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Abstract. The completeness of normal rational curves, considered as (g + 1)-arcs in PG(n, g), is
investigated. Previous results of Storme and Thas are improved by using a resuit by Kovécs. This
solves the problem completely for large prime numbers ¢ and odd nonsquare prime powers g = p2i+!
with p prime, p > po(h), h > 1, where pg(h) is an odd prime number which depends on h.
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1. Introduction

Let X' = PG(n, g) denote the n-dimensional projective space over the field GF(g).
A k-arc of points in X (with k > n+ 1) is a set K of k points such that non+1
points of K belong to a hyperplane. A k-arc is complete if it is not contained
in a (k + 1)-arc.

A normal rational curve in PG(n, ¢), 2 < n < ¢-2, is any (g + 1)-arc projec-
tively equivalent to the (¢ + 1)-arc {(1,t,...,t") | t € GF(¢)} U {(0, ..., 0, 1)}
= {(1,¢,...,t") || t € GF(¢)*"}(GF(g)* = GF(g) U {o0}; oo corresponds to
O, ...,0,1)). All (g + 1)-arcs of PG(g — 1, ¢) are called normal rational curves
of PG(g -1, ¢).

This paper will investigate whether a normal rational curve K of PG(n, ¢) can
be extended to a (g + 2)-arc of PG(n, ¢). The results of [S] will be improved by
using a recent result by Kovics [3]. Refer to [5] for a more detailed description
of the method that is used.

2. Known results

THEOREM 2.1. (Seroussi and Roth [4]). In PG(n, q) every normal rational curve
is complete for

(a) godd and 2 <n < (q+1)/2,
(b) geven and 3 <n < (¢/2) + 1.
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In PG(2, q), q even, a normal rational curve is a conic and a conic is incomplete.
It can be uniquely extended to a (q + 2)-arc by its nucleus.

THEOREM 2.2. (Storme and Thas [5]). Let ¢ = p", p prime. Suppose r,r > 1,
exists such that

(a) 2r|(q — 1) when q is odd and r is even, and r|(q — 1) in all other cases;
(b) g+1-2r2—2r—2(r—1)%,/g > Owhen g is odd and q+1-7r2-2r-2(r~1)%,/g > 0
when q is even.

Then every normal rational curve of PG(n, q) is complete for

(a) gevenand 3<n < (r-1)g/r +1/r,
(b) godd and 2 < n < (r—1)g/r + 1/r.

3. Completeness of normal rational curves

THEOREM 3.1. Let C be the conic {(t, t*, 1) || t € GF(q)*} in PG(2, q). Let M be
a k-arc contained in C which can only be extended to a (k + 1)-arc by the remaining
points of C and the nucleus of C when ¢ is even. Then every normal rational curve
of PG(n, q) is complete for

(a) gevenand 3<n<qg—k+2,
b) goddand 2 <n<q—k+2.

Proof. We may assume from Theorem 2.1 that n > ¢/2+ 1. Choose the reference
system in such a way thateg(1, 0, ..., 0), ..., €,(0, ..., 0, 1), €,41(1, ..., 1) belong
to the normal rational curve K. This implies that K is the set of points
{(ao/((a0 — 1)t + 1), ..., an/((an — 1)t + 1)) || t € GF(q)*}, where all elements a;
are different nonzero elements of GF(g) and where the parameter t = ~1/(a; —1)
corresponds to e; [1].

Let § = {zy, ..., zx} (5 C GF(g)*) be the set of parameters associated with
the points of M in C. Since the conic C has a 3-transitive projective group [1],
we may assume that 2, = 0, 3 = oo, and z3 = 1.

Select a; in GF(g)\ {0, 1} in such a way that ~1/(a;-1) ¢ S,¢=0,...,n-2.
This is possible if n -1 < ¢-2-(k-3) & n<qg-k+2 Soifn<qg-k+2,itis
possible to select the parameters t; = —1/(a;—1) of the pointse; (£ =0, ..., n—2)
of K in such a way that t; € S.

We now proceed as in the proof of Theorem 26 of [S]. This proof uses the
one-to-one correspondence between the involutions ¢ (¢ # 1) of PGL(2, ¢) on a
conic C = {(¢, t?, 1) || t € GF(q)*} and the points r of PG(2, g) not belonging
to C and different from the nucleus of C when ¢ is even. Each point r of
PG(2, ¢) not belonging to C and different from the nucleus of C when ¢ is even
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corresponds to an unique involution ¢ : t — (at + b)/(ct — a), a® + bc # 0, on
C. Two points p;(t;, t3, 1) and pa(ts, t}, 1) are each others image under ¢ if and
only if p; € rp,.

Since M can only be extended to a larger arc in PG(2, ¢) by the remaining
points of C' and the nucleus of C when ¢ is even, for each involution ¢ of
PGL(2, g¢) on C (¢ # 1) there exist two distinct parameters ¢; and ¢; in S for
which ¢(t;) = t; (see also the introduction of Section 6 in [S]).

Consider the subspace a : X,_; = X, = 0 generated by the n — 1 points
€g, ..., en—2 of K. Project from o; : X; = X,_1 = X,, =0 (0 <i<n-2) onto
the plane 3; : X; = 0 for all j # i, n — 1, n. The points of K which do not
belong to «; are projected onto points of the conic C; = {(ai/((a; — 1)t + 1),
an_1/((ap-1 = Dt + 1), a,/((an — 1)t + 1)) || t € GF(g)*} in B;. The points of K
not belonging to «; are projected onto the points of a (¢ + 3 — n)-arc K; on Ci.
The parameters of the points of K; are the elements of GF(g)* \{-1/(a; - 1) || j
=0,...,n—2;j#14}. Since -1/(a; ~1) € Sy =0,...,n—2), K; contains
the points of C; with parameters in S. This implies that for each involution
¢(¢p # 1) of PGL(2, q) on C; there exist two distinct parameters t;, t; of points
of K; for which ¢(¢;) = t;. As a consequence of the one-to-one correspondence
between the involutions ¢ (¢ # 1) of PGL(2, ¢) on C; and the points r of §; not
belonging to C: and different from the nucleus of C; when ¢ is even (see also
the introduction of Section 6 in [5]), this arc K; can only be extended to a larger
arc in §; by the remaining points of C; and the nucleus of C; when g is even.

If there exists a point p of PG(n, ¢q) which extends K to a (g + 2)-arc, then p
is projected from «; onto a point p; of §; which extends K; to a (¢ +4 —n)-arc in
Bi. Thus p is projected onto C; or possibly to the nucleus of C; if ¢ is even. This
is precisely the same situation as in the proof of Theorem 15 of [5]. Therefore,
when the proof of Theorem 15 is combined with Lemma 21 of [5], it follows
that p belongs to K.

This is impossible. This shows that K is complete when ¢/2+ 1 < n <
g—k+2. ]

THEOREM 3.2. (Kovécs [3]). Consider the conic C = {(t, t}, 1) || t € GF(¢)*} in
PG(2, q). Then for at least one k < 6+/q In g there exists on C a k-arc K which
can only be extended to a larger arc in PG(2, q) by the remaining points of C and
the nucleus of C when g is even.

THEOREM 3.3. In PG(n, q) every normal rational curve is complete for

(a) gevenand 3<n<qg+2—-6+/qing,
(b) qoddand 2<n<q+2-64/qlng.

Proof. 1t follows from Theorem 3.2 that there exists a k-arc K on the conic
C = {(t, t*, 1) || t € GF(g)*} with k < 64/¢ In g, which can only be extended to
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a larger arc in PG(2, ¢) by the remaining points of C and the nucleus of C' when
q is even.

We apply Theorem 3.1 when k = 64/¢ In ¢, so in PG(n, ¢) every normal
rational curve is complete when

(a) gisevenand 3<n<qg+2-64/¢lng,
(b) gisodd and 2<n<qg+2—-64y/¢lng. a

THEOREM 3.4. For each prime number p, p > 1007215, every normal rational curve
in PG(n, p), 2 <n <p-—1, is complete.

Proof. Theorem 3.3 states that in PG(n,p),p #2,2<n <p+2-6y/plnp,
every normal rational curve is complete.

Voloch [10] proved that if K is a k-arc of PG(2, p), p prime, p > 2, with
k > (44/45)p + 8/9, then K is contained in a conic. The arguments used by
Thas in [7] then show that a k-arc K of PG(n, p), p prime, p > 2,n 2> 2,
for which p+ 1 > k > (44/45)p + n — 10/9, is contained in a unique normal
rational curve of PG(n, p). Hence, every (p + 1)-arc of PG(n, p), p prime,
p>2,(p+95)/45 > n > 2, is a normal rational curve. Theorem 4 in [2] then
implies that k < p + 1 for any k-arc K of PG(n, p), (p + 140)/45 > n > 2.

Assume that there exists a (p + 2)-arc K in PG(n, p), p prime, p > 2,p—2 2>
n > (44p — 140)/45. Then there exists a dual (p + 2)-arc R in PG(p - n, D)
[6], [8], [9]. So, R is a (p + 2)-arc in PG(m, p), (p + 140)/45 > m > 2. This
contradicts the previous calculations. Hence, £ < p + 1 for any k-arc K of
PG(n, p), p prime, p > 2, p—2 > n > (44p — 140)/45.

Every (p + 1)-arc of PG(p — 1, p), p prime, p > 2, is complete. A (p + 1)-arc
of PG(p — 1, p) is projectively equivalent to the set L = {ey(1,0,...,0),...,
ep-1(0, ..., 0, 1), e,(1, ..., 1)}. If a point r(ag, ..., a,-1) of PG(p—1, p) extends
L to a (p + 2)-arc, then all p coordinates a;,i = 0, ..., p~ 1, must be nonzero
and distinct from each other. This is impossible. So L is complete.

We conclude that for p an odd prime, when (44p—140)/45 < p+2—-64/p In p,
then in PG(n, p), 2 < n < p-—1, every normal rational curve is complete.

This inequality (44p — 140)/45 < p + 2 — 64/p In p is satisfied for all prime
numbers p > 1007215. ]

THEOREM 3.5. For a fixed integer h > 1 let po(h) be the smallest odd prime number

satisfying
p**1 > 24ph [p(2h + 1)In p + 34-9-;) -20.

Then for each odd prime number p > py(h) in PG(n, g), ¢ = p**1,2<n<g-1,
every normal rational curve is complete.
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Proof. Voloch [11] proved that in PG(2, q), ¢ = p***!, h > 1, p prime, p # 2,
any k-arc K for which ¢ +1 > k > ¢~ /pg/4 + 29p/16 + 1 is contained in a
unique conic.

The method described by Thas in [7] once again implies that a k-arc K of
PG(n, q), ¢ = p**!, h > 1, p prime, p > 2,n > 2, for which ¢ +1 > k >
q— \/Pq/4 + 29p/16 + n — 1, is contained in a unique normal rational curve of
PG(n, q). Therefore, any (¢ + 1)-arc of PG(n, q), /Pg/4 —29p/16+2>n >2,is
a normal rational curve. Theorem 4 in [2] then shows that k < ¢+ 1 for any k-arc
K in PG(n, ¢}, ¢ = pl h>1, p prime, p > 2, /pg/4 —29p/16 + 3 > n > 2.

The existence of a (¢ + 2)-arc K in PG(n, g), ¢ = p***!, h > 1, p prime,
p>2,9g-22n>q-./pq/4+29/16 — 3, implies the existence of a dual
(¢+2)-arc K in PG(g—n, q), VvP3/4—29p/16 +3 > g—n > 2 [6], [8], [9]. This
contradicts the previous caiculations.

Thus all k-arcs of PG(n, q), ¢ = p*', A > 1, p prime, p >2,¢-2>n >
q— /pq/4 + 29p/16 - 3, satisfy k < g + 1.

Every (¢ + 1)-arc of PG(g—1, g) is complete. This is proven in the same way
as in the proof of Theorem 3.4.

In PG(n, ¢), g 0dd, 2 <n < ¢+ 2—64/¢In ¢, every normal rational curve is
complete (Theorem 3.3).

Hence, when

q—-‘{%-ﬁ+f—g—p—3<q+2—6\/qln , )

then in PG(n, ¢), ¢ 0odd, ¢ = p***!, 2 < n < ¢ — 1, every normal rational curve is

complete.
Since ¢ = p**1, (1) is equivalent to

p"*! > 24p"y /p(2h + 1)In p + %; - 20. (2)

This inequality (2) is satisfied for large prime numbers p. Hence, there exists a
lower bound pg(h) such that (2) is valid for all prime numbers greater than or
equal to po(h). 0O
Example 3.6. In PG(n, q), ¢ = p*, p prime, p > 16830,¢~1 > n > 2, every
normal rational curve is complete.
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