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Abstract. A spin model is a square matrix that encodes the basic data for a statistical mechanical construction of
link invariants due to V.F.R. Jones. Every spin model W is contained in a canonical Bose-Mesner algebra N (W ).
In this paper we study the distance-regular graphs � whose Bose-Mesner algebra M satisfies W ∈ M ⊆ N (W ).
Suppose W has at least three distinct entries. We show that � is 1-homogeneous and that the first and the last
subconstituents of � are strongly regular and distance-regular, respectively.
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1. Introduction

A spin model is a square matrix that encodes the basic data for a statistical mechanical
construction of link invariants due to V.F.R. Jones [22]. Every spin model W is contained in
a canonical Bose-Mesner algebra N (W ) [21, 37]. In many instances [1, 2, 19, 22, 33] there
is a distance-regular graph whose Bose-Mesner algebra M satisfies W ∈ M ⊆ N (W )—
we say that such a distance-regular graph supports the spin model W . These facts prompted
the authors to study the distance-regular graphs which support a spin model [10, 12, 14].
The purpose of this paper is to further describe the combinatorial structure of these graphs.

Throughout this paper, all graphs will be finite without loops or multiple edges with path-
length distance function ∂ . The i th subconstituent of a graph � with respect to a vertex u is
the set of all vertices at distance i from u, and it is denoted by �i (u). When � is connected,
the number d = max{∂(x, y) | x, y are vertices of �} is called the diameter of �.

A connected graph � with diameter d is said to be distance-regular whenever there are
integers ci , ai , bi (0 ≤ i ≤ d) such that for any vertices u, v at distance i = ∂(u, v),
|�i−1(u) ∩ �1(v)| = ci , |�i (u) ∩ �1(v)| = ai , and |�i+1(u) ∩ �1(v)| = bi . The integers ci ,
ai , bi are called the intersection numbers of �.

A connected graph � is said to be t-homogeneous whenever for all vertices u, v, w with
∂(u, v) = t , ∂(u, w) = r , ∂(v, w) = s, the number |�i (u) ∩ � j (v) ∩ �1(w)| is independent
of the choice of u, v, w, depending only on r , s, i , j .

A graph is said to be strongly regular with parameters (ν, k, λ, µ) when it has ν many
vertices and for all vertices u, v, the number of common neighbors of u and v is k if u = v,
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λ if u and v are adjacent, and µ otherwise. A strongly regular graph is said to be trivial if
µ = 0. A nontrivial strongly regular graph is simply a distance-regular graph with diameter
2, and a trivial strongly regular graph is a disjoint union of cliques of the same size (see [6,
Section 1.1]).

Theorem 1.1 Let � denote a distance-regular graph with diameter d ≥ 1. Suppose �

supports a spin model with at least three distinct entries. Pick any vertex u. Then
(i) The induced graph on �1(u) is strongly regular.

(ii) The induced graph on �d (u) is distance-regular.
(iii) � is 1-homogeneous.

More complete statements of these results are given in Section 4, including formulas for
the additional structure constants.

If � is a nontrivial strongly regular graph which supports a spin model, then parts (i) and
(ii) imply that � is a strongly regular graph with strongly regular subconstituents, a fact
shown in [19] (see also [17]). Such graphs were studied in [7]. The distance-regular graphs
having all subconstituents strongly regular were characterized in [29]. Recently Caughman
[8] showed that the dth subconstituent of a Q-polynomial bipartite distance-regular graph
� is distance-regular, where two vertices in this graph are adjacent if they have distance
2 in �. Thus the induced graph on the last subconstituent of the halved graph of � is
distance-regular.

There are distance-regular graphs which satisfy conditions (i)–(iii) of Theorem 1.1 but do
not support a spin model. One such example is the Hermitean dual polar space graph (see [6,
Section 9.4]). In this case the induced graph on the last subconstituent is Hermitean forms
graph (see [6, Section 9.5C]). The Hermitean dual polar space graphs are Q-polynomial
with classical parameters. Comparing their parameterization to that of [12] shows that they
cannot support a spin model.

The t-homogeneous property was first introduced in [32]. The 1-homogeneous graphs
has since been studied extensively [25–28]. Bipartite and almost bipartite distance-regular
graphs which support a spin model are trivially 1-homogeneous. In addition, they have
the related 2-homogenous property [34–36]. The 2-homogeneous bipartite distance-regular
graphs have been studied extensively by the authors and others in [9, 11, 13, 23, 34, 39].
The 2-homogeneous almost bipartite distance-regular graphs have been studied in [36].

A connected graph � is said to be triply regular when for all vertices u, v, w and all
h, i , j , the number |�h(u) ∩ �i (v) ∩ � j (w)| is independent of u, v, w, depending only on
h, i , j and the mutual distances between u, v, w. Triple regularity is stronger than condi-
tions (i)–(iii) of Theorem 1.1. Triply regular graphs related to spin models were studied in
[20].

The condition that a spin model has at least three distinct entries implies that any distance-
regular graph which supports it has diameter at least 2. The complete graph is the only
distance-regular graph with diameter 1, and it does in fact support a spin model with just
two distinct entries. The complete graph trivially has the properties of Theorem 1.1. The
link invariant associated with this spin model is the Jones polynomial [22]. There could,
however, conceivably be other spin models with just two distinct entries.
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2. Background

Distance-regular graphs and spin models are related through Bose-Mesner algebras. We
very briefly recall some general facts and establish some notation that we shall need, along
with some references to further discussion. We shall recall other, more specialized results
as necessary in the paper.

Fix a finite nonempty set X . Let MatX (C) denote the C-algebra of complex matrices
whose rows and columns are indexed by X . Let C

X denote the vector space of column tuples
whose entries are indexed by X . Observe that MatX (C) acts on C

X by left multiplication.
For A ∈ MatX (C) and for a, b ∈ X , let A(a, b) denote the (a, b)-entry of A. For A, B ∈
MatX (C), let A ◦ B denote the Hadamard (entry-wise) product of A and B: (A ◦ B)(x, y) =
A(x, y)B(x, y). The transpose of A ∈ MatX (C) is denoted by tA.

Definition 2.1 A Bose-Mesner algebra on X is a commutative subalgebraM of MatX (C),
which is closed under the Hadamard product, which is closed under transposition, and which
contains the identity matrix I and the all 1’s matrix J .

For more on Bose-Mesner algebras see [5, 6]. We use the following facts.

Lemma 2.2 Let M denote a (d + 1)-dimensional Bose-Mesner algebra on X.
(i) M has a unique basis {Ai }d

i=0, called the basis of Hadamard idempotents, such that
A0 = I, Ai ◦ A j = δi j Ai (0 ≤ i, j ≤ d), and

∑d
i=0 Ai = J, where δi j is the Kronecker

symbol.
(ii) M has a unique basis {Ei }d

i=0, called the basis of primitive idempotents, such that
E0 = |X |−1 J, Ei E j = δi j Ei (0 ≤ i, j ≤ d), and

∑d
i=0 Ei = I .

Definition 2.3 Let M denote a Bose-Mesner algebra on X . A formal duality of M
is a linear endomorphism � of M satisfying �(AB) = �(A) ◦ �(B), �(A ◦ B) =
|X |−1�(A)�(B), and �(�(A)) = |X |tA for all A, B ∈ M.

For more on formal dualities see [15, 31]. We use the following fact.

Lemma 2.4 LetM denote a (d+1)-dimensional Bose-Mesner algebra on X. Suppose that
� is a formal duality of M. Then there exist orderings A0, A1, . . . , Ad and E0, E1, . . . , Ed

of the Hadamard and primitive idempotents such that �(Ei ) = Ai , �(Ai ) = |X |tEi (0 ≤
i ≤ d). Such orderings are called standard with respect to �.

We now recall from [5, 6] some facts about the Bose-Mesner algebra of a distance-
regular graph. Let � denote a distance-regular graph with diameter d and vertex set X . It is
known that there are integers ph

i, j (0 ≤ h, i, j ≤ d) such that, for all u, v ∈ X at distance
h = ∂(u, v),

|�i (u) ∩ � j (v)| = ph
i, j .
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Observe that c0 = 0, ci = pi
1,i−1 (1 ≤ i ≤ d), ai = pi

1,i (0 ≤ i ≤ d), bi = pi
1,i+1

(0 ≤ i ≤ d − 1), and bd = 0. In addition, we write ki = p0
i,i (0 ≤ i ≤ d). For later

reference we recall three formulas from [6, p. 134]:

p1
i,i = ki ai

k1
(0 ≤ i ≤ d), p1

i,i+1 = ki bi

k1
(0 ≤ i ≤ d − 1),

(1)
p1

i,i−1 = ki ci

k1
(1 ≤ i ≤ d).

Recall that a distance-regular graph is bipartite when ai = 0 (0 ≤ i ≤ d) and almost
bipartite when ai = 0 (0 ≤ i ≤ d − 1), ad �= 0.

Definition 2.5 Let � denote a distance-regular graph with diameter d. For each integer
i (0 ≤ i ≤ d), the i th distance matrix of � is the matrix Ai ∈ MatX (C) with (x, y)-entry
Ai (x, y) = 1 if ∂(x, y) = i and 0 otherwise. The matrix A = A1 is the adjacency matrix of
�.

Lemma 2.6 Let � denote a distance-regular graph with diameter d, let A0, A = A1, . . . ,

Ad denote the distance-matrices of �, and let M denote the linear span of {Ai }d
i=0.

(i) Ai is a polynomial of degree exactly i in A (0 ≤ i ≤ d).
(ii) Ai A j = ∑d

h=0 ph
i, j Ah (0 ≤ i, j ≤ d).

(iii) M is a Bose-Mesner algebra, called the Bose-Mesner algebra of �.
(iv) {Ai }d

i=0 is the basis of Hadamard idempotents of M.
(v) Every matrix in M is symmetric.

(vi) A has exactly d + 1 distinct eigenvalues.
(vii) A has spectral decomposition A = ∑d

i=0 θi Ei ,

where E0, E1, . . . , Ed are the orthogonal projections onto the maximal eigenspaces
of A and θ0, θ1, . . . , θd are the corresponding eigenvalues.

(viii) {Ei }d
i=0 is the basis of primitive idempotents of M.

(ix) tEi = Ēi = Ei (0 ≤ i ≤ d).

Definition 2.7 Let � denote a distance-regular graph with diameter d ≥ 1. An ordering
E0, E1, . . . , Ed of the primitive idempotents of � is called a Q-polynomial ordering when-
ever for all i (0 ≤ i ≤ d), Ei is a polynomial of exactly degree i in E1 (with respect to the
Hadamard product). Let E denote a primitive idempotent. Then � is said to be Q-polynomial
with respect to E when there exists a Q-polynomial ordering of the primitive idempotents
with E = E1.

We now recall some facts about spin models and the Bose-Mesner algebras which support
them. Symmetric spin models were first introduced by Jones in [22] and later generalized
in [3, 30]. It is symmetric spin models which arise in this paper. The following facts relating
spin models to Bose-Mesner algebras appear in [21, 37].
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Definition 2.8 A spin model on X is a symmetric matrix W ∈ MatX (C) with non-zero
entries which satisfy the following equations for all a, b, c ∈ X :∑

x∈X

W (x, b)W (x, c)−1 = |X |δbc,∑
x∈X

W (x, a)W (x, b)W (x, c)−1 =
√

|X |W (a, b)W (a, c)−1W (c, b)−1.

Let W denote a spin model on X . For all b, c ∈ X , define ubc ∈ C
X to have x-entry

ubc(x) = W (x, b)W (x, c)−1 (x ∈ X ). Define N (W ) to be the set of all matrices A ∈
MatX (C) such that for all b, c ∈ X , the vector ubc is an eigenvector of A. For A ∈ N (W ),
let �(A) ∈ MatX (C) be defined by Aubc = (�(A))(b, c)ubc for all b, c ∈ X .

Theorem 2.9 [21, 37] Let W denote a spin model on X. Then with the notation of
Definition 2.8, the following hold.

(i) W ∈ N (W ).
(ii) N (W ) is a Bose-Mesner algebra.

(iii) � is a formal duality of N (W ).

Definition 2.10 LetM denote a Bose-Mesner algebra on X and let W denote a spin model
on X . M is said to support W whenever W ∈ M ⊆ N (W ).

Bose-Mesner algebras which support a spin model have been studied by the authors in
[10, 12, 14]. In addition to the following result, we shall recall several facts in the body of
the paper about distance-regular graphs whose Bose-Mesner algebra supports a spin model.

Lemma 2.11 [10, 12] Let M denote a Bose-Mesner algebra on X which supports a spin
model W . Then the map � of Definition 2.8 satisfies �(M) = M, and � induces a formal
duality of M.

3. Structure

All three parts of Theorem 1.1 involve counting the number of vertices in certain config-
urations relative to three vertices. In each case one of the distances is one, so they can be
proved by showing that the numbers |�i (u) ∩� j (v) ∩�1(w)| are independent of u, v, w for
certain configurations of these three vertices. In this section we prove the structural results
for Theorem 1.1, although we postpone the proof of Theorem 1.1 until the next section.

Let � denote a distance-regular graph with diameter d ≥ 2 and vertex set X , and let M
denote the Bose-Mesner algebra of �. Let W denote a spin model on X , and suppose that
� supports W . Let A0, A1, . . . , Ad denote the distance-matrices of �. Since W ∈ M, we
may write

W =
d∑

i=0

ti Ai .
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Observe that t0, . . . , td are the entries of W . Let � denote the formal duality of M from
Definition 2.8 and Lemma 2.11. Let E0, E1, . . . , Ed denote the primitive idempotents of
M in the standard ordering with respect to �. Let θ0, θ1, . . . , θd denote the associated
eigenvalues of the adjacency matrix A of �.

For u, v ∈ X , we write

Di
j (u, v) = �i (u) ∩ � j (v).

The number of edges from a vertex u into a subset Y ⊂ X is denoted by e(u, Y ).

Lemma 3.1 Let u, v, w ∈ X be vertices at distance h = ∂(u, v), r = ∂(u, w), and
s = ∂(v, w). Then
(i) If one of h, i, j is greater than the sum of the other two, then Di

j (u, v) = ∅. In particular,
e(w, Di

j (u, v)) = 0 in this case.
(ii) e(w, Di

j (u, v)) = 0 unless r − 1 ≤ i ≤ r + 1 and s − 1 ≤ j ≤ s + 1.

Proof: Immediate from the triangle inequality for ∂ .

We picture the nine possible vertex counts allowed by Lemma 3.1(ii) as follows.

�u

� v

�w

s − 1

s

s + 1

r − 1 r r + 1

��
��

��
��

��
����

��
��
��

��
����

��
��
��

��
��

Lemma 3.2 Let u, v ∈ X be vertices at distance h = ∂(u, v). Then for all r, s (0 ≤ r, s ≤
d) and for all w ∈ Dr

s (u, v),

br = e
(
w, Dr+1

s−1(u, v)
) + e

(
w, Dr+1

s (u, v)
) + e

(
w, Dr+1

s+1(u, v)
)
,

ar = e
(
w, Dr

s−1(u, v)
) + e

(
w, Dr

s (u, v)
) + e

(
w, Dr

s+1(u, v)
)
,

cr = e
(
w, Dr−1

s−1(u, v)
) + e

(
w, Dr−1

s (u, v)
) + e

(
w, Dr−1

s+1(u, v)
)
,

bs = e
(
w, Dr−1

s+1(u, v)
) + e

(
w, Dr

s+1(u, v)
) + e

(
w, Dr+1

s+1(u, v)
)
,

as = e
(
w, Dr−1

s (u, v)
) + e

(
w, Dr

s (u, v)
) + e

(
w, Dr+1

s (u, v)
)
,

cs = e
(
w, Dr−1

s−1(u, v)
) + e

(
w, Dr

s−1(u, v)
) + e

(
w, Dr+1

s−1(u, v)
)
.
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Proof: Clear from the definition of the intersection numbers.

The equations of Lemma 3.2 are not independent—the sum of the first three is equal to
the sum of the last three. Spin models give two more equations.

Lemma 3.3 [12, Lemma 4.2] Let u, v ∈ X be vertices at distance h = ∂(u, v). Then for
all r, s (0 ≤ r, s ≤ d) and for all w ∈ Dr

s (u, v),

r+1∑
i=r−1

s+1∑
j=s−1

e
(
w, Di

j (u, v)
) ti

t j
= θh

tr
ts

, (2)

r+1∑
i=r−1

s+1∑
j=s−1

e
(
w, Di

j (u, v)
) t j

ti
= θh

ts
tr

. (3)

Observe that (3) is obtained from (2) by replacing each t� with t−1
� for all �.

Lemma 3.4 [12, Corollaries 4.6 and 4.7]
(i) If t1 ∈ {t0, −t0}, then tr ∈ {t0, −t0} (0 ≤ r ≤ d).

(ii) If t1 �∈ {t0, −t0}, then tr−1, tr , tr+1 are mutually distinct (1 ≤ r ≤ d − 1).

Observe that, from Lemma 3.4, if W has at least three distinct entries then tr−1, tr , tr+1

are mutually distinct (1 ≤ r ≤ d − 1).

Lemma 3.5 Suppose that t1 �∈ {t0, −t0}. Let r, s be integers (0 ≤ r, s ≤ d) which satisfy
at least one of the following conditions.

(i) r + s = h,

(ii) |r − s| = h,

(iii) r = 1 or s = 1,

(iv) r = d or s = d.
Then, for all integers i, j and for all vertices u, v,w such that ∂(u, v) = h and w ∈ Dr

s (u, v),
the number e(w, Di

j (u, v)) is independent of the choice of u, v, w, depending only on h, r,
s, i, j .

Proof: Set Di
j = Di

j (u, v) for all i , j .

(i) Suppose r + s = h. Observe that Dr−1
s−1 = Dr−1

s = Dr
s−1 = ∅ by Lemma 3.1(i). Now

pick any w ∈ Dr
s and set e(w, Dr

s ) = α. Then by Lemma 3.2, e(w, Dr−1
s+1) = cr , e(w, Dr+1

s−1) =
cs , e(w, Dr

s+1) = ar − α, e(w, Dr+1
s ) = as − α, and e(w, Dr+1

s+1) = br − cs − (as − α). Thus
it is enough to show that α does not depend on u, v, w. Substituting these expressions into
(2) gives

θh
tr
ts

= α
tr
ts

+ cr
tr−1

ts+1
+ cs

tr+1

ts−1
+ (ar − α)

tr
ts+1

+ (as − α)
tr+1

ts
+ (br − cs − (as − α))

tr+1

ts+1
. (4)
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The coefficient of α is

tr
ts

− tr
ts+1

− tr+1

ts
+ tr+1

ts+1
= (tr − tr+1)(ts+1 − ts)

ts ts+1
,

which is not zero by Lemma 3.4. Solving (4) for α shows that α is independent of u, v, w.
(ii) Suppose r − s = h. (The case s − r = h is similar). Observe that Dr

s−1 = Dr+1
s−1 =

Dr+1
s = ∅ by Lemma 3.1(i). Now pick any w ∈ Dr

s and set e(w, Dr
s ) = α. Then by Lemma

3.2, e(w, Dr−1
s−1) = cs , e(w, Dr−1

s ) = as − α, e(w, Dr
s+1) = ar − α, e(w, Dr+1

s+1) = br ,
e(w, Dr−1

s+1) = cr − cs − (as − α). Proceeding as in (i) to substitute these expressions into
(2), we find that the coefficient of α is

tr
ts

− tr−1

ts
− tr

ts+1
+ tr−1

ts+1
= (tr − tr−1)(ts+1 − ts)

ts ts+1
�= 0.

Thus α is independent of the choice of u, v, w.
(iii) Suppose r = 1. (The case s = 1 is similar). Then s ∈ {h − 1, h, h + 1} by

Lemma 3.1(ii). The case s = h − 1 is covered by (i), and the case s = h + 1 is covered
by (ii). So we assume s = h. Observe that Dr−1

s−1 = Dr−1
s+1 = ∅ by Lemma 3.1(i), and

Dr−1
s = {u}. Pick any w ∈ Dr

s and set e(w, Dr
s ) = α, e(w, Dr

s−1) = γ . Then by Lemma 3.2,
e(w, Dr−1

s ) = 1, e(w, Dr+1
s ) = as −α − 1, e(w, Dr

s+1) = ar −α −γ , e(w, Dr+1
s−1) = cs −γ ,

e(w, Dr+1
s+1) = bs − (ar − α − γ ). Substituting these expressions into (2) and (3) gives,

respectively,

θh
tr
ts

= α
tr
ts

+ γ
tr

ts−1
+ tr−1

ts
+ (as − α − 1)

tr+1

ts
+ (ar − α − γ )

tr
ts+1

+ (cs − γ )
tr+1

ts−1
+ (bs − (ar − α − γ ))

tr+1

ts+1
,

θh
ts
tr

= α
ts
tr

+ γ
ts−1

tr
+ ts

tr−1
+ (as − α − 1)

ts
tr+1

+ (ar − α − γ )
ts+1

tr

+ (cs − γ )
ts−1

tr+1
+ (bs − (ar − α − γ ))

ts+1

tr+1
.

We view the above two equations as a system of linear equations with unknowns α, γ . The
coefficient matrix of α and γ is( tr

ts
− tr+1

ts
− tr

ts+1
+ tr+1

ts+1

tr
ts−1

− tr
ts+1

− tr+1

ts−1
+ tr+1

ts+1

ts
tr

− ts
tr+1

− ts+1

tr
+ ts+1

tr+1

ts−1

tr
− ts+1

tr
− ts−1

tr+1
+ ts+1

tr+1

)
,

which has determinant

(tr+1 − tr )2(ts−1 − ts)(ts+1 − ts)(ts+1 − ts−1)

tr tr+1ts−1ts ts+1
�= 0.
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Thus α, γ are independent of the choice of u, v, w.
(iv) Suppose r = d . (The case s = d is similar). Observe that Dr+1

s−1 = Dr+1
s = Dr+1

s+1 = ∅
by Lemma 3.1(i). Now pick any w ∈ Dr

s and set e(w, Dr
s ) = α, e(w, Dr

s−1) = γ . Then
by Lemma 3.2, e(w, Dr−1

s−1) = cs − γ , e(w, Dr−1
s ) = as − α, e(w, Dr

s+1) = ar − α − γ ,
e(w, Dr−1

s+1) = bs − (ar − α − γ ). Proceeding as in (iii) to substitute these expressions into
(2) and (3) we find the coefficient matrix of α and γ to be( tr

ts
− tr−1

ts
− tr

ts+1
+ tr−1

ts+1

tr
ts−1

− tr−1

ts−1
− tr

ts+1
+ tr−1

ts+1

ts
tr

− ts
tr−1

− ts+1

tr
+ ts+1

tr−1

ts−1

tr
− ts−1

tr−1
− ts+1

tr
+ ts+1

tr−1

)
.

This matrix has determinant

(tr−1 − tr )2(ts−1 − ts)(ts − ts+1)(ts−1 − ts+1)

tr−1tr ts−1ts ts+1
�= 0.

Thus α, γ are independent of the choice of u, v, w.

Observe that if d = 2, then the above implies that � is 1-homogeneous. For larger
diameter, we still need to treat the case h = 1 and r = s. In this case (2) and (3) are
dependent, so we need one more equation. We draw it from Terwilliger’s balanced sets
condition [38]. To apply this result, we need a few preliminary results and some notation.
These facts are generally well-known, but we verify that they do indeed apply to the situation
described at the beginning of the section. We recall that in this situation we have fixed a
distance-regular graph � with diameter d ≥ 2 which supports a spin model W . The Bose-
Mesner algebra M of � has a formal duality � given as in Definition 2.8. We also write A
to denote the adjacency matrix of � and {Ei }d

i=0 to denote the basis of primitive idempotents
of M.

Lemma 3.6 The standard ordering E0, E1, . . . Ed for � is also a Q-polynomial ordering
of the primitive idempotents.

Proof: Apply � to Lemma 2.6(i), and simplify with Definition 2.3.

Definition 3.7 Given a primitive idempotent E of �, the scalars θ∗
0 , θ∗

1 , . . . , θ∗
d such that

E = |X |−1 ∑d
i=0 θ∗

i Ai are called the dual eigenvalues of � associated with E .

Lemma 3.8 Let E0, E1, . . . , Ed denote the primitive idempotents of � in the standard
ordering for �, and let θ0, θ1, . . . , θd denote the corresponding eigenvalues of A. Let
θ∗

0 , θ∗
1 , . . . , θ∗

d denote the dual eigenvalues of � associated with E1. Then θ∗
i = θi (0 ≤ i ≤

d).

Proof: On one hand, the spectral decomposition of A is A = ∑d
i=0 θi Ei . Applying �

gives |X |E1 = ∑d
i=0 θi Ai . On the other hand, E1 = |X |−1 ∑d

i=0 θ∗
i Ai by the definition of

the dual eigenvalues.
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Definition 3.9 For all u ∈ X , let û denote the characteristic vector of u in C
X : û(x) = 1

if x = u, and 0 otherwise. For any subset Y ⊂ X , we write Ŷ = ∑
u∈Y û.

The following lemma is well-known. We endow C
X with the Hermitian inner product

〈,〉 defined by 〈u, v〉 = tuv̄ (u, v ∈ C
X ).

Lemma 3.10 Let E denote a primitive idempotent of �, and let θ∗
0 , θ∗

1 , . . . , θ∗
d denote the

dual eigenvalues of � associated with E. Then for all x, y ∈ X, 〈Ex̂, E ŷ〉 = |X |−1θ∗
h ,

where h = ∂(x, y).

Proof: By Lemma 2.6(ix) tE = E and E = E . By the idempotent property, E2 = E .
By Definition 3.7 E = |X |−1 ∑d

i=0 θ∗
i Ai . With this information we compute 〈Ex̂, E ŷ〉 =

〈tĒ E x̂, ŷ〉 = 〈Ex̂, ŷ〉 = |X |−1 ∑d
i=0 θ∗

i 〈Ai x̂, ŷ〉 = |X |−1θ∗
h .

Theorem 3.11 (Terwilliger [38, Theorem 3.3(vii)]) Let � denote a distance-regular graph
with diameter d ≥ 3. Let E denote a primitive idempotent of �, and let θ∗

0 , θ∗
1 , . . . , θ∗

d denote
the dual eigenvalues of � associated with E. Suppose � is Q-polynomial with respect to E.
Then θ∗

� �= θ∗
0 (1 ≤ � ≤ d) and for all i, j (1 ≤ i, j ≤ d) and for all u, v ∈ X

ED̂i
j (u, v) − ED̂ j

i (u, v) = ph
i, j

θ∗
i − θ∗

j

θ∗
0 − θ∗

h

(Eû − E v̂) , (5)

where h = ∂(u, v).

Lemma 3.12 [12, Lemma 4.5] For all r (1 ≤ r ≤ d),

tr
tr−1

− tr−1

tr

θr−1 − θr
=

t1
t0

− t0
t1

θ0 − θ1
.

Lemma 3.13 Assume that t1 �∈ {t0, −t0}. Then for all r (2 ≤ r ≤ d −1) and for all vertices
u, v, w with ∂(u, v) = 1 and w ∈ Dr

r (u, v), the number e(w, Di
j (u, v)) is independent of

the choice of u, v, w.

Proof: We may assume d ≥ 3. Let u, v ∈ X with ∂(u, v) = 1, and write Di
j = Di

j (u, v)

for all i , j . Observe that Dr−1
r+1 = Dr+1

r−1 = ∅ by Lemma 3.1(i). Now pick any w ∈ Dr
r and set

e(w, Dr−1
r−1) = γ , e(w, Dr+1

r+1) = β. Then by Lemma 3.2, e(w, Dr−1
r ) = cr −γ , e(w, Dr

r−1) =
cr − γ , e(w, Dr

r+1) = br − β, e(w, Dr+1
r ) = br − β, e(w, Dr

r ) = ar − (cr − γ ) − (br − β).
Thus the result will follow once we have shown that β and γ do not depend upon u, v, w.
Substituting these expressions into (2) gives

θ1
tr
tr

= γ
tr−1

tr−1
+ β

tr+1

tr+1
+ (cr − γ )

(
tr−1

tr
+ tr

tr−1

)
+ (br − β)

(
tr

tr+1
+ tr+1

tr

)
+ (ar − (cr − γ ) − (br − β))

tr
tr

.
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Thus

(
2 − tr

tr+1
− tr+1

tr

)
β +

(
2 − tr−1

tr
− tr

tr−1

)
γ = ζ1, (6)

a constant which is independent of u, v, w.
Write D̃i

j = Di
j (u, w) for all i and j . By Theorem 3.11 and Lemma 3.8,

ar
θ1 − θr

θ0 − θr
(Eû − Eŵ) = ỄD1

r − ỄDr
1. (7)

We derive a relation involving β and γ by computing the inner product of E v̂ with the
each side of (7) and using Lemma 3.10. To make this computation, observe that D̃r

1 =
(D̃r

1 ∩ �r−1(v)) ∪ (D̃r
1 ∩ �r (v)) ∪ (D̃r

1 ∩ �r+1(v)) and that |D̃r
1 ∩ �r−1(v)| = e(w, Dr

r−1) =
cr − γ , |D̃r

1 ∩ �r (v)| = e(w, Dr
r ) = ar − (cr − γ ) − (ar − β), and |D̃r

1 ∩ �r+1(v)| =
e(w, Dr

r+1) = br − β.
Also observe that α′ = |�1(v)∩D̃1

r | is a constant independent of u, v, w by Lemma 3.5(iii).
Hence γ ′ = |�2(v) ∩ D̃1

r | = |D̃1
r | − 1 − α′ = ar − 1 − α′ is also a constant independent of

u, v, w. Thus by Lemmas 3.8 and 3.10,

〈(Eû − Eŵ), E v̂〉 = |X |−1(θ1 − θr ),〈
ỄD1

r , E v̂
〉 = |X |−1(θ0 + α′θ1 + γ ′θ2),〈

ỄDr
1, E v̂

〉 = |X |−1((cr − γ )θr−1 + (ar − (cr − γ ) − (br − β))θr

+ (br − β)θr+1).

Hence (θr −θr+1)β + (θr −θr−1)γ is a constant independent of u, v, w. Rewriting θr −θr+1,
θr − θr−1 using Lemma 3.12 (here note that t1t−1

0 − t0t−1
1 �= 0 by the assumption t1 �∈

{t0, −t0}), and absorbing the common factors into the constant gives

(
tr+1

tr
− tr

tr+1

)
β +

(
tr−1

tr
− tr

tr−1

)
γ = ζ2, (8)

a constant which is independent of u, v, w

The coefficient matrix for β and γ in the linear Eqs. (6), (8) is

(
2 − tr+1

tr
− tr

tr+1
2 − tr

tr−1
− tr−1

tr
tr+1

tr
− tr

tr+1

tr−1

tr
− tr

tr−1

)
,

which has determinant 2(tr+1 − tr )(tr − tr−1)(tr+1 − tr−1)/(tr−1tr tr+1) �= 0. Thus β, γ are
independent of the choice of u, v, w.
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4. Parameters

In this section we prove a more complete version of Theorem 1.1, giving explicit formulas
for the structure constants. We begin by recalling the following result.

Theorem 4.1 [12, Theorem 1.1] Let � denote a distance-regular graph with diameter
d ≥ 2 and vertex set X. Let W denote a spin model on X, and assume that � supports W.

Let ci , ai , bi (0 ≤ i ≤ d) denote the intersection numbers of �. Let A0, A1, . . . ,Ad denote
the distance matrices of �, write W = ∑d

i=0 ti Ai , and set x = t1t−1
0 and p = t0t2t−2

1 . Then
the following (i)–(iii) hold.

(i) ti t
−1
i−1 = pi−1x (1 ≤ i ≤ d).

(ii) Suppose a1 = 0. Then ai = 0 (1 ≤ i < d). Moreover, if p2 �= 1, then either pd x = 1
or pd−1x2 = −1.

(iii) Suppose x2 �= 1. Then the eigenvalues θi (0 ≤ i ≤ d) (in the standard ordering for
�) and the intersection numbers ci (0 < i < d), cd , b0, and bi (0 < i < d) of � are
given by

θi = px2 − 1

x(pd−1x + 1)(1 − pd x2)

×
(

(pd+i−1x3 + 1)

[
d − i

1

]
p

+ pd−i x(pi−1x + 1)

[
i

1

]
p

)
,

ci = pi−1(x − 1)(px2 − 1)(pd−i x + 1)(pd+i−1x2 − 1)

(pd−1x + 1)(pd x2 − 1)(pi−1x − 1)(p2i−1x2 − 1)

[
i

1

]
p

,

cd = pd−1(x2 − 1)(px2 − 1)

(pd x2 − 1)(p2d−2x2 − 1)

[
d

1

]
p

,

b0 = − (px2 − 1)(pd−1x3 + 1)

x(pd−1x + 1)(pd x2 − 1)

[
d

1

]
p

,

bi = − pi (x − 1)(px2 − 1)(pi−1x2 − 1)(pd+i−1x3 + 1)

x(pd−1x + 1)(pd x2 − 1)(pi x − 1)(p2i−1x2 − 1)

[
d − i

1

]
p

,

where[
i

1

]
p

=


i if p = 1,

pi − 1

p − 1
otherwise.

Moreover, all denominators are non-zero in these expressions.

We have omitted the formulas for the ai , as they are determined by the well-known
formula ai = b0 − bi − ci (0 ≤ i ≤ d).

Theorem 4.2 Let � denote a distance-regular graph with diameter d ≥ 2 and vertex set
X. Suppose that � supports a spin model with at least three distinct entries. Let p, x be as
in Theorem 4.1. Then one of the following holds:
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(i) For all u ∈ X, the subgraph induced on �1(u) is a disjoint union of cliques.

(ii) For all u ∈ X, the subgraph induced on �1(u) is a nontrivial strongly regular graph
with parameters

ν = − (px2 − 1)(pd−1x3 + 1)

x(pd−1x + 1)(pd x2 − 1)

[
d

1

]
p

,

k = − (px2 − 1)(pd x − 1)(x + 1)(pd−1x2 + 1)

x(pd−1x + 1)(px − 1)(pd x2 − 1)
,

λ = (px2 − 1)

x(px − 1)2(pd−1x + 1)(pd x2 − 1)

× (px(x + 2)(−p2d−1x3 + pd−1x − pd−2x + 1)

+ (2x + 1)(p2d−1x3 − pd+1x2 + pd x2 − 1)),

µ = (p − 1)(px2 − 1)(pd−1x2 + 1)(pd x − 1)

(px − 1)2(pd−1x + 1)(pd x2 − 1)
.

Moreover, case (i) occurs if and only if p = 1 or ai = 0 (0 ≤ i ≤ d − 1).

Proof: Let  denote the subgraph induced on �1(u). Then by the distance-regularity of �,
 contains ν = b0 many vertices and every vertex of  has exactly k = a1 many neighbors
in .

Pick v, w ∈  which are adjacent in . Then the number of common neighbors of v

and w in  is λ = e(w, D1
1(u, v)), which is independent of u, v, w by Lemma 3.5(iii).

Now pick v′, w′ ∈  which have distance two in �. Then they have µ = e(w′, D1
1(u, v′))

common neighbors in , which is independent of u, v′, w′ by Lemma 3.5(iii). If µ =
0, then  is a disjoint union of cliques. If µ > 0, then  is connected with diameter
two.

The formulas are computed by substituting the formulas of Theorem 4.1 into the equations
for e(w, D1

1(u, v)) and e(w′, D1
1(u, v′)) which appear in the proof of Lemma 3.5(iii). This

does not depend upon whether or not µ = 0. Examining the formula for µ, we find that
µ = 0 if and only if one of the factors p − 1, pd x − 1, or pd−1x2 + 1 is zero. In particular,
either every first subconstituent is a disjoint union of b0/(a1 +1) many cliques of size a1 +1,
or none is a disjoint union of cliques. If one of pd x −1 = 0 or pd−1x2 +1 = 0, then ai = 0
(0 ≤ i ≤ d − 1) by Theorem 4.1(ii).

It follows that a distance-regular graph with a1 = 0 which supports a spin model is 2-
homogeneous and either bipartite or almost bipartite. The graphs with these combinatorial
properties are characterized by their parameters in [34, 36].

Lemma 4.3 Let � denote a distance-regular graph with diameter d ≥ 2, and suppose that
� supports a spin model with at least three distinct entries. Let p, x be as in Theorem 4.1.
If p = 1, then � is a Hamming graph.
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Proof: By Theorem 4.2, D1
1(u, v) is a clique for every edge (u, v) of �. Furthermore,

ci = i , ai = i(q − 2) (0 ≤ i ≤ d) by [12, Lemma 5.2], where q = −x−1(x − 1)2. Now
[16] implies that � is the Hamming graph H (d, q).

Theorem 4.4 Let � denote a distance-regular graph with diameter d ≥ 2, and suppose
that � supports a spin model with at least three distinct entries. Let p, x be as in Theorem 4.1.
Pick any vertex u. Then the subgraph induced on �d (u) is distance-regular with diameter d ′

and intersection numbers c′
i (1 ≤ i ≤ d ′), a′

i (0 ≤ i ≤ d ′), and b′
i (0 ≤ i ≤ d ′ −1) given by

c′
i = pi−1(x − 1)(px2 − 1)(p2d−i−1x2 − 1)(pd+i−1x2 − 1)

(p2d−2x2 − 1)(pi−1x − 1)(pd x2 − 1)(p2i−1x2 − 1)

[
i

1

]
p

,

a′
i = − (pd x − 1)(px2 − 1)(pi−1x2 − 1)(p2d−2x3 − 1)

x(p2d−2x2 − 1)(pi−1x − 1)(pi x − 1)(pd x2 − 1)

[
i

1

]
p

,

b′
i = − pi (x − 1)(px2 − 1)(pi−1x2 − 1)(p2d+i−2x4 − 1)

x(p2d−2x2 − 1)(pi x − 1)(pd x2 − 1)(p2i−1x2 − 1)

[
d − i

1

]
p

,

d ′ = min({d} ∪ {i | i ≥ 0, p2d+i−2x4 − 1 = 0}).

Proof: Pick any v ∈ �d (u), and set Di
j = Di

j (u, v). Observe that �d (u) = ⋃d
i=0 Dd

i .
Suppose Dd

i �= ∅ for some i , and pick any w ∈ Dd
i . Then by Lemma 3.5(iv), the numbers

e(w, Dd
i−1), e(w, Dd

i ), and e(w, Dd
i+1) are expressed in terms of the parameters θr , cr , ar ,

br (0 ≤ i ≤ d). Substitute the formulas of Theorem 4.1 into these expressions to get
formulas for e(w, Dd

i−1), e(w, Dd
i ), and e(w, Dd

i+1) in terms of p and x , and observe that
these formulas coincide with the formulas for c′

i , a′
i , b′

i in the statement of the theorem.
Observe that every factor in the numerator of the formula for e(w, Dd

i−1) also appears
as a factor of either ci or cd−i in Theorem 4.1. Since ci �= 0 (1 ≤ i ≤ d), this implies
e(w, Dd

i−1) �= 0 for w ∈ Dd
i (1 ≤ i ≤ d). This means that there is a path of length i in

�d (u) between v and w. Hence the subgraph  induced on �d (u) is connected, and every
pair of vertices in  have the same distance in  as in �. Now it is easy to see that  is a
distance-regular graph with the intersection numbers c′

i , a′
i , b′

i given in the statement of the
theorem.

Observe that the formula for b′
i is zero when p2d+i−2x4 − 1 = 0, so the diameter cannot

exceed the least nonnegative integer i satisfying this condition. For any smaller i < d ′ the
expression for b′

i is nonzero, so the diameter is at least this large. Of course d ′ ≤ d.

Remark In all known examples of distance-regular graphs which support a spin model,
the induced graph on �d (u) has diameter 0, 1, or d. If pd−1x2 + 1 = 0 (ie. � is bipartite),
then d ′ = 0. If pd x − 1 = 0 (ie. � is almost bipartite), then either d ′ = d or d ′ = 1 . If
p = 1 (i.e. � is a Hamming graph), then d ′ = d unless � is a Hamming cube, in which
case d ′ = 0.

Suppose � is 1-homogeneous. Fix adjacent vertices u, v and write Di
j = Di

j (u, v).
Define αr (1 ≤ r ≤ d − 1) as follows: For any w ∈ Dr+1

r , αr = e(w, Dr+1
r ). Define γr , βr

(1 ≤ r ≤ d − 1) as follows: For any w′ ∈ Dr
r , γr = e(w′, Dr−1

r−1), βr = e(w′, Dr+1
r+1). From



HOMOGENEITY OF A D-R GRAPH 271

these three structure constants, all others are readily computed using Lemma 3.2, as in the
proofs of Lemmas 3.5(ii) and 3.13.

Theorem 4.5 Let � denote a distance-regular graph with diameter ≥2, and suppose that
� supports a spin model with at least three distinct entries. Then � is 1-homogeneous with
parameters αr (0 ≤ r ≤ d − 1), γr (1 ≤ r ≤ d − 1), βr (1 ≤ r ≤ d − 1) given by

αr = − (px2 − 1)(pd x − 1)(pd−1x2 + 1)(pr x2 − 1)

x(pd−1x + 1)(pd x2 − 1)(pr x − 1)2

[
r

1

]
p

,

βr = − pr (x − 1)(px2 − 1)(pr−1x − 1)(pr x2 − 1)(pd+r−1x3 + 1)

x(pd−1x + 1)(pr x − 1)2(pd x2 − 1)(p2r−1x2 − 1)

[
d − r

1

]
p

,

γr = pr−1(x − 1)(px2 − 1)(pr x − 1)(pd−r x + 1)(pd+r−1x2 − 1)

(pd−1x + 1)(pd x2 − 1)(pr−1x − 1)2(p2r−1x2 − 1)

[
r − 1

1

]
p

.

Proof: Let u, v, w ∈ X be vertices with ∂(u, v) = 1, ∂(u, w) = r , and ∂(v, w) = s. Set
Di

j = Di
j (u, v). Then e(w, Di

j ) is independent of u, v, w for all i and j by Lemma 3.5(ii),
(iii), (iv) and Lemma 3.13. Thus � is 1-homogeneous.

Observe that for 1 ≤ r ≤ d − 1 the number αr is the number α appearing in the proof of
Lemma 3.5(ii). Solve for α with the formulas of Theorem 4.1 to compute αr .

We use the fact that � is 1-homogeneous to compute βr and γr (1 ≤ r ≤ d − 1) from
αr . We claim that arβr = brαr . This formula is obtained by counting the number of edges
between the sets Dr

r and Dr+1
r in two ways. Each of the vertices in Dr

r has br − βr many
neighbors in Dr+1

r , while each of the vertices in Dr+1
r has ar − αr many neighbors in Dr

r .
Furthermore, |Dr

r | = p1
r,r = kr ar/k1 and |Dr+1

r | = p1
r+1,r = kr br/k1 by the definition

of p1
r,r , p1

r+1,r and (1). The claim follows. The computation of βr from αr is now straight
forward.

A similar argument gives γr . Here we find that arγr = crαr−1 by counting the number
of edges between the sets Dr

r and Dr
r−1 in two ways. Each of the vertices in Dr

r has cr − γr

many neighbors in Dr
r−1, while each of the vertices in Dr

r−1 has ar − αr−1 neighbors in Dr
r .

Furthermore, |Dr
r | = kr ar/k1 and |Dr

r−1| = p1
r,r−1 = kr cr/k1 by the definition of p1

r,r−1
and (1).
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