An Inequality Involving the Local Eigenvalues of a Distance-Regular Graph

terwilli@math.wisc.edu
Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison Wisconsin, 53706, USA
Received October 10, 2000; Revised March 24, 2003; Accepted April 15, 2003

Abstract

Let Γ denote a distance-regular graph with diameter $D \geq 3$, valency k, and intersection numbers a_{i}, b_{i}, c_{i}. Let X denote the vertex set of Γ and fix $x \in X$. Let Δ denote the vertex-subgraph of Γ induced on the set of vertices in X adjacent x. Observe Δ has k vertices and is regular with valency a_{1}. Let $\eta_{1} \geq \eta_{2} \geq \cdots \geq \eta_{k}$ denote the eigenvalues of Δ and observe $\eta_{1}=a_{1}$. Let Φ denote the set of distinct scalars among $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$. For $\eta \in \Phi$ let mult $_{\eta}$ denote the number of times η appears among $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$. Let λ denote an indeterminate, and let $p_{0}, p_{1}, \ldots, p_{D}$ denote the polynomials in $\mathbb{R}[\lambda]$ satisfying $p_{0}=1$ and $$
\lambda p_{i}=c_{i+1} p_{i+1}+\left(a_{i}-c_{i+1}+c_{i}\right) p_{i}+b_{i} p_{i-1} \quad(0 \leq i \leq D-1),
$$ where $p_{-1}=0$. We show $$
1+\sum_{\substack{\eta \in \Phi \\ \eta \neq-1}} \frac{p_{i-1}(\tilde{\eta})}{p_{i}(\tilde{\eta})(1+\tilde{\eta})} \operatorname{mult}_{\eta} \leq \frac{k}{b_{i}} \quad(1 \leq i \leq D-1)
$$ where we abbreviate $\tilde{\eta}=-1-b_{1}(1+\eta)^{-1}$. Concerning the case of equality we obtain the following result. Let $T=$ $T(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by $A, E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$, where A denotes the adjacency matrix of Γ and E_{i}^{*} denotes the projection onto the i th subconstituent of Γ with respect to $x . T$ is called the subconstituent algebra or the Terwilliger algebra. An irreducible T-module W is said to be thin whenever $\operatorname{dim} E_{i}^{*} W \leq 1$ for $0 \leq i \leq D$. By the endpoint of W we mean $\min \left\{i \mid E_{i}^{*} W \neq 0\right\}$. We show the following are equivalent: (i) Equality holds in the above inequality for $1 \leq i \leq D-1$; (ii) Equality holds in the above inequality for $i=D-1$; (iii) Every irreducible T-module with endpoint 1 is thin.

Keywords: distance-regular graph, association scheme, Terwilliger algebra, subconstituent algebra

2000 Mathematics Subject Classification: Primary 05E30; Secondary 05E35, 05C50

1. Introduction

In this paper Γ will denote a distance-regular graph with diameter $D \geq 3$, valency k, and intersection numbers a_{i}, b_{i}, c_{i} (see Section 2 for formal definitions). We recall the subconstituent algebra of Γ. Let X denote the vertex set of Γ and fix a "base vertex" $x \in X$. Let $T=T(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by $A, E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$, where A denotes the adjacency matrix of Γ and E_{i}^{*} denotes the projection onto the i th subconstituent of Γ with respect to x. The algebra T is called the subconstituent algebra (or Terwilliger algebra) of Γ with respect to x [28]. Observe T has finite dimension. Moreover
T is semi-simple; the reason is each of $A, E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$ is symmetric with real entries, so T is closed under the conjugate-transpose map [16, p. 157]. Since T is semi-simple, each T-module is a direct sum of irreducible T-modules.

In this paper, we are concerned with the irreducible T-modules that possess a certain property. In order to define this property we make a few observations. Let W denote an irreducible T-module. Then W is the direct sum of the nonzero spaces among $E_{0}^{*} W, E_{1}^{*} W, \ldots$, $E_{D}^{*} W$. There is a second decomposition of interest. To obtain it we make a definition. Let $k=\theta_{0}>\theta_{1}>\cdots>\theta_{D}$ denote the distinct eigenvalues of A, and for $0 \leq i \leq D$ let E_{i} denote the primitive idempotent of A associated with θ_{i}. Then W is the direct sum of the nonzero spaces among $E_{0} W, E_{1} W, \ldots, E_{D} W$. If the dimension of $E_{i}^{*} W$ is at most 1 for $0 \leq i \leq D$ then the dimension of $E_{i} W$ is at most 1 for $0 \leq i \leq D$ [28, Lemma 3.9]; in this case we say W is thin. Let W denote an irreducible T-module. By the endpoint of W we mean $\min \left\{i \mid 0 \leq i \leq D, E_{i}^{*} W \neq 0\right\}$. There exists a unique irreducible T-module with endpoint 0 [19, Proposition 8.4]. We call this module V_{0}. The module V_{0} is thin; in fact $E_{i}^{*} V_{0}$ and $E_{i} V_{0}$ have dimension 1 for $0 \leq i \leq D$ [28, Lemma 3.6]. For a detailed description of V_{0} see $[9,19]$. In this paper, we are concerned with the thin irreducible T-modules with endpoint 1.

In order to describe the thin irreducible T-modules with endpoint 1 we define some parameters. Let $\Delta=\Delta(x)$ denote the vertex-subgraph of Γ induced on the set of vertices in X adjacent x. The graph Δ has k vertices and is regular with valency a_{1}. Let $\eta_{1} \geq \eta_{2} \geq$ $\cdots \geq \eta_{k}$ denote the eigenvalues of the adjacency matrix of Δ. We call $\eta_{1}, \eta_{2}, \ldots, \eta_{k}$ the local eigenvalues of Γ with respect to x. We mentioned Δ is regular with valency a_{1} so $\eta_{1}=a_{1}$ and $\eta_{k} \geq-a_{1}$ [3, Proposition 3.1]. The eigenvalues $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$ satisfy another bound. To give the bound we use the following notation. For any real number η other than -1 we define

$$
\tilde{\eta}=-1-b_{1}(1+\eta)^{-1} .
$$

By [27, Theorem 1] we have $\tilde{\theta}_{1} \leq \eta_{i} \leq \tilde{\theta}_{D}$ for $2 \leq i \leq k$. We remark $\tilde{\theta}_{1}<-1$ and $\tilde{\theta}_{D} \geq 0$, since $\theta_{1}>-1$ and $a_{1}-k \leq \theta_{D}<-1$ [25, Lemma 2.6]. Let W denote a thin irreducible T-module with endpoint 1 . Observe $E_{1}^{*} W$ is a 1-dimensional eigenspace for $E_{1}^{*} A E_{1}^{*}$; let η denote the corresponding eigenvalue. As we will see, η is one of $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$. We call η the local eigenvalue of W. Let W^{\prime} denote an irreducible T-module. Then W^{\prime} and W are isomorphic as T-modules if and only if W^{\prime} is thin with endpoint 1 and local eigenvalue η [31, Theorem 12.1].

Let W denote a thin irreducible T-module with endpoint 1 and local eigenvalue η. The structure of W is described as follows [22,31]. First assume $\eta=\tilde{\theta}_{j}$, where $j=1$ or $j=D$. Then the dimension of W is $D-1$. For $0 \leq i \leq D, E_{i}^{*} W$ is zero if $i \in\{0, D\}$, and has dimension 1 if $i \notin\{0, D\}$. Moreover $E_{i} W$ is zero if $i \in\{0, j\}$, and has dimension 1 if $i \notin\{0, j\}$. Next assume η is not one of $\tilde{\theta}_{1}, \tilde{\theta}_{D}$. Then the dimension of W is D. For $0 \leq i \leq D, E_{i}^{*} W$ is zero if $i=0$, and has dimension 1 if $1 \leq i \leq D$. Moreover $E_{i} W$ is zero if $i=0$, and has dimension 1 if $1 \leq i \leq D$. For a more complete description of the thin irreducible T-modules with endpoint 1 we refer the reader to [22,31]. More general information on T and its modules can be found in [6-10, 12-14, 17-21, 24, 26, 28, 32].

In the present paper we obtain a finite sequence of inequalities involving the intersection numbers and local eigenvalues of Γ. We show equality is attained in each inequality if and only if every irreducible T-module with endpoint 1 is thin. We now state our inequalities. To do this we define some polynomials. Let λ denote an indeterminate, and let $\mathbb{R}[\lambda]$ denote the \mathbb{R}-algebra consisting of all polynomials in λ that have real coefficients. Let $p_{0}, p_{1}, \ldots, p_{D}$ denote the polynomials in $\mathbb{R}[\lambda]$ satisfying $p_{0}=1$ and

$$
\lambda p_{i}=c_{i+1} p_{i+1}+\left(a_{i}-c_{i+1}+c_{i}\right) p_{i}+b_{i} p_{i-1} \quad(0 \leq i \leq D-1),
$$

where $p_{-1}=0$. One significance of these polynomials is that

$$
p_{i}(A)=A_{0}+A_{1}+\cdots+A_{i} \quad(0 \leq i \leq D)
$$

where $A_{0}, A_{1}, \ldots, A_{D}$ are the distance matrices of Γ. Let Φ denote the set of distinct scalars among $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$. For $\eta \in \Phi$, let mult denote the number of times η appears among $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$. We show

$$
\begin{aligned}
& 1+\sum_{\eta \in \Phi} \text { mult }_{\eta}=k, \quad 1+\sum_{\substack{n \in \Phi \\
n \neq-1}} \frac{\operatorname{mult}_{\eta}}{1+\tilde{\eta}}=0, \\
& 1+\sum_{\substack{\eta \in \Phi \\
n \neq-1}} \frac{\operatorname{mult}_{\eta}}{(1+\tilde{\eta})^{2}}=\frac{k}{b_{1}}
\end{aligned}
$$

Our first main result is the inequality
for $1 \leq i \leq D-1$. We remark on the terms in (1). Let η denote an element in Φ other than -1 . We mentioned above that $\tilde{\theta}_{1} \leq \eta \leq \tilde{\theta}_{D}$. If $\tilde{\theta}_{1} \leq \eta<-1$ then $\tilde{\eta} \geq \theta_{1}$, and in this case $p_{i}(\tilde{\eta})>0$ for $0 \leq i \leq D-1$ [31, Lemma 4.5]. If $-1<\eta \leq \tilde{\theta}_{D}$ then $\tilde{\eta} \leq \theta_{D}$, and in this case $(-1)^{i} p_{i}(\tilde{\eta})>0$ for $0 \leq i \leq D-1$ [31, Lemma 4.5]. In either case, the coefficient of mult $_{\eta}$ in (1) is positive for $1 \leq i \leq D-1$.

Our second main result concerns the case of equality in (1). We prove the following are equivalent: (i) Equality holds in (1) for $1 \leq i \leq D-1$; (ii) Equality holds in (1) for $i=D-1$; (iii) Every irreducible T-module with endpoint 1 is thin.

Our two main results are found in Theorems 13.5 and 13.6.

2. Preliminaries concerning distance-regular graphs

In this section we review some definitions and basic concepts concerning distance-regular graphs. For more background information we refer the reader to [1, 4, 23] or [28].

Let X denote a nonempty finite set. Let $\operatorname{Mat}_{X}(\mathbb{C})$ denote the \mathbb{C}-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C}. Let $V=\mathbb{C}^{X}$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}. We observe $\operatorname{Mat}_{X}(\mathbb{C})$ acts on V by left multiplication. We endow V with the Hermitean inner product \langle,$\rangle defined by$

$$
\begin{equation*}
\langle u, v\rangle=u^{t} \bar{v} \quad(u, v \in V) \tag{2}
\end{equation*}
$$

where t denotes transpose and - denotes complex conjugation. As usual, we abbreviate $\|u\|^{2}=\langle u, u\rangle$ for all $u \in V$. For all $y \in X$, let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We observe $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V. The following formula will be useful. For all $B \in \operatorname{Mat}_{X}(\mathbb{C})$ and for all $u, v \in V$,

$$
\begin{equation*}
\langle B u, v\rangle=\left\langle u, \bar{B}^{t} v\right\rangle \tag{3}
\end{equation*}
$$

Let $\Gamma=(X, R)$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and edge set R. Let ∂ denote the path-length distance function for Γ, and set $D=\max \{\partial(x, y) \mid x, y \in X\}$. We refer to D as the diameter of Γ. Let x, y denote vertices of Γ. We say x, y are adjacent whenever $x y$ is an edge. Let k denote a nonnegative integer. We say Γ is regular with valency k whenever each vertex of Γ is adjacent to exactly k distinct vertices of Γ. We say Γ is distance-regular whenever for all integers $h, i, j(0 \leq h, i, j \leq D)$ and for all vertices $x, y \in X$ with $\partial(x, y)=h$, the number

$$
\begin{equation*}
p_{i j}^{h}=|\{z \in X \mid \partial(x, z)=i, \partial(z, y)=j\}| \tag{4}
\end{equation*}
$$

is independent of x and y. The integers $p_{i j}^{h}$ are called the intersection numbers of Γ. We abbreviate $c_{i}=p_{1 i-1}^{i}(1 \leq i \leq D), a_{i}=p_{1 i}^{i}(0 \leq i \leq D)$, and $b_{i}=p_{1 i+1}^{i}(0 \leq i \leq D-1)$. For notational convenience, we define $c_{0}=0$ and $b_{D}=0$. We note $a_{0}=0$ and $c_{1}=1$.

For the rest of this paper we assume Γ is distance-regular with diameter $D \geq 3$.
By (4) and the triangle inequality,

$$
\begin{equation*}
p_{1 j}^{h}=0 \quad \text { if } \quad|h-j|>1 \quad(0 \leq h, j \leq D) \tag{5}
\end{equation*}
$$

Observe Γ is regular with valency $k=b_{0}$, and that $c_{i}+a_{i}+b_{i}=k$ for $0 \leq i \leq D$. Moreover $b_{i}>0(0 \leq i \leq D-1)$ and $c_{i}>0(1 \leq i \leq D)$. For $0 \leq i \leq D$ we abbreviate $k_{i}=p_{i i}^{0}$, and observe

$$
\begin{equation*}
k_{i}=|\{z \in X \mid \partial(x, z)=i\}| \tag{6}
\end{equation*}
$$

where x is any vertex in X. Apparently $k_{0}=1$ and $k_{1}=k$. By [1, p. 195] we have

$$
\begin{equation*}
k_{i}=\frac{b_{0} b_{1} \cdots b_{i-1}}{c_{1} c_{2} \cdots c_{i}} \quad(0 \leq i \leq D) \tag{7}
\end{equation*}
$$

The following formula will be useful [4, Lemma 4.1.7]:

$$
\begin{equation*}
p_{i, i+1}^{1}=\frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}} \quad(0 \leq i \leq D-1) \tag{8}
\end{equation*}
$$

We recall the Bose-Mesner algebra of Γ. For $0 \leq i \leq D$ let A_{i} denote the matrix in Mat ${ }_{X}(\mathbb{C})$ with $x y$ entry

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1, & \text { if } \partial(x, y)=i \\
0, & \text { if } \partial(x, y) \neq i
\end{array} \quad(x, y \in X)\right.
$$

We call A_{i} the i th distance matrix of Γ. For notational convenience we define $A_{i}=0$ for $i<0$ and $i>D$. We abbreviate $A=A_{1}$ and call this the adjacency matrix of Γ. We observe

$$
\begin{align*}
A_{0} & =I, & & \tag{9}\\
\sum_{i=0}^{D} A_{i} & =J, & & \tag{10}\\
\bar{A}_{i} & =A_{i} & & (0 \leq i \leq D), \tag{11}\\
A_{i}^{t} & =A_{i} & & (0 \leq i \leq D), \\
A_{i} A_{j} & =\sum_{h=0}^{D} p_{i j}^{h} A_{h} & & (0 \leq i, j \leq D), \tag{12}
\end{align*}
$$

where I denotes the identity matrix and J denotes the all 1 's matrix. Let M denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by A. We refer to M as the Bose-Mesner algebra of Γ. Using (9) and (12) one can readily show $A_{0}, A_{1}, \ldots, A_{D}$ form a basis for M. By [4, p. 45], M has a second basis $E_{0}, E_{1}, \ldots, E_{D}$ such that

$$
\begin{align*}
E_{0} & =|X|^{-1} J, \tag{13}\\
\sum_{i=0}^{D} E_{i} & =I \tag{14}\\
\bar{E}_{i} & =E_{i} \quad(0 \leq i \leq D), \tag{15}\\
E_{i}^{t} & =E_{i} \quad(0 \leq i \leq D), \tag{16}\\
E_{i} E_{j} & =\delta_{i j} E_{i} \quad(0 \leq i, j \leq D) \tag{17}
\end{align*}
$$

We refer to $E_{0}, E_{1}, \ldots, E_{D}$ as the primitive idempotents of Γ. We call E_{0} the trivial idempotent of Γ.

We recall the eigenvalues of Γ. Since $E_{0}, E_{1}, \ldots, E_{D}$ form a basis for M, there exist complex scalars $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ such that $A=\sum_{i=0}^{D} \theta_{i} E_{i}$. Combining this with (17) we find $A E_{i}=E_{i} A=\theta_{i} E_{i}$ for $0 \leq i \leq D$. Using (11), (15) we find $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ are in \mathbb{R}. Observe $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ are distinct since A generates M. By [3, Proposition 3.1], $\theta_{0}=k$
and $-k \leq \theta_{i} \leq k$ for $0 \leq i \leq D$. Throughout this paper we assume $E_{0}, E_{1}, \ldots, E_{D}$ are indexed so that $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$. We refer to θ_{i} as the eigenvalue of Γ associated with E_{i}. We call θ_{0} the trivial eigenvalue of Γ. For $0 \leq i \leq D$ let m_{i} denote the rank of E_{i}. We refer to m_{i} as the multiplicity of E_{i} (or θ_{i}). By (13) we find $m_{0}=1$. Using (14)-(17) we readily find

$$
\begin{equation*}
V=E_{0} V+E_{1} V+\cdots+E_{D} V \quad \text { (orthogonal direct sum). } \tag{18}
\end{equation*}
$$

For $0 \leq i \leq D$, the space $E_{i} V$ is the eigenspace of A associated with θ_{i}. We observe the dimension of $E_{i} V$ is equal to m_{i}.

We record a fact about the eigenvalues θ_{1}, θ_{D}.
Lemma 2.1 ([25, Lemma 2.6]) Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$ and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$. Then
(i) $-1<\theta_{1}<k$,
(ii) $a_{1}-k \leq \theta_{D}<-1$.

Later in this paper we will discuss polynomials in one variable. We will use the following notation. We let λ denote an indeterminate, and we let $\mathbb{R}[\lambda]$ denote the \mathbb{R}-algebra consisting of all polynomials in λ that have coefficients in \mathbb{R}.

3. Two families of polynomials

Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$. In this section we recall two families of polynomials associated with Γ. To motivate things, we recall by (5) and (12) that

$$
\begin{equation*}
A A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(0 \leq i \leq D) \tag{19}
\end{equation*}
$$

where $b_{-1}=0$ and $c_{D+1}=0$. Let $f_{0}, f_{1}, \ldots, f_{D}$ denote the polynomials in $\mathbb{R}[\lambda]$ satisfying $f_{0}=1$ and

$$
\begin{equation*}
\lambda f_{i}=b_{i-1} f_{i-1}+a_{i} f_{i}+c_{i+1} f_{i+1} \quad(0 \leq i \leq D-1), \tag{20}
\end{equation*}
$$

where $f_{-1}=0$. Let i denote an integer $(0 \leq i \leq D)$. The polynomial f_{i} has degree i, and the coefficient of λ^{i} is $\left(c_{1} c_{2} \cdots c_{i}\right)^{-1}$. Comparing (19) and (20) we find $f_{i}(A)=A_{i}$.

We now recall some polynomials related to the f_{i}. Let $p_{0}, p_{1}, \ldots, p_{D}$ denote the polynomials in $\mathbb{R}[\lambda]$ satisfying

$$
\begin{equation*}
p_{i}=f_{0}+f_{1}+\cdots+f_{i} \quad(0 \leq i \leq D) . \tag{21}
\end{equation*}
$$

Let i denote an integer $(0 \leq i \leq D)$. The polynomial p_{i} has degree i, and the coefficient of λ^{i} is $\left(c_{1} c_{2} \cdots c_{i}\right)^{-1}$. Moreover $p_{i}(A)=A_{0}+A_{1}+\cdots+A_{i}$. Setting $i=D$ in this and using (10) we find $p_{D}(A)=J$.

We record several facts for later use.

Lemma 3.1 ([22, Theorem 3.2]) Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$. Let the polynomials $p_{0}, p_{1}, \ldots, p_{D}$ be from (21). Then $p_{0}=1$ and

$$
\lambda p_{i}=c_{i+1} p_{i+1}+\left(a_{i}-c_{i+1}+c_{i}\right) p_{i}+b_{i} p_{i-1} \quad(0 \leq i \leq D-1)
$$

where $p_{-1}=0$.
Lemma 3.2 ([31, Lemma 4.5]) Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$ and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$. Let the polynomials p_{i} be from (21). Then the following (i)-(iv) hold for all $\theta \in \mathbb{R}$.
(i) If $\theta>\theta_{1}$ then $p_{i}(\theta)>0$ for $0 \leq i \leq D$.
(ii) If $\theta=\theta_{1}$ then $p_{i}(\theta)>0$ for $0 \leq i \leq D-1$ and $p_{D}(\theta)=0$.
(iii) If $\theta<\theta_{D}$ then $(-1)^{i} p_{i}(\theta)>0$ for $0 \leq i \leq D$.
(iv) If $\theta=\theta_{D}$ then $(-1)^{i} p_{i}(\theta)>0$ for $0 \leq i \leq D-1$ and $p_{D}(\theta)=0$.

4. The subconstituent algebra and its modules

In this section we recall some definitions and basic concepts concerning the subconstituent algebra and its modules. For more information we refer the reader to [6, 9, 10, 21, 22, 24, 28].

Let $\Gamma=(X, R)$ denote a distance-regular graph with diameter $D \geq 3$. We recall the dual Bose-Mesner algebra of Γ. For the rest of this section, fix a vertex $x \in X$. For $0 \leq i \leq D$ we let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with $y y$ entry

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1, & \text { if } \partial(x, y)=i \tag{22}\\
0, & \text { if } \partial(x, y) \neq i
\end{array} \quad(y \in X)\right.
$$

We call E_{i}^{*} the i th dual idempotent of Γ with respect to x. We observe

$$
\begin{array}{rlrl}
\sum_{i=0}^{D} E_{i}^{*} & =I \\
\overline{E_{i}^{*}} & =E_{i}^{*} & & \\
E_{i}^{* t} & =E_{i}^{*} & & (0 \leq i \leq D) \\
E_{i}^{*} E_{j}^{*} & =\delta_{i j} E_{i}^{*} & & (0 \leq i \leq D) \tag{26}\\
\end{array}
$$

Using (23), (26), we find $E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$ form a basis for a commutative subalgebra $M^{*}=M^{*}(x)$ of $\operatorname{Mat}_{X}(\mathbb{C})$. We call M^{*} the dual Bose-Mesner algebra of Γ with respect to x. We recall the subconstituents of Γ. From (22) we find

$$
\begin{equation*}
E_{i}^{*} V=\operatorname{span}\{\hat{y} \mid y \in X, \partial(x, y)=i\} \quad(0 \leq i \leq D) \tag{27}
\end{equation*}
$$

By (27) and since $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V we find

$$
\begin{equation*}
V=E_{0}^{*} V+E_{1}^{*} V+\cdots+E_{D}^{*} V \quad \text { (orthogonal direct sum). } \tag{28}
\end{equation*}
$$

Combining (27) and (6) we find

$$
\begin{equation*}
\operatorname{dim} E_{i}^{*} V=k_{i} \quad(0 \leq i \leq D) \tag{29}
\end{equation*}
$$

We call $E_{i}^{*} V$ the i th subconstituent of Γ with respect to x.
We recall how M and M^{*} are related. By [28, Lemma 3.2] we find

$$
\begin{equation*}
E_{h}^{*} A_{i} E_{j}^{*}=0 \quad \text { if and only if } p_{i j}^{h}=0 \quad(0 \leq h, i, j \leq D) \tag{30}
\end{equation*}
$$

Combining (30) and (5) we find

$$
\begin{array}{rll}
E_{i}^{*} A E_{j}^{*}=0 & \text { if }|i-j|>1 & (0 \leq i, j \leq D) \\
E_{i}^{*} A_{j} E_{1}^{*}=0 & \text { if }|i-j|>1 & (0 \leq i, j \leq D) \tag{32}
\end{array}
$$

Let $T=T(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by M and M^{*}. We call T the subconstituent algebra of Γ with respect to x [28]. We observe T has finite dimension. Moreover T is semi-simple; the reason is T is closed under the conjugate-transponse map [16, p. 157].

We now consider the modules for T. By a T-module we mean a subspace $W \subseteq V$ such that $B W \subseteq W$ for all $B \in T$. We refer to V itself as the standard module for T. Let W denote a T-module. Then W is said to be irreducible whenever W is nonzero and W contains no T-modules other than 0 and W. Let W, W^{\prime} denote T-modules. By an isomorphism of T-modules from W to W^{\prime} we mean an isomorphism of vector spaces $\sigma: W \rightarrow W^{\prime}$ such that

$$
\begin{equation*}
(\sigma B-B \sigma) W=0 \quad \text { for all } B \in T \tag{33}
\end{equation*}
$$

The modules W, W^{\prime} are said to be isomorphic as T-modules whenever there exists an isomorphism of T-modules from W to W^{\prime}.

Let W denote a T-module and let W^{\prime} denote a T-module contained in W. Using (3) we find the orthogonal complement of W^{\prime} in W is a T-module. It follows that each T-module is an orthogonal direct sum of irreducible T-modules. We mention any two nonisomorphic irreducible T-modules are orthogonal [9, Lemma 3.3].

Let W denote an irreducible T-module. Using (23)-(26) we find W is the direct sum of the nonzero spaces among $E_{0}^{*} W, E_{1}^{*} W, \ldots, E_{D}^{*} W$. Similarly using (14)-(17) we find W is the direct sum of the nonzero spaces among $E_{0} W, E_{1} W, \ldots, E_{D} W$. If the dimension of $E_{i}^{*} W$ is at most 1 for $0 \leq i \leq D$ then the dimension of $E_{i} W$ is at most 1 for $0 \leq i \leq D$ [28, Lemma 3.9]; in this case we say W is thin. Let W denote an irreducible T-module.

By the endpoint of W we mean $\min \left\{i \mid 0 \leq i \leq D, E_{i}^{*} W \neq 0\right\}$. We adopt the following notational convention.

Definition 4.1 Throughout the rest of this paper we let $\Gamma=(X, R)$ denote a distanceregular graph with diameter $D \geq 3$, valency k, intersection numbers a_{i}, b_{i}, c_{i}, Bose-Mesner algebra M, and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$. For $0 \leq i \leq D$ we let E_{i} denote the primitive idempotent of Γ associated with θ_{i}. We let V denote the standard module for Γ. We fix $x \in X$ and abbreviate $E_{i}^{*}=E_{i}^{*}(x)(0 \leq i \leq D), M^{*}=M^{*}(x), T=T(x)$. We define

$$
\begin{equation*}
s_{i}=\sum_{\substack{y \in X \\ \partial(x, y)=i}} \hat{y} \quad(0 \leq i \leq D) \tag{34}
\end{equation*}
$$

5. The T-module V_{0}

With reference to Definition 4.1, there exists a unique irreducible T-module with endpoint 0 [19, Proposition 8.4]. We call this module V_{0}. The module V_{0} is described in [9, 19]. We summarize some details below in order to motivate the results that follow.

The module V_{0} is thin. In fact each of $E_{i} V_{0}, E_{i}^{*} V_{0}$ has dimension 1 for $0 \leq i \leq D$. We give two bases for V_{0}. The vectors $E_{0} \hat{x}, E_{1} \hat{x}, \ldots, E_{D} \hat{x}$ form a basis for V_{0}. These vectors are mutually orthogonal and $\left\|E_{i} \hat{x}\right\|^{2}=m_{i}|X|^{-1}$ for $0 \leq i \leq D$. To motivate the second basis we make some comments. For $0 \leq i \leq D$ we have $s_{i}=A_{i} \hat{x}$, where s_{i} is from (34). Moreover $s_{i}=E_{i}^{*} \delta$, where $\delta=\sum_{y \in X} \hat{y}$. The vectors $s_{0}, s_{1}, \ldots, s_{D}$ form a basis for V_{0}. These vectors are mutually orthogonal and $\left\|s_{i}\right\|^{2}=k_{i}$ for $0 \leq i \leq D$. With respect to the basis $s_{0}, s_{1}, \ldots, s_{D}$ the matrix representing A is

$$
\left(\begin{array}{cccccc}
a_{0} & b_{0} & & & & \mathbf{0} \tag{35}\\
c_{1} & a_{1} & b_{1} & & & \\
& c_{2} & \cdot & \cdot & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & b_{D-1} \\
\mathbf{0} & & & & c_{D} & a_{D}
\end{array}\right)
$$

The basis $E_{0} \hat{x}, E_{1} \hat{x}, \ldots, E_{D} \hat{x}$ and the basis $s_{0}, s_{1}, \ldots, s_{D}$ are related as follows. For $0 \leq$ $i \leq D$ we have $s_{i}=\sum_{h=0}^{D} f_{i}\left(\theta_{h}\right) E_{h} \hat{x}$, where the f_{i} are from (20).

We define the matrix φ_{0}. Let V_{0}^{\perp} denote the orthogonal complement of V_{0} in V. Observe

$$
V=V_{0}+V_{0}^{\perp} \quad \text { (orthogonal direct sum). }
$$

Let φ_{0} denote the matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ such that $\varphi_{0}-I$ vanishes on V_{0} and such that φ_{0} vanishes on V_{0}^{\perp}. In other words φ_{0} is the orthogonal projection from V onto V_{0}. For all $y \in X$ we have

$$
\begin{equation*}
\varphi_{0} \hat{y}=k_{i}^{-1} s_{i} \tag{36}
\end{equation*}
$$

where $i=\partial(x, y)$. To see (36) observe $k_{i}^{-1} s_{i}$ is contained in V_{0}. Moreover $\hat{y}-k_{i}^{-1} s_{i}$ is orthogonal to each of $s_{0}, s_{1}, \ldots, s_{D}$ and hence is contained in V_{0}^{\perp}.

6. The local eigenvalues

A bit later in this paper we will consider the thin irreducible T-modules with endpoint 1. In order to discuss these we recall some parameters known as the local eigenvalues.

Definition 6.1 With reference to Definition 4.1, we let $\Delta=\Delta(x)$ denote the graph (\breve{X}, \breve{R}), where

$$
\begin{aligned}
\breve{X} & =\{y \in X \mid \partial(x, y)=1\}, \\
\breve{R} & =\{y z \mid y, z \in \breve{X}, y z \in R\} .
\end{aligned}
$$

We observe Δ is the vertex-subgraph of Γ induced on the set of vertices in X adjacent x. The graph Δ has exactly k vertices, where k is the valency of Γ. Also, Δ is regular with valency a_{1}. We let \breve{A} denote the adjacency matrix of Δ. The matrix \breve{A} is symmetric with real entries; therefore \breve{A} is diagonalizable with all eigenvalues real. We let $\eta_{1} \geq \eta_{2} \geq \cdots \geq \eta_{k}$ denote the eigenvalues of \breve{A}. We mentioned Δ is regular with valency a_{1} so $\eta_{1}=a_{1}$ and $\eta_{k} \geq-a_{1}$ [3, Proposition 3.1]. We call $\eta_{1}, \eta_{2}, \ldots, \eta_{k}$ the local eigenvalues of Γ with respect to x.

For notational convenience we make the following definition.
Definition 6.2 With reference to Definition 4.1, we let Φ denote the set of distinct scalars among $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$, where the η_{i} are from Definition 6.1. For $\eta \in \mathbb{R}$ we let mult η_{η} denote the number of times η appears among $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$. We observe mult $\eta_{\eta} \neq 0$ if and only if $\eta \in \Phi$.

With reference to Definition 4.1, we consider the first subconstituent $E_{1}^{*} V$. By (29) the dimension of $E_{1}^{*} V$ is k. Observe $E_{1}^{*} V$ is invariant under the action of $E_{1}^{*} A E_{1}^{*}$. To illuminate this action we observe that for an appropriate ordering of the vertices of Γ,

$$
E_{1}^{*} A E_{1}^{*}=\left(\begin{array}{cc}
\breve{A} & 0 \\
0 & 0
\end{array}\right)
$$

where \breve{A} is from Definition 6.1. Apparently the action of $E_{1}^{*} A E_{1}^{*}$ on $E_{1}^{*} V$ is essentially the adjacency map for Δ. In particular the action of $E_{1}^{*} A E_{1}^{*}$ on $E_{1}^{*} V$ is diagonalizable with eigenvalues $\eta_{1}, \eta_{2}, \ldots, \eta_{k}$. We observe the vector s_{1} from (34) is contained in $E_{1}^{*} V$. Using (35) we find s_{1} is an eigenvector for $E_{1}^{*} A E_{1}^{*}$ with eigenvalue a_{1}. Let v denote a vector in $E_{1}^{*} V$. We observe the following are equivalent: (i) v is orthogonal to s_{1}; (ii) $J v=0$; (iii) $E_{0} v=0$; (iv) $E_{0}^{*} A v=0$; (v) $\varphi_{0} v=0$. Let U denote the orthogonal complement of s_{1} in $E_{1}^{*} V$. We observe U has dimension $k-1$. Using (3) we find U is invariant under $E_{1}^{*} A E_{1}^{*}$. Apparently the restriction of $E_{1}^{*} A E_{1}^{*}$ to U is diagonalizable with eigenvalues $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$.

For $\eta \in \mathbb{R}$ let U_{η} denote the set consisting of those vectors in U that are eigenvectors for $E_{1}^{*} A E_{1}^{*}$ with eigenvalue η. We observe U_{η} is a subspace of U with dimension mult ${ }_{\eta}$. We emphasize the following are equivalent: (i) mult $_{\eta} \neq 0$; (ii) $U_{\eta} \neq 0$; (iii) $\eta \in \Phi$. By (3) and since $E_{1}^{*} A E_{1}^{*}$ is symmetric with real entries we find

$$
\begin{equation*}
U=\sum_{\eta \in \Phi} U_{\eta} \quad \text { (orthogonal direct sum). } \tag{37}
\end{equation*}
$$

In Definition 6.1 we mentioned $\eta_{1}=a_{1}$ and $\eta_{k} \geq-a_{1}$. We now recall some additional bounds satisfied by the local eigenvalues. To state the result we use the following notation.

Definition 6.3 With reference to Definition 4.1, for all $z \in \mathbb{R} \cup \infty$ we define

$$
\tilde{z}= \begin{cases}-1-\frac{b_{1}}{1+z}, & \text { if } z \neq-1, z \neq \infty \tag{38}\\ \infty, & \text { if } z=-1 \\ -1, & \text { if } z=\infty\end{cases}
$$

We observe $\tilde{\tilde{z}}=z$ for all $z \in \mathbb{R} \cup \infty$. By Lemma 2.1 neither of θ_{1}, θ_{D} is equal to -1 , so $\tilde{\theta}_{1}=-1-b_{1}\left(1+\theta_{1}\right)^{-1}$ and $\tilde{\theta}_{D}=-1-b_{1}\left(1+\theta_{D}\right)^{-1}$. By the data in Lemma 2.1 we have $\tilde{\theta}_{1}<-1$ and $\tilde{\theta}_{D} \geq 0$.

Lemma 6.4 ([27, Theorem 1]) With reference to Definitions 4.1 and 6.1 , we have $\tilde{\theta}_{1} \leq$ $\eta_{i} \leq \tilde{\theta}_{D}$ for $2 \leq i \leq k$.

We remark on the case of equality in the above lemma.
Lemma 6.5 ([5, Theorem 5.4, 22, Theorem 8.5]) With reference to Definition 4.1, let v denote a nonzero vector in U. Then (i)-(iii) hold below.
(i) The vector $E_{0} v$ is zero and each of $E_{2} v, E_{3} v, \ldots, E_{D-1} v$ is nonzero.
(ii) $E_{1} v=0$ if and only if $v \in U_{\tilde{\theta}_{1}}$.
(iii) $E_{D} v=0$ if and only if $v \in U_{\tilde{\theta}_{D}}$.

Corollary 6.6 With reference to Definition 4.1, let v denote a nonzero vector in U. Then (i), (ii) hold below.
(i) If $v \in U_{\tilde{\theta}_{1}}$ or $v \in U_{\tilde{\theta}_{D}}$ then $M v$ has dimension $D-1$.
(ii) If $v \notin U_{\tilde{\theta}_{1}}$ and $v \notin U_{\tilde{\theta}_{D}}$ then $M v$ has dimension D.

Proof: By (18) and since $E_{0}, E_{1}, \ldots, E_{D}$ form a basis for M, we find $M v$ has an orthogonal basis consisting of the nonvanishing vectors among $E_{0} v, E_{1} v, \ldots, E_{D} v$. Applying Lemma 6.5 we find that in case (i) exactly two of these vectors are zero. Similarly in case (ii) exactly one of these vectors is zero. The result follows.

The following equations will be useful.

Lemma 6.7 With reference to Definition 4.1, the following (i)-(iii) hold.
(i) $1+\sum_{\eta \in \Phi}$ mult $_{\eta}=k$.
(ii) $1+\sum_{\eta \in \Phi, \eta \neq-1} \frac{\operatorname{mult}_{\eta}}{1+\tilde{\eta}}=0$.
(iii) $1+\sum_{\eta \in \Phi, \eta \neq-1} \frac{\text { mult }_{\eta}}{(1+\tilde{\eta})^{2}}=\frac{k}{b_{1}}$.

Proof:

(i) There are $k-1$ elements in the sequence $\eta_{2}, \eta_{3}, \ldots, \eta_{k}$.
(ii) Each diagonal entry of \breve{A} is zero so the trace of \breve{A} is zero. Recall $\eta_{1}, \eta_{2}, \ldots, \eta_{k}$ are the eigenvalues of \breve{A} so $\sum_{i=1}^{k} \eta_{i}=0$. By this and since $\eta_{1}=a_{1}$ we have $a_{1}+$ $\sum_{\eta \in \Phi} \eta$ mult $_{\eta}=0$. In this equation, write each η in terms of $\tilde{\eta}$ using Definition 6.3 to obtain the result.
(iii) Recall Δ is regular with valency a_{1}, so each diagonal entry of \breve{A}^{2} is a_{1}. Apparently the trace of \breve{A}^{2} is $k a_{1}$, so $\sum_{i=1}^{k} \eta_{i}^{2}=k a_{1}$. By this and since $\eta_{1}=a_{1}$ we have $a_{1}^{2}+$ $\sum_{\eta \in \Phi} \eta^{2}$ mult $_{\eta}=k a_{1}$. Proceeding as in (ii) above we obtain the result.

7. The local eigenvalue of a thin irreducible \boldsymbol{T}-module with endpoint 1

In this section we make some comments concerning the thin irreducible T-modules with endpoint 1 and the local eigenvalues.

Definition 7.1 With reference to Definition 4.1, let W denote a thin irreducible T-module with endpoint 1 . Observe $E_{1}^{*} W$ is a 1-dimensional eigenspace for $E_{1}^{*} A E_{1}^{*}$; let η denote the corresponding eigenvalue. We observe $E_{1}^{*} W$ is contained in $E_{1}^{*} V$ and orthogonal to s_{1}, so $E_{1}^{*} W \subseteq U_{\eta}$. Apparently $U_{\eta} \neq 0$ so $\eta \in \Phi$. We refer to η as the local eigenvalue of W.

Lemma 7.2 ([31, Theorem 12.1]) With reference to Definition 4.1, let W denote a thin irreducible T-module with endpoint 1 and local eigenvalue η. Let W^{\prime} denote an irreducible T-module. Then the following (i), (ii) are equivalent.
(i) W and W^{\prime} are isomorphic as T-modules.
(ii) W^{\prime} is thin with endpoint 1 and local eigenvalue η.

Lemma 7.3 With reference to Definition 4.1 , for all $\eta \in \mathbb{R}$ we have

$$
\begin{equation*}
U_{\eta} \supseteq E_{1}^{*} H_{\eta} \tag{39}
\end{equation*}
$$

where H_{η} denotes the subspace of V spanned by all the thin irreducible T-modules with endpoint 1 and local eigenvalue η.

Proof: Observe $E_{1}^{*} H_{\eta}$ is spanned by the $E_{1}^{*} W$, where W ranges over all thin irreducible T-modules with endpoint 1 and local eigenvalue η. For all such W the space $E_{1}^{*} W$ is contained in U_{η} by Definition 7.1. The result follows.

We remark on the dimension of the right-hand side in (39). To do this we make a definition.

Definition 7.4 With reference to Definition 4.1, and from our discussion below (33), the standard module V can be decomposed into an orthogonal direct sum of irreducible T modules. Let W denote an irreducible T-module. By the multiplicity with which W appears in V, we mean the number of irreducible T-modules in the above decomposition which are isomorphic to W. We remark that this number is independent of the decomposition.

Definition 7.5 With reference to Definition 4.1, for all $\eta \in \mathbb{R}$ we let μ_{η} denote the multiplicity with which W appears in the standard module V, where W denotes a thin irreducible T-module with endpoint 1 and local eigenvalue η. If no such W exists we set $\mu_{\eta}=0$.

Theorem 7.6 ([31, Theorem 12.6]) With reference to Definition 4.1, for all $\eta \in \mathbb{R}$ the following scalars are equal:
(i) The scalar μ_{η} from Definition 7.5.
(ii) The dimension of $E_{1}^{*} H_{\eta}$, where H_{η} is from Lemma 7.3.

Moreover

$$
\begin{equation*}
\text { mult }_{\eta} \geq \mu_{\eta} . \tag{40}
\end{equation*}
$$

We consider the case of equality in (39) and (40).
Theorem 7.7 ([31, Theorem 12.9]) With reference to Definition 4.1, the following (i)-(iii) are equivalent.
(i) Equality holds in (39) for all $\eta \in \mathbb{R}$.
(ii) Equality holds in (40) for all $\eta \in \mathbb{R}$.
(iii) Every irreducible T-module with endpoint 1 is thin.

In summary we have the following.
Corollary 7.8 With reference to Definition 4.1, suppose every irreducible T-module with endpoint 1 is thin. Then for all $\eta \in \Phi$ there exists a thin irreducible T-module with endpoint 1 and local eigenvalue η. The multiplicity with which this module appears in V is equal to mult η_{η}. Up to isomorphism there are no further irreducible T-modules with endpoint 1.

8. The space $M v$ for $v \in E_{1}^{*} V$

With reference to Definition 4.1, let η denote a scalar in Φ and let v denote a nonzero vector in U_{η}. We seek a criterion which determines when v is contained in $E_{1}^{*} H_{\eta}$, where H_{η} is from Lemma 7.3. Our criterion is Corollary 12.6. In order to develop this criterion we consider the space $M v$. We begin by constructing a useful orthogonal basis for $M v$.

As we proceed in this section, we will encounter scalars of the form $p_{i}(\tilde{\eta})$ appearing in the denominator of some rational expressions. To make it clear these scalars are nonzero, we begin with the following result.

Lemma 8.1 With reference to Definition 4.1, let η denote a real number.
(i) If $\tilde{\theta}_{1}<\eta<-1$ then $\tilde{\eta}>\theta_{1}$. If $-1<\eta<\tilde{\theta}_{D}$ then $\tilde{\eta}<\theta_{D}$. In either case $p_{i}(\tilde{\eta}) \neq 0$ for $0 \leq i \leq D$.
(ii) If $\eta=\tilde{\theta}_{1}$ then $\tilde{\eta}=\theta_{1}$. If $\eta=\tilde{\theta}_{D}$ then $\tilde{\eta}=\theta_{D}$. In either case $p_{i}(\tilde{\eta}) \neq 0$ for $0 \leq i \leq D-1$ and $p_{D}(\tilde{\eta})=0$.

Proof: Combine Definition 6.3 and Lemma 3.2.
Definition 8.2 With reference to Definition 4.1, let η denote a real number ($\tilde{\theta}_{1} \leq \eta \leq \tilde{\theta}_{D}$) and let v denote a vector in U_{η}. We define the vectors $v_{0}, v_{1}, \ldots, v_{D-1}$ as follows.
(i) Suppose $\eta \neq-1$. Then

$$
\begin{equation*}
v_{i}=\sum_{h=0}^{i} \frac{p_{h}(\tilde{\eta})}{p_{i}(\tilde{\eta})} \frac{k_{i} b_{i}}{k_{h} b_{h}} p_{h}(A) v \quad(0 \leq i \leq D-1) \tag{41}
\end{equation*}
$$

(ii) Suppose $\eta=-1$. Then

$$
\begin{equation*}
v_{i}=p_{i}(A) v \quad(0 \leq i \leq D-1) \tag{42}
\end{equation*}
$$

(The polynomials p_{i} are from (21).)
Theorem 8.3 With reference to Definition 4.1, let η denote a scalar in Φ and let v denote a nonzero vector in U_{η}. First assume $\eta \neq \tilde{\theta}_{1}, \eta \neq \tilde{\theta}_{D}$. Then the vectors $v_{0}, v_{1}, \ldots, v_{D-1}$ from Definition 8.2 form a basis for $M v$. Next assume $\eta=\tilde{\theta}_{1}$ or $\eta=\tilde{\theta}_{D}$. Then $v_{D-1}=0$ and $v_{0}, v_{1}, \ldots, v_{D-2}$ form a basis for $M v$.

Proof: For $0 \leq h \leq D$ the polynomial p_{h} has degree exactly h. By this and Definition 8.2 we find that for $0 \leq i \leq D-1$ the vector $v_{i}=g_{i}(A) v$, where g_{i} is a polynomial of degree exactly i. First assume $\eta \neq \tilde{\theta}_{1}, \eta \neq \tilde{\theta}_{D}$. We show $v_{0}, v_{1}, \ldots, v_{D-1}$ form a basis for $M v$. By Corollary 6.6(ii) we find $M v$ has dimension D. From this and since A generates M, we find $v, A v, A^{2} v, \ldots, A^{D-1} v$ form a basis for $M v$. By this and our initial comment the vectors $v_{0}, v_{1}, \ldots, v_{D-1}$ form a basis for $M v$. Next assume $\eta=\tilde{\theta}_{1}$ or $\eta=\tilde{\theta}_{D}$. Then $v_{D-1}=0$ by [22, Theorem 9.6]. We show $v_{0}, v_{1}, \ldots, v_{D-2}$ form a basis for $M v$. By Corollary 6.6(i) the space $M v$ has dimension $D-1$, so $v, A v, A^{2} v, \ldots, A^{D-2} v$ form a basis for $M v$. By this and our initial comment $v_{0}, v_{1}, \ldots, v_{D-2}$ form a basis for $M v$.

The vectors v_{i} from Definition 8.2 are investigated in $[22,31]$ and a number of results are obtained. One result we will use is the following.

Theorem 8.4 ([22, Lemma 10.5, 31, Theorem 10.7]) With reference to Definition 4.1, let η denote a real number $\left(\tilde{\theta}_{1} \leq \eta \leq \tilde{\theta}_{D}\right)$ and let v denote a vector in U_{η}. Then the vectors $v_{0}, v_{1}, \ldots, v_{D-1}$ from Definition 8.2 are mutually orthogonal. Moreover the square-norms of these vectors are given as follows.
(i) Suppose $\eta \neq-1$. Then

$$
\begin{equation*}
\left\|v_{i}\right\|^{2}=\frac{p_{i+1}(\tilde{\eta}) c_{i+1}}{p_{i}(\tilde{\eta})(\tilde{\eta}+1)} \frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\|v\|^{2} \quad(0 \leq i \leq D-1) \tag{43}
\end{equation*}
$$

(ii) Suppose $\eta=-1$. Then

$$
\left\|v_{i}\right\|^{2}=\frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\|v\|^{2} \quad(0 \leq i \leq D-1)
$$

9. The space $M v$, continued

With reference to Definition 4.1, let η denote an element in Φ and let v denote a vector in U_{η}. In the last section we used v to define some vectors v_{i}. In this section we consider the v_{i} from a different point of view.

Lemma 9.1 With reference to Definition 4.1, let v denote a vector in $E_{1}^{*} V$. Then

$$
E_{i}^{*} A_{j} v=0 \quad \text { if }|i-j|>1 \quad(0 \leq i, j \leq D)
$$

Proof: Let i, j be given and assume $|i-j|>1$. Observe $E_{i}^{*} A_{j} E_{1}^{*}=0$ by (32) so $E_{i}^{*} A_{j} E_{1}^{*} v=0$. Observe $E_{1}^{*} v=v$ so $E_{i}^{*} A_{j} v=0$.

Lemma 9.2 With reference to Definition 4.1, let v denote a vector in $E_{1}^{*} V$ which is orthogonal to s_{1}. Then $\sum_{j=0}^{D} E_{i}^{*} A_{j} v=0$ for $0 \leq i \leq D$.

Proof: Observe $J v=0$ so $E_{i}^{*} J v=0$. Eliminate J in this expression using (10) to get the result.

Lemma 9.3 With reference to Definition 4.1, let v denote a vector in $E_{1}^{*} V$ which is orthogonal to s_{1}. Then

$$
\begin{equation*}
p_{i}(A) v=E_{i+1}^{*} A_{i} v-E_{i}^{*} A_{i+1} v \quad(0 \leq i \leq D-1) \tag{44}
\end{equation*}
$$

Moreover $p_{D}(A) v=0$.

Proof: For $0 \leq i \leq D-1$ we have

$$
\begin{align*}
p_{i}(A) v & =\left(A_{0}+A_{1}+\cdots+A_{i}\right) v \\
& =\left(E_{0}^{*}+E_{1}^{*}+\cdots+E_{D}^{*}\right)\left(A_{0}+A_{1}+\cdots+A_{i}\right) v \\
& =\sum E_{r}^{*} A_{s} v, \tag{45}
\end{align*}
$$

where the sum is over all integers r, s such that $0 \leq r \leq i+1,0 \leq s \leq i$, and $|r-s| \leq 1$. Cancelling terms in (45) using Lemma 9.2 we obtain (44). Recall $p_{D}(A)=J$ and $J v=0$ so $p_{D}(A) v=0$.

Theorem 9.4 With reference to Definition 4.1, let η denote a real number ($\tilde{\theta}_{1} \leq \eta \leq \tilde{\theta}_{D}$) and let $v \in U_{\eta}$. Then for $0 \leq i \leq D-1$ the vector v_{i} from Definition 8.2 is given as follows.
(i) Suppose $\eta \neq-1$. Then

$$
v_{i}=E_{i+1}^{*} A_{i} v-\sum_{h=1}^{i} \frac{p_{h}(\tilde{\eta})}{p_{i}(\tilde{\eta})} \frac{k_{i} b_{i}}{k_{h} b_{h}}\left(E_{h}^{*} A_{h+1} v-\frac{p_{h-1}(\tilde{\eta}) b_{h}}{p_{h}(\tilde{\eta}) c_{h}} E_{h}^{*} A_{h-1} v\right) .
$$

(ii) Suppose $\eta=-1$. Then

$$
v_{i}=E_{i+1}^{*} A_{i} v-E_{i}^{*} A_{i+1} v
$$

Proof:

(i) On the right-hand side in (41), first eliminate $p_{h}(A) v(0 \leq h \leq i)$ using Lemma 9.3, then rearrange terms, and simplify the result using $E_{0}^{*} A v=0$.
(ii) Combine (42) and (44).

Theorem 9.5 With reference to Definition 4.1, let η denote a real number $\left(\tilde{\theta}_{1} \leq \eta \leq \tilde{\theta}_{D}\right)$ and let $v \in U_{\eta}$. Let $v_{0}, v_{1}, \ldots, v_{D-1}$ denote the corresponding vectors from Definition 8.2. (i) Suppose $\eta \neq-1$. Then for $0 \leq i \leq D-1$,

$$
\left\|v_{i}\right\|^{2}=\left\|E_{i+1}^{*} A_{i} v\right\|^{2}+\sum_{h=1}^{i} \frac{p_{h}^{2}(\tilde{\eta})}{p_{i}^{2}(\tilde{\eta})} \frac{k_{i}^{2} b_{i}^{2}}{k_{h}^{2} b_{h}^{2}}\left\|E_{h}^{*} A_{h+1} v-\frac{p_{h-1}(\tilde{\eta}) b_{h}}{p_{h}(\tilde{\eta}) c_{h}} E_{h}^{*} A_{h-1} v\right\|^{2} .
$$

(ii) Suppose $\eta=-1$. Then for $0 \leq i \leq D-1$,

$$
\left\|v_{i}\right\|^{2}=\left\|E_{i+1}^{*} A_{i} v\right\|^{2}+\left\|E_{i}^{*} A_{i+1} v\right\|^{2} .
$$

Proof: Take the square-norm in Theorem 9.4 and use (28).
In the next two sections we analyze the formulae in Theorem 9.5. In Section 10 we consider these formulae when $\eta=\tilde{\theta}_{1}$ or $\eta=\tilde{\theta}_{D}$. In Section 11 we consider these formulae when $\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}$.

10. The local eigenvalues $\tilde{\theta}_{1}, \tilde{\theta}_{D}$

In this section we consider the implications of Theorem 9.5 in the case $\eta=\tilde{\theta}_{1}$ or $\eta=\tilde{\theta}_{D}$. We acknowledge all the results in the present section appear in [22]. Nevertheless, we will give short proofs to indicate how things follow from Theorem 9.5.

Theorem 10.1 ([22, Lemma 9.4, Theorem 9.6, Theorem 10.5]) With reference to Definition 4.1, let $j=1$ or $j=D$ and define $\eta=\tilde{\theta}_{j}$. Then for all $v \in U_{\eta}$,

$$
\begin{align*}
E_{h}^{*} A_{h+1} v & =\frac{p_{h-1}\left(\theta_{j}\right) b_{h}}{p_{h}\left(\theta_{j}\right) c_{h}} E_{h}^{*} A_{h-1} v \quad(1 \leq h \leq D-1), \tag{46}\\
E_{i+1}^{*} A_{i} v & =\sum_{h=0}^{i} \frac{p_{h}\left(\theta_{j}\right)}{p_{i}\left(\theta_{j}\right)} \frac{k_{i} b_{i}}{k_{h} b_{h}} p_{h}(A) v \quad(0 \leq i \leq D-1), \tag{47}\\
\left\|E_{i+1}^{*} A_{i} v\right\|^{2} & =\frac{p_{i+1}\left(\theta_{j}\right) c_{i+1}}{p_{i}\left(\theta_{j}\right)\left(\theta_{j}+1\right)} \frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\|v\|^{2} \quad(0 \leq i \leq D-1) . \tag{48}
\end{align*}
$$

Moreover both sides of (47) and (48) are 0 for $i=D-1$.
Proof: We assume $v \neq 0$; otherwise the result is trivial. Now $U_{\eta} \neq 0$ so $\eta \in \Phi$. We assume $\eta=\tilde{\theta}_{j}$ so $\eta \neq-1$ by Definition 6.3. Let the vectors $v_{0}, v_{1}, \ldots, v_{D-1}$ be as in (41), with $\eta=\tilde{\theta}_{j}$. Consider the equation in Theorem 9.5(i) for $i=D-1$. Recall $v_{D-1}=0$ by Theorem 8.3 , so both sides are 0 . On the right-hand side each term is nonnegative so each term is 0 . By Lemma 8.1 we find $p_{h}(\tilde{\eta}) \neq 0$ for $1 \leq h \leq D-1$. By (7) we have $k_{D-1} b_{D-1} \neq 0$. From these comments we obtain

$$
\left\|E_{h}^{*} A_{h+1} v-\frac{p_{h-1}\left(\theta_{j}\right) b_{h}}{p_{h}\left(\theta_{j}\right) c_{h}} E_{h}^{*} A_{h-1} v\right\|^{2}=0 \quad(1 \leq h \leq D-1)
$$

and (46) follows. Evaluating the equation in Theorem 9.4(i) using (41) and (46) we obtain (47). Evaluating the equation in Theorem 9.5(i) using (43) and (46) we obtain (48). We mentioned above that $v_{D-1}=0$, and the last assertion of the theorem follows from this.

Theorem 10.2 ([22, Theorem 9.8]) With reference to Definition 4.1, let $j=1$ or $j=D$ and define $\eta=\tilde{\theta}_{j}$. Thenfor all nonzero $v \in U_{\eta}$, the space $M v$ is a thin irreducible T-module with endpoint 1 and local eigenvalue η.

Proof: We first show $M v$ is a T-module. It is clear $M v$ is closed under M. We show $M v$ is closed under M^{*}. We assume $\eta=\tilde{\theta}_{j}$ so $\eta \neq-1$ by Definition 6.3. Let the vectors v_{i} be as in (41), where $\eta=\tilde{\theta}_{j}$. By Theorem 8.3 the vectors $v_{0}, v_{1}, \ldots, v_{D-2}$ form a basis for $M v$. From (47) we find

$$
\begin{equation*}
v_{i}=E_{i+1}^{*} A_{i} v \quad(0 \leq i \leq D-2) \tag{49}
\end{equation*}
$$

Combining this with (26) we find $M v$ is closed under M^{*}. Recall M and M^{*} generate T so $M v$ is a T-module. We show $M v$ is irreducible. From (49) and since the v_{i} form a basis for $M v$, we find v is a basis for $E_{1}^{*} M v$. In particular $E_{1}^{*} M v$ has dimension 1 . Since $M v$ is a T-module it is a direct sum of irreducible T-modules. It follows there exists an irreducible T-module W^{\prime} such that $W^{\prime} \subseteq M v$ and such that $E_{1}^{*} W^{\prime} \neq 0$. We show $W^{\prime}=M v$. Observe $E_{1}^{*} W^{\prime} \subseteq E_{1}^{*} M v$, and we mentioned $E_{1}^{*} M v$ has dimension 1, so $E_{1}^{*} W^{\prime}=E_{1}^{*} M v$. Now apparently $v \in E_{1}^{*} W^{\prime}$. Observe W^{\prime} is M-invariant, so $M v \subseteq W^{\prime}$, and it follows $W^{\prime}=M v$. In particular $M v$ is irreducible. We mentioned the vectors (49) form a basis for $M v$. It follows $E_{i}^{*} M v$ is 0 for $i \in\{0, D\}$ and has dimension 1 for $1 \leq i \leq D-1$. Apparently $M v$ is thin with endpoint 1 . We mentioned v is a basis for $E_{1}^{*} M v$. From the construction v is an eigenvector for $E_{1}^{*} A E_{1}^{*}$ with eigenvalue η. It follows $M v$ has local eigenvalue η.

Corollary 10.3 ([22, Lemma 11.2]) With reference to Definition 4.1, let $j=1$ or $j=D$ and define $\eta=\tilde{\theta}_{j}$. Then $U_{\eta}=E_{1}^{*} H_{\eta}$, where H_{η} is from Lemma 7.3.

Proof: The inclusion $U_{\eta} \supseteq E_{1}^{*} H_{\eta}$ is from Lemma 7.3. We now show $U_{\eta} \subseteq E_{1}^{*} H_{\eta}$. We assume $U_{\eta} \neq 0$; otherwise the result is trivial. Let v denote a nonzero vector in U_{η}. We show $v \in E_{1}^{*} H_{\eta}$. By Theorem 10.2 we find $M v$ is a thin irreducible T-module with endpoint 1 and local eigenvalue η, so $M v \subseteq H_{\eta}$. Of course $v \in M v$ so $v \in H_{\eta}$. From the construction $v \in E_{1}^{*} V$ so $v=E_{1}^{*} v$. It follows $v \in E_{1}^{*} H_{\eta}$. We have now shown $U_{\eta} \subseteq E_{1}^{*} H_{\eta}$ and the result follows.

11. The local eigenvalues $\eta\left(\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}\right)$

In this section we consider the implications of Theorem 9.5 for the case $\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}$.
Lemma 11.1 With reference to Definition 4.1, let η denote a real number $\left(\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}\right)$ and let $v \in U_{\eta}$.
(i) Suppose $\eta \neq-1$. Then for $0 \leq i \leq D-1$,

$$
\begin{equation*}
\left\|E_{i+1}^{*} A_{i} v\right\|^{2} \leq \frac{p_{i+1}(\tilde{\eta}) c_{i+1}}{p_{i}(\tilde{\eta})(\tilde{\eta}+1)} \frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\|v\|^{2} . \tag{50}
\end{equation*}
$$

(ii) Suppose $\eta=-1$. Then for $0 \leq i \leq D-1$,

$$
\begin{equation*}
\left\|E_{i+1}^{*} A_{i} v\right\|^{2} \leq \frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}}\|v\|^{2} . \tag{51}
\end{equation*}
$$

Proof: Combine Theorems 8.4 and 9.5.
We now consider the case of equality in (50) or (51).

Lemma 11.2 With reference to Definition 4.1, let η denote a real number $\left(\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}\right)$ and let $v \in U_{\eta}$. First assume $\eta \neq-1$. Then for $0 \leq i \leq D-1$ the following (i)-(iii) are equivalent.
(i) Equality holds in (50).
(ii) $E_{h}^{*} A_{h+1} v=\frac{p_{h-1}(\tilde{\eta}) b_{h}}{p_{h}(\tilde{\eta}) c_{h}} E_{h}^{*} A_{h-1} v \quad(1 \leq h \leq i)$.
(iii) $E_{i+1}^{*} A_{i} v=\sum_{h=0}^{i} \frac{p_{h}(\tilde{\eta})}{p_{i}(\tilde{\eta})} \frac{k_{i} b_{i}}{k_{h} b_{h}} p_{h}(A) v$.

Next assume $\eta=-1$. Then for $0 \leq i \leq D-1$ the following (i')-(iii') are equivalent.
(i') Equality holds in (51).
(ii') $E_{i}^{*} A_{i+1} v=0$.
(iii') $E_{i+1}^{*} A_{i} v=p_{i}(A) v$.
Proof: First assume $\eta \neq-1$.
(i) \Rightarrow (ii) Let the vector v_{i} be as in (41). We assume equality in (50); combining this with (43) we find $\left\|v_{i}\right\|^{2}=\left\|E_{i+1}^{*} A_{i} v\right\|^{2}$. Therefore in the equation of Theorem 9.5(i), in the sum on the right each term is 0 . We examine these terms. By Lemma 8.1 we find $p_{h}(\tilde{\eta}) \neq 0$ for $1 \leq h \leq i$. By (7) we have $k_{i} b_{i} \neq 0$. From these comments we obtain

$$
\left\|E_{h}^{*} A_{h+1} v-\frac{p_{h-1}(\tilde{\eta}) b_{h}}{p_{h}(\tilde{\eta}) c_{h}} E_{h}^{*} A_{h-1} v\right\|^{2}=0 \quad(1 \leq h \leq i)
$$

and the result follows.
(ii) \Rightarrow (iii) Evaluate the equation of Theorem 9.4(i) using (41).
(iii) \Rightarrow (i). Let the vector v_{i} be as in (41). We assume $E_{i+1}^{*} A_{i} v=v_{i}$ so $\left\|E_{i+1}^{*} A_{i} v\right\|^{2}=\left\|v_{i}\right\|^{2}$. Combining this with (43) we obtain equality in (50).

The proof for the case $\eta=-1$ is similar, and omitted.

12. Stable vectors

In Lemma 11.1 we obtained a sequence of inequalities. In this section we consider the case when equality is attained in each of the inequalities. In order to treat this case we make a definition.

Definition 12.1 With reference to Definition 4.1, let η denote a real number $\left(\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}\right)$ and let $v \in U_{\eta}$. We define what it means for v to be stable. First assume $\eta \neq-1$. Then we say v is stable whenever

$$
\begin{equation*}
E_{i}^{*} A_{i+1} v=\frac{p_{i-1}(\tilde{\eta}) b_{i}}{p_{i}(\tilde{\eta}) c_{i}} E_{i}^{*} A_{i-1} v \quad(1 \leq i \leq D-1) \tag{52}
\end{equation*}
$$

Next assume $\eta=-1$. Then we say v is stable whenever

$$
\begin{equation*}
E_{i}^{*} A_{i+1} v=0 \quad(1 \leq i \leq D-1) \tag{53}
\end{equation*}
$$

Lemma 12.2 With reference to Definition 4.1, let η denote a real number $\left(\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}\right)$. Then the set of stable vectors in U_{η} is a subspace of U_{η}.

Proof: Let v denote a stable vector in U_{η} and let α denote a complex scalar. Then αv is a stable vector in U_{η}. Let v^{\prime} denote a stable vector in U_{η}. Then $v+v^{\prime}$ is a stable vector in U_{η}.

Lemma 12.3 With reference to Definition 4.1, let η denote a real number $\left(\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}\right)$ and let $v \in U_{\eta}$. If $\eta \neq-1$ then the following (i)-(iii) are equivalent.
(i) Equality holds in (50) for $0 \leq i \leq D-1$.
(ii) Equality holds in (50) for $i=D-1$.
(iii) v is stable.

If $\eta=-1$ then the following (i^{\prime})-(iii') are equivalent.
(i') Equality holds in (51) for $0 \leq i \leq D-1$.
(ii') Equality holds in (51) for $i=D-1$.
(iii') v is stable.
Proof: First assume $\eta \neq-1$.
(i) \Rightarrow (ii) Clear.
(ii) \Rightarrow (iii) Observe Lemma 11.2(i) holds at $i=D-1$ so Lemma 11.2(ii) holds at $i=D-1$. Therefore (52) holds so v is stable by Definition 2.1.
(iii) \Rightarrow (i) The vector v is stable so (52) holds. Apparently Lemma 11.2(ii) holds for $0 \leq$ $i \leq D-1$ so equality holds in (50) for $0 \leq i \leq D-1$.

Now assume $\eta=-1$.
(i') \Rightarrow (ii') Clear.
(ii') \Rightarrow (iii') Applying Lemma 11.2(i'),(ii') at $i=D-1$, we find $E_{D-1}^{*} A_{D} v=0$. We claim

$$
\begin{equation*}
E_{i}^{*} A_{i+1} v=0 \quad(0 \leq i \leq D-1) \tag{54}
\end{equation*}
$$

To obtain (54) we use the equation

$$
\begin{equation*}
E_{i-1}^{*} A E_{i}^{*} A_{i+1} E_{1}^{*}=b_{i} E_{i-1}^{*} A_{i} E_{1}^{*} \quad(1 \leq i \leq D-1) \tag{55}
\end{equation*}
$$

To verify (55), observe corresponding entries agree. Indeed for all $y, z \in X$, on either side of (55) the $y z$ entry is equal to b_{i} if $\partial(x, y)=i-1, \partial(x, z)=1, \partial(y, z)=i$, and 0 otherwise. We now have (55). Applying (55) to v we find

$$
E_{i-1}^{*} A E_{i}^{*} A_{i+1} v=b_{i} E_{i-1}^{*} A_{i} v \quad(1 \leq i \leq D-1)
$$

Apparently

$$
E_{i}^{*} A_{i+1} v=0 \rightarrow E_{i-1}^{*} A_{i} v=0 \quad(1 \leq i \leq D-1)
$$

and (54) follows. Now (53) holds so v is stable by Definition 12.1.
(iii') $\Rightarrow\left(\mathrm{i}^{\prime}\right)$ We show equality holds in (51) for $0 \leq i \leq D-1$. Let i be given. We assume $i \geq 1$; otherwise the result is trivial. Observe $E_{i}^{*} A_{i+1} v=0$ by (53) and since v is stable. Applying Lemma 11.2 (i^{\prime}), (ii') we find equality holds in (51).

In the next two lemmas we present several more characterizations of the stable condition.
Lemma 12.4 With reference to Definition 4.1, let η denote a real number $\left(\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}\right)$ and let $v \in U_{\eta}$. If $\eta \neq-1$ then the following (i)-(iii) are equivalent.
(i) $E_{i+1}^{*} A_{i} v=\sum_{h=0}^{i} \frac{p_{h}(\tilde{\eta})}{p_{i}(\tilde{\eta})} \frac{k_{i} b_{i}}{k_{h} b_{h}} p_{h}(A) v \quad(0 \leq i \leq D-1)$.
(ii) $E_{D}^{*} A_{D-1} v=\sum_{h=0}^{D-1} \frac{p_{h}(\tilde{\eta})}{p_{D-1}(\tilde{\eta})} \frac{k_{D-1} b_{D-1}}{k_{h} b_{h}} p_{h}(A) v$.
(iii) v is stable.

If $\eta=-1$ then the following (i^{\prime})-(iii') are equivalent.
(i') $E_{i+1}^{*} A_{i} v=p_{i}(A) v \quad(0 \leq i \leq D-1)$.
(ii') $E_{D}^{*} A_{D-1} v=p_{D-1}(A) v$.
(iii') v is stable.
Proof: First assume $\eta \neq-1$.
(i) \Rightarrow (ii) Clear.
(ii) \Rightarrow (iii) Observe Lemma 11.2(iii) holds at $i=D-1$ so Lemma 11.2(ii) holds at $i=D-1$. Now (52) holds so v is stable by Definition 12.1.
(iii) \Rightarrow (i) The vector v is stable so (52) holds. Apparently Lemma 11.2(ii) holds for $0 \leq$ $i \leq D-1$ so Lemma 11.2 (iii) holds for $0 \leq i \leq D-1$. The result follows.

Now assume $\eta=-1$.
(i') \Rightarrow (ii') Clear.
(ii') \Rightarrow (iii') Observe Lemma 11.2 (iii') holds at $i=D-1$ so equality holds in (51) at $i=D-1$. Applying Lemma 12.3(ii'), (iii') we find v is stable.
(iii') $\Rightarrow\left(\mathrm{i}^{\prime}\right)$ We show $E_{i+1}^{*} A_{i} v=p_{i}(A) v$ for $0 \leq i \leq D-1$. Let the integer i be given. We assume $i \geq 1$; otherwise the result is trivial. Observe $E_{i}^{*} A_{i+1} v=0$ by (53) and since v is stable. Applying Lemma 11.2(ii'), (iii') we find $E_{i+1}^{*} A_{i} v=p_{i}(A) v$.

Theorem 12.5 With reference to Definition 4.1, let η denote a scalar in $\Phi\left(\eta \neq \tilde{\theta}_{1}\right.$, $\eta \neq \tilde{\theta}_{D}$). Then for all nonzero $v \in U_{\eta}$ the following (i), (ii) are equivalent.
(i) v is stable.
(ii) v is contained in a thin irreducible T-module with endpoint 1 and local eigenvalue η.

Proof: (i) \Rightarrow (ii): We show $M v$ is a thin irreducible T-module with endpoint 1 and local eigenvalue η. We first show $M v$ is a T-module. It is clear $M v$ is closed under M. We show $M v$ is closed under M^{*}. Let the vectors $v_{0}, v_{1}, \ldots, v_{D-1}$ be as in Definition 8.2. By Theorem 8.3 we find $v_{0}, v_{1}, \ldots, v_{D-1}$ is a basis for $M v$. We assume v is stable, so by Lemma 12.4 we find

$$
\begin{equation*}
v_{i}=E_{i+1}^{*} A_{i} v \quad(0 \leq i \leq D-1) \tag{56}
\end{equation*}
$$

Combining (56) and (26) we see $M v$ is closed under M^{*}. Recall M and M^{*} generate T so $M v$ is a T-module. We show $M v$ is irreducible. By (56) and since the v_{i} form a basis for $M v$, we see v is a basis for $E_{1}^{*} M v$. In particular $E_{1}^{*} M v$ has dimension 1 . Since $M v$ is a T-module it is a direct sum of irreducible T-modules. It follows there exists an irreducible T-module W^{\prime} such that $W^{\prime} \subseteq M v$ and such that $E_{1}^{*} W^{\prime} \neq 0$. We show $W^{\prime}=M v$. Observe $E_{1}^{*} W^{\prime} \subseteq E_{1}^{*} M v$, and we mentioned $E_{1}^{*} M v$ has dimension 1 , so $E_{1}^{*} W^{\prime}=E_{1}^{*} M v$. Now apparently $v \in E_{1}^{*} W^{\prime}$. Observe W^{\prime} is M-invariant, so $M v \subseteq W^{\prime}$, and it follows $W^{\prime}=M v$. In particular $M v$ is irreducible. We mentioned the vectors in (56) form a basis for $M v$. It follows $E_{i}^{*} M v$ is 0 for $i=0$ and has dimension 1 for $1 \leq i \leq D$. Apparently $M v$ is thin with endpoint 1 . We mentioned v is a basis for $E_{1}^{*} M v$. From the construction v is an eigenvector for $E_{1}^{*} A E_{1}^{*}$ with eigenvalue η. It follows $M v$ has local eigenvalue η.
(ii) \Rightarrow (i): To show v is stable we apply Lemma 12.4. We show v satisfies Lemma 12.4(i) if $\eta \neq-1$ and Lemma 12.4(i') if $\eta=-1$. To do this, let the vectors $v_{0}, v_{1}, \ldots, v_{D-1}$ be as in Definition 8.2. We show $E_{i+1}^{*} A_{i} v=v_{i}$ for $0 \leq i \leq D-1$. By assumption v is contained in a thin irreducible T-module with endpoint 1 and local eigenvalue η. We denote this module by W. By (31) we find $A^{i} v$ is contained in $E_{1}^{*} W+\cdots+E_{i+1}^{*} W$ for $0 \leq i \leq D-1$. Also for $0 \leq i \leq D-1, v_{i}$ is a linear combination of $v, A v, \ldots, A^{i} v$, so v_{i} is contained in $E_{1}^{*} W+\cdots+E_{i+1}^{*} W$. By this and since $v_{0}, v_{1}, \ldots, v_{D-1}$ are linearly independent, we find

$$
\begin{equation*}
v_{0}, v_{1}, \ldots, v_{i} \text { is a basis for } E_{1}^{*} W+E_{2}^{*} W+\cdots+E_{i+1}^{*} W \quad(0 \leq i \leq D-1) \tag{57}
\end{equation*}
$$

For the rest of this proof, fix an integer $i(0 \leq i \leq D-1)$. We show v_{i} is contained in $E_{i+1}^{*} W$. To see this, recall $E_{1}^{*} W, \ldots, E_{D}^{*} W$ are mutually orthogonal. Therefore $E_{i+1}^{*} W$ is the orthogonal complement of $E_{1}^{*} W+\cdots+E_{i}^{*} W$ in $E_{1}^{*} W+\cdots+E_{i+1}^{*} W$. Recall v_{i} is orthogonal to each of $v_{0}, v_{1}, \ldots, v_{i-1}$. By (57) the vectors $v_{0}, v_{1}, \ldots, v_{i-1}$ form a basis for $E_{1}^{*} W+\cdots+E_{i}^{*} W$, so v_{i} is orthogonal to $E_{1}^{*} W+\cdots+E_{i}^{*} W$. Apparently v_{i} is contained in $E_{i+1}^{*} W$, as desired. We show $E_{i+1}^{*} A_{i} v=v_{i}$. We mentioned the vector v_{i} is a linear combination of $v, A v, \ldots, A^{i} v$. In this combination the coefficient of $A^{i} v$ is $\left(c_{1} c_{2} \cdots c_{i}\right)^{-1}$ in view of our comments below (21). Similarly $A_{i} v$ is a linear combination of $v, A v, \ldots, A^{i} v$, and in this combination the coefficient of $A^{i} v$ is $\left(c_{1} c_{2} \cdots c_{i}\right)^{-1}$. Apparently $A_{i} v-v_{i}$ is a linear combination of $v, A v, \ldots, A^{i-1} v$. From this and our above comments $A_{i} v-v_{i}$ is contained in $E_{1}^{*} W+\cdots+E_{i}^{*} W$, so $E_{i+1}^{*}\left(A_{i} v-v_{i}\right)=0$. We already showed $v_{i} \in E_{i+1}^{*} W$ so $E_{i+1}^{*} v_{i}=v_{i}$. Now apparently $E_{i+1}^{*} A_{i} v=v_{i}$. We have now shown v satisfies Lemma 12.4(i) if $\eta \neq-1$ and Lemma 12.4(i') if $\eta=-1$. Applying that lemma we find v is stable.

Corollary 12.6 With reference to Definition 4.1, let η denote a real number $\left(\tilde{\theta}_{1}<\eta<\tilde{\theta}_{D}\right)$. Then the set of stable vectors in U_{η} is equal to $E_{1}^{*} H_{\eta}$, where H_{η} is from Lemma 7.3.

Proof: Assume $\eta \in \Phi$; otherwise U_{η} and H_{η} are both 0 . Let U_{η}^{\prime} denote the set of stable vectors in U_{η}. We show $U_{\eta}^{\prime}=E_{1}^{*} H_{\eta}$. We first show $U_{\eta}^{\prime} \subseteq E_{1}^{*} H_{\eta}$. Assume $U_{\eta}^{\prime} \neq 0$; otherwise the result is trivial. Let v denote a nonzero vector in U_{η}^{\prime}. We show $v \in E_{1}^{*} H_{\eta}$. By Theorem 12.5, v is contained in a thin irreducible T-module with endpoint 1 and local eigenvalue η. This module is contained in H_{η} so $v \in H_{\eta}$. By construction $v \in E_{1}^{*} V$ so $v=E_{1}^{*} v$. It follows $v \in E_{1}^{*} H_{\eta}$. We have now shown $U_{\eta}^{\prime} \subseteq E_{1}^{*} H_{\eta}$. We now show $U_{\eta}^{\prime} \supseteq$ $E_{1}^{*} H_{\eta}$. Observe $E_{1}^{*} H_{\eta}$ is spanned by the $E_{1}^{*} W$, where W ranges over all thin irreducible T-modules with endpoint 1 and local eigenvalue η. For all such W the space $E_{1}^{*} W$ is contained in U_{η}^{\prime} by Theorem 12.5. It follows $U_{\eta}^{\prime} \supseteq E_{1}^{*} H_{\eta}$. We have now shown $U_{\eta}^{\prime}=$ $E_{1}^{*} H_{\eta}$.

13. The main results

In this section we prove the main results of the paper, which are Theorems 13.5 and 13.6. To prepare for these results we make a definition.

With reference to Definition 4.1, let η denote an element of Φ and observe

$$
V=U_{\eta}+U_{\eta}^{\perp} \quad(\text { orthogonal direct sum }),
$$

where U_{η}^{\perp} denotes the orthogonal complement of U_{η} in V. Let F_{η} denote the matrix in Mat ${ }_{X}(\mathbb{C})$ such that $F_{\eta}-I$ vanishes on U_{η} and such that F_{η} vanishes on U_{η}^{\perp}. In other words F_{η} is the orthogonal projection from V onto U_{η}. We make a few observations about F_{η}. We claim $F_{\eta}^{t}=\bar{F}_{\eta}$. To see this observe $\left\langle F_{\eta} u, v\right\rangle=\left\langle F_{\eta} u, F_{\eta} v\right\rangle$ for all $u, v \in V$. From this and (2) we find $F_{\eta}^{t}=F_{\eta}^{t} \bar{F}_{\eta}$. Taking the conjugate-transpose of this we find $\bar{F}_{\eta}=F_{\eta}^{t} \bar{F}_{\eta}$ so $F_{\eta}^{t}=\bar{F}_{\eta}$. Let y denote a vertex in X such that $\partial(x, y) \neq 1$. We claim $F_{\eta} \hat{y}=0$. To see this, observe \hat{y} is orthogonal to $E_{1}^{*} V$ and $U_{\eta} \subseteq E_{1}^{*} V$ so $\hat{y} \in U_{\eta}^{\perp}$. Now $F_{\eta} \hat{y}=0$ by the definition of F_{η}.

Lemma 13.1 With reference to Definition 4.1, for $0 \leq i \leq D-1$ we have

$$
\begin{equation*}
0=\sum_{\substack{y \in X \\ \partial(x, y)=1}}\left(\left\|E_{i+1}^{*} A_{i} \hat{y}\right\|^{2}-\left\|E_{i+1}^{*} A_{i} \varphi_{0} \hat{y}\right\|^{2}-\sum_{\eta \in \Phi}\left\|E_{i+1}^{*} A_{i} F_{\eta} \hat{y}\right\|^{2}\right), \tag{58}
\end{equation*}
$$

where φ_{0} is from (36).
Proof: In view of (37),

$$
\begin{equation*}
E_{1}^{*}=\varphi_{0} E_{1}^{*}+\sum_{\eta \in \Phi} F_{\eta} \tag{59}
\end{equation*}
$$

Applying $E_{i+1}^{*} A_{i}$ to each term in (59) we obtain

$$
\begin{equation*}
E_{i+1}^{*} A_{i} E_{1}^{*}=E_{i+1}^{*} A_{i} \varphi_{0} E_{1}^{*}+\sum_{\eta \in \Phi} E_{i+1}^{*} A_{i} F_{\eta} \tag{60}
\end{equation*}
$$

For all $Y, Z \in \operatorname{Mat}_{X}(\mathbb{C})$ let (Y, Z) denote the trace of $Y \bar{Z}^{t}$. We observe $($, $)$ is a positive definite Hermitean form on $\operatorname{Mat}_{X}(\mathbb{C})$. We claim that in (60) the terms to the right of the equals sign are mutually orthogonal with respect to (,). To see this, observe that for $\eta \in \Phi$ we have $\varphi_{0} E_{1}^{*} F_{\eta}=0$. It follows $E_{i+1}^{*} A_{i} \varphi_{0} E_{1}^{*}$ and $E_{i+1}^{*} A_{i} F_{\eta}$ are orthogonal with respect to (,). Further observe that for distinct $\eta, \eta^{\prime} \in \Phi$ we have $F_{\eta} F_{\eta^{\prime}}=0$ in view of (37). It follows $E_{i+1}^{*} A_{i} F_{\eta}$ and $E_{i+1}^{*} A_{i} F_{\eta^{\prime}}$ are orthogonal with respect to (,). We have now shown that in (60), the terms to the right of the equals sign are mutually orthogonal with respect to (,). It follows

$$
\begin{equation*}
\left\|E_{i+1}^{*} A_{i} E_{1}^{*}\right\|^{2}=\left\|E_{i+1}^{*} A_{i} \varphi_{0} E_{1}^{*}\right\|^{2}+\sum_{\eta \in \Phi}\left\|E_{i+1}^{*} A_{i} F_{\eta}\right\|^{2} \tag{61}
\end{equation*}
$$

where we abbreviate $\|Z\|^{2}=(Z, Z)$ for all $Z \in \operatorname{Mat}_{X}(\mathbb{C})$. To obtain (58) from (61) we observe $\|Z\|^{2}=\sum_{y \in X}\|Z \hat{y}\|^{2}$ for all $Z \in \operatorname{Mat}_{X}(\mathbb{C})$. Evaluating (61) using this we routinely obtain (58).

In the next few lemmas we evaluate the terms in (58).
Lemma 13.2 With reference to Definition 4.1, let y denote a vertex in X such that $\partial(x, y)=1$. Then

$$
\begin{equation*}
\left\|E_{i+1}^{*} A_{i} \hat{y}\right\|^{2}=\frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}} \quad(0 \leq i \leq D-1) \tag{62}
\end{equation*}
$$

Proof: Observe $E_{i+1}^{*} A_{i} \hat{y}=\sum \hat{z}$, where the sum is over all vertices $z \in X$ such that $\partial(x, z)=i+1$ and $\partial(y, z)=i$. There are $p_{i, i+1}^{1}$ such vertices, so (62) follows in view of (8).

Lemma 13.3 With reference to Definition 4.1, let y denote a vertex in X such that $\partial(x, y)=1$. Then for $0 \leq i \leq D-1$ we have

$$
\begin{equation*}
E_{i+1}^{*} A_{i} \varphi_{0} \hat{y}=c_{i+1} k^{-1} s_{i+1} \tag{63}
\end{equation*}
$$

where s_{i+1} is from (34) and φ_{0} is from (36). Moreover

$$
\begin{equation*}
\left\|E_{i+1}^{*} A_{i} \varphi_{0} \hat{y}\right\|^{2}=\frac{b_{1} b_{2} \cdots b_{i}}{c_{1} c_{2} \cdots c_{i}} \frac{c_{i+1}}{k} \tag{64}
\end{equation*}
$$

Proof: To get (63) observe $\varphi_{0} \hat{y}=k^{-1} s_{1}$ by (36). Also $s_{1}=A \hat{x}$, so $\varphi_{0} \hat{y}=k^{-1} A \hat{x}$. Evaluating the left-hand side of (63) using this, and simplifying the result using (19), we routinely obtain the right-hand side of (63). We now have (63). To get (64) take the square norm in (63) and evaluate the result using $\left\|s_{j}\right\|^{2}=k_{j}$ and (7).

Referring to (58), so far we have evaluated the terms on the left and in the middle. To evaluate the terms on the right we will use (48), Lemma 11.1, and the following result.

Lemma 13.4 With reference to Definition 4.1, for all $\eta \in \Phi$ we have

$$
\begin{equation*}
\sum_{\substack{y \in X \\ \partial(x, y)=1}}\left\|F_{\eta} \hat{y}\right\|^{2}=\text { mult }_{\eta} \tag{65}
\end{equation*}
$$

Proof: We show both sides of (65) equal the trace of F_{η}. We start with the left-hand side. Let y denote any vertex in X. Observe the $y y$ entry of $F_{\eta}^{t} \bar{F}_{\eta}$ is equal to $\left\|F_{\eta} \hat{y}\right\|^{2}$. We mentioned earlier $F_{\eta}^{t}=F_{\eta}^{t} \bar{F}_{\eta}$. Combining these facts we find the $y y$ entry of F_{η} is equal to $\left\|F_{\eta} \hat{y}\right\|^{2}$. Recall $F_{\eta} \hat{y}=0$ if $\partial(x, y) \neq 1$. From these comments we find the left-hand side of (65) is equal to the trace of F_{η}. We show the right-hand side of (65) is equal to the trace of F_{η}. Recall F_{η} is the orthogonal projection from V onto U_{η}. Therefore U_{η} is an eigenspace for F_{η} with eigenvalue 1 and U_{η}^{\perp} is an eigenspace for F_{η} with eigenvalue 0 . Since the trace of F_{η} is equal to the sum of its eigenvalues, we see the trace of F_{η} is equal to the dimension of U_{η}. This dimension is just mult ${ }_{\eta}$. We have now shown the right-hand side of (65) is equal to the trace of F_{η}. The result follows.

Evaluating the terms in (58) using our above comments we obtain the following theorem.
Theorem 13.5 With reference to Definition 4.1, for $1 \leq i \leq D-1$ we have

$$
\begin{equation*}
1+\sum_{\substack{n \in \Phi \\ \eta \neq-1}} \frac{p_{i-1}(\tilde{\eta})}{p_{i}(\tilde{\eta})(1+\tilde{\eta})} \operatorname{mult}_{\eta} \leq \frac{k}{b_{i}} \tag{66}
\end{equation*}
$$

(The polynomials p_{i} are from Lemma 3.1 and the scalars $\tilde{\eta}$ are from Definition 6.3. The set Φ and the scalars mult ${ }_{\eta}$ are from Definition 6.2.)

Proof: Let the integer i be given. We evaluate the terms in (58). The terms on the left are found in Lemma 13.2. The terms in the middle are found in (64). We now consider the terms on the right. Let y denote a vertex in X such that $\partial(x, y)=1$, and pick any $\eta \in \Phi$. We evaluate $\left\|E_{i+1}^{*} A_{i} F_{\eta} \hat{y}\right\|^{2}$. First suppose $\eta=\tilde{\theta}_{1}$ or $\eta=\tilde{\theta}_{D}$. Then $\left\|E_{i+1}^{*} A_{i} F_{\eta} \hat{y}\right\|^{2}$ is obtained by setting $v=F_{\eta} \hat{y}$ in (48). Next suppose $\eta \neq \tilde{\theta}_{1}$ and $\eta \neq \tilde{\theta}_{D}$. In this case we obtain an upper bound for $\left\|E_{i+1}^{*} A_{i} F_{\eta} \hat{y}\right\|^{2}$ by setting $v=F_{\eta} \hat{y}$ in Lemma 11.1. Evaluating (58) using these comments, and simplifying the result using Lemma 13.4, we find

$$
\begin{equation*}
k \leq c_{i+1}+\text { mult }_{-1}+\sum_{\substack{\eta \in \Phi \\ \eta \neq-1}} \frac{p_{i+1}(\tilde{\eta}) c_{i+1}}{p_{i}(\tilde{\eta})(1+\tilde{\eta})} \text { mult }_{\eta} \tag{67}
\end{equation*}
$$

We simplify (67) a bit. Let $\eta \in \Phi$ and assume $\eta \neq-1$. Setting $\lambda=\tilde{\eta}$ in Lemma 3.1 we find

$$
\begin{equation*}
\tilde{\eta} p_{i}(\tilde{\eta})=c_{i+1} p_{i+1}(\tilde{\eta})+\left(a_{i}-c_{i+1}+c_{i}\right) p_{i}(\tilde{\eta})+b_{i} p_{i-1}(\tilde{\eta}) . \tag{68}
\end{equation*}
$$

Dividing (68) by $p_{i}(\tilde{\eta})$ we find

$$
\begin{equation*}
\frac{p_{i+1}(\tilde{\eta}) c_{i+1}}{p_{i}(\tilde{\eta})}=\tilde{\eta}-a_{i}+c_{i+1}-c_{i}-\frac{p_{i-1}(\tilde{\eta}) b_{i}}{p_{i}(\tilde{\eta})} \tag{69}
\end{equation*}
$$

Evaluating the right-hand side of (67) using (69), and simplifying the result using Lemma 6.7 we routinely obtain (66).

We now consider the case of equality in (66).

Theorem 13.6 With reference to Definition 4.1, the following (i)-(iii) are equivalent.
(i) Equality holds in (66) for $1 \leq i \leq D-1$.
(ii) Equality holds in (66) for $i=D-1$.
(iii) Every irreducible T-module with endpoint 1 is thin.

Proof: (i) \Rightarrow (ii): Clear.
(ii) \Rightarrow (iii): By Theorem 7.7 it suffices to show equality holds in (39) for all $\eta \in \mathbb{R}$. Let η be given. We show $U_{\eta}=E_{1}^{*} H_{\eta}$. Assume $\eta \in \Phi$; otherwise U_{η} and H_{η} are both 0 . We assume $\eta \neq \tilde{\theta}_{1}, \eta \neq \tilde{\theta}_{D}$; otherwise we are done by Corollary 10.3. By the construction $U_{\eta} \supseteq E_{1}^{*} H_{\eta}$; we show $U_{\eta} \subseteq E_{1}^{*} H_{\eta}$. Since $U_{\eta}=F_{\eta} V$, and since the vectors $\{\hat{y} \mid y \in X\}$ span V, it suffices to show $F_{\eta} \hat{y} \in E_{1}^{*} H_{\eta}$ for all $y \in X$. Let the vertex y be given. We assume $F_{\eta} \hat{y} \neq 0$; otherwise the result is trivial. Observe $\partial(x, y)=1$; otherwise $F_{\eta} \hat{y}=0$. By Corollary 12.6 the set $E_{1}^{*} H_{\eta}$ consists of all the stable vectors in U_{η}. To show $F_{\eta} \hat{y} \in E_{1}^{*} H_{\eta}$ we show $F_{\eta} \hat{y}$ is stable. To do this we examine the proof of Theorem 13.5. We must have equality in (67) for $i=D-1$. From the discussion above (67), we find that if $\eta \neq-1$ then equality holds in (50) for $i=D-1$ and $v=F_{\eta} \hat{y}$. Similarly if $\eta=-1$ then equality holds in (51) for $i=D-1$ and $v=F_{\eta} \hat{y}$. Applying Lemma 12.3 we find $F_{\eta} \hat{y}$ is stable as desired. (iii) \Rightarrow (i): We show equality holds in (66) for $1 \leq i \leq D-1$. To do this we examine the proof of Theorem 13.5. Apparently it suffices to show (67) holds with equality for $1 \leq i \leq D-1$. Pick any vertex $y \in X$ such that $\partial(x, y)=1$. Pick any $\eta \in \Phi$ and assume $\bar{\eta} \neq \tilde{\theta}_{1}, \eta \neq \tilde{\theta}_{D}$. Recall $F_{\eta} V=U_{\eta}$ so $F_{\eta} \hat{y} \in U_{\eta}$. By assumption and Theorem 7.7 we have $U_{\eta}=E_{1}^{*} H_{\eta}$. Now apparently $F_{\eta} \hat{y} \in E_{1}^{*} H_{\eta}$. By this and Corollary 12.6 we find $F_{\eta} \hat{y}$ is stable. Suppose for the moment $\eta \neq-1$. Applying Lemma 12.3(i),(iii) we find equality holds in (50) for $v=F_{\eta} \hat{y}$ and $1 \leq i \leq D-1$. Next suppose $\eta=-1$. Applying Lemma $12.3\left(\mathrm{i}^{\prime}\right.$),(iii') we find equality holds in (51) for $v=F_{\eta} \hat{y}$ and $1 \leq i \leq D-1$. From these comments and from the discussion above (67), we find equality holds in (67) for $1 \leq i \leq D-1$. It follows equality holds in (66) for $1 \leq i \leq D-1$.

14. An example

We illustrate the results of this paper for the Johnson graph $J(D, N)$ [4, p. 255]. This graph is defined as follows. Let D and N denote integers with $D \geq 3$ and $N>2 D$. Let Ω denote a set with cardinality N. The Johnson graph $J(D, N)$ has vertex set consisting of all subsets of Ω that have cardinality D. Let y, z denote vertices of $J(D, N)$. Then y, z are adjacent in $J(D, N)$ whenever the cardinality of $y \cap z$ is $D-1$. It is routine to check $J(D, N)$ is distance-regular with diameter D and intersection numbers

$$
c_{i}=i^{2}, \quad a_{i}=i(N-2 i), \quad b_{i}=(D-i)(N-D-i)
$$

for $0 \leq i \leq D$. Since $k=b_{0}$ we find $k=D(N-D)$. Let $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$ denote the eigenvalues of $J(D, N)$. It is known $\theta_{i}=(D-i)(N-D-i)-i$ for $0 \leq i \leq D[4$, p. 256]. In particular $\theta_{1}=D(N-D)-N$ and $\theta_{D}=-D$. Using this and Definition 6.3 we find $\tilde{\theta}_{1}=-2$ and $\tilde{\theta}_{D}=N-D-2$.

Let X denote the vertex set of $J(D, N)$ and fix $x \in X$. We compute the corresponding set Φ from Definition 6.2. Let Δ denote the vertex-subgraph of $J(D, N)$ induced on the set of vertices in X adjacent x. One finds Δ is the Cartesian product of complete graphs $K_{D} \times K_{N-D}$. Apparently the eigenvalues of Δ are $N-2$ (with multiplicity 1), $N-D-2$ (with multiplicity $D-1$), $D-2$ (with multiplicity $N-D-1$), and -2 (with multiplicity $(D-1)(N-D-1))$. Since the multiplicity of $N-2$ as an eigenvalue for Δ is 1 , we find Φ consists of the three scalars $N-D-2, D-2,-2$.

In the table below we display the elements η of Φ. For each $\eta \in \Phi$ we display the scalars mult $_{\eta}$ and $\tilde{\eta}$, along with the coefficient of mult ${ }_{\eta}$ from (66).

η	mult $_{\eta}$	$\tilde{\eta}$	$\frac{p_{i-1}(\tilde{\eta})}{p_{i}(\tilde{\eta})(1+\tilde{\eta})}$
$N-D-2$	$D-1$	$-D$	$\frac{i}{\frac{i}{(D-1)(D-i)}}$
$D-2$	$N-D-1$	$D-N$	$\frac{i}{(N-D-1)(N-D-i)}$
-2	$(D-1)(N-D-1)$	$D(N-D)-N$	$\frac{i^{2}}{(D-1)(N-D-1)(D-i)(N-D-i)}$

Using the data in the above table we find equality holds in (66) for $1 \leq i \leq D-1$. Let $T=T(x)$ denote the subconstituent algebra of $J(D, N)$ with respect to x. Applying Theorem 13.6 we find all the irreducible T-modules with endpoint 1 are thin. By Corollary 7.8 we find that for all $\eta \in \Phi$ there exists an irreducible T-module with endpoint 1 and local eigenvalue η. If $\eta=N-D-2$ or $\eta=-2$ this module has dimension $D-1$. If $\eta=D-2$ this module has dimension D. In all three cases the multiplicity with which this module appears in the standard module V is equal to mult ${ }_{\eta}$. Up to isomorphism there are no further irreducible T-modules with endpoint 1 .

For more detail on the irreducible T-modules for $J(D, N)$ see [30, Example 6.1].

15. Directions for further research

In this section we give some suggestions for further research.
Problem 15.1 Investigate the implications of Theorem 13.5 for the case in which Φ has at most two elements. For this case the subgraph Δ from Definition 6.1 is strongly-regular [4, p. 3].

Problem 15.2 Referring to Definition 4.1, assume Γ is bipartite. Find results reminiscent of Theorem 13.5 and Theorem 13.6 that relate the intersection numbers of Γ, the irreducible T-modules with endpoint 2 , and the eigenvalues of the subgraph $\Delta_{2}=(\check{X}, \check{R})$, where

$$
\begin{aligned}
\check{X} & =\{y \in X \mid \partial(x, y)=2\} \\
\check{R} & =\{y z \mid y, z \in \check{X}, \partial(y, z)=2\}
\end{aligned}
$$

and where ∂ denotes the path-length distance function for Γ. See the work of Curtin $[9,10$, 15] for some results in this direction.

Problem 15.3 Referring to the inequality (66), for $2 \leq i \leq D-1$ the expression on the left-hand side does not involve the intersection numbers a_{j}, b_{j} for $j \geq i$ or the intersection number c_{j} for $j \geq i+1$. Apparently by that inequality b_{i} is bounded above by an expression involving the following: (i) $k, b_{1}, \ldots, b_{i-1}$; (ii) $c_{1}, c_{2}, \ldots, c_{i}$; (iii) the set Φ; (iv) the scalars mult $\eta(\eta \in \Phi)$. Use this information to bound the rate of decrease of the sequence $k, b_{1}, b_{2}, \ldots, b_{D-1}$.

Problem 15.4 Referring to Definition 4.1, suppose there exists at least one irreducible T-module with endpoint 1 that is not thin. However, let us assume these modules are "scarce" in the following sense. Let the set Φ be from Definition 6.2. Fix $\alpha \in \Phi$ and assume equality holds in (39) for all $\eta \in \Phi \backslash \alpha$. (Compare this with Theorem 7.7.) For $1 \leq i \leq D-1$ find a lower bound for the right-hand side of (66) minus the left-hand side of (66).

Problem 15.5 For this problem let mult : $\mathbb{R} \rightarrow \mathbb{R}$ denote any function. For $\eta \in \mathbb{R}$ let mult $_{\eta}$ denote the image of η under mult. Let Φ denote the set of real numbers η such that mult $_{\eta} \neq 0$. Let Γ denote a distance-regular graph with diameter $D \geq 3$, valency k, intersection numbers a_{i}, b_{i}, c_{i} and eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$. We say mult is feasible for Γ whenever the following six conditions hold: (i) Φ is finite; (ii) mult ${ }_{\eta}$ is positive for $\eta \in \Phi$; (iii) $-a_{1} \leq \eta \leq a_{1}$ for $\eta \in \Phi$; (iv) $\tilde{\theta}_{1} \leq \eta \leq \tilde{\theta}_{D}$ for $\eta \in \Phi$; (v) the three equations of Lemma 6.7 hold; (vi) the inequality (66) holds for $1 \leq i \leq D-1$. Let F denote the set of functions from \mathbb{R} to \mathbb{R} that are feasible for Γ. For each vertex of Γ we get an element of F by combining Definition 6.1, Definition 6.2, Lemma 6.4, Lemma 6.7, and Theorem 13.5. In particular F is nonempty. The set F is determined by the intersection numbers of Γ. Therefore the condition that F is nonempty gives a feasibility condition on the intersection numbers of Γ. The set F is convex. In other words for all pairs of functions mult $\in F$,
mult $\in F$, and for all $\alpha \in \mathbb{R}$ such that $0 \leq \alpha \leq 1$, the function α mult $+(1-\alpha)$ mult $^{\prime}$ is contained in F. We suggest using linear programming to investigate F [2].

Acknowledgments

The author would like to thank Eric Egge and Mark MacLean for giving this manuscript a careful reading and offering many valuable suggestions.

References

1. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
2. E. Bannai and N.J.A Sloane, "Uniqueness of certain spherical codes," Canad. J. Math. 33 (1981), 437-449.
3. N. Biggs, Algebraic Graph Theory, Cambridge U. Press, London, 1994.
4. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
5. J.S. Caughman IV, "Spectra of bipartite P - and Q-polynomial association schemes," Graphs Combin. 14 (1998), 321-343.
6. J.S. Caughman IV, "The Terwilliger algebras of bipartite P - and Q-polynomial association schemes," Discrete Math. 196 (1999), 65-95.
7. B. Collins, "The girth of a thin distance-regular graph," Graphs Combin. 13 (1997), 21-30.
8. B. Collins, "The Terwilliger algebra of an almost-bipartite distance-regular graph and its antipodal 2-cover," Discrete Math. 216 (2000), 35-69.
9. B. Curtin, "Bipartite distance-regular graphs I," Graphs Combin. 15 (1999), 143-158.
10. B. Curtin, "Bipartite distance-regular graphs II," Graphs Combin. 15 (1999), 377-391.
11. B. Curtin, "2-homogeneous bipartite distance-regular graphs," Discrete Math. 187 (1998), 39-70.
12. B. Curtin, "Distance-regular graphs which support a spin model are thin," 16th British Combinatorial Conference (London, 1997). Discrete Math. 197/198 (1999), 205-216.
13. B. Curtin, "Almost 2-homogenous bipartite distance-regular graphs," European J. Combin. 21 (2000), 865876.
14. B. Curtin and K. Nomura, "Distance-regular graphs related to the quantum enveloping algebra of $s l(2)$," J. Alg. Combin. 12 (2000), 25-36.
15. B. Curtin, "The local structure of a bipartite distance-regular graph," European J. Combin. 20 (1999), 739-758.
16. C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York 1962.
17. G. Dickie, "Twice Q-polynomial distance-regular graphs are thin," European J. Combin. 16 (1995), 555-560.
18. G. Dickie and P. Terwilliger, "A note on thin P-polynomial and dual-thin Q-polynomial symmetric association schemes," J. Alg. Combin. 7 (1998), 5-15.
19. E. Egge, "A generalization of the Terwilliger algebra," J. Algebra 233 (2000), 213-252.
20. E. Egge, "The generalized Terwilliger algebra and its finite dimensional modules when $d=2$," J. Algebra 250 (2002), 178-216.
21. J.T. Go, "The Terwilliger algebra of the hypercube," European J. Combin. 23 (2002), 399-429.
22. J.T. Go and P. Terwilliger, "Tight distance-regular graphs and the subconstituent algebra," European J. Combin. 23 (2002), 793-816.
23. C.D. Godsil. Algebraic Combinatorics, Chapman and Hall, Inc., New York, 1993.
24. S.A. Hobart and T. Ito, "The structure of nonthin irreducible T-modules: Ladder bases and classical parameters," J. Alg. Combin. 7 (1998), 53-75.
25. A. Jurišić, J. Koolen and P. Terwilliger, "Tight distance-regular graphs," J. Algebraic Combinatorics 12 (2000), 163-197.
26. K. Tanabe, "The irreducible modules of the Terwilliger algebras of Doob schemes," J. Alg. Combin. 6 (1997), 173-195.
27. P. Terwilliger, "A new feasibility condition for distance-regular graphs," Discrete Math. 61 (1986), 311-315.
28. P. Terwilliger, "The subconstituent algebra of an association scheme I," J. Alg. Combin. 1 (1992), 363-388.
29. P. Terwilliger, "The subconstituent algebra of an association scheme II," J. Alg. Combin. 2 (1993), 73-103.
30. P. Terwilliger, "The subconstituent algebra of an association scheme III," J. Alg. Combin. 2 (1993), 177-210.
31. P. Terwilliger, "The subconstituent algebra of a distance-regular graph; thin modules with endpoint 1," Linear Algebra Appl. 356 (2002), 157-187.
32. M. Tomiyama and N. Yamazaki, "The subconstituent algebra of a strongly regular graph," Kyushu J. Math. 48 (1998), 323-334.
