ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Automorphism Group of the Fibonacci Poset: A “Not Too Difficult” Problem of Stanley from 1988

Jonathan David Farley and Sungsoon Kim
Department of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

DOI: 10.1023/B:JACO.0000023007.96063.b3

Abstract

All of the automorphisms of the Fibonacci poset Z( r) are determined ( r \mathbb N \mathbb{N} ). A problem of Richard P. Stanley from 1988 is thereby solved.

Pages: 197–204

Keywords: Fibonacci poset; Fibonacci lattice; differential poset; automorphism group; $(partially)$ ordered set

Full Text: PDF

References

1. F. Brenti, “Log-concavity and combinatorial properties of Fibonacci lattices,” European Journal of Combinatorics 12 (1991), 459-476.
2. B.A. Davey and H.A. Priestly, Introduction to Lattices and Order, 2nd edition, Cambridge University Press, Cambridge, 2002.
3. F.M. Goodman and S.V. Kerov, “The Martin boundary of the Young-Fibonacci lattice,” Journal of Algebraic Combinatorics 11 (2000), 17-48.
4. R. Kemp, “Tableaux and rank-selection in Fibonacci lattices,” European Journal of Combinatorics 18 (1997), 179-193.
5. D. Kremer, “A bijection between intervals in the Fibonacci posets,” Discrete Mathematics 217 (2000), 225- 235.
6. D. Kremer and K.M. O'Hara, “A bijection between maximal chains in Fibonacci posets,” Journal of Combinatorial Theory (A) 78 (1997), 268-279.
7. S. Okada, “Algebras associated to the Young-Fibonacci lattice,” Transactions of the American Mathematical Society 346 (1994), 549-568.
8. R.P. Stanley, “The Fibonacci lattice,” The Fibonacci Quartely 13 (1975), 215-232.
9. R.P. Stanley, “Differential posets,” Journal of the American Mathematical Society 1 (1988), 919-961.
10. R.P. Stanley, “Further combinatorial properties of two Fibonacci lattices,” European Journal of Combinatorics 11 (1990), 181-188.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition