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Planar Groups
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Abstract. In abstract algebra courses, teachers are often confronted with the task of drawing subgroup lattices.
For purposes of instruction, it is usually desirable that these lattices be planar graphs (with no crossings). We
present a characterization of abelian groups with this property. We also resolve the following problem in the
abelian case: if the subgroup lattice is required to be drawn hierarchically (that is, in monotonic order of index
within the group), when is it possible to draw the lattice without crossings?
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1. Introduction

A master’s student, writing a thesis on Galois Theory under the direction of the first author,
came to him with an example of a degree 12 Galois extension of Q that had a Galois group
isomorphic to Dg. He was typesetting the example for inclusion in his thesis, and he wanted
to know whether he could draw the subfield lattice without having to cross lines. The first
author referred the student to the second author (a graph theorist), who reported the bad
news that, no, the lattice was not planar.

This sparked the interest of the second author: which groups have lattices that can be
drawn without crossings? We decided to investigate, as we felt that the topic was interesting
not only in terms of algebra and graph theory, but also pedagogically.

Recall that a graph G is planar if there is an embedding of the graph in the plane so
that no edges intersect, except possibly at their ends. A subdivision of a graph G is a
graph obtained from G by replacing edges of G with paths that are pairwise disjoint, except
possibly at their ends. A minor of G is a graph obtained from G by contracting edges of G
and/or deleting edges and vertices of G. Contraction of the edge uv results in a new vertex
that replaces uv, u, and v. This new vertex is adjacent to exactly those vertices that were
adjacent to u or to v in G.

Example 1 The graphs K5 and K3 3, are not planar (figure 1); the graphs C4 and K 3 are
planar. (K5 3 can be redrawn without crossings.)

The following is a well-known characterization of planar graphs due to Kuratowski [4].
A proof appears in [2].
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K K33

Figure 1. Some common graphs.

Cy K3

Theorem 2 (Kuratowski, [4]) Let G be a graph. The following are equivalent.
(1) G is planar.

(2) G does not contain a subdivision of either K3 3 or Ks.

(3) G contains neither a K3 3- nor a Ks-minor.

Definition 3 Let G be a group. Then the graph of G, denoted I'(G), is the (labeled) graph
defined as follows:

(1) each vertex corresponds to exactly one subgroup of G
(2) two vertices are joined by an edge if and only if one of the subgroups is a subgroup of
the other and there are no intermediate subgroups between them.

The graph of a group is essentially its subgroup lattice, but cast in terms of graph theory.
Example 4 The subgroup lattice of S5 gives rise to a planar graph (figure 2).

Since we ordinarily draw subgroup lattices so that the orders of subgroups are arranged
monotonically from top to bottom, it is natural to ask not only which groups have a planar
graph associated with them, but which groups have a subgroup lattice (drawn as a Hasse
diagram) that is planar. Furthermore, we generally want the edges of the lattice to be oriented
monotonically upward so that the drawing is upward planar. These ideas motivate the
following definitions.

Definition 5 A planar group is a group whose graph is planar, and we will call a group
whose graph is non-planar a non-planar group. If the subgroup lattice of a planar group

S3
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le}

Figure 2. Subgroup lattice of S3.
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Z 8
<2>
<4>
<0>
Figure 3. T'(Zg).
Z 12
<> <3>
<4> <6>
<0>

Figure 4. T(Z12).

is arranged so that it is a Hasse diagram on the orders of the subgroups and this diagram
is planar, we will call the group Hasse-planar. If the subgroup lattice of a planar group is
upward planar, we will say that the group is upward planar.

Note that the graph of K 3 in figure 1 (with edges oriented upward) is planar and Hasse-
planar, but it is not upward planar.

Example 6 We saw above that S5 is a planar group. In addition, both Zg and Z;, are

planar groups; their subgroup lattices are shown in figures 3 and 4. These groups are also
Hasse-planar and upward planar.

2. Basic observations
The following theorem contains readily apparent results that nevertheless should be stated.
Theorem 7 Let G be a group, and let H be a subgroup of G. If G is planar, then H is

planar. If G is Hasse-planar, then H is Hasse-planar. If G is upward planar, then H is
upward planar. If, in addition, H is normal in G, then I'(G/ H) is isomorphic (as a graph)
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to an induced subgraph of T'(G). If G’ is isomorphic to G, then G is planar if and only if
G' is planar.

Proof: Certainly all sublattices of a planar lattice must be planar, and likewise for Hasse-
planarity and upward planarity. In G/H, all subgroups have the form K/H, where K is
a subgroup of G that contains H; thus I'(G/H) is isomorphic to the subgraph of I'(G)
induced by all such K. O

Corollary 8 If G/H is nonplanar, then G is nonplanar.

In addition, the following theorem of Platt [5] will be essential in characterizing Hasse-
planar groups from our characterization of planar groups.

Theorem 9 (Platt [5]) A finite lattice L is Hasse-planar if and only if the graph obtained
from L by adjoining an edge between its greatest and least elements is itself planar.

3. Cyclic groups

In the next section, we make heavy use of the Fundamental Theorem of Finite Abelian

Groups to analyze which finite abelian groups are planar. Since cyclic groups are the building

blocks of finite abelian groups, we begin with a few results about cyclic groups.
Throughout this section, G is a cyclic group of order n = p{'p3*... p;*, where p,

D2, ..., px are distinct primes, and k, e, e, ..., ex € ZT.
Theorem 10 Let G be a cyclic group of order n = p{' p5* ... p;*, where pi, ps, ..., pk
are distinct primes, and k, e, e, ..., ex € LT
Then G is planar if and only if
(1) k<2or

(2) k = 3 and at most one of ey, e, e3 is greater than 1.
In addition, G is Hasse-planar if and only if k < 2, and G is upward planar if and only
ifk <2.

Proof: The proof addresses the following cases.

(1) If k <2, then G is planar, Hasse-planar, and upward planar.

(2) If k =3 and ¢; > 1 for exactly one of i = 1, 2, 3, then G is planar.
(3) If k > 3 and for some i # j, e; > 2 and e¢; > 2, then G is not planar.
(4) If k = 3, then G is neither Hasse-planar nor upward planar.

(5) If k > 4, then G is not planar.

If k = 1, then I'(G) is simply a path. Assume now that & = 2. The lattice for the cyclic
group Zpeqs (p # q, p, q prime) is shown in figure 5, and it is clearly planar, Hasse-planar,
and upward planar.
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Figure 5. Subgroup lattice for Z e s .

<pr>

Figure 6. Subgroup lattice of Z peg,.

For Case (2), we may assume that G has order p¢qr, where p, g, and r are distinct primes
and e is an integer greater than 1.

Given the subgroup lattice for Z ., , arranged as in figure 6, we can obtain the lattice for
Z pe+14y in the following manner. We have four new vertices with labels ( pethy, (petig),
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(p*'r), and (p¢*'qr), which form a square that we will place inside the innermost square

of figure 6. Their neighbors are those vertices with labels that differ by exactly one factor.
In the case of (p¢t!), these are (p¢), (p¢*'q), and (p°*T'r). Thus, we will orient the new
square with (p*!) on top, just below p¢, and (p*!q) to the left, next to (p°q).

The neighbors of the other new vertices are found similarly. The result is that the subgroup
lattice of such a group can be drawn as a nested sequence of squares that are only joined to
each other at “closest corners,” as in figure 6.

Now consider Case (3). Cyclic groups contain a subgroup of each order dividing the
order of the group, and a group with a nonplanar subgroup is nonplanar. Thus, we may
focus on a subgroup that all groups of the type specified have in common; in particular, it
suffices to show that Z 2, is nonplanar for any distinct primes p, g, and r. Figure 7 shows
a Ks-subdivision in the subgroup lattice of this group. Therefore, G is nonplanar.

Next, if k > 3, then G contains a subgroup isomorphic to Z,,., where p, g, and r
are distinct primes. Joining the vertex Z,,, to the vertex (0) (see figure 8) results in a
graph containing a Ks-minor, so Z,,, is not Hasse-planar by Platt’s Theorem. Therefore,
by Theorem 7, G is also not Hasse-planar.

<p2r>

hd
<p*qr>—  <0>  pgr>

Figure 7. Ks-subdivision in the subgroup lattice for Z ;2 2,

/‘\
<qr>\/<pr>
<pq>

Figure 8. Subgroup lattice of Z ;.
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Z pqrs
<p> <>
<pg> ' ‘ <rs>
<g> A -
<qr>

Figure 9. Subgraph of G(Zpgrs).

Suppose now thatk > 4. Such a group must contain a subgroup isomorphicto H = Z 4,
where p, g, r, and s are distinct primes. We will show that I'(H) contains a K5-subdivision.
This subdivision is illustrated in figure 9; we also offer the following edge descriptions.
Certainly H contains the subgroups (1), (p), {(g), (r), and (s).

(1) The subgroup (1) is joined (directly) to (p), (g}, (r), and (s) by the definition of ['(G).
(2) Foreachx,y € {p,q,r, s}(x # ), (x) is joined to (y) through (xy); these give distinct
edges for the subdivision.

Therefore, H has a Ks-subdivision, so G cannot be planar. O

We digress momentarily to generalize part of the preceding Theorem (Case (5) of the
proof).

Theorem 11 Let G be an abelian group. If |G| is divisible by k distinct primes, then I'(G)
has a Kjy1-subdivision.

Proof: The construction is the same: each prime generates a subgroup, and if p and ¢ are
distinct primes, then (p) and (g) are joined through (pq). Since the paths (p) — (pq) — (q)

are all distinct, this accounts for a K;-subdivision. Additionally, (1) is joined directly to
each subgroup generated by a prime. O

4. Finite abelian groups

Having characterized the planar cyclic groups, we now consider general finite abelian
groups. We begin with a Lemma.

Lemma 12 If p is prime and a is any nonnegative integer, then G = Zp« X Z,, is planar.

Proof: We will argue that the complete subgroup lattice has the form shown in figure 10.
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<(10)> <(Lh>eee<(1,p-1)> X(p,0),(0,1)>

<(p,0)> <(p,1)>e00 <(p, p-1)> <(p2,0),(0,1)>
® e

* <(k0),0,1)>
<(p?,0>

L[]
<@E"10> <™ 1)> 000 < p-1)> <(0,1)>

<(0,0)>

Figure 10.  Subgroup lattice of Zya x Z.

First, note that every cyclic subgroup is generated by an element of the form (kp”, c)
forsome b € {0,1,...,a}landc € {0, 1, ..., p — 1}, where k € Z is relatively prime to
p. However, since ((kp”, ¢)) = ((p”, k~'¢)), we may assume that each cyclic subgroup is
generated by an element of the form (p, ¢).

Suppose that ((p”, c)) = ((p", d)) forsome b € {0,1,...,a—1}andc,d € {0, 1, ...,
p — 1}. Then for some k € Z, (p”?,¢) = k(p®,d). That is, p* = kp®(mod p?) and
¢ = kd(mod p). The first congruence implies that 1 = k(mod p*~?), so in fact 1 = k(mod
p) since b < a. Thus ¢ = d(mod p). Therefore, ((p?, 0)), (p”, D), ..., ((p®, p — 1)) are
distinct subgroups when b < a. If b = a, then the only cyclic subgroups are ((0, 0)) and
(€0, ).

In addition, {((p”, ¢)) and ((p?, e)) are clearly distinct if b # d since one will have an
element of greater order than any element in the other.

If ((p?, c)) contains (p?, e) (where d > b), then (p?, e) = r(p”, c) for some integer r.
But this implies that p divides r, so e = O(mod p). Thus, the lattice shown in figure 10
includes all cyclic subgroups of G.

Now suppose that H is a noncyclic subgroup. We claim that H must have the form
((p®,0), (0, 1)) forsome b € {0, 1, ..., a}.

Certainly, the generators of H have the form (kpb, ¢) and (I pd, e), where, without loss
of generality, b < d and k and [ are relatively prime to p. However,

((kp®, ), p?, &) = ((p" k7 e), (p!, 17 e)),

so we may assume that the generators have the form (p®, ¢) and (p?, e).

An element of the form r(p?, ¢) + s(p?, e) may be rewritten as (p®(r +sp?~?), rc + se),
which is clearly a member of H' = ((p”, 0), (0, 1)). The order of H' is p~"*!. The order of
((p?, ¢)) (asubgroup of H)is p*~". Since H is non-cyclic, it must contain at least one more
element. On the other hand, since H is a subgroup of H’, its order must divide that of H’,
and so the orders of H' and H are in fact equal. Thus, ((p’, ¢), (p?, e)) = ((p”, 0), (0, 1)),
as claimed.
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In summary, the cyclic subgroups all have the form ((p?, ¢)), and distinct values of b or
c generate distinct subgroups. The non-cyclic subgroups all have the form ((p?, 0), (0, 1)).
These are shown in figure 10. O

Corollary 13 The group G = Z,« x Z,, is Hasse-planar and upward planar.

Proof: By Theorem 9 (Platt’s Theorem), to show that G is Hasse planar it suffices to
observe that G and ((0, 0)) can be joined by an edge that crosses none of the other edges in
figure 10. Alternatively, it is not hard to see that figure 10 is already a Hasse diagram. This
figure is also upward planar. O

Assume now that G is an abelian group of order n = p{'p3*... p;* with ¢; > 1 for
i =1,..., k. From the Fundamental Theorem of Finite Abelian Groups, we know that if
k > 4, then G contains a cyclic subgroup isomorphic to Z,, , p, p, - Since this is not planar
by Theorem 10, G is also not planar. Therefore, we now need only consider k < 3.

If k = 3, we have n = p“q’r¢, where p, q, and r are distinct primes. If G contains
subgroups isomorphic to Z,> and Z2, then G contains a subgroup isomorphic to Z 2,2, and
is not planar by Theorem 10. We now consider the remaining possibilities in which G is not
cyclic. Since the order of the group can be divisible by at most three distinct primes, and
the group requires two or more generators, the following are all the cases we must consider.

(1) Ifthe orderis divisible by only one prime p, then G must contain a subgroup isomorphic
to one of the following.

@) Zp X Zp x Zp
(b) Zp« x Z» for some positive integers a and b

(2) If the order is divisible by two primes p and ¢, then without loss of generality G must
contain a subgroup isomorphic to Z, x Z, x Z, since G is not cyclic.

Theorem 14 Let G be afinite abelian group. Then G is planar ifand only if G is isomorphic
to a planar cyclic group or to Zp« x Z,, where p is prime and a is a positive integer.

The group G is Hasse-planar if and only if G is isomorphic to a Hasse-planar cyclic
group or Ziye X L, and G is upward planar if and only if G is isomorphic to an upward
planar cyclic group or Z,« X Z,,.

Proof: Again, the proof is by cases. Let p and ¢ be distinct primes. The following groups
are all nonplanar.

(1) G=Z, x Ly xZp
Q2) G=2Zp xLp x Ly =ZLp X Lpg
Q) G =Zy x Ly

The partial subgroup lattices in figures 11-13 show that I'(Z, x Z, x Z,,), U'(Z, X Z ),
and I'(Z > x Z,), respectively, contain subgraphs that are subdivisions of K3 3.
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<(1,0,0),(0,1,0)>

<(1,1,0),(0,0,1)>

<(0,0,1)> <(1,0,0)>
<(1,0,0),(0,1,1)>
<(0,1,1)>
<(1,0,0),(0,0,1)> <(0,1,0),(0,0,1)>
<(1,0,1)>
<(0,0,0)>

<(0,1,0)>

Figure 11.  Subgraph of I'(Z, x Z, x Zp).

<(0,0)>  <(1,0),(0, 9>

IR

<(0, g)> <(1,0)>

<(0,1)> <(1,p)>

Figure 12. K3 3-subdivision in I'(Z, x Zpg).

<(1,1),(0, p)>

<(1,0),(0,1)> <(»,0),(0.p)>

<(1,0),(0,p)> <(p, 0),(0,1)>
<(1,p)> <(p’ 1 )>
<(p,0)> <(0,p)>

<(0,0)>

Figure 13. Partial subgroup lattice of Z ,» x Z 2.
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We have shown that Z,« x Z, is planar. Now suppose that G is planar. If G is cyclic the
theorem is automatically satisfied, so assume also that G is not cyclic.

Suppose that the order of G is p{'p5*... p;* for some distinct primes py, ..., px and
positive integers ey, .. ., e;. We have seen already that k < 3.

Suppose that k = 1 and |G| = p°, p prime. Since G is noncyclic, G must be isomorphic
to a group of the form Zpu X Zpa X -+ X Zpw , where a; + -+ - +a,, = e. If m > 3, then
G contains a subgroup isomorphic to Z, x Z, x Z, and is therefore nonplanar by Case (1).
Thus, m < 2. If both a; and a, are greater than 1, then G contains a subgroup isomorphic
to Z,» x Z,» and is again nonplanar by Case (3). Therefore, at most one of a; and a; is
greater than 1, and the theorem holds.

Now suppose that k = 2 and |G| = p¢q/ for some primes p and g and positive integers
e and f. Since G is noncyclic, it must contain a subgroup isomorphic to Z, x Z, X Z, or
ZLy, x L4 x Zg; in either case, G is nonplanar by Case (2).

Finally, assume k = 3and |G| = p°q’ré for some primes p, ¢, and  and positive integers
e, f, and g. Since G is noncyclic, it contains (without loss of generality) a subgroup of the
form Z, x Z, x Z, x Z,, which in turn contains a subgroup of the form Z, x Z, x Z,.
Again, G is nonplanar by Case (2). O

5. Infinite abelian groups

For completeness, we characterize those infinite abelian groups that are planar. First, recall
that a primary group is a group all of whose elements have orders that are a power of a fixed
prime p.

Let P be the additive group of rational numbers whose denominators are all powers of
a fixed prime p. The quotient group P/Z is denoted by Z,~. The lattice of subgroups of
Zp~ is shown in figure 14.

This lattice is very much like that of Z,» except that it is infinite. Notice that every proper
subgroup of Z ,~ is finite, and (1/p") = Z .

Theorem 15 An infinite abelian group G is planar if and only if it is isomorphic to one of
Loy, Lipos X Ly Lo X Lighy Lapo X Ligoo, OF Lipo X Ly X Ly, Where p, q, and r are distinct
primes and b is a positive integer.

Proof: It is easy to see that Z is not a planar group. Thus, no planar infinite abelian
group can contain an element of infinite order, so such a group must be a torsion group.
By Theorem 1 of [3, p. 5], a torsion group is a direct sum of primary groups. If G contains
elements of distinct prime orders p, g, r, and s, then G will contain a subgroup isomorphic
t0 Zpgrs, which is nonplanar by Theorem 5. Therefore, we can assume that we have one of
the following cases.

<1/p2>
<)>0——e——=9 © o o 0 o 0o 0 (
<l/p> <1/p">

Figure 14. T'(Zp).
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(1) There is a prime p such that every element of G has order a power of p.

(2) There are primes p and ¢ such that every element of G has order p“g” for some
nonnegative integers a and b.

(3) There are primes p, ¢, and r such that every element of G has order p®q”r¢ for some
nonnegative integers «, b and c.

We consider each case in turn.

(1) Suppose that G is indecomposable; that is, G cannot be written as a nontrivial direct
sum. Then by Theorem 10 of [3, p. 22], since G is an infinite torsion group, it is
isomorphic to Z . If G is decomposable, then G can be written as Hy x Hy x - - - X Hy
for some integer k and subgroups Hy, ..., Hy.

Each H; must contain an element of order p, soif k > 3, then G contains a subgroup
isomorphic to Z, x Z, x Z,, which is nonplanar by Theorem 14. Therefore, we may
assume that G is isomorphic to H; x H, for some indecomposable subgroups H, and
H,. Since one of them, say Hj, must be an infinite indecomposable torsion group, by
Theorem 10 of [3] it is isomorphic to Z .

If H, has order p? or greater, then G contains a subgroup isomorphic to Z p2 X Lip2,
which is nonplanar by Theorem 14. Therefore, H, has order p, and G is isomorphic to
Z y= X Z,. The lattice for this group is nearly identical to that in figure 10 except that
it is infinite.

(2) We may write G as the direct product G, x G4, where G, is a primary group of order
p® and G, is a primary group of order ¢°, since p and g are the only primes that
divide the orders of elements of G. If G, is decomposable, then G contains a subgroup
isomorphic to Z, x Z, x Z,, which is nonplanar by Theorem 14. Similarly, G, must
be indecomposable. Again using Theorem 10 of [3], we see that G must be one of
Lips X Ligo, Lipss X Ligv, OF Lpa X Ly, Where a and b are nonnegative integers. Each
of these lattices is similar to the lattice in figure 5, the only difference being that the
lattice has infinitely many vertices.

(3) We may write G as G, x G, x G,, where G,, G,, and G, are primary groups. As
above, we may assume that G, is infinite and indecomposable and that G, and G, are
indecomposable, so that G, = Z,~. If G, has order greater than ¢, then G contains
a cyclic subgroup isomorphic to Z> x Z,> x Z,, which is nonplanar by Theorem 10.
Therefore, G = Z,~ x Z; x Z,. The lattice for G is nearly identical to that in figure 6

except that it extends inward infinitely.
O

Corollary 16 An infinite abelian group G is Hasse-planar if and only if G is isomorphic
to one of Lipw, Ly X Lip, Lp~ X Lgv, oF Lpx X Lg~. G is upward planar if and only if G
is isomorphic to one of these groups as well.

Proof: By Platt’s Theorem and an examination of figures 5, 6, and 10, we see that these
and only these are still planar if G is joined to (0). Since an upward planar group must be
Hasse-planar as well, only these groups are candidates for upward planarity. It is clear from
the figures that these are indeed upward planar. O
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6. Conclusion

There is still much work to be done here. A characterization of nonabelian planar groups
is proving substantially more difficult; the authors of this paper have partial results, but are
still nowhere near a complete characterization.
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