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1. Introduction

A (topological) map is a cellular decomposition of an orientable closed surface. A common
way to describe maps is to view them as 2-cell embeddings of graphs. An automorphism of a
map is an automorphism of the underlying graph which extends to an orientation preserving
self-homeomorphism of the supporting surface. It is well-known that the automorphism
group of a map acts semiregularly on the set of arcs of the underlying graph and in an extreme
case, when the action is regular, the map itself is called regular. A regular embedding of a
graph is a 2-cell embedding of a graph into a surface in a way that the associated map is
regular. Regular maps have been studied in connection with various branches of mathematics
including Riemann surfaces and algebraic curves. For more information about regular maps
and their connections to other fields of mathematics we refer the reader to [12–14, 18, 19,
24, 25].

One significant problem in the theory of regular maps is to classify the regular embeddings
of a given underlying graph. Generally, this is very difficult. Regular embeddings of the
complete graph Kn are classified in [1, 11, 26]. In [5], the authors classified the regular
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embeddings of complete n-multipartite graphs K p,p,...,p, where p is a prime and n is a
positive integer. It is known [7] that the automorphism group of a regular map is a two-
generator group acting with a cyclic vertex-stabilizer, and conversely, any two-generator
group with one generator being involution determines a regular map. This regular map
depends on the choice of the generators, and one can usually derive more than one regular
map from such a group.

When classifying regular embeddings of graphs, a technique often used is to project a
given map onto a smaller one, and then to employ information about the quotient. Although
underlying graphs of regular maps may have multiple edges, a regular map with multiple
edges projects onto another one with a simple underlying graph that has the same set of
vertices and the same adjacency relation. Hence regular maps with multiple edges can be
described as some “extensions” of regular embeddings of simple graphs. Therefore from
now on all the maps considered throughout the paper will be assumed to have simple
underlying graphs. Since the regular maps with p or pq vertices, where p and q are primes,
appear as quotients of many other regular maps, they are suitable candidates to be dealt with.
The classification of regular maps with p vertices was achieved in [5]. The classification
of such regular maps can be derived from the classification of arc-transitive graphs with
prime number of vertices, see [3]. In this paper, we shall give a classification of regular
embeddings of connected arc-transitive simple graphs of order pq, where p and q are
primes (not necessarily distinct).

Since the classification of arc-transitive graphs of order pq (p �= q) is known (see
[17–22]), it is possible to use these results for our purpose. However, there are some argu-
ments that do not support this idea. First of all, many different families of graphs included
in that classification have to be checked unnecessarily. For some of these families, either
there are no regular maps, or the classification is highly non-trivial. This situation can be
well demonstrated in the family of complete q-partite graphs K p,...,p which are obviously
arc-transitive of order pq . These graphs admit a regular embedding into a surface if and
only if either q ≤ 3, or p = q , see [5]. Perhaps the most important argument to attack
the problem independently of the classification of arc-transitive graphs of order pq uses
the fact that it depends on the classification of primitive groups of degree pq (see [15]).
Since however the classification of primitive groups of degree pq depends in turn on the
classification of finite simple groups, it is worth classifying regular maps with pq vertices
independently of it. Our approach avoids the employment of this classification. In fact, it is
independent of the classification of finite simple groups.

The paper is organized as follows. After this introductory section, a brief description of
algebraic maps and some preliminary group theoretical results will be given in Sections 2
and 3. Section 4 contains the proof of the classification theorem (see Theorem 4.8). In
Section 5 we compute the genera of the maps obtained in Theorem 4.8.

2. Algebraic maps

Let G = G(V, D) be a simple graph with vertex set V = V (G) and arc set D = D(G). By
SV and SD we denote the symmetric groups on the vertex set and on the arc set, respectively.
The involution L in SD interchanging the two arcs underlying every given edge is called the
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arc-reversing involution. An element R in SD which cyclically permutes the arcs initiated
at v for each vertex v ∈ V (G) is called a rotation. Since the graph G has been assumed to be
simple, Aut(G) is considered as a subgroup of both SV and SD, and the same notation is used
for convenience. In the investigation of maps, it is often useful to replace topological maps
on orientable surfaces with their combinatorial counterparts. It is well-known that graph
embeddings into orientable surfaces can be described by means of rotations (see [8, 13]).
A map M with underlying graph G can be identified with a triple M = M(G; R, L),
where R is a rotation and L is the arc-reversing involution of G. By the connectivity of G,
Mon(M) := 〈R, L〉 is a transitive subgroup of SD. Given two maps M1 = M(G1; R1, L1)
andM2 = M(G2; R2, L2), a graph isomorphism φ : G1 → G2 is called a map isomorphism
from M1 to M2 if R1φ = φR2, noting that L1φ = φL2 holds in any case. In particular,
if M1 = M2 = M, then φ is called an automorphism of M. The automorphisms of M
form a group Aut(M) ≤ Aut(G), called the automorphism group of the map M. By this
definition, Aut(M) ≤ CSD (Mon(M)), the centralizer of Mon(M) in SD. Also Aut(M) acts
semi-regularly on D, which follows from the transitivity of Mon(M) on D. If the action
is regular, the map M is called regular. As a consequence of some well-known results
in a permutation group theory (see [9, I.6.5]), we infer that in a regular map M, the two
associated permutation groups Aut(M) and Mon(M) on D can be viewed as the right and
the left regular representations of an abstract group G, so that G ∼= Aut(M) ∼= Mon(M),
mutually centralizing each other in SD (see [13]).

It is also possible to describe a regular map in terms of its automorphism group, and its
underlying graph as a coset graph. Let us first recall the definition of coset graphs (see [16]
for example). Let G be a finite group and H a proper subgroup of G with

⋂
g∈G H g = 1. Let

B be a double coset of H in G such that B = B−1. From now on, we use G = G(G; H, B)
to denote the coset graph with V (G) = {Hg | g ∈ G} and D(G) = {(Hg, Hbg) | b ∈
B, g ∈ G}. Note that G acts faithfully and arc-transitively on the coset graph by right
multiplication. In what follows, the group G is often identified with the corresponding
group of right multiplications.

Definition 2.1 Let G = 〈r, �〉 be a finite two-generator group with �2 = 1 and 〈r〉∩〈r〉� =
1. By an algebraic map M(G; r, �) = (G; R), we mean the map whose underlying graph
is the coset graph G = G(G; 〈r〉, 〈r〉�〈r〉) and rotation R is determined by eR = eg−1

1 rg1 =
(〈r〉g1, 〈r〉g2g−1

1 rg1) for any arc e = (〈r〉g1, 〈r〉g2) in D(G).

By the definition given above, G acts arc-regularly on G (by right multiplication) and
preserves the rotation R of the map M(G; r, �). Therefore any algebraic map M is regular,
with Aut(M) ∼= Mon(M) ∼= G. It is a matter of routine to check (see [13, 18]) that every
regular embedding of a graph can be described by an algebraic map, and that two such
algebraic maps M(G; r1, �1) and M(G; r2, �2) are isomorphic if and only if there exists an
automorphism σ ∈ Aut(G) such that rσ

1 = r2 and �σ
1 = �2. Note that isomorphic regular

maps have isomorphic automorphism groups. Therefore one can transfer the classification
problem of regular embeddings of a given graph into a purely group theoretical problem.
More precisely, one may classify all the regular maps with a given underlying graph G of
valency n in the following two steps:
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(1) Find the representatives G (as abstract groups) of the isomorphism classes of arc-regular
subgroups of Aut(G) with cyclic vertex-stabilizers.

(2) For each group G given in (1), determine all the algebraic regular maps M(G; r, �)
with underlying graphs isomorphic to G, or equivalently, determine the representatives
of the orbits of Aut(G) on the set of generating pairs (r, �) of G such that |r | = n,

|�| = 2 and G(G; 〈r〉, 〈r〉�〈r〉) ∼= G.

3. Preliminary results in group theory

In this section, some group theoretical results are given. Let’s first introduce some notation.
By (r, s) and [r, s], we denote the greatest common divisor and the least common multiple

of two positive integers r and s, respectively; and by [a, b] (with an abuse of notation) the
commutator of two elements a and b in a group. By Fp, Zn and D2n, we denote the finite field
of p elements, the cyclic group of order n and the dihedral group of order 2n, respectively.
For a group G and a subgroup H of G, we use Gk+ to denote the subgroup 〈g | g ∈ G, gk =
1〉 of G, and use CG(H ) and NG(H ) to denote the centralizer and normalizer of H in G,

respectively. A semidirect product of the group N by the group H is denoted by N : H. For
a ring S, let S∗ be the multiplicative group of S. Finally, by V = V (2, p), PG(V ), AG(V ),
GL(2, p), PGL(2, p), and AGL(2, p), respectively, we denote the 2-dimensional row linear
space, projective geometry, affine geometry, general linear group, projective general linear
group, and affine transformation group over the field Fp.

For any α ∈ V, we denote by tα the translation corresponding to α in AG(V ) and by T
the translation subgroup of AGL(2, p). Then AGL(2, p) ∼= T : GL(2, p). We adopt matrix
notation for GL(2, p) and, for convenience, denote a matrix x = (ai j )2×2 by x = ‖a11,
a12; a21, a22‖. We have g−1tαg = (tα)g = tαg for any tα ∈ T ≤ AGL(2, p) and any
g ∈ GL(2, p) ≤ AGL(2, p). Hereafter, let us fix a = t(1,0), b = t(0,1), so that 〈a, b〉 = T
is the translation subgroup of AGL(2, p). Let G = T : 〈x〉, where x = ‖e, u; f, w‖ is an
element of order n in GL(2, p). Then as an abstract group, G can be presented by

G = 〈a, b, x | a p = bp = xn = [a, b] = 1, ax = aebu, bx = a f bw〉. (3.1)

Conversely, any group G given by (3.1) can be viewed as a subgroup of AGL(2, p) con-
taining T, by identifying a, b, x with t(1,0), t(0,1) and ‖e, f ; u, w‖, respectively. This iden-
tification will be frequently used later.

The knowledge of 2-dimensional linear groups as well as that of projective groups or of
affine groups will be used throughout this paper, and the reader is assumed to be familiar
with it. To make the proofs more transparent in what follows, we have decided to include
some known facts. Proposition 3.1 can be extracted from [23] and [4], and Proposition 3.2
can be obtained from Proposition 3.1 and some results in [9, I.8].

Proposition 3.1 Let p be an odd prime. Then the maximal subgroups of PGL(2, p) lie
in the following: one conjugacy class of subgroups isomorphic to Zp : Zp−1; one class
isomorphic to D2(p−1), when p ≥ 7; one class isomorphic to D2(p+1); one class isomorphic
to S4, when either p = 5 or p ≡ 3, 13, 27, 37(mod 40); and one subgroup isomorphic to
PSL(2, p).
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Proposition 3.2 For a prime p, suppose θ is a primitive element of Fp, so that F∗
p = 〈θ〉,

and let G = GL(2, p), Z = Z (G) and Ḡ = PGL(2, p). Then
(1) GL(2, 2) = 〈x, y〉 ∼= D6, where x = ‖1, 1; 1, 0‖ and y = ‖0, 1; 1, 0‖.
(2) For p ≥ 3, all the elements of the form ‖e, f θ ; f, e‖ form a cyclic subgroup H

of G, which is of order p2 − 1 and contains Z . Moreover, NG(H ) ∼= H : 〈y〉, where
y = ‖1, 0; 0, −1‖ is an involution. For any n satisfying n | (p2 − 1) but n � (p − 1),
each cyclic subgroup of order n is conjugate to a subgroup of H. Each irreducible
subgroup L of GL(2, p) on its action on V is conjugate to a subgroup of H, and the
action L̄ := L Z/Z on PG(V ) is regular.

(3) For p ≥ 3, let D be the diagonal subgroup of G. Then NG(D) = D : 〈y〉, where
y = ‖0, 1; 1, 0‖ is an involution. For any two divisors n and m of p −1, each subgroup
isomorphic to Zn × Zm is conjugate to a subgroup of D. Moreover, for each element
h in D \ Z , h̄ := h Z/Z fixes precisely two points in PG(V ).

(4) For p ≥ 3, G contains one class of subgroups isomorphic to Zp :Zp−1, with a rep-
resentative H = 〈x, y〉, where x = ‖1, 1; 0, 1‖ and y = ‖1, 0; 0, θ‖. Moreover,
H̄ := H Z/Z is a point-stabilizer of PGL(2, p) in the action on PG(V ).

Lemma 3.3 Let F = T : 〈x〉 and F ′ = T : 〈x ′〉 be two subgroups of A := AGL(2, p),
where T is the translation subgroup, and x and x ′ are nontrivial elements in G = GL(2, p).
Suppose σ is an isomorphism from F to F ′ mapping 〈x〉 to 〈x ′〉. Then there exists an element
u ∈ G such that σ = I (u)|F , where I (u) is the inner automorphism of A induced by u. In
particular, if 〈x〉 = 〈x ′〉 then u ∈ NG(〈x〉).

Proof: Since both F and F ′ have only one subgroup isomorphic to T, the isomorphism
σ fixes T setwise. With our notation, T = 〈a, b〉 where a = t(1,0) and b = t(0,1). Let
aσ = au11 bu12 and bσ = au21 bu22 for some ui j ∈ Zp. Then aσ = t(u11,u12) and bσ = t(u21,u22).

Moreover, it is easy to check that for any α ∈ V, (tα)σ = tαu = (tα)u for u = (ui j ) ∈ G.

Because (x−1tαx)σ = (tαx )σ and xσ ∈ G, we have tαuxσ = tαxu, which implies that
xσ = u−1xu. Therefore σ = I (u)|F . The second part of the lemma is immediate.

Lemma 3.4 Let p and q be two primes with p ≥ q, (t1, t2) ∈ Z∗
p × Z∗

q , and let h =
[|t1|, |t2|]. Define the group

G(p, q, t1, t2) = 〈a, b, x | a p = bq = xh = [a, b] = 1, ax = at1 , bx = bt2〉.

Then G(p, q, t1, t2) ∼= G(p, q, t ′
1, t ′

2) if and only if in Z∗
p × Z∗

q , we have 〈(t1, t2)〉 = 〈(t ′
1, t ′

2)〉
for p ≥ q, or 〈(t1, t2)〉 = 〈(t ′

2, t ′
1)〉 for p = q.

Proof: Let G = G(p, q, t1, t2) and G ′ = G(p, q, t ′
1, t ′

2), and let us denote the three
generators of G ′ by a′, b′ and x ′. We distinguish the following two cases.

Case 1. p > q: Assume 〈(t1, t2)〉 = 〈(t ′
1, t ′

2)〉. Then (t1, t2) = (t ′
1, t ′

2) j for some j ∈ Z∗
h,

and the assignment τ : a → a′, b → b′ and x → x ′ j extends to an isomorphism G → G ′.
Conversely, assume that σ : G → G ′ is an isomorphism. Then aσ = a′i , bσ = b′ j ,
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xσ = a′eb′ f x ′k for some i ∈ Z∗
p, j ∈ Z∗

q and k ∈ Z∗
h . Considering the action of σ on

the defining relations of G, one can get t1 ≡ (t ′
1)k(mod p) and t2 ≡ (t ′

2)k(mod q), which
implies (t1, t2) ≤ 〈(t ′

1, t ′
2)〉. As |〈(t1, t2)〉| = |〈(t ′

1, t ′
2)〉|, we get 〈(t1, t2)〉 = 〈(t ′

1, t ′
2)〉.

Case 2. p = q: The subcase p = 2 is trivial. So, in what follows, we assume p ≥ 3. The
proof of sufficiency can be obtained in a similar way to Case (1), by noting the symmetry
of a and b. Conversely, assume that σ : G → G ′ is an isomorphism. Without any loss of
generality, one may assume that both G = 〈a, b, x〉 and G ′ = 〈a′, b′, x ′〉 are subgroups of
AGL(2, p) containing T . As above, we set a = a′ = t(1,0), b = b′ = t(0,1), x = ‖t1, 0; 0, t2‖,
and x = ‖t ′

1, 0; 0, t ′
2‖. Then σ fixes T setwise. Since both G and G ′ have only one conjugacy

class of subgroups of order h, one may assume 〈x〉σ = 〈x ′〉. By Lemma 3.3, σ = I (u)|G
for some inner automorphism I (u) of AGL(2, p), where u ∈ GL(2, p) and u−1xu = x ′ j

for some integer j. A direct calculation shows that u is of the form either ‖e, 0; 0; f ‖ or
‖0, e; f, 0‖. The desired result follows.

The following propositions will be used later.

Proposition 3.5 ([9, I.4.5]) Let G be a group and H ≤ G. Then NG(H )/CG(H ) is
isomorphic to a subgroup of Aut(H ).

Proposition 3.6 ([10]) Let G be a finite group and P a Sylow p-subgroup of G. If
NG(P) = CG(P), then P has a normal p-complement in G.

Proposition 3.7 ([9, IV.2.8], [6]) Every group containing a cyclic Sylow 2-subgroup is
solvable.

Proposition 3.8 ([27, 11.6, 11.7]) Every permutation group of prime degree p is either
insolvable and 2-transitive or isomorphic to Zp : Zs for some s dividing p − 1. Moreover,
every insolvable 2-transitive group of prime degree has non-cyclic point-stabilizers.

For any odd prime p and any even divisor s of p −1, denote by G(p, s) the Cayley graph
Cay(Zp, S), where S is the subgroup of order s in the group Z∗

p.

Proposition 3.9 ([3]) For any odd prime p and any even divisor s of p − 1, there
is a unique arc-transitive graph of order p and of valency s, up to isomorphism. It is
isomorphic to the Cayley graph G(p, s), and its automorphism group is isomorphic to
Zp :Zs if s < p − 1, and to the symmetric group Sp if s = p − 1.

We conclude this section by proving a group theoretical result which is crucial for the
proof of the main theorem. It enables us to avoid the employment of the classification
of primitive groups of degree p or pq for two primes p and q. Moreover, it derives the
classification theorem of regular maps in this paper independently of the classification of
finite simple groups.
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Lemma 3.10 If a group G contains a cyclic subgroup H of index pq for primes p and q
(where p may be equal to q), then G is solvable.

Proof: Without any loss of generality, one may assume that p ≤ q and the core HG :=⋂
g∈G g−1 Hg is trivial, so that G is isomorphic to the permutation group induced by (right)

multiplication on the set � := {Hg | g ∈ G} of (right) cosets of H. Let |H | = n, so
that |G| = pqn. If p = q = 2, then G is isomorphic to a subgroup of S4 and so G is
solvable. If pq or n is odd, then G is of odd order or G contains a cyclic Sylow 2-subgroup,
which implies that G is solvable, by the solvability of the groups of odd order (see [6]) and
Proposition 3.7. Hence, in what follows we assume that p = 2, q is odd and n is even, so
that |�| = 2q. Our discussion is divided into the following two cases.

Case 1. G acts imprimitively on �: Let B be a complete block system of G and let K be
the kernel of G on B. If the blocks in B are of size q, then |G/K | = 2 and |K | = nq. By
Proposition 3.7, K is solvable and consequently, G is solvable. Therefore we assume that
the action of G induces only blocks of size 2. Let us first deal with the case K �= 1. Then K
is a 2-group which is transitive on each block. Set Ḡ = G/K . For any block B ∈ B and any
vertex u ∈ B, we have Ḡ B = G B K/K = Gu K/K ∼= Gu/(Gu ∩ K ), a cyclic group, where
Gu

∼= Zn. Thus Ḡ is a permutation group on B of degree q, with a cyclic point-stabilizer,
which by Proposition 3.8 implies that Ḡ is solvable. Consequently, G is solvable as well.
Next, let us consider the case K = 1. Then G ∼= Ḡ is isomorphic to a subgroup of Sq .

In particular, each Sylow q-subgroup of G has order q. If Ḡ is not 2-transitive on B, then
by Proposition 3.8 G ∼= Ḡ is solvable. Suppose that Ḡ is 2-transitive on B. Then G B is
transitive on B\{B}, where |B\{B}| = q − 1. Noting that |G B | = 2n and |Gu | = n, we
have that either Gu is transitive on B\{B} or Gu has only two orbits of cardinality q−1

2 on
B\{B}. Since Gu is cyclic and K = 1, Gu is intransitive on each block, which implies
that n = q − 1 or q−1

2 . By Sylow’s Theorem, the number of Sylow q-subgroups of G is
qk + 1, which is a divisor of |G| = 2nq. Therefore, (qk + 1) | 2(q − 1)q if n = q − 1
and (qk + 1) | (q − 1)q if n = q−1

2 . If k = 0, then G contains only one Sylow q-subgroup
which is normal in G, and so G is solvable. Let k �= 0. Then (qk + 1)†(q − 1)q, and
(qk + 1) | 2(q + 1)q if and only if k = 1, q = 3 and n = 2. In this case G is a solvable
group of order 12.

Case 2. G is primitive on �: For any group L , by π (L) we denote the set of all the primes
which are divisors of |L|. The statement will be proved by induction on |π (Gu)\{2, q}|. If
|π (Gu)\{2, q}| = 0, then G is of order 2aqb for some positive integers a and b, and conse-
quently, G is solvable (see [9, V. 7.5]). Assume |π (Gu)\{2, q}| ≥ 1. Take � ∈ π (Gu)\{2, q}
and let L be a Sylow �-subgroup of G contained in Gu . Then Gu ≤ CG(L) ≤ NG(L) < G.

Since G is primitive, Gu is a maximal subgroup, which implies that Gu = CG(L) = NG(L),
noting that Gu is core free. By Proposition 3.6, L has a normal complement M in G. The
subgroup M is transitive on �. Note that |π (Mu)\{2, q}| = |π (Gu)\{2, q}| − 1, and for
any u ∈ �, Mu ≤ Gu is cyclic. If M is primitive on �, then, by the induction hypothesis,
M is solvable. If M is imprimitive on �, then by Case 1, one can derive the solvability of
M. Since both M and G/M ∼= L are solvable, G is solvable.
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Let us remark that there is not much room for a possible generalization of Lemma 3.10.
In fact, if we replace pq by pqr, Lemma 3.10 cannot hold. For instance, the underlying
graph of the icosahedron has 12 vertices and the automorphism group of this map is A5,
the smallest nonabelian simple group.

4. Classification theorem

Throughout this section, let p and q be primes, not necessarily distinct. Recall that G(q, s)
denotes the unique arc-transitive graph of order q and valency s for some even divisor s
of q − 1 (see Proposition 3.9). If s = 2, then G(q, s) is a cycle Cq of order q. For given
two graphs G and H, the notation G[H] is used to denote their lexicographic product,
while G ⊗ H denotes their tensor product. In particular, Kn[K̄m] is the complete n-partite
graph Km,...,m , and K2 ⊗ G(p, s) is the canonical bipartite cover of G(p, s), see [19] for the
definition.

In order to prove the main theorem, we first introduce six different families of two
generator groups G = 〈r, �〉 with |�| = 2, |r | = n, 〈r〉 ∩ 〈r〉� = 1 and |G| = npq. We
prove in Theorem 4.1 that every arc-regular subgroup of the automorphism group of an arc-
transitive graph of order pq with cyclic vertex-stabilizer belongs to one of these families
of groups. And, for each of these groups G, all the corresponding algebraic maps shall be
found in Lemmas 4.2–4.7. Finally, we state Theorem 4.8 establishing the classification.

(I) Let p ≥ 7, h any odd divisor of p − 1 with h ≥ 3, and let t be any fixed element of
order 2h in Z∗

p. Define a group

G1 = G1(p, h) = 〈x, y | x p = y2h = 1, x y = xt 〉. (4.1)

(II) Let p ≥ 3, h any even divisor of p2 − p with h ≥ 2, and let t be any fixed element of
order h in Z∗

p2 . Define a group

G2 = G2(p, h) = 〈x, y | x p2 = yh = 1, x y = xt 〉. (4.2)

(III) Let p ≥ q ≥ 2, pq > 4 and (t1, t2) ∈ Z∗
p ×Z∗

q such that t1 �= t2 if p = q, and 〈(t1, t2)〉
contains (−1, 1) if q = 2, and contains (−1, −1) if q ≥ 3. Let h = [|t1|, |t2|], where h ≥ 2
is even. Define a group

G3 = G3(p, q, t1, t2) = 〈a, b, x | a p = bq = xh = [a, b] = 1, ax = at1 , bx = bt2〉.
(4.3)

Note that given p and q, a necessary and sufficient condition for two such groups with
different parameters t1 and t2 to be isomorphic has been determined in Lemma 3.4.

(IV) Let F∗
p = 〈θ〉 and let x be an element of order h in GL(2, p), where h ≥ 3, defined

as follows:

(1) If p = 2 and h = 3, then x = ‖1, 1; 1, 0‖; or
(2) if p ≥ 3, h | (p2 − 1) but h � (p − 1), then x = ‖e, f θ ; f, e‖ for some fixed pair (e, f )

such that |x | = h.
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Let T = 〈a, b〉 be the translation subgroup of AGL(2, p) as before. Define a group

G4 = G4(p, h) = T : 〈x〉 ≤ AGL(2, p). (4.4)

(V) Define a group

G5 = G5(p) = 〈a, b, x | a p = bp = x2 = [a, b] = 1, ax = b.〉 (4.5)

(VI) Let F∗
p = 〈θ〉 and let H = 〈x, y〉 be a subgroup in GL(2, p) isomorphic to a Frobenius

group Zq :Zh with h ≥ 2, and two elements x and y are defined as follows:

(1) If p = 2, q = 3 and h = 2, then x = ‖1, 1; 1, 0‖ and y = ‖0, 1; 1, 0‖;

(2) if p > q ≥ 3, q | (p − 1) and h = 2, then x = ‖t, 0; 0, t−1‖ where t = θ
p−1

q and
y = ‖0, 1; 1, 0‖;

(3) if p > q ≥ 3, q | (p + 1) and h = 2, then x = ‖e, f θ ; f, e‖ for some fixed pair (e, f )
such that |x | = h, and y = ‖1, 0; −1, 0‖; or

(4) if p = q ≥ 3 and h is an even divisor of p−1, then x = ‖1, 1; 0, 1‖ and y = ‖1, 0; 0, t‖,
where t = θ

p−1
h .

Define a group

G6 = G6(p, q, h) = T : H ≤ AGL(2, p). (4.6)

Theorem 4.1 Let G be any connected graph of order pq and valency n, whose auto-
morphism group Aut(G) contains an arc-regular subgroup G with cyclic vertex-stabilizer.
Then G is isomorphic to one of the groups Gi for 1 ≤ i ≤ 6, as defined in (I)–(VI), with
parameters satisfying the following conditions:
(1) G ∼= G1(p, h), where p ≥ 7, q = 2 and n = h ≥ 3;
(2) G ∼= G2(p, h), where p = q ≥ 3, and n = h ≥ 2;
(3) G ∼= G3(p, q, t1, t2), where p ≥ q ≥ 2, pq > 4 and n = h = [|t1|, |t2|] ≥ 2 is even;
(4) G ∼= G4(p, h), where p = q ≥ 2, n = h ≥ 3;
(5) G ∼= G5(p), where p ≥ 2, q = 2 and n = p;
(6) G ∼= G6(p, q, h), where either p ≥ 2, q ≥ 3, q | (p ± 1) and h = 2, or p = q ≥ 3

and h is an even divisor of p − 1; in both cases, n = hp.

Moreover, for each i, the group Gi is uniquely determined by its admissible parameters,
and the groups Gi are pairwise nonisomorphic.

Proof: The last statement of the theorem follows from the definitions of Gi for 1 ≤ i ≤ 6.

Therefore we only need to determine the structure of the groups G, the arc-regular subgroups
of Aut(G) with cyclic vertex-stabilizer. Clearly, G = 〈r, �〉, where � is an involution and
〈r〉 = Gv for any fixed vertex v in V (G). By Lemma 3.10, G is a solvable group of order
npq with n = |Gv|. The proof is divided into two cases according to whether the action of
G on V (G) is primitive or imprimitive.
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Case 1 G is primitive on V (G):

Let N be a minimal normal subgroup of G. Then N is transitive on V (G), because
G is primitive. Since G is solvable, N is elementary abelian, which implies that N acts
semiregularly and so regularly on V (G). This implies p = q and N ∼= Zp × Zp. Therefore
G = N : Gv is isomorphic to a subgroup of order np2 in AGL(2, p), where Gv is an
irreducible cyclic subgroup of GL(2, p) acting on V = V(2, p).

Assume p = 2, so that Gv ≤ GL(2, 2) ∼= D6. In this case, Gv is the unique subgroup of
order 3 of GL(2, 2). Therefore G ∼= G4(2, 3), as defined in (4.4).

Assume p ≥ 3. Then by Proposition 3.2 (2), n | (p2−1) but n | (p−1), and GL(2, p) has
only one conjugacy class of irreducible cyclic subgroups of order n. Therefore AGL(2, p)
has only one conjugacy class of subgroups isomorphic to G and so G ∼= G4(p, h), as
defined in (4.4) by setting h = n ≥ 3.

Case 2 G is imprimitive on V (G):

Suppose for the moment that G has a complete block system B with |B| ≥ 3, but does
not have any complete block system consisting of only two blocks. Without any loss of
generality, one may assume that |B| = q and |B| = p for every B ∈ B. Let K be the kernel
of G acting on B and set Ḡ = G/K . Suppose K = 1. Then G ∼= Ḡ. Since G is solvable,
Ḡ is a solvable permutation group of prime degree q, which implies that Ḡ ∼= Zq : Zs for
a divisor s of q − 1. Now G contains a normal subgroup of order q which induces a block
system on V (G), say B1. Let K1 be the kernel of G on B1. By the hypothesis, G does not
have any complete block system consisting of only two blocks, which implies p ≥ 3. Since
q | |K1|, K1 is transitive on each block in B1 and consequently G/K1 acts arc-regularly on
the quotient graph Ḡ1 corresponding to B1. However G/K1 is isomorphic to a subgroup of
Zs , which implies that G/K1 acts vertex-regularly on Ḡ1, a contradiction. Therefore K �= 1
and one can deduce that K acts transitively on each block, which in turn implies that Ḡ acts
arc-regularly on Ḡ.

From the above arguments, one can see that either G has a complete block system B
with q = |B| = 2 and the quotient graph is just an edge, or G has a complete block system
B with q = |B| ≥ 3 and Ḡ acts arc-regularly on the quotient graph Ḡ. From now on, we
assume that Ḡ ∼= Zq :Zs, where if q = 2 then s = 1, and if q ≥ 3 then s is an even divisor
of q − 1 and the valency of Ḡ is exactly s.

Now suppose that K acts unfaithfully on a block, say B0. Then the kernel K(B0) of K on
B0 is a nontrivial normal subgroup of K . Since Ḡ is connected, there exist two blocks Bi and
B j such that {Bi , B j } ∈ E(Ḡ) and K(B0) fixes Bi pointwise and is transitive on B j . It implies
that the induced subgraphG(Bi ∪ B j ) ∼= K p,p. Therefore n = sp and K ∼= Zp ×Zp. Since Ḡ
is arc-transitive, it follows that G ∼= G(q, s)[K̄ p] is the lexicographic product of the (unique)
connected arc-transitive graph G(q, s) of order q and valency s with the complement of the
complete graph of order p. In this case, it has been proved in [5] that G is isomorphic to
G2(p, h) for p | h, as in (4.2) where h = n, or to G5(p) as in (4.5) where n = p, or to
G6(p, q, h) as in (4.6) where n = ph.

Next, suppose that K acts faithfully on each block. Then we have Kv
∼= Z n

s
and K ∼=

Zp :Z n
s
, because Gv is cyclic and K is faithful. In what follows, we assume that P = 〈x〉 is
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the Sylow p-subgroup of K , where |P| = p. Note that P is also normal in G, because it is
a characteristic subgroup of K . If p = q = 2, then G is primitive on V (	). Therefore we
assume that pq �= 4 and distinguish the following three cases: (i) p > q = 2; (i i) q ≥ 3
and p �= q; and (i i i) q = p ≥ 3.

Subcase (i) p > q = 2: In this case, G is an extension of K ∼= Zp : Zn by Z2, and
Gv

∼= Zn, where n | (p − 1). Since (p, 2n) = 1 and G is solvable, P has a complement,
say H , in G.

If CG(P) = P, then by Proposition 3.5, H ∼= G/P = G/CG(P) is isomorphic to a
subgroup of Aut(P) ∼= Zp−1, which implies H ∼= Z2n. Thus G ∼= Zp : Z2n, a Frobenius
group. Assume that G = 〈x〉 : 〈y〉, where |x | = p and |y| = 2n. Since G has only
one conjugacy class of cyclic subgroups of order 2n, one may assume that r = y2i and
� = x j yn, where i ∈ Z∗

n and j ∈ Z∗
p, so that G = 〈r, �〉 and �2 = 1. If n is even, then

〈r, �〉 ≤ 〈x, y2〉 �= G. Hence n must be odd. Therefore G ∼= G1(p, h), as defined in (4.1),
by setting h = n ≥ 3.

If CG(P) �= P, then |CG(P)| = 2p as CK (P) = P. Moreover, CG(P) = P × 〈b〉 for
some involution b, which implies that 〈b〉 is normal in G, and so it is contained in the center
of G. Setting h = n ≥ 2, we get G ∼= G3(p, 2, t1, 1) as defined in (4.3). Since � ∈ G\〈b〉,
it follows that n must be even.

Subcase (i i) q ≥ 3 and p �= q: Since K is assumed to be faithful, we have K ∩ CG(P) = P,

where |P| = p as mentioned before. Suppose that CG(P) ≤ K . Then CG(P) = P. By using
Proposition 3.5 one can then see that G/P = G/CG(P) is isomorphic to a subgroup of
Aut(P) ∼= Zp−1, which is cyclic. However, from (G/P)/(K/P) ∼= G/K ∼= Zq :Zs where
s ≥ 2, one can deduce that G/P cannot be cyclic, a contradiction. Therefore CG(P) � K ,

which implies that CG(P) acts transitively on V (G). Let M = Op, q (CG(P)). (Here, with
the notation Op(G) for the maximal normal p-subgroup of G, Op, q (CG(P)) denotes the
subgroup of CG(P) such that Op, q (CG(P))/Op(CG(P)) = Oq

(
CG(P)/Op(CG(P))

)
).

Then M ∼= Zp × Zq is a normal subgroup of G, which acts regularly on V . Let Q be a
subgroup of M of order q. Then M = P×Q. Therefore G = (P×Q) : Gv ≤ (Zp×Zq ) :Zn,

where Zn is isomorphic to a subgroup of Aut(Zp ×Zq ) ∼= Z∗
p ×Z∗

q . Taking into account the
symmetry of P and Q in this case, one may assume p > q ≥ 3, noting that if p = 2 then we
are back to the second case in Subcase (i). Now, let P = 〈a〉, Q = 〈b〉 and Gv = 〈x〉, and
suppose that ax = at1 and bx = bt2 , where (t1, t2) ∈ Z∗

p × Z∗
q . Then n = |x | = [|t1|, |t2|].

Suppose G = 〈r, �〉 for an involution �, where r ∈ 〈x〉. Then � = ai b j x
n
2 for some i ∈ Z∗

p

and j ∈ Z∗
q . From �2 = 1, we have t

n
2

1 = −1 in Zp and t
n
2

2 = −1 in Zq , which means
(−1, −1) ≤ 〈(t1, t2)〉. Therefore for i =1 and 2, |ti | is even and |ti |/(|t1|, |t2|) is odd. Thus
setting h = n ≥ 2, one can have G ∼= G3(p, q, t1, t2) for p > q ≥ 3, as defined in (4.3).

Subcase (i i i) q = p ≥ 3: In this case, the Sylow p-subgroup P of G is a normal subgroup
of G and its order is p2. Hence G = P : Gv.

If P ∼= Zp2 , then G ∼= Zp2 : Zn ≤ Zp2 : Aut(Zp2 ), where n | (p − 1) as p � n. Since
Aut(Zp2 ) ∼= Zp2−p, a cyclic group, and all the complements of P in G are conjugate, we
deduce that G ∼= G2(p, h) for h | (p − 1) as defined in (4.2), by setting h = n ≥ 2.
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If P ∼= Z2
p, then G = P : Gv

∼= Z2
p : Zn ≤ AGL(2, p), and by Lemma 3.2(3) Gv = 〈x〉

can be chosen to be a diagonal subgroup not contained in Z . Let x = ‖t1, 0; 0, t2‖, and let
� = ai b j x

n
2 be an involution for some i, j ∈ Z∗

p. Then from �2 = 1, we have x
n
2 = z, the

central involution of GL(2, p), which implies that |ti |/(|t1|, |t2|) is odd for i=1, 2. Therefore
G ∼= G3(p, p, t1, t2), by setting h = n > 2, as defined in (4.3).

Our next task is to determine all the nonisomorphic algebraic maps coming from the
groups G = Gi for 1 ≤ i ≤ 6. By the results of Section 2, we only need to determine all
the representatives of the orbits of the action of Aut(G) on the set of the generating pairs
(r, �) of G satisfying |�| = 2, |r | = n, |G| = npq and 〈r〉 ∩ 〈r〉� = 1. This will be carried
out case by case in Lemmas 4.2–4.7. Recall that φ(h) denotes the Euler function, that is,
the number of positive integers less than h which are coprime to h.

Lemma 4.2 Let G1 = G1(p, h) be a group as defined in (4.1). Then any regular map
M(G1; r, �) with underlying graph G of order 2p is isomorphic to one of the following φ(h)
regular maps:

M1 = M1(p, h, i) = M(G1; y2i , xyh), (4.7)

where p ≥ 7, h ≥ 3, h is an odd divisor of p − 1, and i ∈ Z∗
h . Moreover, G is a bipartite

graph of valency h.

Proof: Recall that

G1 = G1(p, h) = 〈x, y | x p = y2h = 1, x y = xt 〉.
In this case, q = 2 and n = |r | = h ≥ 3. In what follows, we find all the representatives of
the orbits of Aut(G1) on the set of admissible generating pairs (r, �) of G1. Since G1 has
only one conjugacy class of involutions and one conjugacy class of subgroups of order h,

one may assume r = y2i for any i ∈ Z∗
h . Moreover, each involution in G1\〈y〉 has the form

x j yh for j ∈ Z∗
p and the automorphism τ of G1 defined by xτ = x j and yτ = y fixes r and

sends xyh to x j yh . Therefore we may fix � = xyh .

Now, suppose that σ ∈ Aut(G1) fixes 〈y2〉 setwise and 〈�〉 pointwise. Then xσ = x and
yσ = y j for some j ∈ Z∗

2h . Since σ preserves the relation x y = xt , we have y− j xy j = xt

and so t j ≡ t(mod p), which implies that j = 1 in Z∗
2h and consequently, σ = 1. Therefore

we have φ(h) choices for (r, �) and so obtain φ(h) nonisomorphic regular maps as claimed
in (4.7).

Lemma 4.3 Let G2 = G2(p, h) be a group as defined in (4.2). Then any regular map
M(G2; r, �) with underlying graph G of order p2 is isomorphic to one of the following φ(h)
regular maps:

M2 = M2(p, h, i) = M
(
G2; yi , xy

h
2
)
, (4.8)

where p ≥ 3, h ≥ 2, h is an even divisor of p2 − p, and i ∈ Z∗
h . Moreover, if p | h then

G ∼= G(p, h
p )[K̄ p]; and if (p, h) = 1 then h | (p − 1) and G is a p-fold cover of the graph

G(p, h).
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Proof: Recall that

G2 = G2(p, h) = 〈
x, y

∣∣ x p2 = yh = 1, x y = xt
〉
.

In this case, p = q and n = h. Applying a similar argument to Lemma 4.2, one can
show that all the admissible pairs (r, �) are of the form r = yi and � = xy

h
2 for i ∈ Z∗

h .

Hence there are exactly φ(h) nonisomorphic regular maps, as shown in (4.8). Moreover,
the structure of the underlying graph G can be seen from the coset graph.

Lemma 4.4 Let G3 = G3(p, q, t1, t2) be a group as defined in (4.3). Then any regular
map M(G3; r, �) with underlying graph G of order pq is isomorphic to one of the following
regular maps:

M3 = M3(p, q, t1, t2, i) = M
(
G3; xi , abx

h
2
)
, (4.9)

where p ≥ q ≥ 2, pq > 4 and (t1, t2) ∈ Zp × Zq such that t1 �= t2 if p = q, and 〈(t1, t2)〉
contains (−1, 1) if q = 2, and contains (−1, −1) if q ≥ 3; and i ∈ Z∗

h/(Z∗
h)2+ if p = q

and h = |t1| = |t2|, and i ∈ Z∗
h otherwise.

Hence we have φ(h)/|(Z∗
h)2+| or φ(h) nonisomorphic regular maps according to whether

p = q and |t1| = |t2| or not.

Proof: Recall that

G3 = G3(p, q, t1, t2) = 〈a, b, x | a p = bq = xh = [a, b] = 1, ax = at1 , bx = bt2〉.

The proof is divided into three cases to be discussed separately.

Case 1 p > q = 2: Now |t2| = 1 and h = |t1|. In this case, b ∈ Z (G3), so G3 has only
one class of cyclic subgroups of order h. Hence one may assume r = xi for i ∈ Z∗

h and

� = a j bx
h
2 for j ∈ Z∗

p. Since the automorphism τ of G defined by aτ = a j , bτ = b and

xτ = x fixes r and sends abx
h
2 to a j bx

h
2 , one may fix � = abx

h
2 . Similarly, one can show

that if some σ in Aut(G3) fixes 〈�〉 pointwise and 〈r〉 setwise, then it must be the identity.
Therefore we obtain φ(h) nonisomorphic regular maps M(p, 2, t1, 1, i) as claimed in (4.9).

Case 2 p > q ≥ 3: Now both |t1| and |t2| are even and |ti | h
2 = −1. Let P = 〈a〉 and Q =

〈b〉. We consider G3 as a subgroup of A := (P × Q) :Aut(P × Q) ∼= (Zp ×Zq ) : (Z∗
p ×Z∗

q ).
Note that each cyclic subgroup H of order h is a complement of P × Q in G3 and H

induces a faithful automorphism action on it. Hence one may assume that r ∈ 〈x〉. Thus �

has to be of the form ai b j x
h
2 for some i ∈ Z∗

p and j ∈ Z∗
q . Since the action of the subgroup

of inner automorphisms I (g) for g ∈ Aut(P × Q) of A fixes x and maps ab to ai b j , one
may fix � = abx

h
2 . Suppose σ ∈ Aut(G3) fixes 〈�〉 pointwise and 〈x〉 setwise. Then σ

satisfies: aσ = a, bσ = b and xσ = xk for some k ∈ Z∗
h . Since σ preserves the defining

relations ax = at1 and bx = bt2 , one can get t k−1
1 ≡ 1(mod p) and t k−1

2 ≡ 1(mod q), which
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implies that |t1| | (k − 1) and |t2| | (k − 1) and so h | (k − 1), implying k = 1 in Z∗
h, or

equivalently, σ = 1. Hence we obtain φ(h) nonisomorphic regular maps as required.

Case 3 p = q ≥ 3: Let G = GL(2, p) and let D be the diagonal subgroup of G. In this
case, by identifying a with t(1,0), b with t(0,1), and x with ‖t1, 0; 0, t2‖ ∈ D\Z (G), one
may consider G3 as a subgroup of A := AGL(2, p) satisfying G3 = T : 〈x〉. Set z = x

h
2 ,

which is the central involution of G. Since G3 has only one conjugacy class of subgroups
of order h and of order 2, respectively, one may assume that r ∈ 〈x〉. Therefore � is of the
form ai b j z for some i, j ∈ Zp, because x fixes (1, 0) and (0, 1). Since the action of the
subgroup of inner automorphisms I (g) of A for g ∈ D fixes r and is transitive on the set
{t(i, j) | i, j ∈ Z∗

p}, one may fix � = abz. Suppose that 1 �= σ ∈ Aut(G3) fixes 〈x〉 setwise
and 〈�〉 pointwise. Then σ fixes ab. By Lemma 3.3, we have σ = I (u)|G3 ∈ Inn(A) for
some u ∈ NG(〈x〉). By Proposition 3.2(2), CG(〈x〉) = D and NG(〈x〉) = D : 〈y〉, where
y = ‖0, 1; 1, 0‖. It follows that either u = ‖r, 0; 0; s‖ or u = ‖0, r ; s, 0‖ for some r, s in
Z∗

p. Because t(1,1)u = (ab)u = (ab)σ = ab = t(1,1), we have r = s = 1 and so u = y,

noting that σ �= 1. Therefore xσ = x y = ‖t2, 0; t1, 0‖, which implies that |t1| = |t2| and

so h = |ti |. Assume xσ = x j . Then t2 = t j
1 = t j2

2 and so j2 = 1 in Z∗
h . Therefore in the

case p = q and h = |ti |, one may assume that r = xi for some i ∈ Z∗
h/(Z∗

h)2+. In the other
cases, r = xi for some i ∈ Z∗

h .

Lemma 4.5 Let G4 = G4(p, n) be a group as defined in (4.4). Then any regular map
M(G4; r, �) with underlying graph G of order p2 is isomorphic to one of the following
φ(h)/|(Z∗

h)2+| nonisomorphic regular maps

M4 = M4(p, h, i) = M(G4, xi , az), (4.10)

where h | (p2 − 1) but h � (p − 1) and h ≥ 3; either z = 1 for p = 2 or z = x
h
2 for p ≥ 3;

and i ∈ Z∗
h/(Z∗

h)2+.

Proof: If p = 2 and h = 3, then G4
∼= A4. In this case, we have only one regular map

M4(2, 3, 1) as expected.
Assume that p ≥ 3. In a similar way to the proof of Case 3 of Lemma 4.4, we let G =

GL(2, p), and identifying respectively a with t(1,0), b with t(0,1), and x with ‖e, f θ ; f, e‖ for
some fixed pair (e, f ) such that e f �= 0 and x is of order h, we consider G4 as a subgroup of
A := AGL(2, p) of the form G4 = T : 〈x〉. Then the central involution z = x

h
2 �= 1. Since

G4 has only one conjugacy class of subgroups of order h and one of order 2, one may assume
that r ∈ 〈x〉. As well, one may assume that � = ai b j z for i, j ∈ Zp with (i, j) �= (0, 0).
By Lemma 3.2(2), all the elements of the form ‖e′, f ′θ ; f ′, e′‖ form a cyclic subgroup
H of G, which is regular on V \{0}. Therefore the subgroup of A consisting of the inner
automorphisms I (g) for g ∈ H is transitive on the set {ai b j z | i, j ∈ Zp, (i, j) �= (0, 0)}.
Therefore one may fix � = az.

Suppose that 1 �= σ ∈ Aut(G4) fixes 〈x〉 setwise and 〈�〉 pointwise. Then σ fixes a.

By Lemma 3.3, σ = I (u)|G4 ∈ Inn(G4) for some u ∈ NG(〈x〉). By Proposition 3.2(2),
CG(〈x〉) = H and NG(〈x〉) = H : 〈y〉, where y = ‖1, 0; 0, −1‖. Hence u = ‖e, f θ ; f, e‖
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or ‖e, − f θ ; f, −e‖ for the above fixed pair (e, f ). Computing aσ = a, we get f = 0
and thus u = y. Therefore xσ = x y = ‖e, − f θ ; − f, e‖. In particular, |σ | = 2. Assume
xσ = x j . Then j2 = 1 in Z∗

h . Consequently, one may assume that r = xi for i ∈ Z∗
h/(Z∗

h)2+.

Hence we obtain φ(h)/|(Z∗
h)2+| nonisomorphic regular maps as required for (4.10).

The following two lemmas dealing with the families of groups G5(p) and G6(p, q, h)
are proved in [5].

Lemma 4.6 Let G5(p) be a group as defined in (4.5), where p ≥ 2. Then any regular
map M(G5; r, �) with underlying graph of order 2p is isomorphic to the map

M5(p) = M(G5; a, x), (4.11)

and its underlying graph is K p,p.

Lemma 4.7 Let G6 = G6(p, q, h) be a group as defined in (4.6). Then any regular map
M(G6; r, �) with underlying graph G of order pq is isomorphic to one of the following
q−1

h φ(h) nonisomorphic regular maps

M6(p, q, h, i, j) := M
(
G6; a′y j , xi y

h
2
)
, (4.12)

where either p ≥ 2, q ≥ 3, q | (p ± 1) and h = 2, or p = q ≥ 3 and h is an even divisor
of q − 1. In both cases, i ∈ Z∗

q/(Z∗
q )h+ and j ∈ Z∗

h ; and

a′ =
{

t(1,0) if p = 2, q | (p + 1) or p = q,

t(1,1) if q | (p − 1).

Moreover, G ∼= G(q, h)[K̄ p].

By combining Theorem 4.1 and Lemmas 4.2–4.7, the following classification theorem
is obtained.

Theorem 4.8 Let M be a regular map with a simple underlying graph G of order pq for
any two primes p and q with p ≥ q. Then M is isomorphic to one of the following regular
maps uniquely determined by the given integer parameters:
(1) p = q = 2:

M ∼= M5(2) and G ∼= C4.

M ∼= M4(2, 3, 1) and G ∼= K4.

(2) p = q ≥ 3:

M ∼= M2(p, h, i), where h ≥ 2, h is an even divisor of p(p − 1) and i ∈ Z∗
h . The

graph G is isomorphic to G(p, h/p)[K̄ p] if p | h, or to a p-fold regular cover of
G(p, h) if p � h.

M ∼= M3(p, p, t1, t2, i), where t1 �= t2, 〈(t1, t2)〉 is a subgroup in Z∗
p × Z∗

p containing
(−1, −1) and h = [|t1|, |t2|] > 2; and i ∈ Z∗

h/(Z∗
h)2+ if h = |t1| = |t2|, and i ∈ Z∗

h
otherwise. The graph G is of valency h and Aut(M) acts imprimitively on V (G).
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M ∼= M4(p, h, i), where h ≥ 3, h | (p2 − 1) but h � (p − 1), i ∈ Z∗
h/(Z∗

h)+2. The
graph G is of valency h and Aut(M) acts primitively on V (G).

M ∼= M6(p, p, h, i, j), where h is an even divisor of p − 1, i ∈ Z∗
p/(Z∗

p)h+, and
j ∈ Z∗

h . Moreover, G ∼= G(p, h)[K̄ p].
(3) p ≥ 3 and q = 2:

M ∼= M6(2, 3, 2, 1, 1), where p = 3. G ∼= G(3, 2)[K̄2].
M ∼= M1(p, h, i), where p ≥ 7, h ≥ 3, h is an odd divisor of p − 1 and i ∈ Z∗

h . The
graph G is bipartite of valency h.

M ∼= M3(p, 2, t1, 1, i), where p ≥ 3, t1 ∈ Z∗
p, i ∈ Z∗

h for h = |t1|, an even divisor of
p − 1. G ∼= K2 ⊗ G(p, h) is a bipartite graph of valency h.

M ∼= M5(p), where p ≥ 3 and G ∼= K p,p.

(4) p > q ≥ 3:
M ∼= M3(p, q, t1, t2, i), where 〈(t1, t2)〉 is a subgroup in Z∗

p ×Z∗
q containing (−1, −1)

and i ∈ Z∗
h for h = [|t1|, |t2|]. The graph G is of valency of h.

M6(p, q, 2, i, 1), where q | (p ± 1) and i ∈ Z∗
q/(Z∗

q )2+. Moreover, G ∼= Cq [K̄ p].

It follows that in the (general) case (4) of the theorem, where p > q ≥ 3, only two sorts
of regular maps are admissible. One is formed by regular embeddings of the lexicographic
products of cycles Cq with p isolated vertices. The maps in the other family, denoted
as M3(p, q, t1, t2, i), are the least regular maps covering both a regular embedding of
G(p, h/|t2|) and one of G(q, h/|t1|).

For p ≥ q ≥ 3, let Sh(p, q) be the set of the cyclic subgroups H of order h of Z∗
p×Z∗

q that
contain (−1, −1), and let S′

h(p) be the set of the cyclic subgroups H = 〈(t, t j )〉 of Z∗
p ×Z∗

p

for j ∈ Z∗
h/(Z∗

h)2+, where h = |t |. Then Sh(p, q) and S′
h(p) can be easily determined for

any given p and q and h. Finally, define S(p, q) = ∪h Sh(p, q) and S′(p) = ∪h S′
h(p). Using

this notation we obtain the following enumeration of nonisomorphic regular embeddings
with underlying graphs of order pq.

Corollary 4.9 Let p and q be any two primes with p ≥ q. Let N (p, q) be the number of
all regular embeddings with underlying graphs of order pq. Then
(1) N (2, 2) = 2, N (3, 2) = 3, and N (p, 2) = 1 +

∑
h|(p−1),h≥2

φ(h), if p ≥ 5;

(2) N (p, p) =
∑

h|(p−1),2|h
φ(h)

(
p + p − 1

h

)
+

∑
h|(p2−1), h � (p−1), 2|h

φ(h)/|(Z∗
h )2+|

+
∑

H∈S(p,p)\S′(p)

φ(|H |) +
∑

H∈S′(p)

φ(|H |)/∣∣(Z∗
|H |

)2+∣∣, if p ≥ 3;

(3) N (p, q) =
∑

H∈S(p,q)

φ(|H |), if p > q ≥ 3, q � (p + 1) and q � (p − 1);

(4) N (p, q) = q − 1

2
+

∑
H∈S(p,q)

φ(|H |), if p > q ≥ 3, and either q | (p−1) or q | (p+1).
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5. Genera of regular maps with pq vertices

An orientable map M = M(G, R) of genus g is an embedding of the graph G into the
orientable surface with g handles. By |V |, |E | and |F |, we denote the number of vertices,
edges and faces of the given map (embedding). Note that |V | − |E | + |F | = 2 − 2g by
the Euler equation. For any regular map, let k be the face-size and n the valency of the
underlying graph. Then one can easily see that n|V | = k|F | = 2|E |. Consequently,

g = 1 + 1

2
(|E | − |V | − |F |) = 1 + |V |

2

(
n

2
− n

k
− 1

)
.

Let M = M(G, R) be any regular map with underlying graph G of order pq and of valency
n. Then we have

g = 1 + pq

2

(
n

2
− n

k
− 1

)
. (5.1)

Let Mon(M) = 〈R, L〉 and Aut(M) = 〈r, �〉. Then the mapping σ : R → r−1 and
L → �−1 can be extended to an isomorphism from Mon(M) to Aut(M). By the definition
of a regular orientable map, we have k = |RL| and so k = |r−1�−1| = |�r |. Therefore in
order to compute the genus of every regular map in Theorem 4.8, it is needed to determine
k = |�r | for each group Gi for 1 ≤ i ≤ 6.

Proposition 5.1 Let M be a regular map with simple underlying graph G of order pq for
any two primes p and q (see Theorem 4.8) and let g be the genus of M.

(1) If M ∼= M1(p, h, i), then g = 1 + p(h−3)
2 .

(2) If M ∼= M2(p, h, i), then g = 1 + p(h−4)
2 if 4 | h, and g = 1 + p(h−6)

2 if 4 � h.

(3) If M ∼= M3(p, q, t1, t2, i), then g = 1 + pq(h−4)
4 if 4 | h, and g = 1 + pq(h−6)

4 if 4 � h.

(4) If M ∼= M4(p, h, i), then g = 1 + p2(h−4)
4 if p = 2, or p ≥ 3 and 4 | h, and

g = 1 + p2(h−6)
4 if p ≥ 3 and 4 � h.

(5) If M ∼= M5(p), then g = 1 + p(p−3)
2 .

(6) If M ∼= M6(p, q, h, i, j), then g = 1 + p
2 (pq − 2p − q) if p �= q, g = 1 + p2

4 (hp −
4) if p = q and 4 | h, and g = 1 + p2

4 (hp − 6) if p = q but 4 � h.

Proof: The proof is divided into six cases according to the six families Mi , 1 ≤ i ≤ 6,

of the maps in Theorem 4.8.

Case 1 M ∼= M1(p, h, i): Let G1 = G1(p, h) with the admissible parameters in (4.1).
Then G1 = 〈x〉 : 〈y〉 ∼= Zp :Z2h, where h is odd. It follows from (4.7) that q = 2, the valency
n = h, and r = y2i where i ∈ Z∗

h and � = xyh . Then �r = xyh y2i = xi y2i+h . By 〈x〉< G1

it follows that |y2i+h | | |�r |. Noting that (2i +h, 2h) = 1, we have |y2i+h | = 2h | k = |�r |.
Since every subgroup of order 2h of G1 is maximal, it follows k = |�r | = 2h. Inserting the
values of q , n, and k in (5.1), one can get (1).
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Case 2 M ∼= M2(p, h, i): Let G2 = G2(p, h) with the admissible parameters in (4.2).
Then G2 = 〈x〉 : 〈y〉 ∼= Zp2 : Zh, where h is even. It follows from (4.8) that q = 2, the
valency n = h, r = yi where i ∈ Z∗

h and � = xy
h
2 . Then �r = xy

h
2 yi = xyi+ h

2 . Note that
(i + h

2 , h) is equal to 1 or 2, according to whether 4 | h or 4 | h, respectively. For a reason
similar to Case 1, we know that k = |�r | = h or h

2 , if 4 | h or 4 � h, respectively. Then the
result in (2) follows from (5.1).

Case 3 M ∼= M3(p, q, t1, t2, i): Similar to Case 2.

Case 4 M ∼= M4(p, h, i): Similar to Case 2.

Case 5 M ∼= M5(p): It is easy to see k = |�r | = 2p, as desired.

Case 6 M ∼= M6(p, q, h, i, j): Let G6 = G6(p, q, h) with the admissible parameters
given in (4.6). Then G6 = 〈x〉 : 〈y〉 ∼= Zp2 : (Zq :Zh).

First, assume p �= q, so that h = 2. In this case, it follows from (4.12) that r = a′y
and � = xi y, where i ∈ Z∗

q/(Z∗
q )2+, and a′ = t(1,0) if q | (p + 1), and a′ = t(1,1) if

q | (p − 1). Then �r = xi ya′y. Let T be the translation subgroup of AGL(2, p). Since
ya′y = (a′)y ∈ T � AGL(2, p) and |x | = q, it follows that q | |�r |. Since x has no fixed
points in its action on V \{0}, the subgroup T : 〈x〉 cannot contain any element of order pq.

Therefore |�r | cannot be pq, and consequently, k = |�r | = q. Noting that n = 2p, the
desired result in (6) is obtained by (5.1).

Next, assume p = q. In this case, it follows from (4.12) that r = a′y j and � = xi y
h
2 ,

where a′ = t(1,0), j ∈ Z∗
h, and i ∈ Z∗

q/(Z∗)h+
q . Then �r = xi y

h
2 a′y j = xi y j+ h

2 (a′)y j
.

Denote xi y j+ h
2 by y1. Then from (4.6) we know that y1 = ‖1, −i t j ; 0, −t j‖. Therefore

|y1| = h if 4 | h, and |y1| = h
2 if 4 � h. For a reason similar to the previous one, we get

|y1| | |�r |. A direct computation shows that 1 �= (�r )|y1| ∈ T . Therefore k = |�r | = p|y1|.
Noting that n = ph, the desired result is obtained by inserting the values of n and k in
(5.1).
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24. M. Škoviera and J. Širáň, “Regular maps from Cayley graphs. I: Balanced Cayley maps,” Discrete Math. 109

(1992), 265–276.
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