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Abstract. In this paper we prove that there are finitely many triangle-free distance-regular graphs with degree
8, 9 or 10.
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1. Introduction

In [1] Bannai and Ito conjectured that there finitely many distance-regular graphs with a
fixed degree at least 3, and in the series of papers [2–5], they showed that their conjecture
held for degrees 3 and 4. In [7], we showed that there are finitely many distance-regular
graphs with degree 5, 6, or 7. Here we extend this result, showing that there are finitely
many triangle-free distance-regular graphs with degree 8, 9 or 10.

Suppose that k is an integer with k ≥ 3 and that � is a distance-regular graph with
degree k, diameter d ≥ 2 and intersection numbers ai , bi , ci , 0 ≤ i ≤ d. We call the
sequence ((ci , ai , bi ) | 1 ≤ i ≤ d − 1) the tridiagonal sequence of �. Given integers a ≥ 0
and b, c ≥ 1 with a + b + c = k, we define

l(c,a,b) = l(c,a,b)(�) := |{i | 1 ≤ i ≤ d − 1 and (ci , ai , bi ) = (c, a, b)}| ,

and put

h = h� := l(1,a1,b1) and t = t� := l(b1,a1,1).

Note that the first h terms of the tridiagonal sequence of � are all equal to (1, a1, b1) and,
if t > 0, then the last t terms of this sequence are all equal to (b1, a1, 1). In this paper we
will prove the following theorem.

∗The author thanks the Com2MaC-KOSEF for its support.
†The author thanks the Swedish Research Council (VR) for its support.
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Theorem 1.1 Suppose k ≥ 3 is an integer. There exists a real number α > 0, depending
only on k so that there are finitely many triangle-free distance-regular graphs � with degree
k, and diameter d satisfying

d − (h� + t�) ≤ αh�.

Remark 1.2 (i) In the proof of Theorem 1 it can be seen that α tends to zero as k tends
to ∞. We would like to show that the theorem still holds in case α does not depend on k
(which would follow if, for example, the second largest eigenvalue of a distance-regular
graph � were always large enough).
(ii) If αh� is replaced by a constant in Theorem 1.1, then we obtain a result of Bannai and
Ito [5]. However, we use their result in our proof of Theorem 1.1.

To describe the consequences of Theorem 1.1 we require some further definitions. Put

Vk := {(c, a, b) ∈ Z3 | a ≥ 0 and b, c ≥ 1 and a + b + c = k}

and

V ∗
k := Vk\{(1, 0, k − 1), (k − 1, 0, 1)}.

For any (c, a, b) ∈ Vk define the open real interval

I(c,a,b) := (a − 2
√

bc, a + 2
√

bc).

We say that a subset � ⊆ V ∗
k satisfies the interval intersection property (IIP) if⋂

(c,a,b)∈�

I (c,a,b) �= ∅

(so that, in particular, the empty set satisfies the interval intersection property).
Now, for a distance regular graph � as above, put

�∗(�) := {(ci , ai , bi ) | 1 ≤ i ≤ d − 1}\{(1, a1, b1), (b1, a1, 1)}.

In [7, Theorem 7.2] we showed that in case � ⊆ V ∗
k satisfies (IIP) and ε is any positive

real number, there are finitely many triangle-free distance-regular graphs with degree k,
diameter d , and �∗(�) ⊆ � for which

d − (h + t) ≥ εh

holds. Thus, as a consequence of Theorem 1.1 we obtain the following result.

Theorem 1.3 Suppose k ≥ 3 is an integer and � ⊆ V ∗
k satisfies (IIP). Then there are

finitely many triangle-free distance-regular graphs � with degree k and �∗(�) ⊆ �.
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Remark 1.4 Note that the set

�′ := {(c, 0, k − c) | c = 1, 2, . . . , k − 1}

satisfies (IIP) since 0 ∈ I(c,0,k−c) for all c = 1, 2, . . . , k −1. Since for any bipartite distance-
regular graph � of degree k we have �∗(�) ⊆ �′, it follows by Theorem 1.3 that there
are finitely many bipartite distance-regular graphs with degree k ≥ 3. This result was
established by Bannai and Ito in [4]. However, the techniques that we adopt in this paper
may be used to provide an improvement on their upper bound for the diameter of a bipartite
distance-regular graph for fixed degree k.

In [7, Lemma 3.1], we showed that the set V ∗
k satisfies (IIP) if and only if 3 ≤ k ≤ 10.

In view of this and the last theorem we obtain the main result of this paper.

Corollary 1.5 There are finitely many triangle-free distance-regular graphs with degree
8, 9, or 10.

We close this section by briefly describing the contents of this paper. In Section 2 we recall
some facts concerning distance-regular graphs and also provide bounds for the multiplic-
ities of the eigenvalues of a distance-regular graph. Using these bounds together with a
polynomial that we study in Section 3, we prove Theorem 1.1 in Section 4.

2. Multiplicities of eigenvalues

We begin this section by recalling some facts concerning distance-regular graphs (for more
details see [6]). Suppose that � is a connected graph. The distance d(u, v) between any
two vertices u, v in the vertex set V � of � is the length of a shortest path between u and
v in �. For any v ∈ V �, define �i (v) to be the set of vertices in � at distance precisely i
from v, where i is any non-negative integer not exceeding the diameter of �. In addition,
define �−1(v) = �d+1(v) := ∅. Following [6], we call a connected graph � with diameter
d distance-regular if there are integers bi , ci , 0 ≤ i ≤ d, such that for any two vertices
u, v ∈ V � at distance i = d(u, v), there are precisely ci neighbors of v in �i−1(u) and bi

neighbors of v in �i+1(u). In particular, � is regular with degree k := b0. For i = 0, . . . , d,
set

ai := k − bi − ci ,

which equals the number of neighbors of v in �i (u) where d(u, v) = i . The numbers
ci , bi , ai are called the intersection numbers of �. Clearly bd = c0 = a0 = 0 and c1 = 1
and, as is shown in [6, Section 4.1], �i (u) contains ki elements, where

k0 := 1, k1 := k, ki+1 := ki bi/ci+1, i = 0, . . . , d − 1. (1)
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Moreover, as is shown in [6, Proposition 4.1.6], the following inequalities must hold

k = b0 > b1 ≥ b2 ≥ · · · ≥ bd−1 > bd = 0 and 1 = c1 ≤ c2 ≤ · · · ≤ cd ≤ k. (2)

Note that a distance-regular graph � is triangle-free (i.e. contains no 3-cycles) if and only
if a1 = 0.

Now, suppose that � is a distance-regular graph with degree k, diameter d and intersection
numbers ai , bi , ci , 0 ≤ i ≤ d . Recall that if θ is an eigenvalue of �, then θ ∈ [−k, k].
The standard sequence (ui = ui (θ ) | 0 ≤ i ≤ d) associated to each eigenvalue θ of � (i.e.
eigenvalue of the adjacency matrix of �) is defined recusively by the equations

u0 = 1, u1 = θ/k, bi ui+1 − (θ − ai )ui + ci ui−1 = 0 for i = 1, 2, . . . , d − 1.

It is well-known, see e.g. [6, Theorem 4.1.4], that the multiplicity m(θ ) of any eigenvalue
θ of � is given by m(θ ) = |V �|

M(θ ) where

M(θ ) =
d∑

i=0

ki ui (θ )2.

Although the following result was shown by Bannai and Ito in [4], we give its proof for the
reader’s convenience.

Lemma 2.1 Suppose that � is a distance-regular graph with degree k ≥ 3 and diameter
d ≥ 2. Suppose also that θ is an eigenvalue of � and that (ui | 0 ≤ i ≤ d) is the standard
sequence corresponding to θ . Then

1

3k
max{|ui |, |ui+1|} ≤ max{|ui−1|, |ui |} ≤ 3k max{|ui |, |ui+1|}

holds for i = 1, . . . , d − 1.

Proof: Since the numbers ui , i = 0, 1, . . . , d, satisfy

ci ui−1 + ai ui + bi ui+1 = θui , i = 1, 2, . . . , d − 1,

and bi ≥ 1 for i = 1, . . . , d − 1, it follows that

ui+1 = −ci ui−1 + (θ − ai )ui

bi
, i = 1, 2, . . . , d − 1,

holds. Thus, since 0 ≤ ai , ci for i = 1, . . . , d − 1 and |θ | ≤ k, we have

|ui+1| ≤ k|ui−1| + 2k|ui |, i = 1, 2, . . . , d − 1.

Now suppose max{|ui−1|, |ui |} = |ui |, i = 1, 2, . . . , d − 1. Then

|ui+1| ≤ k|ui−1| + 2k|ui | ≤ 3k|ui |,
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and from this it easily follows that 1
3k max{|ui |, |ui+1|} ≤ |ui |holds. Moreover, if max{|ui−1|,

|ui |} = |ui−1|, i = 1, 2, . . . , d − 1, then

|ui+1| ≤ k|ui−1| + 2k|ui | ≤ 3k|ui−1|,

from which it follows that 1
3k max{|ui |, |ui+1|} ≤ |ui−1| holds. Hence

1

3k
max{|ui |, |ui+1|} ≤ max{|ui−1|, |ui |}

holds, which is the right-hand inequality in the statement of the lemma.
The proof of the left-hand inequality in the statement of the lemma is similar (simply

interchange the roles of ui+1 and ui−1).

Define ρ1(θ ) = ρ1 (ρ2(θ ) = ρ2) to be the largest (smallest) root in absolute value of the
quadratic equation

(k − 1)x2 − θx + 1.

Note that ρ1(θ ) is an increasing function of θ in the interval (
√

2k − 1, ∞).

Proposition 2.2 Suppose that α and ε are positive real numbers and that k ≥ 3 is an
integer. If θ is an eigenvalue of a triangle-free distance-regular graph � with degree k and
diameter d satisfying d − (h + t) ≤ αh, then there are constants A, B depending only on
α, ε and k (and not θ ) so that the following statements hold:

(i) If |θ | > 2
√

k − 1 + ε, then

ρ1(θ )2h(k − 1)h ≤ M(θ ) ≤ A(9k3)αhρ1(θ )2h(k − 1)h.

(ii) If |θ | < 2
√

k − 1 − ε, then

M(θ ) ≤ Bh(9k3)αh.

Proof: (i) Suppose θ > 2
√

k − 1 + ε.

Claim 1 There are positive constants C1, C2, and C3 depending only on k and ε so that

C1ρ
2h
1 (k − 1)h ≤

h∑
i=0

ki u
2
i ≤ C2ρ

2h
1 (k − 1)h (3)

and

ρ2h
1 (k − 1)h ≤ max

{
khu2

h, kh+1u2
h+1

} ≤ C3ρ
2h
1 (k − 1)h. (4)
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Proof of Claim 1: By definition of h, for each i = 1, 2, . . . , h we have (ci , ai , bi ) =
(1, 0, k − 1), and hence the first h + 2 equations defining the standard sequence for θ are

u0 = 1, u1 = θ/k, and (k − 1)ui+1 − θui + ui−1 = 0 for i = 1, 2, . . . , h.

Since θ > 2
√

k − 1 + ε, there is some κ (depending on ε) with 2
√

k − 1 < κ < θ < k.
Hence by [7, Proposition 4.1] it follows that

ρi
1 ≤ |ui | ≤ τρi

1, i = 0, 1, . . . , h + 1, (5)

holds, where

τ = τ (κ, k) := 1 +
(

κ − kρ1(κ)

k(ρ1(κ) − ρ2(κ))

)
.

Now, by (1) and (2) we have

ki = k(k − 1)i−1, 1 ≤ i ≤ h, and kh+1 ≤ (k − 1)kh. (6)

Hence

h∑
i=1

ki u
2
i = k

h∑
i=1

(k − 1)i−1u2
i ,

and so in view of (5) and (6) we have

ρ2h
1 (k − 1)h < khu2

h ≤
h∑

i=1

ki u
2
i ≤ kρ2

1τ
2

[
1 − ρ2h

1 (k − 1)h

1 − ρ2
1 (k − 1)

]
.

But 1√
k−1

= ρ1(2
√

k − 1) < ρ1(κ) < ρ1(θ ) < ρ1(k) = 1, where the first equality fol-
lows from simple computation and the subsequent inequalities from the fact that ρ1 is an
increasing function of θ on (2

√
k − 1, ∞). Therefore since k0u2

0 = 1 it follows that

ρ2h
1 (k − 1)h ≤

h∑
i=0

ki u
2
i ≤ 1 + ρ2h

1 (k − 1)h
[

τ 2k

(k − 1) (ρ1(κ))2 − 1

]
(7)

must hold. From this it is straight-forward to check that there are positive constants C1 and
C2 depending only on k, κ (and hence on k, ε) so that (3) holds.

To see that there is a positive constant C3 depending only on k, ε so that (4) holds, note
that the left-hand inequality follows immediately from (5) and (6), whereas the right-hand
inequality can be seen to hold using (5), (6) and kh+1 ≤ (k − 1)kh.
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Claim 2 There are positive constants C4, C5, and C6 depending only on k and ε so that

C4ρ
2h
1 (k − 1)h ≤

d−t∑
i=0

ki u
2
i ≤ C5(9k3)αhρ2h

1 (k − 1)h

and

max
{
kd−t−1u2

d−t−1, kd−tu2
d−t

} ≤ C6(9k3)αhρ2h
1 (k − 1)h.

Proof of Claim 2: By Lemma 2.1 we have

d−t∑
i=h+1

ki u
2
i ≤ kh+1u2

h+1

d−t−h−1∑
j=0

((3k)2(k − 1)) j ≤ kh+1u2
h+1(9k3)αh. (8)

The existence of positive constants C4, C5 so that the first two inequalities in the statement
of Claim 2 hold now follows from Claim 1. The existence of a constant C6 so that the last
inequality holds follows from Claim 1, Lemma 2.1 and (8).

We now complete the proof of (i) in case θ > 2
√

k − 1 + ε holds. If t = 0, then (i)
follows directly from Claim 2 since then

M(θ ) =
d∑

i=0

ki u
2
i =

d−1∑
i=0

ki u
2
i + kdu2

d .

In case t > 0, note first that by [7, Lemma 2.1] we have ad = 0. By definition of t, for
each i = d −t, . . . , d −1 we have (ci , ai , bi ) = (k −1, 0, 1), and so the equations defining
the standard sequence for θ for d − t ≤ i ≤ d can be written as

ud−1 = (θ/k)ud and (k − 1)ud−i−1 − θud−i + ud−i+1 = 0, i = 1, 2, . . . , t.

Using [7, Proposition 4.1] it is thus straight-forward to see that

|ud |ρi
1 ≤ |ud−i | ≤ |ud |τρi

1, i = 1, . . . , t + 1 (9)

must hold.
Hence, we see—in a similar way to the way in which we showed that (7) follows from

(5)—that

ρ2h
1 (k − 1)h kd u2

d ≤
d∑

i=d−t
ki u

2
i

≤ kρ2
1 kdu2

d

(
1 + ρ2h

1 (k − 1)h
[

τ 2k

(k − 1)(ρ1(κ))2 − 1

])
(10)
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must hold. The case where t > 0 hlds now follows in a straight-forward fashion from (9),
(10) and Claim 2.

To see that (i) holds in case θ < −2
√

k − 1 − ε note that since ρ1(θ ) = −ρ1(−θ ),
ui (θ ) = −ui (−θ ), 0 ≤ i ≤ h and ud−i (θ ) = ui (θ )ud (θ ) for 0 ≤ i ≤ t, we have

h∑
i=0

ki ui (θ )2 =
h∑

i=0

ki ui (−θ )2

and

d∑
i=d−t

ki ui (θ )2 = kdud (θ )2
t∑

i=0

ki ui (θ )2 = kdud (θ )2
t∑

i=0

ki ui (−θ )2.

It is now straight-forward to complete the proof of (i) using similar claims and arguments
to those just given above to show that (i) holds in case θ > 2

√
k − 1 + ε.

(ii) Assume |θ | < 2
√

k − 1 − ε.

Claim 3 There are positive constants C1, C2 depending only on k and ε with

h∑
i=0

ki u
2
i ≤ C1h

and

max
{
khu2

h, kh+1u2
h+1

} ≤ C2.

Proof of Claim 3: By [7, Proposition 4.2] we have

h∑
i=0

(k − 1)i u2
i ≤ C ′

1 max
{
u2

0, u2
1

}
(h + 1),

where C ′
1 is a positive constant depending only on k and ε. But then using (6) and u0 = 1

it is now straight-forward to show that there exists a positive constant C1 for which the first
inequality in Claim 3 holds.

Now, by [7, Proposition 4.2], we have

(k − 1)h max
{
u2
h, u2

h+1

} ≤ C ′
2 max

{
u2

0, u2
1

}
,

where C ′
2 is a positive constant depending only on k and ε. The existence of a positive

constant C2 for which the second inequality in Claim 3 holds follows in view of this and
(6).

Claim 4 There are positive constants C4, C5 depending only on k and ε so that

d−t∑
i=0

ki u
2
i ≤ C4h(9k3)αh
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and

max
{
kd−t−1u2

d−t−1, kd−tu2
d−t

} ≤ C5(9k3)αh.

Proof of Claim 4: The existence of a positive constant C4 so that the first inequality holds
follows from Claim 3 and (8). The existence of a positive constant C5 so that the second
inequality holds follows from Claim 3 and Lemma 2.1.

We now complete the proof of (ii). If t = 0, then (ii) follows immediately from Claim 4.
If t > 0, then first note that

d∑
i=d−t

ki u
2
i = kdud

(
1 +

t∑
i=1

k(k − 1)i−1u2
i

)

holds. Now, in a similar way to the way in which we proved Claim 3, it is straight-forward
to show that there exists a positive constant C ′

1 depending only on k and ε with

1 +
t∑

i=1

k(k − 1)i−1u2
i ≤ C ′

1t.

Since ud−t−1, ud−t, . . . , ud satisfy

(k − 1)ui−1 + θui + ui+1 i = d − t, . . . , d − 1,

it follows by [7, Proposition 4.2] that there exists a positive constant C ′
2 depending only on

k, ε with

(k − 1)t max
{
u2

d−t−1, u2
d−t

} ≤ C ′
2 max

{
u2

d−1, u2
d

}
.

Since kd−i = kdk(k − 1)i−1 for i = 1, . . . , t, this immediately implies the existence of a
positive constant C ′

3 depending only on k, ε with

max
{
kd−t−1u2

d−t−1, kd−tu2
d−t

} ≤ C ′
3kdu2

d .

Using this and Claim 4, it is now straight-forward to see that (ii) holds.

3. A useful polynomial

Suppose that k ≥ 3 is an integer. Put

P(x) =
∏

(c,a,b)∈Vk , c≤b

(x − a − 2
√

bc)(x + a − 2
√

bc)(x − a + 2
√

bc)

× (x + a + 2
√

bc).
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It is straight-forward to verify that P has the following properties:

(i) P �≡ 0.
(ii) P has integral coefficients.

(iii) If (c, a, b) ∈ Vk , then a + 2
√

bc and a − 2
√

bc are roots of P .
(iv) P is even (i.e. P(x) = P(−x) for x ∈ R).

Now suppose

β := (2
√

k − 1) + (1 + 2
√

k − 2)

2
= 1

2
+ √

k − 1 + √
k − 2.

Since k ≥ 3, it follows that β > k. Moreover, in [7, Lemma 3.1] it is shown that

min
{
a + 2

√
bc | (c, a, b) ∈ V ∗

k

} = 1 + 2
√

k − 2

holds, from which it easily follows that a + 2
√

bc > β holds for all (c, a, b) ∈ V ∗
k .

Now define

S1/2 := {x ∈ [β, k] | 0 < |P(x)| < 1/2}.

Clearly S1/2 consists of a collection of disjoint open intervals and a + 2
√

bc �∈ S1/2 for all
(c, a, b) ∈ V ∗

k . Put

S1 := {x ∈ [−k, k] | |P(x)| ≥ 1}.

We conclude this section with a lemma that follows easily from the facts that P is continuous
and even.

Lemma 3.1 There exists a real number γ > 0 depending on k such that

||x | − |y|| ≥ γ.

holds for all x ∈ S1 and y ∈ S1/2.

4. Proof of Theorem 1.1

We first prove three claims, from which the theorem will follow.

Claim 1 Suppose � is a triangle-free distance-regular graph with degree k and diam-
eter d . There exists a constant M ≥ 0 depending only on k so that if d − (h+ t) > M , then
� has an eigenvalue θ with θ ∈ S1/2.
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Proof of Claim 1: Suppose (c, a, b) ∈ V ∗
k . If l := l(c,a,b) ≥ 3, then by [7, Theorem 6.2

(ii)] � has an eigenvalue θ with

a + 2
√

bc cos

(
jπ

l + 1

)
≤ θ ≤ a + 2

√
bc cos

(
( j − 2)π

l + 1

)
,

where 3 ≤ j ≤ l. As noted above, S1/2 consists of a disjoint union of non-empty open
intervals. Suppose (τ, a + 2

√
bc) with τ a real number is one of these intervals, which we

can assume since a + 2
√

bc is a root of P . Since

lim
l→∞

[
a + 2

√
bc cos

(
jπ

l + 1

)]
= a + 2

√
bc,

there must exist some L = L(c, a, b) ≥ 3 depending only on (c, a, b) so that

(a + 2
√

bc cos

(
jπ

L + 1

)
, a + 2

√
bc) ⊆ S1/2

holds. Thus, by putting

M =
∑

(c,a,b)∈V ∗
k

L(c, a, b)

we see that if d ≥ h+ t+ M + 1, then � has an eigenvalue θ with θ ∈ S1/2. Moreover, M
clearly only depends on k. This concludes the proof of Claim 1.

Claim 2 Suppose � is a triangle-free distance-regular graph with degree k. If � has an
eigenvalue θ ∈ S1/2, then θ has an algebraic conjugate θ ′ with θ ′ ∈ S1.

Proof of Claim 2: Since P has integer coefficients and any eigenvalue of � is an algebraic
integer, it follows that∏

η algebraic conjugate of θ

P(η)

is an integer. Moreover, this is a non-zero integer since P is a polynomial with integer
coefficients and leading coefficient one and P(η) �= 0 for η any algebraic conjugate of θ

(as P(θ ) �= 0). Hence, θ must have some algebraic conjugate θ ′ with |P(θ ′)| ≥ 1, that is,
θ ′ ∈ S1.

Claim 3 There exist constants α, R > 0, each depending only on k, so that if � is a
triangle-free distance-regular graph with degree k, diameter d, some eigenvalue in S1/2, and
d − (h + t) ≤ αh, then h ≤ R.

Proof of Claim 3: Suppose θ ∈ S1/2 is an eigenvalue of �. By Claim 2, θ has an algebraic
conjugate θ ′ ∈ S1 so that, in particular, M(θ ) = M(θ ′).
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Note that by Lemma 3.1 there is some positive real number γ with ||θ ′| − |θ || ≥ γ , and
by definition of S1/2, |θ | ≥ β, and hence |ρ1(θ )| ≥ ρ1(β) > 1/

√
k − 1.

We now consider seperately the two cases when θ ′ is contained in the closed interval
[−2

√
k − 1, 2

√
k − 1] and when it is not.

Case 1. θ ′ ∈ [−2
√

k − 1, 2
√

k − 1].

Since θ ′ ∈ [−2
√

k − 1, 2
√

k − 1] it follows that |ρ1(θ ′)| = 1/
√

k − 1 (note that ρ1(θ ′) is a
complex number!), and hence

|ρ1(θ )|
|ρ1(θ ′)| ≥ ρ1(β)

√
k − 1 > 1.

Put �1 := ρ1(β)
√

k − 1. It is clear that �1 only depends on k. Define α1 to be the number
for which (9k3)α1 = �1 holds.

Assume d − (h + t) ≤ α1h. By Proposition 2.2 we have

M(θ ) ≥ ρ1(θ )2h(k − 1)h ≥ �2h
1 ρ1(θ ′)2h(k − 1)h = �2h

1 = (9k3)2α1h

and

M(θ ′) ≤ Bh(9k3)α1h.

Now it is easy to see that there exists some R3 > 0 (only depending on k, since α1 and B
only depend on k), so that if h > R3, then M(θ ) �= M(θ ′) which is a contradiction.

Case 2. θ ′ �∈ [−2
√

k − 1, 2
√

k − 1].

Since θ ′ �∈ [−2
√

k − 1, 2
√

k − 1], we must have γ < k − 2
√

k − 1. Without loss of
generality we can assume |θ | > |θ ′| since θ ≥ β > 2

√
k − 1. Put

�2 := min

{
ρ1(x + γ )

ρ1(x)
| 2

√
k − 1 ≤ x ≤ k − γ

}
,

noting that �2 is well defined since ρ1(x) ≥ 1√
k−1

, and that �2 only depends on k since γ

only depends on k. Moreover �2 > 1 as ρ1 is a strictly increasing continuous function on
[2

√
k − 1, k]. It follows that

|ρ1(θ )|
|ρ1(θ ′)| = ρ1(|θ |)

ρ1(|θ ′|) ≥ min

{
ρ1(x + γ )

ρ1(x)
| 2

√
k − 1 ≤ x ≤ k − γ

}
= �2 > 1

holds. Define α2 to be the number for which (9k3)α2 = �2 holds.
Assume d − (h + t) ≤ α2h. By Proposition 2.2 we have

M(θ ) ≥ ρ1(θ )2h(k − 1)h ≥ �2h
2 ρ1(θ ′)2h(k − 1)h = ρ1(θ ′)2h(k − 1)h(9k3)α2h
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and

M(θ ′) ≤ Aρ1(θ ′)2h(k − 1)h(9k3)α2h.

Now it is easy to see that there exists some R4 > 0 (only depending on k, since α2 and A
only depend on k), so that if h > R4, then M(θ ) �= M(θ ′) which is a contradiction.

Claim 3 now follows by putting α := min{α1, α2} and R := max{R3, R4}.
Using these claims it is now straight-forward to complete the proof of the theorem. We

first show that there are finitely many triangle-free distance-regular graphs � with degree
k which have no eigenvalue in S1/2. By Claim 1, it follows that there exists some non-
negative constant M depending only on k so that any such � must satisfy d − (h+ t) ≤ M .
However, in [5] it is shown that there are finitely many triangle-free distance-regular graphs
with degree k and diameter d that satisfy this last inequality.

Now, suppose that � is a triangle-free distance-regular graph with degree k and diameter
d which has some eigenvalue in S1/2. Let α, R > 0 be the constants whose existence is
given by Claim 3 and suppose that d − (h + t) ≤ αh holds. By Claim 3, h < R holds for
any such distance-regular graph �. But there are finitely many such graphs since this last
inequaility implies that the diameter of � is bounded by a function of k (which can be seen
using, for example, Ivanov’s bound [6, Theorem 5.9.8]). This completes the proof of the
theorem.
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