Completeness of Normal Rational Curves

L. STORME*
Seminar of Geometry and Combinatorics, University of Ghent, Krijgslaan 281, B-9000 Ghent, Belgium e-mail: ls@cage.rug.ac.be

Received October 21, 1991; Revised March 20, 1992

Abstract

The completeness of normal rational curves, considered as ($q+1$)-arcs in $\operatorname{PG}(n, q)$, is investigated. Previous results of Storme and Thas are improved by using a result by Kovács. This solves the problem completely for large prime numbers q and odd nonsquare prime powers $q=p^{2 h+1}$ with p prime, $p \geq p_{0}(h), h \geq 1$, where $p_{0}(h)$ is an odd prime number which depends on h.

Keywords: k-arcs, normal rational curves, M.D.S. codes

1. Introduction

Let $\Sigma=\operatorname{PG}(n, q)$ denote the n-dimensional projective space over the field $\mathrm{GF}(q)$. A k-arc of points in Σ (with $k \geq n+1$) is a set K of k points such that no $n+1$ points of K belong to a hyperplane. A k-arc is complete if it is not contained in a $(k+1)$-arc.

A normal rational curve in $\mathrm{PG}(n, q), 2 \leq n \leq q-2$, is any ($q+1$)-arc projectively equivalent to the $(q+1)$-arc $\left\{\left(1, t, \ldots, t^{n}\right) \| t \in \operatorname{GF}(q)\right\} \cup\{(0, \ldots, 0,1)\}$ $=\left\{\left(1, t, \ldots, t^{n}\right) \| t \in \mathrm{GF}(q)^{+}\right\}\left(\mathrm{GF}(q)^{+}=\mathrm{GF}(q) \cup\{\infty\} ; \infty\right.$ corresponds to $(0, \ldots, 0,1))$. All $(q+1)$-arcs of $\operatorname{PG}(q-1, q)$ are called normal rational curves of $\operatorname{PG}(q-1, q)$.

This paper will investigate whether a normal rational curve K of $\operatorname{PG}(n, q)$ can be extended to a $(q+2)$-arc of $\operatorname{PG}(n, q)$. The results of [5] will be improved by using a recent result by Kovács [3]. Refer to [5] for a more detailed description of the method that is used.

2. Known results

Theorem 2.1. (Seroussi and Roth [4]). In $\operatorname{PG}(n, q)$ every normal rational curve is complete for
(a) q odd and $2 \leq n \leq(q+1) / 2$,
(b) q even and $3 \leq n \leq(q / 2)+1$.

In $P G(2, q), q$ even, a normal rational curve is a conic and a conic is incomplete. It can be uniquely extended to a ($q+2$)-arc by its nucleus.

Theorem 2.2. (Storme and Thas [5]). Let $q=p^{h}, p$ prime. Suppose $r, r>1$, exists such that
(a) $2 r \mid(q-1)$ when q is odd and r is even, and $r \mid(q-1)$ in all other cases;
(b) $q+1-2 r^{2}-2 r-2(r-1)^{2} \sqrt{q}>0$ when q is odd and $q+1-r^{2}-2 r-2(r-1)^{2} \sqrt{q}>0$ when q is even.

Then every normal rational curve of $\operatorname{PG}(n, q)$ is complete for
(a) q even and $3 \leq n \leq(r-1) q / r+1 / r$,
(b) q odd and $2 \leq n \leq(r-1) q / r+1 / r$.

3. Completeness of normal rational curves

Theorem 3.1. Let C be the conic $\left\{\left(t, t^{2}, 1\right) \| t \in \mathrm{GF}(q)^{+}\right\}$in $\operatorname{PG}(2, q)$. Let M be a k-arc contained in C which can only be extended to a $(k+1)$-arc by the remaining points of C and the nucleus of C when q is even. Then every normal rational curve of $\mathrm{PG}(n, q)$ is complete for
(a) q even and $3 \leq n \leq q-k+2$,
(b) q odd and $2 \leq n \leq q-k+2$.

Proof. We may assume from Theorem 2.1 that $n>q / 2+1$. Choose the reference system in such a way that $e_{0}(1,0, \ldots, 0), \ldots, e_{n}(0, \ldots, 0,1), e_{n+1}(1, \ldots, 1)$ belong to the normal rational curve K. This implies that K is the set of points $\left\{\left(a_{0} /\left(\left(a_{0}-1\right) t+1\right), \ldots, a_{n} /\left(\left(a_{n}-1\right) t+1\right)\right) \| t \in \mathrm{GF}(q)^{+}\right\}$, where all elements a_{i} are different nonzero elements of $\mathrm{GF}(q)$ and where the parameter $t=-1 /\left(a_{i}-1\right)$ corresponds to e_{i} [1].

Let $S=\left\{x_{1}, \ldots, x_{k}\right\}\left(S \subseteq \mathrm{GF}(q)^{+}\right)$be the set of parameters associated with the points of M in C. Since the conic C has a 3-transitive projective group [1], we may assume that $x_{1}=0, x_{2}=\infty$, and $x_{3}=1$.

Select a_{i} in $\operatorname{GF}(q) \backslash\{0,1\}$ in such a way that $-1 /\left(a_{i}-1\right) \notin S, i=0, \ldots, n-2$. This is possible if $n-1 \leq q-2-(k-3) \Leftrightarrow n \leq q-k+2$. So if $n \leq q-k+2$, it is possible to select the parameters $t_{i}=-1 /\left(a_{i}-1\right)$ of the points $e_{i}(i=0, \ldots, n-2)$ of K in such a way that $t_{i} \notin S$.

We now proceed as in the proof of Theorem 26 of [5]. This proof uses the one-to-one correspondence between the involutions $\phi(\phi \neq 1)$ of $\operatorname{PGL}(2, q)$ on a conic $C=\left\{\left(t, t^{2}, 1\right) \| t \in \mathrm{GF}(q)^{+}\right\}$and the points r of $\operatorname{PG}(2, q)$ not belonging to C and different from the nucleus of C when q is even. Each point r of $\operatorname{PG}(2, q)$ not belonging to C and different from the nucleus of C when q is even
corresponds to an unique involution $\phi: t \mapsto(a t+b) /(c t-a), a^{2}+b c \neq 0$, on C. Two points $p_{1}\left(t_{1}, t_{1}^{2}, 1\right)$ and $p_{2}\left(t_{2}, t_{2}^{2}, 1\right)$ are each others image under ϕ if and only if $p_{1} \in r p_{2}$.

Since M can only be extended to a larger arc in $\operatorname{PG}(2, q)$ by the remaining points of C and the nucleus of C when q is even, for each involution ϕ of $\operatorname{PGL}(2, q)$ on $C(\phi \neq 1)$ there exist two distinct parameters t_{1} and t_{2} in S for which $\phi\left(t_{1}\right)=t_{2}$ (see also the introduction of Section 6 in [5]).

Consider the subspace $\alpha: X_{n-1}=X_{n}=0$ generated by the $n-1$ points e_{0}, \ldots, e_{n-2} of K. Project from $\alpha_{i}: X_{i}=X_{n-1}=X_{n}=0(0 \leq i \leq n-2)$ onto the plane $\beta_{i}: X_{j}=0$ for all $j \neq i, n-1, n$. The points of K which do not belong to α_{i} are projected onto points of the conic $C_{i}=\left\{\left(a_{i} /\left(\left(a_{i}-1\right) t+1\right)\right.\right.$, $\left.\left.a_{n-1} /\left(\left(a_{n-1}-1\right) t+1\right), a_{n} /\left(\left(a_{n}-1\right) t+1\right)\right) \| t \in \operatorname{GF}(q)^{+}\right\}$in β_{i}. The points of K not belonging to α_{i} are projected onto the points of a $(q+3-n)$-arc K_{i} on C_{i}. The parameters of the points of K_{i} are the elements of $\mathrm{GF}(q)^{+} \backslash\left\{-1 /\left(a_{j}-1\right) \| j\right.$ $=0, \ldots, n-2 ; j \neq i\}$. Since $-1 /\left(a_{j}-1\right) \notin S(j=0, \ldots, n-2), K_{i}$ contains the points of C_{i} with parameters in S. This implies that for each involution $\phi(\phi \neq 1)$ of $\operatorname{PGL}(2, q)$ on C_{i} there exist two distinct parameters t_{1}, t_{2} of points of K_{i} for which $\phi\left(t_{1}\right)=t_{2}$. As a consequence of the one-to-one correspondence between the involutions $\phi(\phi \neq 1)$ of $\operatorname{PGL}(2, q)$ on C_{i} and the points r of β_{i} not belonging to C_{i} and different from the nucleus of C_{i} when q is even (see also the introduction of Section 6 in [5]), this arc K_{i} can only be extended to a larger arc in β_{i} by the remaining points of C_{i} and the nucleus of C_{i} when q is even.

If there exists a point p of $\operatorname{PG}(n, q)$ which extends K to a $(q+2)$-arc, then p is projected from α_{i} onto a point p_{i} of β_{i} which extends K_{i} to a $(q+4-n)$-arc in β_{i}. Thus p is projected onto C_{i} or possibly to the nucleus of C_{i} if q is even. This is precisely the same situation as in the proof of Theorem 15 of [5]. Therefore, when the proof of Theorem 15 is combined with Lemma 21 of [5], it follows that p belongs to K.

This is impossible. This shows that K is complete when $q / 2+1<n \leq$ $q-k+2$.

Theorem 3.2. (Kovács [3]). Consider the conic $C=\left\{\left(t, t^{2}, 1\right) \| t \in \mathrm{GF}(q)^{+}\right\}$in $\mathrm{PG}(2, q)$. Then for at least one $k \leq 6 \sqrt{q \ln q}$ there exists on C a k-arc K which can only be extended to a larger arc in $\operatorname{PG}(2, q)$ by the remaining points of C and the nucleus of C when q is even.

Theorem 3.3. In $\operatorname{PG}(n, q)$ every normal rational curve is complete for
(a) q even and $3 \leq n \leq q+2-6 \sqrt{q \ln q}$,
(b) q odd and $2 \leq n \leq q+2-6 \sqrt{q \ln q}$.

Proof. It follows from Theorem 3.2 that there exists a k-arc K on the conic $C=\left\{\left(t, t^{2}, 1\right) \| t \in \mathrm{GF}(q)^{+}\right\}$with $k \leq 6 \sqrt{q \ln q}$, which can only be extended to
a larger arc in $\operatorname{PG}(2, q)$ by the remaining points of C and the nucleus of C when q is even.

We apply Theorem 3.1 when $k=6 \sqrt{q \ln q}$, so in $\operatorname{PG}(n, q)$ every normal rational curve is complete when
(a) q is even and $3 \leq n \leq q+2-6 \sqrt{q \ln q}$,
(b) q is odd and $2 \leq n \leq q+2-6 \sqrt{q \ln q}$.

Theorem 3.4. For each prime number $p, p>1007215$, every normal rational curve in $\mathrm{PG}(n, p), 2 \leq n \leq p-1$, is complete.

Proof. Theorem 3.3 states that in $\mathrm{PG}(n, p), p \neq 2,2 \leq n \leq p+2-6 \sqrt{p \ln p}$, every normal rational curve is complete.

Voloch [10] proved that if K is a k-arc of $\operatorname{PG}(2, p), p$ prime, $p>2$, with $k>(44 / 45) p+8 / 9$, then K is contained in a conic. The arguments used by Thas in [7] then show that a k-arc K of $\operatorname{PG}(n, p), p$ prime, $p>2, n \geq 2$, for which $p+1 \geq k>(44 / 45) p+n-10 / 9$, is contained in a unique normal rational curve of $\operatorname{PG}(n, p)$. Hence, every $(p+1)$-arc of $\operatorname{PG}(n, p), p$ prime, $p>2,(p+95) / 45>n \geq 2$, is a normal rational curve. Theorem 4 in [2] then implies that $k \leq p+1$ for any k-arc K of $\mathrm{PG}(n, p),(p+140) / 45>n \geq 2$.

Assume that there exists a $(p+2)$-arc K in $\operatorname{PG}(n, p), p$ prime, $p>2, p-2 \geq$ $n>(44 p-140) / 45$. Then there exists a dual $(p+2)$-arc \hat{K} in $\operatorname{PG}(p-n, p)$ [6], [8], [9]. So, \hat{K} is a $(p+2)$-arc in $\operatorname{PG}(m, p),(p+140) / 45>m \geq 2$. This contradicts the previous calculations. Hence, $k \leq p+1$ for any k-arc K of $\operatorname{PG}(n, p), p$ prime, $p>2, p-2 \geq n>(44 p-140) / 45$.

Every $(p+1)$-arc of $\operatorname{PG}(p-1, p), p$ prime, $p>2$, is complete. A $(p+1)$-arc of $\operatorname{PG}(p-1, p)$ is projectively equivalent to the set $L=\left\{e_{0}(1,0, \ldots, 0), \ldots\right.$, $\left.e_{p-1}(0, \ldots, 0,1), e_{p}(1, \ldots, 1)\right\}$. If a point $r\left(a_{0}, \ldots, a_{p-1}\right)$ of $\mathrm{PG}(p-1, p)$ extends L to a ($p+2$)-arc, then all p coordinates $a_{i}, i=0, \ldots, p-1$, must be nonzero and distinct from each other. This is impossible. So L is complete.

We conclude that for p an odd prime, when $(44 p-140) / 45<p+2-6 \sqrt{p \ln p}$, then in $\mathrm{PG}(n, p), 2 \leq n \leq p-1$, every normal rational curve is complete.

This inequality $(44 p-140) / 45<p+2-6 \sqrt{p \ln p}$ is satisfied for all prime numbers $p>1007215$.

Theorem 3.5. For a fixed integer $h \geq 1$ let $p_{0}(h)$ be the smallest odd prime number satisfying

$$
p^{h+1}>24 p^{h} \sqrt{p(2 h+1) \ln p}+\frac{29}{4} p-20 .
$$

Then for each odd prime number $p \geq p_{0}(h)$ in $\operatorname{PG}(n, q), q=p^{2 h+1}, 2 \leq n \leq q-1$, every normal rational curve is complete.

Proof. Voloch [11] proved that in $\mathrm{PG}(2, q), q=p^{2 h+1}, h \geq 1, p$ prime, $p \neq 2$, any k-arc K for which $q+1 \geq k>q-\sqrt{p q} / 4+29 p / 16+1$ is contained in a unique conic.

The method described by Thas in [7] once again implies that a k-arc K of $\operatorname{PG}(n, q), q=p^{2 h+1}, h \geq 1, p$ prime, $p>2, n \geq 2$, for which $q+1 \geq k>$ $q-\sqrt{p q} / 4+29 p / 16+n-1$, is contained in a unique normal rational curve of $\operatorname{PG}(n, q)$. Therefore, any $(q+1)$-arc of $\operatorname{PG}(n, q), \sqrt{p q} / 4-29 p / 16+2>n \geq 2$, is a normal rational curve. Theorem 4 in [2] then shows that $k \leq q+1$ for any k-arc K in $\mathrm{PG}(n, q), q=p^{2 h+1}, h \geq 1, p$ prime, $p>2, \sqrt{p q} / 4-29 p / 16+3>n \geq 2$.

The existence of a $(q+2)$-arc K in $\operatorname{PG}(n, q), q=p^{2 h+1}, h \geq 1, p$ prime, $p>2, q-2 \geq n>q-\sqrt{p q} / 4+29 p / 16-3$, implies the existence of a dual $(q+2)$-arc \hat{K} in $\mathrm{PG}(q-n, q), \sqrt{p q} / 4-29 p / 16+3>q-n \geq 2$ [6], [8], [9]. This contradicts the previous calculations.

Thus all k-arcs of $\mathrm{PG}(n, q), q=p^{2 h+1}, h \geq 1, p$ prime, $p>2, q-2 \geq n>$ $q-\sqrt{p q} / 4+29 p / 16-3$, satisfy $k \leq q+1$.

Every $(q+1)$-arc of $\operatorname{PG}(q-1, q)$ is complete. This is proven in the same way as in the proof of Theorem 3.4.

In $\operatorname{PG}(n, q), q$ odd, $2 \leq n \leq q+2-6 \sqrt{q \ln q}$, every normal rational curve is complete (Theorem 3.3).

Hence, when

$$
\begin{equation*}
q-\frac{\sqrt{p q}}{4}+\frac{29}{16} p-3<q+2-6 \sqrt{q \ln q}, \tag{1}
\end{equation*}
$$

then in $\operatorname{PG}(n, q), q$ odd, $q=p^{2 h+1}, 2 \leq n \leq q-1$, every normal rational curve is complete.

Since $q=p^{2 h+1}$, (1) is equivalent to

$$
\begin{equation*}
p^{h+1}>24 p^{h} \sqrt{p(2 h+1) \ln p}+\frac{29}{4} p-20 . \tag{2}
\end{equation*}
$$

This inequality (2) is satisfied for large prime numbers p. Hence, there exists a lower bound $p_{0}(h)$ such that (2) is valid for all prime numbers greater than or equal to $p_{0}(h)$.

Example 3.6. In $\operatorname{PG}(n, q), q=p^{3}, p$ prime, $p>16830, q-1 \geq n \geq 2$, every normal rational curve is complete.

Acknowledgment

I especially thank T. Szőnyi for introducing me to the result of S.J. Kovács.

References

1. J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.
2. H. Kaneta and T. Maruta, "An elementary proof and an extension of Thas' theorem on k-arcs," Math. Proc. Cambridge Philos. Soc. 105 (1989), 459-462.
3. S.J. Kovács, "Small saturated sets in finite projective planes," Rend. Mat., to appear.
4. G. Seroussi and R.M. Roth, "On M.D.S. extensions of generalized Reed-Solomon codes," IEEE Trans. Inform. Theory IT-32 (1986), 349-354.
5. L. Storme and J.A. Thas, "Generalized Reed-Solomon codes and normal rational curves: an improvement of results by Seroussi and Roth," in Advances in Finite Geometries and Designs, J.W.P. Hirschfeld, D.R. Hughes, and J.A. Thas, eds., Oxford University Press, Oxford, 1991, pp. 369-389.
6. L. Storme and J.A. Thas, " k-atcs and dual k-arcs," Ann. Discrete Math., to appear.
7. J.A. Thas, "Normal rational curves and k-arcs in Galois spaces," Rend. Mat. 1 (1968), 331-334.
8. J.A. Thas, "Connection between the Grassmannian $G_{k-1 ; n}$ and the set of the k-arcs of the Galois space $S_{n, q, " ~ R e n d . ~ M a t . ~}^{2}$ (1969), 121-134.
9. J.A. Thas, "Projective geometry over a finite field," in Handbook of Geometry, F. Buekenhout, ed., North-Holland, Amsterdam, to appear.
10. J.F. Voloch, "Arcs in projective planes over prime fields," J. Geom. 38 (1990), 198-200.
11. J.F. Voloch, "Complete arcs in Galois planes of non-square order," Advances in Finite Geometries and Designs, J.W.P. Hirschfeld, D.R. Hughes, and J.A. Thas, eds., Oxford University Press, Oxford, 1991, pp. 401-406.
