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Abstract. The completeness of normal rational curves, considered as (q + 1)-arcs in PG(n, q), is
investigated. Previous results of Storme and Thas are improved by using a result by Kovacs. This
solves the problem completely for large prime numbers q and odd nonsquare prime powers q = p2h+l

with p prime, p > po(h), h>\,1where po(h) is an odd prime number which depends on h.
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1. Introduction

Let E = PG(n, q) denote the n-dimensional projective space over the field GF(q).
A k-arc of points in E (with k > n + 1) is a set K of k points such that no n + 1
points of K belong to a hyperplane. A k-arc is complete if it is not contained
in a (k + 1)-arc.

A normal rational curve in PG(n, q), 2 < n < q - 2, is any (q + 1)-arc projec-
tively equivalent to the (q + 1)-arc {(!,*,..., tn) \\ t E GF(q)} U {(0,..., 0, 1)}
= {(1, t, ..., t") || t e GF(q)+}(GF(q)+ = GF(q) U {oo}; oo corresponds to
(0,..., 0, 1)). All (q + 1)-arcs of PG(g - 1, q) are called normal rational curves
of PG(g-1,q).

This paper will investigate whether a normal rational curve K of PG(n, q) can
be extended to a (q + 2)-arc of PG(n, q). The results of [5] will be improved by
using a recent result by Kovacs [3]. Refer to [5] for a more detailed description
of the method that is used.

2. Known results

THEOREM 2.1. (Seroussi and Roth [4]). In PG(n, 9) every normal rational curve
is complete for

(a) q odd and2<n<(q + 1)/2,
(b) q even and 3 < n < (q/2) + 1.
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In PG(2, q), q even, a normal rational curve is a conic and a conic is incomplete.
It can be uniquely extended to a (q + 2)-arc by its nucleus.

THEOREM 2.2. (Storme and Thas [5]). Let q = ph, p prime. Suppose r, r > 1,
exists such that

(a) 2r\(q — 1) when q is odd and r is even, and r\(q - 1) in all other cases;
(b) q+1-2r2-2r-2(r-1)2 Rq>0 when q is odd and q+1-r2-2r-2(r-1)2 Sq>0

when q is even.

Then every normal rational curve of PG(n, q) is complete for

(a) q even and 3 < n < (r - 1)q/r + 1/r,
(b) q odd and2<n<(r- 1)q/r +1/r.

3. Completeness of normal rational curves

THEOREM 3.1. Let C be the conic {(t, t2,1 1 ) \ \ t E GF(g)+} in PG(2, q). Let M be
a k-arc contained in C which can only be extended to a (k+ 1)-arc by the remaining
points of C and the nucleus of C when q is even. Then every normal rational curve
of PG(n, q) is complete for

(a) q even and 3<n<q — k + 2,
(b) q odd and 2 < n < q - k + 2.

Proof. We may assume from Theorem 2.1 that n > q/2+1. Choose the reference
system in such a way that e0(1, 0, ..., 0), ..., en(0, ..., 0, 1), en+1(1, ..., 1) belong
to the normal rational curve K. This implies that K is the set of points
{(a0/((ao - 1)< + 1), ..., an/((an - 1)t + 1)) || t E GF(q)+}, where all elements a,-
are different nonzero elements of GF(q) and where the parameter t = -1/(ai-1)
corresponds to ei [1].

Let S = {x1,..., Xk} (S C GF(q)+) be the set of parameters associated with
the points of M in C. Since the conic C has a 3-transitive projective group [1],
we may assume that x1 = 0, x2 = x2, and x3 = 1.

Select ai in GF(q) \ {0, 1} in such a way that -1/(ai -1) E S, i = 0, ..., n - 2.
This is possible if n-1 < q-2-(k-3) « n < q-k + 2. So if n < q-k + 2, it is
possible to select the parameters ti = -1/(ai, -1) of the points et(i = Q, ..., n-2)
of K in such a way that ti E S.

We now proceed as in the proof of Theorem 26 of [5]. This proof uses the
one-to-one correspondence between the involutions j (j = 1) of PGL(2, q) on a
conic C = {(t, t2, 1) || t E GF(q)+} and the points r of PG(2, q) not belonging
to C and different from the nucleus of C when q is even. Each point r of
PG(2, q) not belonging to C and different from the nucleus of C when q is even
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corresponds to an unique involution f : t - (at + b)/(ct - a), a2 + be ̂  0, on
C. Two points pi(t1, t21, 1) and pi(ti, t\, 1) are each others image under j if and
only if p1 € rp2.

Since M can only be extended to a larger arc in PG(2, q) by the remaining
points of C and the nucleus of C when q is even, for each involution $ of
PGL(2, q) on C (4 = 1) there exist two distinct parameters t1 and t2 in S for
which c/>(t1) = t2 (see also the introduction of Section 6 in [5]).

Consider the subspace a : Xn_1 = Xn = 0 generated by the n - 1 points
e0,.. . , en_2 of .ST. Project from ci : Xi = Xn_1 = Xn = 0 (0 < i < n - 2) onto
the plane Bi : Xj = 0 for all j = i, n - 1, n. The points of K which do not
belong to ai are projected onto points of the conic Ci = {(ai;/((ai - 1)t + 1),
an_]/((an_1 - 1)t +11), an/((an - l)t + 1)) || t E GF(q)+} in Bi- The points of K
not belonging to ai are projected onto the points of a (q + 3 - n)-arc Ki on Ci-
The parameters of the points of Ki are the elements of GF(q)+ \{-1/(a3 - 1) || j
= 0,..., n - 2; j = i}. Since -!/(% - 1) E S(j = 0, . . . , n - 2), ATj contains
the points of Ci with parameters in S. This implies that for each involution
j ( j = 1) of PGL(2, q) on d there exist two distinct parameters ti, t2 of points
of Ki for which 4(t1) = t2. As a consequence of the one-to-one correspondence
between the involutions 4 (j= 1) of PGL(2, q) on Ct and the points r of $ not
belonging to Ci, and different from the nucleus of Ci when q is even (see also
the introduction of Section 6 in [5]), this arc Ki can only be extended to a larger
arc in Bi), by the remaining points of Ci and the nucleus of Ci when q is even.

If there exists a point p of PG(n, q) which extends K to a (9 + 2)-arc, then p
is projected from ai- onto a point pi of Bi which extends Ki to a (g + 4 - n)-arc in
$. Thus p is projected onto Ci or possibly to the nucleus of Ci if q is even. This
is precisely the same situation as in the proof of Theorem 15 of [5]. Therefore,
when the proof of Theorem 15 is combined with Lemma 21 of [5], it follows
that p belongs to K.

This is impossible. This shows that K is complete when q/2 + 1 < n <
q-k + 2. D

THEOREM 3.2. (Kovacs [3]). Consider the conic C = {(t, t2, 1) || t E GF(q)+} in
PG(2, q). Then for at least one k < 6\/q In q there exists on C a k-arc K which
can only be extended to a larger arc in PG(2, q) by the remaining points of C and
the nucleus of C when q is even.

THEOREM 3.3. In PG(n, q) every normal rational curve is complete for

(a) q even and 3 <n < q + 2 — 6\/q In q,
(b) q odd and 2<n<q + 2- 6^/q In q.

Proof. It follows from Theorem 3.2 that there exists a k-arc K on the conic
C = {(t, t2, 1) || t E GF(q)+} with k < 6\/q In q, which can only be extended to
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a larger arc in PG(2, q) by the remaining points of C and the nucleus of C when
q is even.

We apply Theorem 3.1 when k = 6\/q In q, so in PG(n, q) every normal
rational curve is complete when

(a) q is even and 3 <n < q + 2 - 6^/q In q,
(b) q is odd and 2 <n <q + 2- 6\/q In q. D

THEOREM 3.4. For each prime number p, p > 1007215, every normal rational curve
in PG(n, p), 2 < n < p - 1, is complete.

Proof. Theorem 3.3 states that in PG(n, p), p = 2, 2 < n < p + 2- 6^p In p,
every normal rational curve is complete.

Voloch [10] proved that if AT is a kc-arc of PG(2, p), p prime, p > 2, with
k > (44/45)p + 8/9, then K is contained in a conic. The arguments used by
Thas in [7] then show that a k-arc K of PG(n, p), p prime, p > 2, n > 2,
for which p + 1 > k > (44/45)p + n - 10/9, is contained in a unique normal
rational curve of PG(n, p). Hence, every (p + 1)-arc of PG(n, p), p prime,
p > 2, (p + 95)/45 > n > 2, is a normal rational curve. Theorem 4 in [2] then
implies that k < p + 1 for any k-arc K of PG(n, p), (p + 140)/45 > n > 2.

Assume that there exists a (p + 2)-arc K in PG(n, p), p prime, p > 2, p - 2 >
n > (44p - 140)/45. Then there exists a dual (p + 2)-arc K in PG(p - n, p)
[6], [8], [9]. So, K is a (p + 2)-arc in PG(m, p), (p + 140)/45 > m > 2. This
contradicts the previous calculations. Hence, k < p + 1 for any k-arc K of
PG(n, p), p prime, p > 2 , p - 2 > n > (44p - 140)/45.

Every (p + 1)-arc of PG(p - 1, p), p prime, p > 2, is complete. A (p +1)-arc
of PG(p - 1, p) is projectively equivalent to the set L = {eo1, 0, ..., 0), ...,
ep-1(0, ..., 0, 1), ep(1, ..., 1)}. If a point r(a0, ..., ap-1 of PG(p-1,p) extends
L to a (p + 2)-arc, then all p coordinates ai, i = 0, . . . , p - 1, must be nonzero
and distinct from each other. This is impossible. So L is complete.

We conclude that for p an odd prime, when (44p-140)/45 <p + 2-6\/p In p,
then in PG(n, p), 2 < n < p - 1, every normal rational curve is complete.

This inequality (44p - 140)/45 < p + 2 - 6^/p In p is satisfied for all prime
numbers p > 1007215. D

THEOREM 3.5. For a fixed integer h > 1 let po(h) be the smallest odd prime number
satisfying

Then for each odd prime number p > po(/i) in PG(n, q), q = p2h+1, 2<n<q —1,,
every normal rational curve is complete.
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Proof. Voloch [11] proved that in PG(2, q), q = p2h+1, h > 1, p prime, p = 2,
any K-arc K for which q+1 > k > q- Spq/4 + 29p/16 + 1 is contained in a
unique conic.

The method described by Thas in [7] once again implies that a k-arc K of
PG(n, q), q = p2/l+1, h > 1, p prime, p > 2, n > 2, for which q + 1 > A; >
q - -^/pq/4 + 29p/16 + n - 1, is contained in a unique normal rational curve of
PG(n, q). Therefore, any (q + 1)-arc of PG(n, q), jpq/4 - 29p/16 + 2 > n > 2, is
a normal rational curve. Theorem 4 in [2] then shows that k < q +1 for any fc-arc
K in PG(n, q), q = p2h+1 h > 1, p prime, p > 2, y^g/4 - 29p/16 + 3 > n > 2.

The existence of a (g + 2)-arc K in PG(n, g), q),q = p2H+1, h > 1, p prime,
P > 2, q-2>n>q- ^/pq/4 + 29p/16 - 3, implies the existence of a dual
(q + 2)-arc K in PG(q - n, q), y^g/4 - 29p/16 + 3 > 9 - n > 2 [6], [8], [9]. This
contradicts the previous calculations.

Thus all k-arcs of PG(n, q), q = p2h+1, h > 1, p prime, p>2,q-2>n>
q - v^?/4 + 29p/16 - 3, satisfy k<q+\.

Every (q + 1)-arc of PG(q - 1, q) is complete. This is proven in the same way
as in the proof of Theorem 3.4.

In PG(n, q), q odd, 2 < n < g + 2- 6^/9 In q, every normal rational curve is
complete (Theorem 3.3).

Hence, when

then in PG(n, q), q odd, q = p2h+1, 2 < n < q - 1, every normal rational curve is
complete.

Since q = p2h+1, (1) is equivalent to

This inequality (2) is satisfied for large prime numbers p. Hence, there exists a
lower bound p0(h) such that (2) is valid for all prime numbers greater than or
equal to po(h). D

Example 3.6. In PG(n, q), q = p3, p prime, p > 16830, q - 1 > n > 2, every
normal rational curve is complete.
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