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1. Introduction

Higher Bruhat orders were introduced by Manin and Schechtman [18]. These are posets
B(n, k), where B(n, 1) is the symmetric group with its weak Bruhat order and where
B(n, k + 1) is a quotient of the set A(n, k + 1) of maximal chains in B(n, k) by certain
elementary equivalences. The posets B(n, k) have rank functions and a unique minimal and
a unique maximal element.

Another interpretation of higher Bruhat orders was given by Kapranov and Voevodsky
[16], in terms of pasting schemes [14] and strict n-categories [21]. The combinatorial n-
cube �n has a (more or less canonical) structure of a well-formed loop-free pasting scheme
[7, Section 3.3]; denote the free strict n-category on �n by In . Because In is the free strict
n-category on a well-formed loop-free pasting scheme, it is very structured: the set Ob(In)
is partially ordered by having x < y if and only if there is an arrow x → y in In , and this
partial order has unique minimal and maximal elements xmin and xmax. Thus there is a strict
(n − 1)-category In(xmin, xmax), also denoted �(In); this is precisely (isomorphic to) Manin
and Schechtman’s strict (n − 1)-category Sn constructed directly in terms of higher Bruhat
orders. Furthermore, �(In) itself also has a partial order with unique minimal and maximal
elements, and this continues, giving a sequence of strict (n − k)-categories denoted �k(In).
Kapranov and Voevodsky’s result is that the set Ob(�k(In)) with its partial order is precisely
(isomorphic to) B(n, k).

The use of the symbols � and �k suggests a connection with k-fold loop spaces in
topology [5, 19]. At present, this connection is only a tenuous one. One reason is that
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strict n-groupoids and not strict n-categories are used to classify homotopy types. This is
actually an advantage: strict n-categories, unlike strict n-groupoids, are sensitive to direc-
tion/orientation, so they could give a richer algebraic version of looping. The second reason,
which is a very serious disadvantage, is that strict n-groupoids de not classify all homotopy
types: only those which have trivial Whitehead products [6, p. 114]. It must be admitted that
even strict 1-categories do classify all homotopy types [22], but this classification, using
the twice iterated barycentric subdivision of a simplicial set, is not very illuminating—for
example, one cannot easily recover the homotopy groups from the strict 1-category.

It is known that Gray-groupoids classify all homotopy 3-types [4, 15]. Gray-categories
are similar to strict 3-categories except that instead of the interchange axiom, which implies
that horizontal composition of 2-arrows is definable in terms of vertical composition, there
is a dimension raising composition C2 ×C0 C2 → C3 satisfying some further axioms. I
have defined a 4-dimensional generalization of Gray-categories called 4D teisi,1 and I have
given some heuristics for the—currently hypothetical—general, higher-dimensional notion
of nD tas [9]. nD teisi differ from strict n-categories in that all instances of the interchange
axiom are replaced by dimension raising compositions C p ×Cn Cq → C p+q−n−1, that have
to satisfy naturality, functoriality, associativity, and more axioms. It must be remarked that
there is also the notion of weak n-category, in many different (?) incarnations [1, 2, 12],
which are very much in vogue, but these are not of concern for this paper.

Just like the notion of strict n-category, the notion of nD tas is dimension invariant:
for an nD tas C and for each pair of m-arrows c and c′ in C with common (m − 1)-
source and -target, the collection of elements C with m-source c and m-target c′ is itself an
(n − m − 1)D tas, denoted C(c, c′). For x an object of C, define πm(C, x) as the collection
of connected components of C(idm−1

x , idm−1
x ); πm(C, x) is a monoid for m ≥ 1, with #m−1

as multiplication, and, by a standard Eckmann-Hilton argument, this monoid is actually
commutative for m ≥ 2. Thus, if C is an nD iso-tas it is reasonable to interpretπm(C, x) as the
m-th homotopy group of C based at x . Unlike for strict n-categories, the dimension raising
compositions in an nD tas induce operations πp(C, x) × πq (C, x) → πp+q−n−1(C, x),
which can reasonably be interpreted as (generalized) Whitehead products. Although it is
still unknown whether nD iso-teisi classify all homotopy n-types, and although a rigorous
definition of nD tas is still wanting, they thus should reflect topology much better than both
strict 1-categories and strict n-categories.

It is now natural to ask whether Kapranov and Voevodsky’s interpretation of higher
Bruhat orders can be generalized to nD teisi. In other words, one would want to consider
the free nD tas on �n , again to be denoted In , which one would expect to possess the same
remarkable properties of order, allowing one to obtain a sequence of (n − k)D teisi again
denoted �k(In). This is both a difficult and interesting combinatorial problem, which is
closely related to the absence of a rigorous definition of nD tas. One potentially promising
line of attack is to use Kapranov and Voevodsky’s idea of derived pasting scheme [16]. If
one could show that for any well-formed loop-free pasting scheme A, denoting the free
nD tas on A by P(A), that �(P(A)) were free on another well-formed loop-free pasting
scheme, which could then reasonably be denoted �(A), the required order properties of
�k(In) would follow immediately by induction. �(A) would be the derived pasting scheme
of A, although Kapranov and Voevodsky motivate it as some “free cover” of the strict
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Figure 1. The 4-permutohedron P4.

(n − 1)-categorical version of �(P(A)), and define it only as a graded poset, posing the
(still open) problem of endowing this graded poset with the structure of well-formed loop-
free pasting scheme. From the considerations here, it would perhaps be better to call �(A)
the path pasting scheme of A.

It is well known that, as a set or as a polytope, the path space of the n-cube is the n-
permutohedron Pn [20]. So for A = �n , the problem would be to endow Pn with the structure
of well-formed loop-free pasting scheme. Kapranov and Voevodsky mention that (the graded
poset) �(�n) = Pn and remark that “for Pn the construction behaves badly” [16, p. 25]. To
illustrate the complications involved, consider the 4-permutohedron, pictured in figure 1,
where the numbers indicate the four directions of the 4-cube, where higher-dimensional
faces of 4-cube are characterized by naming their directions, and where juxtaposition de-
noted composition. Firstly, the hexagonal faces of the 4-permutohedron come from 3-cubes,
whose direction determines the orientation of the hexagons, as indicated. So this already
imposes some restrictions on the pasting scheme structure. Secondly, the square faces of
the 4-permutohedron come from dimension raising composites of 2-cubes. It turns out that,
no matter what convention one would use for the source and target of a dimension raising
composite, some of the squares run in the ‘wrong’ direction. This implies several things:
one, that in nD teisi dimension raising composition should result in elements running in
both directions, presumably inverse to one another, two, that one needs to find a way to
tell which direction to use when, and three, that one might need something more general
than pasting schemes in order to deal with cells running in opposite directions. Thirdly, the
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squares on the ‘top’ and the ‘bottom’ of the 4-permutohedron come from dimension raising
composites of 2-cubes in the 2-source and 2-target respectively of the 4-cube, and have no a
priori preference for being on the front or on the back of the 4-permutohedron. This implies
that one needs to find a way to tell which side of the 4-permutohedron to assign these cells
to, or that one might need another or a further generalization of pasting schemes allowing
such cells to remain ‘undecided’, so that a 1-source can be 2-dimensional. Fourthly, some
square faces of the 4-permutohedron are horizontally composable. This means that in �(P4)
there will be extra 2-cells whose place needs to be determined as well. This phenomenon
was already observed by Baues: “[The boundary of �(P4)] is a 2-dimensional complex not
a sphere but still homotopy equivalent to the 1-sphere. [�(P4)] is the cone on this complex
and so is not a euclidean cell” [3, p. 121].

In this paper I deal with an accessible and usable part of these problems, by not looking at
all permutations, restricting attention to shuffles. I show that (p, q)-shuffles are the vertices
of a well-formed loop-free pasting scheme Mp,q . n-cells of this pasting scheme, which
are called n-dimensional (p, q)-shuffles, are sequences of p 0’s and q 1’s partitioned into
p + q − n parts each of size at most two where the parts of size two must consist of a 0
followed by a 1; the partition will be indicated by brackets around the parts of size two. The
example M3,3 is given in figure 5. Mp,q is the path pasting scheme of the (p, q)-‘tablecloth’,
pictured in figure 2. This makes Mp,q the simplest non-trivial double path pasting scheme

Figure 2. The (p, q)-‘tablecloth’.
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Figure 3.

scheme,2 because the (p, q)-tablecloth is itself the path pasting scheme of the well-formed
loop-free pasting scheme pictured in figure 3, and the first one to be so identified. It must
be said that Lawrence has some calculations for �(Pn), but as polytopes not as pasting
schemes [17].

Mp,q sits inside Pn in n! (n − p − q + 1)/( p+q
p ) ways, in particular, in Pp+q in p! q!

ways. For example, the four M2,2’s in P4 are pictured in figure 4. Thus, understanding Mp,q

is essential in understanding Pn . Because the cells of Mp,q themselves have the shape of
cubes, Pn′ ’s will sit inside �(Mp,q ), hence there will be Mp′,q ′ ’s sitting inside �(Pn) too. It
is clear that this compatibility of shapes over dimensions will be useful; it is equally clear
that it will only be a small part of the story.

In terms of Manin and Schechtman’s original formulation of higher Bruhat orders, re-
placing strict n-categories by nD teisi in Kapranov and Voevodsky’s interpretation means
that the elementary equivalences are not factored out, but become, or rather remain, part
of the data. For two maximal chains in B(n, k) are elementary equivalent “if they differ
by an interchange of two neighbours which do not belong to a common packet”, that is, if
they are the source and target of the result of a dimension raising composite. The question

Figure 4. The four M2,2’s in P4.
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asked above about generalizing higher Bruhat orders becomes whether there are ranked
posets B ′(n, k) with unique minimal and maximal elements where B ′(n, 1) = B(n, 1) is the
symmetric group with its weak Bruhat order and where B(n, k + 1) is the set of maximal
chains in B ′(n, k), which is (surely) a natural question in its own right. The relevance of the
shuffle pasting scheme to this particular phrasing of the question is not that it isolates the
interdependences between the elementary equivalences, nor that it covers all elementary
equivalences, but that it resolves some interaction of some elementary equivalences with
some ‘genuine’ elements of B ′(n, k + 1).

A more immediate application of the shuffle pasting scheme is in the study of Zamolod-
chikov equations. Recall that one of the axioms for a braiding on a monoidal 2-category is
that the two fillings of the Yang-Baxter hexagon are equal [8, Definition 2-2]. Calling this
filling SA,B,C the equation

S123S124(R34 R12)(R13 R24)−1S134S234(R14 R23)

= (R23 R14)−1S234S134(R24 R13)(R12 R34)−1S124S123, (1.1)

which in diagrammatic form just states the commutativity of the realization of the 4-
permutohedron in the braided monoidal 2-category, is a consequence of the other axioms
for a braiding [10]. In another paper [11] I will use the 2- and 3-dimensional part of the
results here to show the converse, that a monoidal 2-category together with a system of
hexagonal 2-arrows SA,B,C satisfying Eq. (1.1) gives rise to a braided monoidal 2-category.
It must be revealed that Kapranov and Voevodsky’s account of this matter [16, Sections
6.10–6.14] fails to take the shuffle issues into account.

Before one can show that a pasting scheme is well formed and loop free, one needs to
know its well-formed subpasting schemes and their sources and targets. In order to obtain
this knowledge for Mp,q , I distinguish n-kinds of n-dimensional (p, q)-shuffles, where two
n-dimensional (p, q)-shuffles of the same n-kind can and should be thought of as being
parallel, and I consider a partial order � which only relates n-dimensional (p, q)-shuffles
of the same n-kind. This gives posets that have rank functions, where the rank can and
should be thought of as measuring a height, and a unique minimal and a unique maximal
element.

I obtain a usable characterization of well-formed subpasting schemes of Mp,q by estab-
lishing two conditions on collections of n-dimensional (p, q)-shuffles, filling and fitness.
Filling is based on the �-relation in Mp,q ; it is the condition most suitable to prove things
from. Fitness is based on the �-order; it is the condition most easy to check. I show that
given a subpasting scheme of Mp,q , it is well-formed if and only if all collections of top-
dimensional cells of sources and targets fill if and only if all these collections are fit. The
most difficult step in the proof, that fitness implies filling, involves a careful analysis of the
relation between � and �.

I use the fitness formulation to classify in terms of � when there is a well-formed
subpasting scheme of Mp,q with given source and target, to show that Mp,q itself is well
formed, and in proving that Mp,q is loop free.

I hope and expect that the techniques developed here, although fairly particular to Mp,q ,
will in some form be useful in future investigations of path pasting schemes.
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This paper is organized as follows. Section 2: preliminaries on pasting schemes. Section 3:
definition and different representations of n-dimensional (p, q)-shuffles. Section 4: n-
dimensional (p, q)-shuffles have the shape of n-cubes, thus Mp,q is a pasting scheme.
Section 5: Mp,q has no direct loops. Section 6: definition of rank and oprank, and various
ways of calculating them. Section 7: definition of the �-order, and various characteriza-
tions of it. Section 8: filling, and n-stage shuffle collections as representation for subpasting
schemes. Section 9: fitness, and that an n-kind is needed if and only if it is properly relevant.
Section 10: filling and fitness and well-formedness are equivalent. Section 11: classification
of when there is a well-formed subpasting scheme with given n-source and n-target. Section
12: Mp,q is well formed. Section 13: Mp,q is loop free.

2. Pasting preliminaries

Well-formed loop-free pasting schemes were introduced by Johnson [14] in order to
parametrize composable diagrams in an ω-category.

A pasting scheme is a graded set A together with two collections of relations Ei
j and

Bi
j ⊆ Ai × A j for j ≤ i , satisfying certain conditions that will be spelled out below. Ei

j and
Bi

j may be thought of as describing which j-cells are at the “end”, respectively “beginning”
of each of the i-cells. For such a graded set A with relations Ei

j and Bi
j , let Ri

j be the relation
between Ai and A j given by xRi

j y when there exists a sequence x = x1, . . . , xk = y of
cells of A satisfying xk ′D

ik′
ik′+1

xk ′+1 for all 1 ≤ k ′ ≤ k with Di
j = Ei

j or Bi
j . If xRi

j y then y is
said to be a face of x .

If X is a subgraded set of A of dimension n then the graded set Ei (X ) is defined by
Ei (X ) j = {y ∈ A j | there exists x ∈ Xi with xEi

j y}. The graded set En(X ) will be de-
noted E(X ). Graded sets B(X ) and R(X ) are defined analogously. The grading will of-
ten be placed on the relation, thus denoting the set E(X ) j of j-dimensional elements of
E(X ) by E j (X ). The relation Ei

j is called finitary when, for any x ∈ Ai , the set Ei
j (x) is

finite.
There is a duality between the “end” and “beginning” relations: for every proposition P

and every i , the i-th dual of P is obtained from P by replacing all occurrences of Ei by Bi

and vice versa.

Definition 2.1 A pasting scheme is a graded set A together with finitary relations Ei
j and

Bi
j for j ≤ i such that

(i) Ei
j is a relation between Ai and A j ;

(ii) Ei
i is the identity relation on Ai ;

(iii) for i > 0 and any x ∈ Ai there exists y ∈ Ai−1 with xEi
i−1 y;

(iv) for j < i , wEi
j x if and only if there exists u and v such that wEi

i−1uEi−1
j x and

wEi
i−1vBi−1

j x ;
(v) if wEi

i−1uEi−1
j x , then either wEi

j x or there exists v such that wBi
i−1vEi−1

j x

and dually (notice that there are four dual forms of condition (v)).
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Informally, condition (iii) says that every i-cell ends in at least one (i −1)-cell, and dually
begins in at least one (i − 1)-cell. Condition (iv) ensures that low dimensional ends occur
between higher dimensional ends:

Finally, condition (v) ensures that a cell’s ends close up:

In a pasting scheme A, define �A, written as � when there is no danger of confusion, as
follows: for any i , and for any a, b ∈ Ai , say a � b if there is a sequence a = a0, . . . ak =
b, k > 0, of elements of Ai with, for all k ′ < k, Ei−1(ak ′ ) ∩ Bi−1(ak ′+1) 	= ∅.

Definition 2.2 A pasting scheme A has no direct loops when, for any i and any a, b ∈
Ai , B(a) ∩ E(a) = {a} and a � b implies B(a) ∩ E(b) = ∅.

If A is a pasting scheme and X is a finite subgraded set of A, define its domain dom(X )
by X − E(X ) and its codomain cod(X ) by X − B(X ).

Lemma 2.3 (Johnson) If A is a finite, n-dimensional pasting scheme with no direct loops,
then dom(A) is a (n − 1)-dimensional graded set.

Theorem 2.4 (Johnson) If A is a finite pasting scheme with no direct loops then
dom dom(A) = dom cod(A).

Thus, finite pasting schemes with no direct loops have sensible notions of domain and
codomain. If A is a finite n-dimensional pasting scheme with no direct loops, write

sm(A) = A if m ≥ n

= domn−m(A) if m < n

and

tm(A) = A if m ≥ n

= codn−m(A) if m < n.

Notice that if m < n then sm(A) and tm(A) are m-dimensional by Lemma 2.3. sn(A) is
called the n-source of A, and tn(A) the n-target of A.

Definition 2.5 A pasting scheme A of dimension n > 0 is compatible when for any
x, y ∈ An , if x 	= y, then Bn−1(x) ∩ Bn−1(y) = ∅ and dually. A zero-dimensional pasting
scheme is compatible if it is a singleton.
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A subgraded set X of a pasting scheme A is a subpasting scheme of A if y ∈ R(X )
implies y ∈ X .

A finite pasting scheme A with no direct loops is well formed if

(i) A is compatible;
(ii) for all m ≥ 0, both sm(A) and tm(A) are compatible subpasting schemes of A.

Loop-freeness is a technical condition serving to eliminate more subtle looping behaviour.

Definition 2.6 A pasting scheme A is loop free if

(i) A has no direct loops;
(ii) for any x ∈ A, R(x) is well formed;
(iv) for any well-formed j-dimensional subpasting scheme Y of A and any x ∈ A with

s j (R(x)) ⊆ Y , if u, u′ ∈ s j (R(x)) and, for some v ∈ Y j , u �Y v �Y u′, then v ∈
s j (R(x))

and dually.

Condition (iii) is omitted here since it is a consequence of the other three conditions and
the pasting axioms, see [13].

3. n-Dimensional shuffles

For any n ∈ N, let n denote the ordered set {1, 2, . . . , n}.

Definition 3.1 A (p, q)-shuffle is a function f : p + q → {0, 1} such that # f −1(0) = p.

Thus, a (p, q)-shuffle is a sequence of p 0’s and q 1’s.
There are three alternative combinatorial representations of (p, q)-shuffles:

• (p, q)-shuffles are usually defined as permutations σ : p + q → p + q which are order
preserving on {1, 2, . . . , p} and on {p+1, . . . , p+q}. The image under σ of {1, 2, . . . , p}
is f −1(0) and the image under σ of {p + 1, p + 2, . . . , p + q} is f −1(1). I will not use
this way to represent a (p, q)-shuffle in the sequel.

• Another way to represent a (p, q)-shuffle is as a partition of p + q in two parts, one of size
p and one of size q , that is, as a pair of strictly order preserving functions α : p → p + q
and β : q → p + q which have disjoint images. For i0 ∈ p, α(i0) gives the place of
the i0-th 0 in the sequence represented by f , and for i1 ∈ q, β(i1) gives the place of the
i1-th 1.

• A fourth way to represent a (p, q)-shuffle is as a pair of surjective order preserving
functions ζ0 : p + q → {0, . . . , p} and ζ1 : p + q → {0, . . . , q} satisfying ζ0(i) +
ζ1(i) = i for all i ∈ p + q . For i ∈ p + q, ζ0(i) gives the number of 0’s in the sequence
represented by f up to and including position i , and ζ1(i) gives the corresponding number
of 1’s.
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Table 1. Representation of (p, q)-shuffles.

f α, β ζ0, ζ1 σ

f via ζ0, ζ1 f (i) = 0 if ζ0(i) > ζ0(i − 1)
= 1 if ζ1(i) > ζ1(i − 1)

f (i) = 0 if σ−1(i) ≤ p
= 1 if σ−1(i) > p

α, β via ζ0, ζ1 α(i0) = min{i | ζ0(i) = i0}
β(i1) = min{i | ζ1(i) = i1}

α(i0) = σ (i0)
β(i1) = σ (p + i1)

ζ0, ζ1 via α, βζ0(i) = #( f −1(0) ∩ i)
ζ1(i) = #( f −1(1) ∩ i)

ζ0(i) = max{i0 | α(i0) ≤ i}
ζ1(i) = max{i1 | β(i1) ≤ i}

σ via ζ0, ζ1 via α, βσ (i) = α(i) if i ≤ p
= β(i − p) if i > p

Table 1 summarizes how to go from one representation to another, for i ∈ p + q, i0 ∈
p, i1 ∈ q (take ζ0(−1) = ζ1(−1) = 0).

It is perhaps worth mentioning that α and ζ0| f −1(0) give the bijection between p and
f −1(0), and similarly β and ζ1| f −1(1) between q and f −1(1). Also, the above allows one to
express β in terms of α, which at the present point does not seem to be very useful, but it
will be of use in the proof of Lemma 11.6.

Definition 3.2 Let f : p + q → {0, 1} be a (p, q)-shuffle. Its opposite is the (q, p)-shuffle
f op given by f op(i) = 1 − f (i).

Definition 3.3 An n-dimensional (p, q)-shuffle consists of a (p, q)-shuffle f together with
an order preserving surjective function g : p + q → p + q − n such that if g(i) = g(i +1)
then f (i) = 0 and f (i + 1) = 1.

Thus, an n-dimensional (p, q)-shuffle is a sequence of p 0’s and q 1’s partitioned into
p +q −n parts each of size at most two. A pair (i, i +1) for which g(i) = g(i +1) is called
a swap, of which there are precisely n. In the sequence represented by f a swap must be a
0 followed by a 1, and I will indicate the swap by bracketing the 01 together. In particular,
a 0-dimensional (p, q)-shuffle has no swaps, and is just a (p, q)-shuffle.

There are three other—equivalent—ways to represent where the swaps are:

• One is by means of a function h : p + q → {1, 2} such that #h−1(2) = 2n, and h(i) = 2
and f (i) = 0 if and only if h(i + 1) = 2 and f (i + 1) = 1. For i ∈ p + q, h(i) tells
whether—if h(i) = 2—or not the position i is part of a swap.

• Another one is by an order preserving surjective function π : p + q → n such that
if π (i + 1) = π (i) + 1 then f (i) = 0 and f (i + 1) = 1. For i ∈ p + q, π (i) is the
number of first halves of swaps in the sequence represented by f before position i—
so for i not part of a swap this is just the number of swaps before position i ; if i is
part of a swap the swap itself only counts if i is the position of the second half of the
swap.



SHUFFLE PASTING 233

Table 2. Representation of swaps for (p, q)-shuffles.

g h π w

g via π g(i) = i − π (i) via π

h h(i) = #g−1(g(i)) h(i) = 1 if π (i − 1) = π (i)
= π (i + 1)
= 2 if π (i) > π(i − 1)

or π (i + 1) > π (i)

h(i) = 1 if w−1({i − 1, i}) = ∅

= 2 if w−1({i − 1, i}) 	= ∅

π π (i) = i − g(i) π (i) =
⌊

#(h−1(2)∩i)
2

⌋
π (i) = max{k | w(k) < i}

w via π via π w(k) = max{i | π (i) < k}

• A fourth one is by an order-preserving injective function w : n → p + q such that if
i = w(k) then f (i) = 0 and f (i + 1) = 1. For k ∈ n, w(k) and w(k) + 1 comprise the
k-th swap in the sequence.

Table 2 summarizes how to go from one representation to another, for i ∈ p + q, k ∈ n
(take π (−1) = 0 and π (n) = n).

Definition 3.4 Let ( f, g) be an n-dimensional (p, q)-shuffle. Its opposite is the
n-dimensional (q, p)-shuffle ( f op, gop) given by

f op(i) = 1 − f (i) if i is not part of a swap

f op(i) = f (i) if i is part of a swap

gop(i) = g(i).

Denote the graded set of n-dimensional (p, q)-shuffles by Mp,q , so that (Mp,q )n consists
of all n-dimensional (p, q)-shuffles, for n ≤ min(p, q).

Definition 3.5 An n-kind is a pair of injective order preserving functions ϑ0 : n → p and
ϑ1 : n → q .

To each n-dimensional (p, q)-shuffle ( f, g) is associated its n-kind, given by: ϑ0(k) =
ζ0(w(k)), ϑ1(k) = ζ1(w(k) + 1). Thus, the n-kind of an n-dimensional (p, q)-shuffle tells
which swaps occur in ( f, g), the k-th swap swapping the ϑ0(k)-th 0 in the sequence repre-
sented by f with the ϑ1(k)-th 1. Notice that the n-kind of an n-dimensional (p, q)-shuffle
determines w, by w(k) = ϑ0(k) +ϑ1(k) − 1, but not conversely. Thus, given the n-kind, the
swaps occur at the same places. However, the n-kind does not determine the n-dimensional
(p, q)-shuffle, because in between the swaps anything can happen.
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4. Faces

The principle is that the cell (01) has source 01 and target 10, with a sign convention for
sources and targets of higher-dimensional (p, q)-shuffles, depending on the parity of π (i).

Let ( f, g) be an n-dimensional (p, q)-shuffle. Define, for each ε = ± and k ∈ n an
(n − 1)-dimensional (p, q)-shuffle ( f kε, gkε) by:

f kε(i) = f (i) if i is not part of the k-th swap

= f (i) if i is part of the k-th swap and ε = (−)k

= 1 − f (i) if i is part of the k-th swap and ε = (−)k+1

gkε(i) = g(i) if π (i) < k

= g(i) + 1 if π (i) ≥ k.

Define relations En
n−1 and Bn

n−1 between (Mp,q )n and (Mp,q )n−1 by

( f, g)En
n−1( f kε, gkε) iff ε = +

( f, g)Bn
n−1( f kε, gkε) iff ε = −.

This suffices to define the data for a pasting scheme. To show it is one, I will give a
bijection between R(( f, g)), the ‘closure’ of ( f, g), and �n , the n-cube as a well-formed
loop-free pasting scheme, see [7, Sections 3.2–3.3]. The bijection will basically disregard
everything between the swaps, and will map each swap to an interval; thus a k-dimensional
(p, q)-shuffle will correspond to a product of k intervals.

Let ( f, g) be an n-dimensional (p, q)-shuffle and let ( f ′, g′) be an m-dimensional (p, q)-
shuffle, m ≤ n. Say ( f ′, g′) refines ( f, g) if there exist 1 ≤ k1 < · · · < kn−m ≤ n such
that

f ′(i) = f (i) if i is not in a k�-th swap of f for any �

g′(i) = g(i) if π (i) < k1

g′(i) = g(i) + � if k� ≤ π (i) < k�+1

g′(i) = g(i) + n − m if kn−m ≤ π (i).

Thus, ( f ′, g′) refines ( f, g) if the set of swaps for ( f ′, g′) is contained in that for ( f, g) and
( f, g) and ( f ′, g′) are identical outside the set of swaps for ( f, g).

Obviously, k1 < · · · < kn−m are determined uniquely by ( f ′, g′) if they exist.

Lemma 4.1 R(( f, g)) consists of all ( f ′, g′) refining ( f, g).

Define a map R(( f, g)) → �n by sending ( f ′, g′) to the function x : n → � given by

x(k) = 0 if k 	= k� for all �

= − if k = k� and f ′(w(k�)) = f (w(k�))

= + if k = k� and f ′(w(k�)) = 1 − f (w(k�)).
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Figure 5. M3,3.

Lemma 4.2 The map just defined is a bijection and preserves the relations Ek
k−1 and Bk

k−1.

Proposition 4.3 Mp,q is a pasting scheme.

Proof: The axioms for a pasting scheme are all local, so can be checked in the R(( f, g))’s.
These are cubes, which are known to satisfy them. �

The example M3,3 is given in figure 5, where (01)(01)(01) has as 2-source the front side
and as 2-target the back side of the 3-cube in the middle.

For ϑ = (ϑ0, ϑ1) an n-kind for an n-dimensional (p, q)-shuffle, define (n − 1)-kinds
ϑk = (ϑk

0 , ϑk
1 ), for k ∈ n, by:

ϑk
0 (k ′) = ϑ0(k ′) if k ′ < k

ϑk
0 (k ′) = ϑ0(k ′ + 1) if k ′ ≥ k

ϑk
1 (k ′) = ϑ1(k ′) if k ′ < k

ϑk
1 (k ′) = ϑ1(k ′ + 1) if k ′ ≥ k.

So ϑk is obtained from ϑ by removing the k-th swap.

Definition 4.4 An (n − 1)-kind ϑ ′ bounds an n-kind ϑ if there exists a k ∈ n for which
ϑ ′ = ϑk .

The following is an immediate consequence of Definition 4.4 and the definition of faces
of n-dimensional (p, q)-shuffles:

Lemma 4.5 Let ( f, g) be an n-dimensional (p, q)-shuffle. If ( f ′, g′) ∈ D(( f, g)) then the
(n − 1)-kind of ( f ′, g′) bounds the n-kind of ( f, g).
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For ϑ = (ϑ0, ϑ1) an n-kind for an n-dimensional (p, q)-shuffle, define (n − 2)-kinds
ϑk,k ′

, for k, k ′ ∈ n, k 	= k ′, by

ϑk,k ′ = (ϑk ′
)k = (ϑk)k ′−1 if k < k ′

= (ϑk ′
)k−1 = (ϑk)k ′

if k > k ′.

Lemma 4.6 Let ( f, g) be an n-dimensional (p, q)-shuffle. If ( f ′, g′) ∈ D(( f, g)) of
kind ϑk, ( f ′′, g′′) ∈ D(( f, g)) of kind ϑk ′

and ( f ′′′, g′′′) ∈ D(( f ′, g′)) ∩ D(( f ′′, g′′)), then
( f ′′′, g′′′) has kind ϑk,k ′

. Moreover, ( f ′′′, g′′′) is determined by k and k ′ and the choices for
the D’s.

Proof: This happens in a single n-cube, and says that any two (n − 1)-faces meet in at
most one (n − 2)-‘edge’. �

5. No direct loops

Proposition 5.1 For each p, q, the pasting scheme Mp,q has no direct loops.

Proof: For any a ∈ Mp,q , B(a) ∩ E(a) = {a} because this is the case for a cell which has
the shape of a cube.

Consider a, b both n-dimensional (p, q)-shuffles, and suppose that a � b, i.e., there is a
sequence a = a0, a1, . . . , ar = b and a sequence a′

1, . . . , a′
r with a�Bn

n−1a′
� and a�−1En

n−1a′
�

for all 1 ≤ � ≤ r . Let a′
0 ∈ B(a) and a′

r+1 ∈ E(b), which can be assumed to be via only B’s
and only E’s respectively. I need to show that a′

0 	= a′
r+1. To this end, say a� = ( f(a�), g(a�))

and a′
� = ( f(a′

�), g(a′
�)), and let i be the smallest number for which h(a�)(i) or h(a′

�)(i) differs
from h(a′

0)(i). Assume without loss of generality that in a0, and hence in all a� and a′
�, there

is an even number of swaps before position i . Now if h(a′
0)(i) 	= h(a′

r+1)(i) then a′
0 	= a′

r+1.
If h(a′

0)(i) = h(a′
r+1)(i) = 1 then for some � it must be that h(a�)(i) = 2—perhaps also

some h(a′
�)(i) = 2 but then h(a�)(i) = 2 anyway—and then, by the formulae for source and

target, the even number of swaps before position i , and the fact that nothing changes before
position i , only one change at position i has occurred before a�, namely the introduction
of a swap, and only one after a�, namely the removal of that swap; hence, f(a′

0)(i) = 0 and
f(a′

r+1)(i) = 1, so a′
0 	= a′

r+1. Finally, h(a′
0)(i) = h(a′

r+1)(i) = 2 implies for some � it must be
that h(a′

�)(i) = 1, but then, by the same argument, f(a′
�)(i) = 0 and f(a′

�)(i) = 1 at the same
time, a contradiction. �

So Mp,q has meaningful notions of domain and codomain, and hence of n-source and
n-target.

6. Rank

The idea of the rank is that it measures how far a shuffle is from having all 0’s at the front
and all 1’s at the back, in terms of how many swaps are needed to get to it.
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Definition 6.1 Let f : p + q → {0, 1} be a (p, q)-shuffle, with corresponding ζ0 :
p + q → p and ζ1 : p + q → q . Then

rk( f ) =
∑

i∈ f −1(0)

ζ1(i)

oprk( f ) =
∑

i∈ f −1(1)

ζ0(i).

Another way to calculate the rank of a (p, q)-shuffle f , with corresponding α : p → p + q
and β : q → p + q , would be:

rk( f ) =
∑
i0∈p

(α(i0) − i0)

oprk( f ) =
∑
i1∈q

(β(i1) − i1).

Indeed, the rank counts the number of swaps:

Lemma 6.2 rk( f ) = #{(i0, i1) | α(i0) > β(i1)} and oprk( f ) = #{(i0, i1) | α(i0) < β(i1)}.

Proof:
∑

i∈ f −1(0) ζ1(i) = ∑
i∈ f −1(0) #( f −1(1) ∩ i) = #{(i, i ′) | i ∈ f −1(0), i ′ ∈ f −1(1),

i > i ′} = #{(i0, i1) | α(i0) > β(i1)}. �

Corollary 6.3 rk( f ) + oprk( f ) = p · q.

Corollary 6.4 oprk( f ) = rk( f op).

Definition 6.5 Let ( f, g) be an n-dimensional (p, q)-shuffle. Then

rk( f, g) =
∑

i not part of a swap, f (i) = 0, π (i) even

(ζ1(i) − ϑ1(π (i)))

+
∑

i not part of a swap, f (i) = 1, π (i) odd

(ζ0(i) − ϑ0(π (i)))

oprk( f, g) =
∑

i not part of a swap, f (i) = 0, π (i) odd

(ζ1(i) − ϑ1(π (i)))

+
∑

i not part of a swap, f (i) = 1, π (i) even

(ζ0(i) − ϑ0(π (i)))
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In order to explain these formulae, define, for an n-dimensional (p, q)-shuffle ( f, g), or
more generally for an n-kind ϑ = (ϑ0, ϑ1), numbers pk and qk , for each 0 ≤ k ≤ n, by:

p0 = ϑ0(1) − 1

q0 = ϑ1(1) − 1

pk = ϑ0(k + 1) − ϑ0(k) − 1 for 1 ≤ k ≤ n − 1

qk = ϑ1(k + 1) − ϑ1(k) − 1 for 1 ≤ k ≤ n − 1

pn = p − ϑ0(n)

qn = q − ϑ1(n).

Thus, there are pk 0’s and qk 1’s between the k-th and (k + 1)-th swaps.
Given ( f, g), define 0-dimensional (pk, qk)-shuffles f r

k by:

f r
0 (i) = f (i)

f r
k (i) = f (w(k) + 1 + i) for 1 ≤ k ≤ n.

Thus, f r
k is just the part of f between the k-th and (k + 1)-th swaps.

Lemma 6.6 Let ( f, g) be an n-dimensional (p, q)-shuffle. Then

rk( f, g) =
∑

0 ≤ k ≤ n, k even

rk
(

f r
k

) +
∑

0 ≤ k ≤ n, k odd

oprk
(

f r
k

)

oprk( f, g) =
∑

0 ≤ k ≤ n, k odd

rk
(

f r
k

) +
∑

0 ≤ k ≤ n, k even

oprk
(

f r
k

)
.

Ranks can be calculated by splitting at swaps. To this end, for an n-dimensional (p, q)-
shuffle ( f, g), or more generally for an n-kind ϑ = (ϑ0, ϑ1), define pl

k and ql
k and pr

k and
qr

k , for each 1 ≤ k ≤ n, by

pl
k = ϑ0(k) − 1

ql
k = ϑ1(k) − 1

pr
k = p − ϑ0(k)

qr
k = q − ϑ1(k).

Define (k − 1)-dimensional (pl
k, ql

k)-shuffles ( f il
k , gil

k ) and (n − k)-dimensional (pr
k, qr

k )-
shuffles ( f ir

k , gir
k ), for each 1 ≤ k ≤ n, by:

f il
k (i) = f (i)

gil
k (i) = g(i)

f ir
k (i) = f (w(k) + 1 + i)

gir
k (i) = g(w(k) + 1 + i) − k.
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Thus, ( f il
k , gil

k ) and ( f ir
k , gir

k ) are the parts of f up to the k-th swap and after the k-th swap,
respectively.

Lemma 6.7 Let ( f, g) be an n-dimensional (p, q)-shuffle. Then

rk( f, g) =
∑

1≤k≤n

(
rk

(
f il
k , gil

k

) + oprk
(

f ir
k , gir

k

))

n
.

Introduce the notation that x <k y if x < y for k even and x > y for k odd. Similarly,
x >k y if x >k+1 y, that is, if y <k x . One should think of the relation <k as (−)k ·< where
−< equals >.

Corollary 6.8

rk( f, g) = #{(i0, i1) | α(i0) and β(i1) both not part of a swap, π (α(i0))

= π (β(i1)) = k, and α(i0) >k β(i1)}
oprk( f, g) = #{(i0, i1) | α(i0) and β(i1) both not part of a swap, π (α(i0))

= π (β(i1)) = k, and α(i0) <k β(i1)}.

Cells go from lower rank to higher rank:

Proposition 6.9 Let ( f, g) be an n-dimensional (p, q)-shuffle. Then rk( f k+, gk+) =
rk( f k−, gk−) + 1 and oprk( f k+, gk+) = oprk( f k−, gk−) − 1.

Proof: Consider the k-th swap in ( f, g), say with k even. In the formula of Lemma 6.7 for
n rk( f, g), if one replaces this swap by 01, then ( f il

k , gil
k ) and ( f ir

k , gir
k ) disappear from the

sum, and for all k ′ 	= k, the k-th swap of ( f, g) gets also replaced by 01 in all appropriate
( f il

k ′ , gil
k ′ ) and ( f ir

k ′ , gir
k ′ ). Renumbering the k ′ > k, this gives precisely the formula of the

lemma for (n − 1) rk( f k−, gk−). Similarly for k odd and/or replacing this swap by 10, in
the ‘or’ case giving (n − 1) rk( f k+, gk+). Now by induction the statement is true for each
appropriate ( f il

k ′ , gil
k ′ ) and ( f ir

k ′ , gir
k ′ ), so the difference between (n − 1) rk( f k+, gk+) and

(n − 1) rk( f k−, gk−) is n − 1, giving the conclusion. �

The ranks for 0-cells and 1-cells of M3,3 are given in figure 6; all 2-cells of M3,3 have rank
0 except the ones on the back side of the cube which have rank 1, and the 3-cell (01)(01)(01)
has rank 0.

7. The �-order

The rank defined in the previous section is the rank function for a partial order. This partial
order will only relate n-dimensional (p, q)-shuffles of the same n-kind.

Definition 7.1 Let f and f ′ be two (p, q)-shuffles. Then f � f ′ if and only if α(i0) ≤ α′(i0)
for all i0 ∈ p.
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Figure 6. Ranks of cells in M3,3.

Lemma 7.2 f � f ′ if and only if α(i0) > β(i1) implies α′(i0) > β ′(i1) for every i0 ∈ p
and i1 ∈ q.

Proof: On the one hand, ζ1(α(i0)) = α(i0) − ζ0(α(i0)) = α(i0) − i0, so α(i0) ≤ α′(i0) if
and only if ζ1(α(i0)) ≤ ζ ′

1(α′(i0)). On the other hand, ζ1(α(i0)) = max{i1 | β(i1) < α(i0)},
so ζ1(α(i0)) ≤ ζ ′

1(α′(i0)) if and only if α(i0) > β(i1) implies α′(i0) > β ′(i1). �

Corollary 7.3 f � f ′ if and only if β(i1) ≥ β ′(i1) for all i1 ∈ q.

Proof (from lemma): α(i0) > β(i1) implies α′(i0) > β ′(i1) if and only if α′(i0) < β ′(i1)
implies α(i0) < β(i1), and so by calculating ζ0(β(i1)), it follows as in the lemma that
β(i1) ≥ β ′(i1). �

Proof (direct): Let i1 be the smallest element of q for which β(i1) < β ′(i1). Now if
f ′(i) = 1 for some β(i1) ≤ i < β ′(i1) then ζ ′

0(i) < i1 and β(ζ ′
0(i)) < β(i1) ≤ i = β ′(ζ ′

0(i)),
contradicting minimality of i1. And if f (i) = 0 for all β(i1) ≤ i < β ′(i1) then there are
i1 − 1 1’s up to position β(i1) − 1 in both f and f ′, and consequently β(i1) − i1 0’s. So
take i0 = β(i1) − i1 + 1, then α(i0) > β(i1) = α′(i0), contradicting f � f ′. �

Definition 7.4 Let ( f, g) and ( f ′, g′) be two n-dimensional (p, q)-shuffles of the same
n-kind ϑ . Then ( f, g) � ( f ′, g′) if and only if α(i0) ≤k α′(i0) for every k and ϑ0(k) < i0 <

ϑ0(k + 1).

The relation � only depends on what is in between the swaps—because two n-dimensional
shuffles of the same n-kind only differ there.

Lemma 7.5 ( f, g) � ( f ′, g′) if and only if f r
k �k ( f ′)r

k for every k.
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Combining Lemmas 7.3 and 7.5 immediately gives

Corollary 7.6 ( f, g) � ( f ′, g′) if and only if β(i1) ≥k β ′(i1) for every k and ϑ1(k) < i1 <

ϑ1(k + 1).

Another consequence, from Lemmas 7.2 and 7.5 this time, which will be used extensively
in the sequel:

Corollary 7.7 ( f, g) � ( f ′, g′) if and only if α(i0) >k β(i1) implies α′(i0) >k β ′(i1) for
every k and ϑ0(k) < i0 < ϑ0(k + 1) and ϑ1(k) < i1 < ϑ1(k + 1).

Lemma 7.5 also implies that

Corollary 7.8 For any ( f, g) and any k, ( f k−, gk−) � ( f k+, gk+).

Proposition 7.9 If ( f, g) � ( f ′, g′) then rk( f, g) ≤ rk( f ′, g′), with equality only when
( f, g) = ( f ′, g′).

Proof: By Lemmas 6.6 and 7.5 I only need to consider 0-dimensional (p, q)-shuffles.
And then the statement is trivial. �

8. Filling

The filling condition will be based on the �-relation in pasting schemes, but restricted to
faces of one given (n − 1)-kind.

Definition 8.1 Let ϑ ′′ be an (n − 1)-kind for (p, q)-shuffles, and let ( f, g) and ( f ′, g′) be
two n-dimensional (p, q)-shuffles whose n-kinds have bound ϑ ′′, say ( f, g) has n-kind ϑ

and ( f ′, g′) has n-kind ϑ ′ and ϑk = ϑ ′′ = (ϑ ′)k ′
. Then ( f, g) <ϑ ′′

( f ′, g′) if and only if
( f k+, gk+) = (( f ′)k ′−, (g′)k ′−).

Let �ϑ ′′
be the transitive closure of the relation <ϑ ′′

.
Where � relates n-dimensional (p, q)-shuffles of the same n-kind, �ϑ ′′

relates
n-dimensional (p, q)-shuffles with same bounding (n − 1)-kind. These two relations are
connected:

Lemma 8.2 Let ( f, g)�ϑ ′′
( f ′, g′), say ( f, g) has n-kind ϑ and ( f ′, g′) has n-kind ϑ ′ and

ϑk = ϑ ′′ = (ϑ ′)k ′
. Then ( f k−, gk−) � (( f ′)k ′+, (g′)k ′+).

Proof: This immediately follows from Corollary 7.8 and transitivity of �. �

Definition 8.3 Let nγ be a collection of n-dimensional (p, q)-shuffles. K (nγ ) is the col-
lection of n-kinds of elements in nγ .
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Definition 8.4 Let n−1 K be a collection of (n − 1)-kinds for (p, q)-shuffles. An n-kind ϑ

is relevant for n−1 K if n−1 K contains all (n − 1)-kinds bounding it.

Definition 8.5 Let n−1γ, n−1γ ′ be two collections of (n−1)-dimensional (p, q)-shuffles. A
collection nγ of n-dimensional (p, q)-shuffles fills n−1γ, n−1γ ′ if any n-kind in K (nγ ) is rel-
evant for K (n−1γ ) and for K (n−1γ ′), and for every (n −1)-kind ϑ ′ and every (n−1 f, n−1g) ∈
n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ of (n − 1)-kind ϑ ′,

• (n−1 f, n−1g) = (n−1 f ′, n−1g′) if and only if K (nγ ) contains no n-kind with bound ϑ ′

• if (n−1 f, n−1g) 	= (n−1 f ′, n−1g′) then the relation �ϑ ′
is a total order on the collection of

elements of nγ whose n-kind has bound ϑ ′, and for the �ϑ ′
-first and �ϑ ′

-last element in
this collection respectively, say ( f, g) of n-kind ϑ and ϑk = ϑ ′, one has ( f k−, gk−) =
(n−1 f, n−1g) and ( f k+, gk+) = (n−1 f ′, n−1g′) respectively.

A collection 0γ of 0-dimensional (p, q)-shuffles fills ∅ if it is a singleton.

One should think of filling as a dynamic condition—it sort of says that one can ‘move’
from n−1γ to n−1γ ′ via elements of nγ in an orderly manner.

To compare filling to well-formedness I need to be able to make a subpasting scheme out
of collections of cells.

Definition 8.6 An n-stage shuffle collection γ consists of collections of j-dimensional
(p, q)-shuffles jγ, j ′

γ for each 0 ≤ j < n and a collection of n-dimensional (p, q)-shuffles
nγ .

Definition 8.7 Let γ = { jγ, j ′
γ | 0 ≤ j < n} ∪ {nγ } be an n-stage shuffle collection.

Then dom(γ ) = { jγ, j ′
γ | 0 ≤ j < n − 1} ∪ {n−1γ } and cod(γ ) = { jγ, j ′

γ | 0 ≤ j <

n − 1} ∪ {n−1γ ′}.

This follows the usual pattern of globular collections, except that the cells are not globular
here.

Definition 8.8 Let γ = { jγ, j ′
γ | j ∈ n} ∪ {nγ } be an n-stage shuffle collection. Then

R(γ ) = R(
⋃

γ ).

So R(γ ) is a subpasting scheme of Mp,q .
Domains and codomains of subpasting schemes and of n-stage shuffle collections are

related:

Lemma 8.9 Let γ be an n-stage shuffle collection. If nγ fills n−1γ, n−1γ ′ then
dom(R(γ )) = R(dom(γ )) and cod(R(γ )) = R(cod(γ )).

Proof: By elementary pasting scheme arguments, it suffices to consider (n − 1)-
dimensional cells.
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First consider (n−1 f, n−1g) of (n − 1)-kind ϑ ′ for which there are no elements in nγ

having bound ϑ ′. Then (n−1 f, n−1g) ∈ dom(R(γ )) if and only if (n−1 f, n−1g) ∈ R(γ ) if and
only if (n−1 f, n−1g) ∈ R(n−1γ ).

For (n−1 f, n−1g) of (n − 1)-kind ϑ ′ for which there is an element in nγ having bound
ϑ ′, (n−1 f, n−1g) ∈ dom(R(γ )) if and only if there is an ( f, g) beginning in (n−1 f, n−1g)
but no ( f ′, g′) ∈ nγ ending in (n−1 f, n−1g) if and only if ( f, g) is the first element in the
�ϑ ′

-sequence if and only if (n−1 f, n−1g) ∈ n−1γ . �

Conversely, given an n-dimensional subpasting scheme A of Mp,q define an n-stage
shuffle collection γ by jγ = s j (A) j ,

j ′
γ = t j (A) j ,

nγ = An .

Proposition 8.10 Let γ be an n-stage shuffle collection. If γ fills n−1γ, n−1γ ′ then R(γ )
is compatible.

Proof: If z ∈ Bn−1(x) ∩ Bn−1(y) then x�ϑ ′
y say where ϑ ′ the (n − 1)-kind of z. But then,

replacing the last step in this �ϑ ′
-sequence, which is possible because y and ϑ ′ determine

z uniquely, x�ϑ ′
x , contradicting that �ϑ ′

is a total order.
0γ filling means it is a singleton which means that R(0γ ) is compatible. �

9. Fitness

The fitness condition will be based on the �-order, extended to collections of cells.

Definition 9.1 Let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles.
n−1γ � n−1γ ′ if whenever ( f, g) ∈ n−1γ and ( f ′, g′) ∈ n−1γ ′ of the same (n − 1)-kind then
( f, g) � ( f ′, g′).

I apologize for the (over)abundance of terminology to follow, but the reward will be a
tidy formulation of fitness.

Definition 9.2 Let ϑ be an n-kind and let ( f, g) and ( f ′, g′) be two (n − 1)-dimensional
(p, q)-shuffles of kind ϑk . Then ( f, g) �ϑ ( f ′, g′) if ( f, g) � ( f ′, g′) and α(ϑ0(k)) <k−1

β(ϑ1(k)) and α′(ϑ0(k)) >k−1 β ′(ϑ1(k)).
For ( f, g) and ( f ′, g′) of (n − 1)-kind ϑ ′, say that ( f, g), ( f ′, g′) needs ϑ if ϑ ′ = ϑk and

( f, g) �ϑ ( f ′, g′).

Lemma 9.3 Let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles,
and let nγ be a collection of n-dimensional (p, q)-shuffles filling n−1γ, n−1γ ′. Let ϑ be
an n-kind and let (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ of (n − 1)-kind ϑk . If
(n−1 f, n−1g), (n−1 f ′, n−1g′) needs ϑ then nγ contains an element of kind ϑ .

Proof: Among the elements of nγ whose n-kind has bound ϑk the only ones that change
the relative positions of the ϑ0(k)-th 0 and the ϑ1(k)-th 1 are the ones of n-kind ϑ . These
relative positions in (n−1 f, n−1g) and (n−1 f ′, n−1g′) respectively are actually different, so
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(n−1 f, n−1g) 	= (n−1 f ′, n−1g′), and (at least) one of the elements in the total order �ϑ must
actually swap them. �

Definition 9.4 Let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles
and let n−1γ � n−1γ ′. An n-kind ϑ is proper to n−1γ, n−1γ ′ if for every k and for every
( f, g) ∈ n−1γ and ( f ′, g′) ∈ n−1γ ′ both of (n − 1)-kind ϑk, ( f, g) �ϑ ( f ′, g′).

An n-kind ϑ is properly relevant to n−1γ, n−1γ ′ if it is relevant to both K (n−1γ ) and
K (n−1γ ′) and proper to n−1γ, n−1γ ′.

Definition 9.5 Let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles.
An n-dimensional (p, q)-shuffle ( f, g) is fit for n−1γ, n−1γ ′ if whenever (n−1 f, n−1g) ∈
n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ with equal (n − 1)-kind bounding the n-kind of ( f, g), say
of (n − 1)-kind ϑk , then (n−1 f, n−1g) � ( f k−, gk−) and ( f k+, gk+) � (n−1 f ′, n−1g′).

This definition is not very useful when not n−1γ � n−1γ ′, but as that is not its intended
use, this is not a problem.

Lemma 9.6 If ( f, g) of n-kind ϑ is fit for n−1γ, n−1γ ′ then ϑ is proper to n−1γ, n−1γ ′.

Proof: Let (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ both of (n −1)-kind ϑk . Then
(n−1 f, n−1g) � ( f k−, gk−) � ( f k+, gk+) � (n−1 f ′, n−1g′), and moreover n−1α(ϑ0(k)) ≤k−1

αk−(ϑ0(k)) <k−1 βk−(ϑ1(k)) ≤k−1 n−1β(ϑ1(k)) and similarly n−1α′(ϑ0(k)) > n−1β ′(ϑ1(k)),
proving (n−1 f, n−1g) �ϑ (n−1 f ′, n−1g′), as required. �

Definition 9.7 Let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles,
and let nγ be a collection of n-dimensional (p, q)-shuffles. nγ is fit for n−1γ, n−1γ ′ if

(i) every n-kind in K (nγ ) is relevant to both K (n−1γ ) and K (n−1γ ′);
(ii) every n-kind occurs at most once as n-kind of an element of nγ ;

(iii) every element of nγ is fit for n−1γ, n−1γ ′;
(iv) for every n-kind properly relevant to n−1γ, n−1γ ′ there exists an element of nγ of that

n-kind;
(v) (continuation) if (n−1 f, n−1g) /∈ n−1γ and ( f ′, g′)Bn

n−1(n−1 f, n−1g) for some ( f ′, g′) ∈
nγ then there exists an ( f, g) ∈ nγ with ( f, g)En

n−1(n−1 f, n−1g), and dually.

A collection 0γ of 0-dimensional (p, q)-shuffles fits ∅ if it is a singleton.

The first three conditions restrict what nγ can contain, the other two say what nγ must
contain. The conditions completely determine what kinds can occur in a fitting collection:
only properly relevant ones by Lemma 9.6, and all properly relevant ones precisely once
by conditions (ii) and (iv).

One should think of fitness as a static condition—it sort of ‘drops down’ the elements of
nγ with only condition (v) providing some cohesion.

To compare fitness to filling I will show that if an n-kind ϑ is needed by elements of
n−1γ, n−1γ ′ of (n−1)-kind ϑk then for any other (n−1)-kind bounding ϑ there are elements
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of n−1γ, n−1γ ′ of that (n −1)-kind needing ϑ . In other words, if ϑ is needed by n−1γ, n−1γ ′

for one reason, then it is properly relevant to n−1γ, n−1γ ′. Of course, one needs assumptions
on n−1γ, n−1γ ′. The following lemma prepares the way, and will also be used extensively
in Section 11.

Lemma 9.8 Let n−2γ, n−2′
γ be two collections of (n−2)-dimensional (p, q)-shuffles, and

let n−1γ be a collection of (n −1)-dimensional (p, q)-shuffles filling and fitting n−2γ, n−2′
γ .

Let ϑ be an n-kind, and let ( f, g) ∈ n−1γ of kind ϑk and ( f ′′, g′′) ∈ n−1γ of (n − 1)-kind
ϑk ′

. Then

( f, g) �ϑk,k′
( f ′′, g′′) if and only if for

k < k ′: α(ϑ0(k)) <k−1 β(ϑ1(k))

k > k ′: α(ϑ0(k)) <k β(ϑ1(k)).

Proof: As in the proof of Lemma 9.3, among the elements of n−1γ whose (n − 1)-kind
has bound ϑk,k ′

the only ones that swap the ϑ0(k)-th 0 with the ϑ1(k)-th 1 are the ones of
(n −1)-kind ϑk ′

. There is only one such because n−1γ is fitting. Thus, �ϑk,k′
-between ( f, g)

and ( f ′, g′) this swap does not occur.
Now in ( f ′′, g′′) the parity of the swap ϑ0(k), ϑ1(k) depends not only on the parity of

k but also on whether or not k ′ < k. So in (( f ′′)k−, (g′′)k−), by the formula for this face,
one has for k ′ < k that α′′(ϑ0(k)) >k−1 β ′′(ϑ1(k)), and in (( f ′′)k+, (g′′)k+) the other way
around, and the other way around for k ′ > k. So if ( f, g)�ϑk,k′

( f ′′, g′′) then the conclusion
follows, and if not then assuming the conclusion would lead to a contradiction. �

Proposition 9.9 Let n−2γ, n−2′
γ be two collections of (n−2)-dimensional (p, q)-shuffles,

and let n−1γ, n−1γ ′ be two collections of (n −1)-dimensional (p, q)-shuffles both filling and
fit for n−2γ, n−2′

γ . Let ϑ be an n-kind, and let ( f, g) ∈ n−1γ of kind ϑk and ( f ′, g′) ∈ n−1γ ′

also of (n − 1)-kind ϑk . Then ( f, g), ( f ′, g′) needs ϑ if and only if ϑ is properly relevant to
n−1γ, n−1γ ′.

Proof: One direction is trivial, so assume ( f, g) �ϑ ( f ′, g′), i.e., α(ϑ0(k)) <k−1 β(ϑ1(k))
and α′(ϑ0(k)) >k−1 β ′(ϑ1(k)).

To show ϑ is relevant to K (n−1γ ) I need to show that n−1γ contains an element of
(n − 1)-kind ϑk ′

, for each k ′. Now because ( f, g) ∈ n−1γ of (n − 1)-kind ϑk and n−1γ fits
n−2γ, n−2′

γ, ϑk is relevant to K (n−2γ ) and K (n−2′
γ ), and so n−2γ, n−2′

γ both contain an
element of (n−2)-kind ϑk,k ′

, say (n−2 f, n−2g) ∈ n−2γ and (n−2′
f, n−2′

g) ∈ n−2′
γ . Moreover,

( f, g) and ( f ′, g′) are fit for n−2γ, n−2′
γ , so (n−2 f, n−2g) � ( f k ′−, gk ′−), ( f k ′+, gk ′+) �

(n−2′
f, n−2′

g), (n−2 f, n−2g)� (( f ′)k ′−, (g′)k ′−) and (( f ′)k ′+, (g′)k ′+)� (n−2′
f, n−2′

g). If k ′ >

k then the first one of these says n−2α(ϑ0(k)) ≤k−1 α(ϑ0(k)) and β(ϑ1(k)) ≤k−1 n−2β(ϑ0(k)),
while the fourth one says n−2′

α(ϑ0(k)) ≥k−1 α′(ϑ0(k)) and β ′(ϑ1(k)) ≥k−1 n−2′
β(ϑ0(k)).

Combined with the first couple of inequalities in this proof it follows that (n−2 f, n−2g) to
(n−2′

f, n−2′
g) needs ϑk ′

. For k ′ < k one uses the second and third one of these similarly,
and again (n−2 f, n−2g) to (n−2′

f, n−2′
g) needs ϑk ′

. By Lemma 9.3, this implies that n−1γ ,
which fills n−2γ, n−2′

γ , contains an element of (n − 1)-kind ϑk ′
.
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To show ϑ is proper to n−1γ, n−1γ ′, I have to show that for any k ′ and any ( f ′′, g′′) ∈ n−1γ

of kindϑk ′
and ( f ′′′, g′′′) ∈ n−1γ ′ also of (n−1)-kindϑk ′

, ( f ′′, g′′) �ϑ ( f ′′′, g′′′). But this fol-
lows from Lemma 9.8: if k > k ′ then α(ϑ0(k)) <k−1 β(ϑ1(k)) implies ( f, g) �ϑk,k′

( f ′′, g′′)
in n−1γ implies, using the lemma in the other direction, α(ϑ0(k ′)) <k ′−1 β(ϑ1(k ′)), and the
other way around in n−1γ ′, as required. �

Lemma 9.10 Let ( f, g) and ( f ′, g′) be (n−1)-dimensional (p, q)-shuffles both of (n−1)-
kind ϑ ′ with ( f, g) � ( f ′, g′). Then rk( f ′, g′) − rk( f, g) is equal to the number of (n − 1)-
kinds needed by ( f, g), ( f ′, g′).

Proof: Immediate from Corollary 6.8. �

Proposition 9.11 Let n−2γ, n−2′
γ be two collections of (n−2)-dimensional (p, q)-shuffles,

let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles both filling and fit
for n−2γ, n−2′

γ, and let nγ be a collection of n-dimensional (p, q)-shuffles. If nγ is fit for
n−1γ, n−1γ ′ then it fills n−1γ, n−1γ ′.

Proof: Consider an (n − 1)-kind ϑ ′, (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ of
kind ϑ ′, and the collection of elements of nγ whose n-kind has bound ϑ ′. By Lemma 9.10
and the fact that each n-kind needed occurs and occurs only once, there are as many of
those as the difference in rank between (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′.

So firstly, (n−1 f, n−1g) = (n−1 f ′, n−1g′) if and only if they have equal rank if and only if
there are no elements of nγ whose n-kind has bound ϑ ′.

Secondly, if (n−1 f, n−1g) 	= (n−1 f ′, n−1g′) then there is an n-kind needed by (n−1 f, n−1g),
(n−1 f ′, n−1g′) so by Lemma 9.9 and fitness nγ contains an element, ( f, g) say, of this n-
kind which has bound ϑ ′. By Lemma 9.6 (n−1 f, n−1g) � (n−1 f ′, n−1g′), and Lemma 9.10
can be applied. Now by condition (v) of the definition of fitness, starting from ( f, g),
one finds a descending �ϑ ′

-sequence of elements of nγ of n-kinds with bound ϑ ′, and
dually an ascending �ϑ ′

-sequence of elements of nγ of n-kinds with bound ϑ ′. This whole
sequence cannot contain a loop, because each element in the sequence increases rank by
1, and must reach (n−1 f, n−1g) and (n−1 f ′, n−1g′) on either side because nγ is finite. Now
again because each element in the sequence increases rank by 1 it must contain precisely
rk( f ′, g′)− rk( f, g) elements, i.e., precisely all elements of nγ whose n-kind has bound ϑ ′.
Consequently, this collection is totally �ϑ ′

-ordered. �

10. Characterization

Finally, to compare well-formedness to fitness:

Proposition 10.1 Let γ be an n-stage shuffle collection. If sn−1(R(γ ))n−1 = n−1γ and
tn−1(R(γ ))n−1 = n−1γ ′, both n−1γ, n−1γ ′ are filling and fit for n−2γ, n−2′

γ and R(γ ) is
compatible then nγ is fit for n−1γ, n−1γ ′.

Proof: (v) if (n−1 f, n−1g) /∈ dom(R(γ )) but in R(γ ) then there exists an ( f, g) ∈ nγ with
( f, g)En

n−1(n−1 f, n−1g), by definition of domain.
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(i) if ( f, g) ∈ nγ of n-kind ϑ and ( f k−, gk−) /∈ dom(R(γ )) then there is an element of
nγ ending in ( f k−, gk−); repeat, there will not be a loop by no direct loops and this
will not go on forever because Mp,q is finite. So eventually an element of n−1γ of
(n − 1)-kind ϑk will be found.

(ii) suppose a kind occurs twice, then the previous process will give the same element of
n−1γ because that is fit for n−2γ, n−2′

γ itself. But at some point these processes will
start to coincide, at which point one would have a situation contradicting compatibility.

(iii) suppose a non-fit element occurs, then the previous process will go on indefinitely
because of repeated application of Corollary 7.8.

(iv) suppose ϑ properly relevant, i.e., needed by (n−1 f, n−1g), (n−1 f ′, n−1g′) both of (n−1)-
kind ϑk . Again, use the same process; if n-kind ϑ does not occur then it will always
be that α(ϑ0(k)) <k−1 β(ϑ1(k)), so (n−1 f ′, n−1g′) won’t be hit and the process will go
on indefinitely again.

�

It remains to collect the three comparisons together.

Definition 10.2 An n-stage shuffle collection γ fills if 0γ and 0′
γ fill ∅, all jγ and j ′

γ fill
j−1γ, j−1′

γ, and nγ fills n−1γ, n−1γ ′.

Definition 10.3 An n-stage shuffle collection γ is fit if 0γ and 0′
γ fit ∅, all jγ and j ′

γ are
fit for j−1γ, j−1′

γ, and nγ is fit for n−1γ, n−1γ ′.

Theorem 10.4 Let γ be an n-stage shuffle collection. The following are equivalent:
(i) γ fills

(ii) γ is fit
(iii) R(γ ) is well formed with s j (R(γ )) = R(s j (γ )) and t j (R(γ )) = R(t j (γ )) for all j ∈ n.

Proof: By induction, using the induction hypothesis that the three statements are equiv-
alent in one dimension lower. Then: (i) implies (iii) by Proposition 8.10, (ii) implies (i) by
Proposition 9.11, and (iii) implies (ii) by Proposition 10.1. �

11. Classification

Corollary 11.1 If nγ fills n−1γ, n−1γ ′ then n−1γ � n−1γ ′.

Proof: This immediately follows from Lemma 8.2. �

I will establish the converse of this corollary, that if n−1γ � n−1γ ′ then they are source
and target for a fitting nγ . Of course, I will have the same assumptions on n−1γ, n−1γ ′ as
before.

First, another way to see whether an n-dimensional (p, q)-shuffle is fit, which only works
when n−1γ � n−1γ ′.
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Lemma 11.2 Let n−1γ, n−1γ ′ be two collections of (n−1)-dimensional (p, q)-shuffles with
n−1γ � n−1γ ′, let ϑ be properly relevant to n−1γ, n−1γ ′, and let ( f, g) be an n-dimensional
(p, q)-shuffle of kind ϑ . ( f, g) is fit for n−1γ, n−1γ ′ if and only if for every (n − 1)-kind ϑ ′

bounding ϑ and every (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ both of (n − 1)-kind
ϑ ′ and for every i0 ∈ p and i1 ∈ q, n−1α(i0) ≶ n−1β(i1) and n−1α′(i0) ≶ n−1β ′(i1) imply
α(i0) ≶ β(i1).

Proof: Say (n−1 f, n−1g) and (n−1 f ′, n−1g′) are of kind ϑk .
Suppose ( f, g) is fit for n−1γ, n−1γ ′ and suppose n−1α(i0) ≶ n−1β(i1) and n−1α′(i0) ≶

n−1β ′(i1). Then the conclusion follows from Corollary 7.7 applied to either (n−1 f, n−1g) �

( f k−, gk−) or to ( f k+, gk+) � (n−1 f ′, n−1g′), depending on whether the sign is >k ′
or <k ′

where ϑk(k ′) < (i0, i1) < ϑk(k ′ + 1).
For the converse, suppose the conclusion and, in order to prove (n−1 f, n−1g)�( f k−, gk−),

that n−1α(i0) >k ′ n−1β(i1) where ϑk(k ′) < (i0, i1) < ϑk(k ′+1). Then because (n−1 f, n−1g)�
(n−1 f ′, n−1g′) Corollary 7.7 gives n−1α′(i0) >k ′ n−1β ′(i1) and the conclusion gives α(i0) >k ′

β(i1) as required. ( f k+, gk+) � (n−1 f ′, n−1g′) is proven similarly using the conclusion with
the opposite sign. �

In defining nγ I will pick one n-dimensional (p, q)-shuffle for each n-kind properly
relevant for n−1γ, n−1γ ′. The one I will pick will satisfy the following condition:

Definition 11.3 Let n−1γ, n−1γ ′ be two collections of (n−1)-dimensional (p, q)-shuffles,
and let ( f, g) be an n-dimensional (p, q)-shuffle of n-kind ϑ . ( f, g) is minimally fit for
n−1γ, n−1γ ′ if it is fit for n−1γ, n−1γ ′ and for every (i0, i1) with ϑ(k − 1) < (i0, i1) <

ϑ(k), such that α(i0) >k−1 β(i1) there is a k ′′ and elements (n−1 f ′′, n−1g′′) ∈ n−1γ

and (n−1 f ′′′, n−1g′′′) ∈ n−1γ ′ both of kind ϑk ′′
such that n−1α′′(i0) >k−1 n−1β ′′(i1) and

n−1α′′′(i0) >k−1 n−1β ′′′(i1).

To explain the use of the word ‘minimal’:

Lemma 11.4 Let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles
with n−1γ � n−1γ ′, and let ( f, g) be an n-dimensional (p, q)-shuffle of n-kind ϑ properly
relevant to n−1γ, n−1γ ′. ( f, g) is minimally fit for n−1γ, n−1γ ′ if and only if it is fit for
n−1γ, n−1γ ′ and ( f, g) � ( f ′, g′) for every n-dimensional (p, q)-shuffle ( f ′, g′) of kind ϑ

fit for n−1γ, n−1γ ′.

Proof: By Lemma 11.2, fitness of ( f, g) and ( f ′, g′) fixes whether α(i0) ≶ β(i1) as soon
as these are in the same order in n−1γ, n−1γ ′. So I only have to consider those (i0, i1) for
which this is not the case.
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An ( f, g) fit for n−1γ, n−1γ ′ is not minimally fit for n−1γ, n−1γ ′ if there exists such an
(i0, i1) with ϑ(k − 1) < (i0, i1) < ϑ(k), such that α(i0) >k−1 β(i1).

There is an ( f ′, g′) with ( f, g) 	 �( f ′, g′) if, by Corollary 7.7, there exists such an (i0, i1)
with ϑ(k − 1) < (i0, i1) < ϑ(k), such that α(i0) >k−1 β(i1) but α′(i0) <k−1 β ′(i1).

So one direction is trivial, and for the other direction ( f ′, g′) can be chosen by swapping
such i0 and i1 for which α(i0) ± 1 = β(i1), which must exist because α and β are order
preserving. �

Checking whether something is minimally fit can be simplified somewhat when n−1γ,
n−1γ ′ are as wanted:

Lemma 11.5 Let n−2γ, n−2′
γ be two collections of (n−2)-dimensional (p, q)-shuffles, and

let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles both filling and fit
for n−2γ, n−2′

γ, and let n−1γ �n−1γ ′. Then ( f, g) of n-kind properly relevant to n−1γ, n−1γ ′

is minimally fit for n−1γ, n−1γ ′ precisely when: for every (i0, i1) with ϑ(k − 1) < (i0, i1) <

ϑ(k), α(i0) >k−1 β(i1) if and only if there is a k ′′ and elements (n−1 f ′′, n−1g′′) ∈ n−1γ

and (n−1 f ′′′, n−1g′′′) ∈ n−1γ ′ both of kind ϑk ′′
such that n−1α′′(i0) >k−1 n−1β ′′(i1) and

n−1α′′′(i0) >k−1 n−1β ′′′(i1).

Proof: Clearly, this condition is necessary for minimally fit, partly by Lemma 11.2. For
sufficiency, the only case to consider is when n−1α(i0) <k−1 n−1β(i1) and n−1α′(i0) <k−1

n−1β ′(i1) but α(i0) >k−1 β(i1). Then the condition gives a k ′′ and elements (n−1 f ′′, n−1g′′) ∈
n−1γ and (n−1 f ′′′, n−1g′′′) ∈ n−1γ ′ both of kind ϑk ′′

such that n−1α′′(i0) >k−1 n−1β ′′(i1) and
n−1α′′′(i0) >k−1 n−1β ′′′(i1). But then, by repeated application of Lemma 9.8, (n−1 f, n−1g)
and (n−1 f ′′, n−1g′′) are in the same �k,k ′′

-order in n−1γ as are (n−1 f ′, n−1g′) and
(n−1 f ′′′, n−1g′′′) in n−1γ ′, from looking at i0 and i1, but also in the opposite �k,k ′′

-order,
from looking at ϑ being properly relevant, contradiction. �

So the proof of this lemma is basically saying that for a properly relevant n-kind one cannot
get contradictory prescriptions from n−1γ, n−1γ ′ on whether α(i0) ≶ β(i1).

Lemma 11.6 Let n−2γ, n−2′
γ be two collections of (n − 2)-dimensional (p, q)-shuffles,

and let n−1γ, n−1γ ′ be two collections of (n −1)-dimensional (p, q)-shuffles both filling and
fit for n−2γ, n−2′

γ, and let n−1γ �n−1γ ′. For every n-kind ϑ properly relevant to n−1γ, n−1γ ′

there exists precisely one n-dimensional (p, q)-shuffle of n-kind ϑ that is minimally fit for
n−1γ, n−1γ ′.

Proof: Uniqueness is immediate from Lemma 11.4.
To show that there exists one, notice first that the n-kind determines the places of all swaps,

as observed at the end of Section 3. So I only have to define positions between swaps. For i0

not part of a swap, (i.e., 	= ϑ0(k) for any k), define for (i0, i1) with ϑ(k−1) < (i0, i1) < ϑ(k)
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and k − 1 even

α(i0) = i0 + max{i ′
1 | n−1α(i0) >k−1 n−1β(i ′

1) and n−1α′(i0) >k−1 n−1β ′(i ′
1) for

some (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ of
(n − 1)-kind bounding ϑ}

β(i1) = i1 + max{i ′
0 | there are no (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′

of (n − 1)-kind bounding ϑ with n−1α(i ′
0) >k−1 n−1β(i1)

and n−1α′(i ′
0) >k−1 n−1β ′(i1)}

and for k − 1 odd

α(i0) = i0 + max{i ′
1 | there are no (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′

of (n − 1)-kind bounding ϑ with n−1α(i0) >k−1 n−1β(i ′
1)

and n−1α′(i0) >k−1 n−1β ′(i ′
1)}

β(i1) = i1 + max{i ′
0 | n−1α(i ′

0) >k−1 n−1β(i1) and n−1α′(i ′
0) >k−1 n−1β ′(i1) for

some (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ of
(n − 1)-kind bounding ϑ}.

I need first to show that ( f, g) is an n-dimensional (p, q)-shuffle, i.e., that α and β

are strictly order preserving with disjoint images. But strictly order preserving is almost
immediate from n−1α, n−1β, n−1α, n−1β ′ being strictly order preserving. And take i to be
the smallest for which i = α(i0) = β(i1), then because up to i − 1 α and β are strictly order
preserving with disjoint images one has i −1 = i0−1+i1−1 and hence α(i0) = i0+(i1−1).
For k − 1 even, by maximality of i ′

1 in the definition of α, there are no (n−1 f, n−1g) ∈ n−1γ

and (n−1 f ′, n−1g′) ∈ n−1γ ′ of (n − 1)-kind bounding ϑ with n−1α(i0) >k−1 n−1β(i1) and
n−1α′(i0) >k−1 n−1β ′(i1). But similarly β(i1) = i1 + (i0 − 1), and by maximality of i ′

0
in the definition of β there are such (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′.
Contradiction, so the above i does not exist, so α and β have disjoint images. The case k −1
odd is completely analogous.

To show that ( f, g) is minimally fit for n−1γ, n−1γ ′, using Lemma 11.5, α(i0) >k−1 β(i1)
if and only if ζ1(α(i0)) ≥ i1 if and only if for k −1 even max{i ′

1 | n−1α(i0) >k−1 n−1β(i ′
1) and

n−1α′(i0) >k−1 n−1β ′(i ′
1) for some (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ of (n −

1)-kind boundingϑ} ≥ i1 if and only if n−1α(i0) >k−1 n−1β(i1) and n−1α′(i0) >k−1 n−1β ′(i1)
for some (n−1 f, n−1g) ∈ n−1γ and (n−1 f ′, n−1g′) ∈ n−1γ ′ of (n − 1)-kind bounding ϑ . �

Among the fit n-dimensional (p, q)-shuffles of fixed n-kind, the minimally fit one is now
the one with minimal rank:

Lemma 11.7 Let n−2γ, n−2′
γ be two collections of (n − 2)-dimensional (p, q)-shuffles,

let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles both filling and
fit for n−2γ, n−2′

γ, and let n−1γ � n−1γ ′, and let ( f, g) be an n-dimensional (p, q)-shuffle
of n-kind ϑ . ( f, g) is minimally fit for n−1γ, n−1γ ′ if and only if it is fit for n−1γ, n−1γ ′

and rk( f, g) ≤ rk( f ′, g′) for every n-dimensional (p, q)-shuffle ( f ′, g′) of kind ϑ fit for
n−1γ, n−1γ ′.
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Proof: One direction is immediate from Lemma 11.4. For the other direction, if there is an
n-dimensional (p, q)-shuffle ( f ′, g′) of kind ϑ fit for n−1γ, n−1γ ′ with rk( f, g) 	≤ rk( f ′, g′)
then ( f, g) is not the by Lemma 11.6 unique n-dimensional (p, q)-shuffle of n-kind ϑ that
is minimally fit for n−1γ, n−1γ ′. �

Lemma 11.8 Let n−2γ, n−2′
γ be two collections of (n−2)-dimensional (p, q)-shuffles, and

let n−1γ, n−1γ ′ be two collections of (n − 1)-dimensional (p, q)-shuffles both filling and fit
for n−2γ, n−2′

γ, and let n−1γ �n−1γ ′. Let ( f, g) of n-kind ϑ be minimally fit for n−1γ, n−1γ ′.
Let (n−1 f, n−1g) ∈ n−1γ of (n − 1)-kind ϑk . If ( f k−, gk−) 	= (n−1 f, n−1g) then there exists
an ( f ′, g′) minimally fit for n−1γ, n−1γ ′ and for which (( f ′)κ+, (g′)κ+) = ( f k−, gk−), for
some κ .

Proof: Because ( f, g) is fit for n−1γ, n−1γ ′ one has (n−1 f, n−1g)�( f k−, gk−). Call (i0, i1)
with ϑk(κ −1) < (i0, i1) < ϑk(κ) considerable if αk−(i0) >κ−1 βk−(i1) and n−1α(i0) <κ−1

n−1β(i1). Because (n−1 f, n−1g) 	= ( f k−, gk−) there must be, using Corollary 7.7, a consid-
erable (i0, i1). Call (i0, i1) with ϑk(κ −1) < (i0, i1) < ϑk(κ) inconsiderable if αk−(i0) <κ−1

βk−(i1) and n−1
α′(i0) >κ−1 n−1

β ′(i1), and unremarkable if it is neither considerable nor
inconsiderable, i.e., when n−1α(i0) ≶ n−1β(i1) if and only if n−1

α′(i0) ≶ n−1
β ′(i1).

For any (i0, i1), if min{αk−(i0), βk−(i1)} + 1 = min{αk−(i0), βk−(i1)} say that (i0, i1) is
neighbouring (even though properly speaking this refers to αk−(i0) and βk−(i1)). Because
αk− and βk− are order preserving there actually must be a considerable neighbouring (i0, i1).

For any (i0, i1) with ϑk(κ − 1) < (i0, i1) < ϑk(κ), define an n-kind ϑ ′ by:

ϑ ′(k ′) = ϑk(k ′) if k ′ < κ

= (i0, i1) if k ′ = κ

= ϑk(k ′ − 1) if k ′ > κ .

For any considerable neighbouring (i0, i1) one can define an n-dimensional (p, q)-shuffle
( f ′, g′) by:

f ′(i) = f k−(i) if i 	= αk−(i0), βk−(i1)

= f k−(i) if i 	= αk−(i0), βk−(i1), κ − 1 even

= 1 − f k−(i) if i 	= αk−(i0), βk−(i1), κ − 1 odd

g′(i) = gk−(i) if i ≤ min{αk−(i0), βk−(i1)}
= gk−(i) − 1 if i ≥ max{αk−(i0), βk−(i1)}.

It is clear from this definition that (( f ′)κ+, (g′)κ+) = ( f k−, gk−), and that ( f ′, g′) has n-kind
ϑ ′.

Now it might be that for a given considerable neighbouring (i0, i1), there is a considerable
(i ′

0, i ′
1) with (i0, i1) < (i ′

0, i ′
1) such that there exists a k ′′ and (n−1 f ′′, n−1g′′) ∈ n−1γ and

(n−1 f ′′′, n−1g′′′) ∈ n−1γ ′ both of kind (ϑ ′)k ′′
such that n−1α′′(i ′

0) >κ ′−1 n−1β ′′(i ′
1) and

n−1α′′′(i ′
0) >κ ′−1 n−1β ′′′(i ′

1). Call (i0, i1) desirable if this is not the case.
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The first claim is that if (i0, i1) is desirable then ( f ′, g′) satisfies the “⇐” condition of
Lemma 11.5. So assume that (i ′

0, i ′
1) with ϑ ′(k ′ − 1) < (i ′

0, i ′
1) < ϑ ′(k ′) and that there is a

k ′′ and elements (n−1 f ′′, n−1g′′) ∈ n−1γ and (n−1 f ′′′, n−1g′′′) ∈ n−1γ ′ both of kind (ϑ ′)k ′′

such that n−1α′′(i ′
0) >k−1 n−1β ′′(i ′

1) and n−1α′′′(i ′
0) >k−1 n−1β ′′′(i ′

1); I will want to show that
α′(i ′

0) >k−1 β ′(i ′
1). There are the following situations:

• (i ′
0, i ′

1) is unremarkable. Then k ′′ can be taken to be κ because if that would not be possible
k ′′ and κ would give contradictory prescriptions for the order of i ′

0 and i ′
1 for n-kind ϑ ′.

( f, g) is fit so α(i ′
0) >k−1 β(i ′

1) which implies the same in ( f ′, g′).
• (i ′

0, i ′
1) > (i0, i1), (i ′

0, i ′
1) is considerable. Immediate from desirability of ( f ′, g′).

• (i ′
0, i ′

1) > (i0, i1), (i ′
0, i ′

1) is inconsiderable, or (i ′
0, i ′

1) < (i0, i1), (i ′
0, i ′

1) is considerable. In
both these instances the assumptions already give α′(i ′

0) >k−1 β ′(i ′
1), without any need

for the k ′′ etc.
• (i ′

0, i ′
1) < (i0, i1), (i ′

0, i ′
1) is inconsiderable. This situation actually does not occur. For

this, there are twelve cases to consider, depending on where ϑ(k) and ϑ(k ′′) are with
respect to (i ′

0, i ′
1) and (i0, i1) and to each other (some more if one counts ‘overlaps’, but

these are easily subsumed under the other cases). In all these cases Lemma 9.8 is used, in
four of them to show that the specifications for (n−1 f ′′, n−1g′′) and (n−1 f ′′′, n−1g′′′) are
not possible, in the other eight to show a contradiction with (i ′

0, i ′
1) being inconsiderable.

The second claim is that if (i0, i1) is the first desirable then ( f ′, g′) also satisfies the “⇒”
condition of Lemma 11.5. So assume (i ′

0, i ′
1) with ϑ ′(k ′ − 1) < (i ′

0, i ′
1) < ϑ ′(k ′) and that

α′(i ′
0) >k−1 β ′(i ′

1); I will want to show that there is a k ′′ and elements (n−1 f ′′, n−1g′′) ∈ n−1γ

and (n−1 f ′′′, n−1g′′′) ∈ n−1γ ′ both of kind (ϑ ′)k ′′
such that n−1α′′(i ′

0) >k−1 n−1β ′′(i ′
1) and

n−1α′′′(i ′
0) >k−1 n−1β ′′′(i ′

1). There are the following situations:

• (i ′
0, i ′

1) is unremarkable. Take k ′′ = κ .
• (i ′

0, i ′
1) > (i0, i1), (i ′

0, i ′
1) is considerable, or (i ′

0, i ′
1) < (i0, i1), (i ′

0, i ′
1) is inconsiderable. In

both these instances the assumptions contradict α′(i ′
0) >k−1 β ′(i ′

1).
• (i ′

0, i ′
1) > (i0, i1), (i ′

0, i ′
1) is inconsiderable. This situation actually does not occur. For

this, there are twelve cases to consider, as before, but slightly differently divided: in
four, namely where ϑ(k) > (i ′

0, i ′
1) and where one cannot use minimally fitness of ( f, g)

with respect to (i ′
0, i ′

1), take k ′′ from minimally fitness of ( f, g) with respect to (i0, i1).
In all these cases Lemma 9.8 is used, in five of them to show that the specifications for
(n−1 f ′′, n−1g′′) and (n−1 f ′′′, n−1g′′′) are not possible, in four others to show a contradiction
with (i ′

0, i ′
1) being inconsiderable. The remaining three cases, which all have k ′′ obtained

from minimally fitness of ( f, g) with respect to (i ′
0, i ′

1), are now done by taking a further k ′′′

from minimally fitness of ( f, g) with respect to (i0, i1) and an extensive use of Lemma 9.8
to show that this also contradicts (i ′

0, i ′
1) being inconsiderable.

• (i ′
0, i ′

1) < (i0, i1), (i ′
0, i ′

1) is considerable. (i ′
0, i ′

1) may be assumed to be neighbouring: if
it isn’t there must also be one such, and the conclusion for that one will, again because
α’s and β’s are order preserving, hold for (i ′

0, i ′
1) too. (i0, i1) is assumed to be the first

desirable, so (i ′
0, i ′

1) is not desirable, giving a considerable (i ′′
0 , i ′′

1 ). If (i ′′
0 , i ′′

1 ) > (i0, i1)
this is done via a by now simple application of Lemma 9.8. If (i ′′

0 , i ′′
1 ) = (i0, i1) then it

is an even more straightforward application of said lemma. So this takes care of the last
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considerable (i ′
0, i ′

1) before (i0, i1). For the before-last considerable (i ′
0, i ′

1) before (i0, i1),
there is again an (i ′′

0 , i ′′
1 ); (i ′′

0 , i ′′
1 ) ≥ (i0, i1) is already done, which leaves as the only other

possibility that (i ′′
0 , i ′′

1 ) is not desirable because of (i0, i1). But this is the mirror image
of the previous situation, with mirror image proof. The conclusion can be paraphrased
as that (i ′

0, i ′
1) is not desirable because of (i0, i1), and so this argument takes care of all

earlier (i ′
0, i ′

1) too.

Further details, which are quite instructive, are left to the reader. �

Proposition 11.9 Let n−2γ, n−2′
γ be two collections of (n−2)-dimensional (p, q)-shuffles,

and let n−1γ, n−1γ ′ be two collections of (n −1)-dimensional (p, q)-shuffles both filling and
fit for n−2γ, n−2′

γ . If n−1γ �n−1γ ′ then there is a collection of n-dimensional (p, q)-shuffles
fit for n−1γ, n−1γ ′.

Proof: For each n-kind ϑ properly relevant to n−1γ, n−1γ ′, take the unique minimally fit
n-dimensional (p, q)-shuffle of this kind established in Lemma 11.6.

The collection of n-dimensional (p, q)-shuffles thus defined is fit for n−1γ, n−1γ ′. Indeed,
(i) every element has properly relevant n-kind, so in particular relevant, (ii) for every n-kind
only one n-dimensional (p, q)-shuffle has been picked, (iii) this n-dimensional (p, q)-
shuffle is minimally fit for n−1γ, n−1γ ′ hence fit for n−1γ, n−1γ ′, (iv) for every properly
relevant n-kind an n-dimensional (p, q)-shuffle has indeed been picked, and (v) continuation
holds by Lemma 11.8. �

Theorem 11.10 Let A and A′ be (n − 1)-dimensional well-formed subpasting schemes of
Mp,q such that sn−2(A) = sn−2(A′) and tn−2(A) = tn−2(A′). Then there is an n-dimensional
well-formed subpasting scheme of Mp,q with (n − 1)-source A and (n − 1)-target A′ if and
only if An−1 � A′

n−1.

Proof: Direct from the previous proposition, whose conditions are satisfied because of
Theorem 10.4. �

12. Well formed

Fix p and q , and let iµ and i ′
µ consist of the i-dimensional (p, q)-shuffles of rank 0 and

oprank 0 respectively.

Lemma 12.1 R(µ) = Mp,q .

Proof: This is because every n-dimensional (p, q)-shuffle is in the boundary of a higher-
dimensional one of rank zero: if ( f, g) does not have rank 0 there must be an f r

k with rank,
for k even say, not equal to 0, so this cannot consist of only 0’s or only 1’s, so somewhere a 0
and a 1 must be next to one another—introducing a swap here gives an (n + 1)-dimensional
(p, q)-shuffle of which ( f, g) is in the boundary, it need not have rank zero but repeat. �

Lemma 12.2 µ is fit.
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Proof: First observe that for every n-kind there is precisely one n-dimensional (p, q)-
shuffle of rank 0: the kind determines the places of the swaps and rank zero says that for f r

k
it’s all 0’s followed by all 1’s for k even and the other way around for k odd, and the other
way around for oprank. Hence K (n−1µ) and K (n−1µ′) contain all (n − 1)-kinds.

Secondly, it is obvious from Corollary 7.7 that for an (n − 1)-dimensional (p, q)-shuffle
( f, g) of rank 0 one has that for any ( f ′, g′) of the same (n − 1)-kind ( f, g) � ( f ′, g′).
This implies immediately that any n-dimensional (p, q)-shuffle is fit for n−1µ, n−1µ′, and
so, using Lemma 9.6, that every n-kind is proper hence properly relevant to n−1µ, n−1µ′,
and, using Lemma 11.7, that any n-dimensional (p, q)-shuffle of rank 0 is minimally fit for
n−1µ, n−1µ′.

This proves most of fitness, except (v) continuation for which one can again use
Lemma 11.8, or, if one wants to avoid this overkill, prove it directly, for which one only
needs simple versions of three of the cases in the proof of Lemma 11.8. �

Theorem 12.3 For each p, q, the pasting scheme Mp,q is well formed. Moreover, sn(Mp,q )
and tn(Mp,q ) have as n-cells precisely the n-dimensional (p, q)-shuffles of rank 0 and oprank
0 respectively.

Proof: This follows immediately from the previous, Theorem 10.4 together with
Lemmas 12.1 and 12.2. �

13. Loop free

Theorem 13.1 For each p, q, the pasting scheme Mp,q is loop free.

Proof: Let Y be a well-formed j-dimensional subpasting scheme of Mp,q , let x = ( f, g)
be an n-dimensional (p, q)-shuffle with s j (R(x)) ⊆ Y , and let u, u′ ∈ s j (R(x)) and v ∈ Y j

with w ∈ E j−1(u) ∩ B j−1(v) and v�Y u′.
First, it suffices to show v ∈ R(x): Y , being well-formed, contains each j-kind at most

once, and, because s j (R(x)) ⊆ Y , it does contain each j-kind bounding the n-kind of x , so
if v has such j-kind it must be the element of Y of this j-kind, which is in s j (R(x)).

v = ( f ′, g′) being in R(x) means that v has j-kind bounding the n-kind of x and that for
positions outside this n-kind, where v cannot have any swaps, f ′ agrees with f . Assume
v /∈ R(x), then w ∈ t j−1(R(x)) because if not it would have an outgoing cell in s j (R(x))
which together with v would contradict well-formedness of Y . Thus, from w one cannot
introduce a swap from the n-kind of x .

For v /∈ R(x), going from w to v introduces a swap outside the n-kind of x . In order to
get back to R(x) at some point in v�Y u′ this swap needs to be removed, exactly as it was
introduced, which can be done if at that point the parity is different. For this to happen, at
some earlier point in v�Y u′ a swap needs to be introduced or removed at a position before
the swap introduced from w to v. Looking at the �-first time that happens, the j-dimensional
(p, q)-shuffle at that point agrees with w up to the swap introduced from w to v, so only a
swap outside the n-kind of x can be introduced, and then the argument can be repeated for
this swap. Removing a swap, necessarily from the n-kind of x because those are the only
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swaps appearing before the swap introduced from w to v, means removing to the target, so
in order to get back to s j (R(x)), this swap needs to be removed exactly as it was introduced.
This needs another parity change, hence another swap needs to be introduced or removed
at a position before this swap, and again the argument repeats. Because j-dimensional
(p, q)-shuffles are finite sequences there is no room to introduce or remove swaps at earlier
positions indefinitely, as would be necessary, hence it must be that v ∈ R(x). �

Notes

1. Tas, plural teisi (pronounced TAY-see), is Welsh for “stack”.
2. This is not a typing error (or pasting error �··I� ): P4 can easily be made into a well-formed loop-free pasting

scheme, but that is only one, not a scheme of those.
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