(Q(w2)) is completely
determined by b and hence by W(Q(w1)), thereby completing the proof of the second
statement of Theorem 3.1.

Identifying tableau words with tableaux, we can define the time evolution of the Q-symbol
Q by

T ∗(Q) = Tab(T ∗(W(Q))).

Summarizing, with the interval [p, q] ⊂ Z again, we have

Proposition 4.1 In the standard BBS, the time evolution of the Q-symbol Q is described
by the box-label algorithm with a carrier. The initial state of the carrier is given with
C = (l1, . . . , lm) defined as the increasing sequence consisting of the labels of all empty
boxes in the interval [p, q]. The carrier runs along the rows of the tableau Q from left to
right, and bottom to top.

Therefore, the evolution of the Q-symbol can be directly computed by the box-label
algorithm at the level of tableau words read off from the tableau (recall figure 1 in Section 2),
without the need to recompute a tableau from the resulting word.

5. Generalization of the BBS

In this section, we consider two generalizations of the standard BBS, which we call the
advanced BBS and the generalized BBS. In both cases, we allow to use an arbitrary finite
number of balls for each color. An advanced BBS is a BBS in which all the boxes have
capacity one. A generalized BBS is a BBS in which the capacity of each box is specified
individually. When we consider a generalized BBS, we denote by δ j the capacity of the box
labeled j and assume δ j ≥ 1 for all j ∈ Z. Then an advanced BBS is considered as the
special case of a generalized BBS such that δ j = 1 for all j ∈ Z.

We first discuss the original rule for the advanced BBS in which all the boxes have
capacity one. In this case, we may use an arbitrary finite number of balls for each color.
One step of time evolution of the advanced BBS, from time t to t + 1, is defined as follows:
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Figure 7. Original algorithm in the advanced BBS.

1. Every ball should be moved only once within the interval between time t and t + 1.
2. Move the leftmost ball of color 1 to the nearest right empty box.
3. Among the remaining balls of color 1, if any, move the leftmost one to the nearest right

empty box.
4. Repeat the same procedure until all the balls of color 1 have been moved (in figure 7

below, the balls to be moved are printed in the boldface, and the empty boxes to be filled
in are denoted by ě).

5. In the same way, move the balls of color 2, 3, . . . n, in this order, until all the balls have
been moved.

The following figure is an evolution of the example in figure 7:

We next describe the generalized BBS where each box has an arbitrary finite capacity.
(see the figure below).

In this case, we denote each box by a sequence of numbers limited by two walls “|”. We fill in
the box with e’s so that the number of indices should represent the capacity of the box. In par-
ticular, the expression |e · · · e| (m-tuple of e) stands for an empty box of capacity m. Figure 8
is an example of the case where the boxes have capacity . . . , 3, 4, 1, 3, 2, 3, 2, 1, 5, 2, . . .

Then we can also apply the same rule of time evolution as before to this generalized
version; the only difference is that, inside a box, the balls can be rearranged arbitrarily (for
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Figure 8. A generalized version of the example in figure 7.

Figure 9. Biword formulation for the generalized version.

example, inside a box of capacity 2, the two expressions |ab| and |ba| are considered as
representing the same state). For convenience, we always rearrange the balls in one box in
the order e, 1, 2, . . . , n so that e’s are packed to the left.

Given a state of the generalized BBS, we scan the sequence from left to right in order
to obtain the biword w (see figure 9 cf. Section 3.2). We also denote by (P, Q) the pair
of tableaux assigned to w through the RSK correspondence. Notice that P is a tableau in
which each entry is taken from the numbers 1, 2, . . . , n, and that Q is a tableau of the same
shape in which the entries are integers.

The time evolution of the generalized BBS is then translated into the time evolution of
the corresponding biword, and also, via the RSK correspondence, into the time evolution
of the pair of tableaux (P, Q) of the same shape.

Theorem 5.1 We regard the generalized BBS as the time evolution of the pairs of tableaux
(P, Q) through the RSK correspondence in the way explained above. Then,

1. The P-symbol is a conserved quantity under the time evolution of the BBS.
2. The Q-symbol evolves independently of the P-symbol.
3. The time evolution of the Q-symbol is described by the box-label algorithm with a

carrier.
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In the box-label algorithm for the time evolution of the Q-symbol, the initial state of the
carrier is defined to be the multiset obtained from that of all possible box-labels, by removing
the labels contained in the Q-symbol, each as many times as the number of the appearences
in Q. In this algorithm, the carrier runs along the rows of the tableau Q from left to right,
and bottom to top.

To prove Theorem 5.1 we can apply the same method as the standard version, and hence
we omit the proof of the generalized version. In the following, we explain the third statement
of Theorem 5.1, the box-label algorithm for the generalized version. We denote by L the
sequence of all box-labels with each j ∈ Z repeated δ j times:

L = (. . . , 0δ0 , 1δ1 , 2δ2 , . . .) = (. . . ,

δ0︷ ︸︸ ︷
0, . . . , 0,

δ1︷ ︸︸ ︷
1, . . . , 1,

δ2︷ ︸︸ ︷
2, . . . , 2, . . .).

In what follows, we use the parentheses ( ) for sequences of numbers with multiplicities.
We define C = (l p, . . . , lq ) = (li | ai = e, i ∈ [p, q]) to be the sequence obtained from
L by removing the box-labels li1 , li2 , . . . , liN . Here we consider the interval [p, q] again,
similarly as Section 3.3: p = min{i ∈ Z | ai 
= e}, q = max{i ∈ Z | ai 
= e} + N . We then
apply the carrier algorithm to the word b = (lσ (i1), lσ (i2), . . . , lσ (iN )) of box-labels by taking
C for the initial state of the carrier.

Example 8 We show the box-label algorithm (with a carrier) by taking the same example
as in figure 8. We consider the generalized BBS in which the boxes with labels 1, 2, . . . , 10
have capacities 3, 4, 1, 3, 2, 3, 2, 1, 5, 2, respectively (δ1 = 3, δ2 = 4, . . . , δ10 = 2).
Since

L = (. . . , 13, 24, 31, 43, 52, 63, 72, 81, 95, 102 . . .)

= (. . . , 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 9, 9, 9, 9, 9, 10, 10, . . .)

and

w =
(

1 2 2 2 3 4 5 5 6 6

5 1 2 5 4 3 1 2 4 5

)

=
(

l3 l5 l6 l7 l8 l11 l12 l13 l15 l16

a3 a5 a6 a7 a8 a11 a12 a13 a15 a16

)

we take p = 3, q = 16 + 10 = 26, and

C = (l4, l9, l10, l14, l17, l18, . . . , l26)

= (2, 4, 4, 6, 7, 7, 8, 9, 9, 9, 9, 9, 10, 10)

for the initial state of the carrier. The figure on the next page indicates how the box-label
algorithm with a carrier works to generate the time evolution from time t to t + 1. Notice
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that a carrier always has labels of available boxes.

Cb = (2, 4̌, 4, 6, 7, 7, 8, 9, 9, 9, 9, 9, 10, 10)2525436126

≈ 4(2, 2, 4, 6̌, 7, 7, 8, 9, 9, 9, 9, 9, 10, 10)525436126

≈ 46(2, 2, 4̌, 5, 7, 7, 8, 9, 9, 9, 9, 9, 10, 10)25436126

≈ 464(2, 2, 2, 5, 7̌, 7, 8, 9, 9, 9, 9, 9, 10, 10)5436126

≈ 4647(2, 2, 2, 5̌, 5, 7, 8, 9, 9, 9, 9, 9, 10, 10)436126

≈ 46475(2, 2, 2, 4̌, 5, 7, 8, 9, 9, 9, 9, 9, 10, 10)36126

≈ 464754(2, 2, 2, 3, 5, 7̌, 8, 9, 9, 9, 9, 9, 10, 10)6126

≈ 4647547(2̌, 2, 2, 3, 5, 6, 8, 9, 9, 9, 9, 9, 10, 10)126

≈ 46475472(1, 2, 2, 3̌, 5, 6, 8, 9, 9, 9, 9, 9, 10, 10)26

≈ 464754723(1, 2, 2, 2, 5, 6, 8̌, 9, 9, 9, 9, 9, 10, 10)6

≈ 4647547238(1, 2, 2, 2, 5, 6, 6, 9, 9, 9, 9, 9, 10, 10) = b′C ′.

Here we mention some properties of the BBS with (P, Q)-formulation.

1. In the standard BBS, the P-symbol is a standard tableau, and each Q-symbol of the
same shape as P-symbol, contains n different numbers.

2. In the advanced BBS, P-symbol is a general tableau, and each Q-symbol of the same
shape as P-symbol contains n different numbers.

3. In the generalized BBS, P-symbol and each Q-symbol of the same shape as P-symbol
are both general tableaux.

6. Summary based on examples

Example 9 We consider the following BBS in which the boxes with labels 1, 2, . . . , 15
have capacities 3, 4, 1, 3, 2, 3, 2, 1, 5, 2, 1, 6, 3, 15, 7, respectively.

box : 1 2 3 4 5 6 7 8 9 10 11 12 13

time : 1 ee5 e125 4 ee3 12 e45 ee e eeeee ee e eeeeee eee

time : 2 eee eee5 5 124 e3 ee1 24 5 eeeee ee e eeeeee eee

time : 3 eee eeee e e55 14 e23 ee e e1245 ee e eeeeee eee

time : 4 eee eeee e eee 55 e14 23 e eeeee 12 4 eeeee5 eee

time : 5 eee eeee e eee ee e55 e4 1 eee23 ee e eee124 ee5

The above result is obtained either by the original algorithm or by the carrier algorithm
(recall Proposition 3.2).
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Example 10 We next consider the same BBS in the form of biwords.

time : 1

( 1 2 2 2 3 4 5 5 6 6

5 1 2 5 4 3 1 2 4 5

)

time : 2

( 2 3 4 4 4 5 6 7 7 8

5 5 1 2 4 3 1 2 4 5

)

time : 3

( 4 4 5 5 6 6 9 9 9 9

5 5 1 4 2 3 1 2 4 5

)

time : 4

( 5 5 6 6 7 7 10 10 11 12

5 5 1 4 2 3 1 2 4 5

)

time : 5

(
6 6 7 8 9 9 12 12 12 13

5 5 4 1 2 3 1 2 4 5

)

The corresponding dual biwords are given as follows:

time : 1

( 1 1 2 2 3 4 4 5 5 5

2 5 2 5 4 3 6 1 2 6

)

time : 2

( 1 1 2 2 3 4 4 5 5 5

4 6 4 7 5 4 7 2 3 8

)

time : 3

( 1 1 2 2 3 4 4 5 5 5

5 9 6 9 6 5 9 4 4 9

)

time : 4

( 1 1 2 2 3 4 4 5 5 5

6 10 7 10 7 6 11 5 5 12

)

time : 5

(
1 1 2 2 3 4 4 5 5 5

8 12 9 12 9 7 12 6 6 13

)

In the above, we can check that the time evolution of the bottom rows is also determined by
the box-label algorithm (Recall Proposition 3.3). Notice that the initial state of the carrier
for the box-label algorithm should be given by

C = (11, 21, 42, 61, 72, 81, 95, 102, 111, 126, 133, 1415, 157).

Example 11 We finally consider the same BBS in terms of the pairs of
tableaux (P, Q). The P-symbol

is conserved under the time evolution of the BBS. The entries (numbers) of this P-symbol
are identified with the colors of the balls. The time evolution of the Q-symbol is given as
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in the figure below.
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