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Abstract. We consider strongly regular graphs I' = (V, E) on an even number, say 2n, of vertices
which admit an automorphism group G of order » which has two orbits on V. Such graphs will be
called strongly regular semi-Cayley graphs. For instance, the Petersen graph, the Hoffman-Singleton
graph, and the triangular graphs T(q) with ¢ =5 mod 8 provide examples which cannot be obtained
as Cayley graphs. We give a representation of strongly regular semi-Cayley graphs in terms of suitable
triples of elements in the group ring ZG. By applying characters of G, this approach allows us to
obtain interesting nonexistence results if G is Abelian, in particular, if G is cyclic. For instance, if
G is cyclic and n is odd, then all examples must have parameters of the form 2n = 4s® + 45 + 2,
k=2s2+s, A=3s2=1,and p = s% examples are known only for s = 1, 2, and 4 (together with a
noncyclic example for s = 3). We also apply our results to obtain new conditions for the existence of
strongly regular Cayley graphs on an even number of vertices when the underlying group H has an
Abelian normal subgroup of index 2. In particular, we show the nonexistence of nontrivial strongly
regular Cayley graphs over dihedral and generalized quaternion groups, as well as over two series of
non-Abelian 2-groups. Up to now these have been the only general nonexistence results for strongly
regular Cayley graphs over non-Abelian groups; only the first of these cases was previously known.
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1. Introduction

Recail that a Cayley graph may be defined as a graph I = (V, E) which admits
an automorphism group H acting regularly on the vertex set V (see [23] for
background on Cayley graphs). The present paper addresses the case for which
the cardinality of V is even, say 2n, and where I" admits an automorphism group
G of order n which has two orbits (of size n) on V. For obvious reasons we
shall call such a graph I" a semi-Cayley graph. Moreover, we will always assume
that I' is strongly regular with parameters k, A, and u (i.e., I' has regularity &k
and, given any two vertices u and v, there are exactly A, respectively u, vertices
adjacent to both u and v, depending only on whether v and v are adjacent); see

*During the time of this research, Dieter Jungnickel was a visiting professor at the Universita di Roma
“La Sapienza.” He would like to thank this institution for its hospitality and Consiglio Nazionale
Delle Ricerche (Italy) for financial support.



172 de RESMINI AND JUNGNICKEL

[6] for background material on strongly regular graphs. Both Cayley graphs and
strongly regular graphs have been in the center of interest for a long time, and
the intersection of both classes of graphs has also found considerable attention;
see, e.g., [4], [5] [9]), [16]-[18], [21].

We recall that strongly regular Cayley graphs can be described in group
theoretic terms as follows. The vertices of such a graph I' can be identified
with the elements of the regular automorphism group H, and adjacency can be
defined in terms of a suitable subset S of H as follows:

u~vouwles, (1.1)

where S is actually a partial difference set, i.e, the list of differences cd™! (with
¢, d € S, c # d) contains each element h # e of H either A or p times, depending
on whether or not h belongs to S. We now identify S with the formal sum X,c5 s
of its elements in the group ring ZH (which is a convenient abuse of language)
and write S(-1) for the sum Z,egs~. In this notation the condition for a partial
difference set can be written as follows:

S =AS+ u(H - S—e)+ ke=pH + BS + 7e, (1.2)

where e denotes the unit element of H and where we write 8 = A — g and
v =k — p. (Note that S = SG1) since I' is not directed, and that e ¢ S, since
I' has no loops.)

In Section 2 we generalize an approach of Marusic [19] (who considered only
cyclic groups) and give a similar group theoretic description of strongly regular
semi-Cayley graphs. In this case one needs three subsets C, D, and D’ (called a
partial difference triple) of the corresponding automorphism group G to describe
I'. We also determine the size of the subsets in the partial difference triple
in terms of the parameters of I" and give a few examples for strongly regular
semi-Cayley graphs (including an infinite family consisting of examples which
cannot be obtained as Cayley graphs).

From Section 3 on, we assume that G is Abelian. We can then apply
ordinary characters to the equations involving the partial difference triple to
obtain some necessary conditions on the existence of semi-Cayley graphs with
an Abelian group. As we shall see, the group ring element D + D’ in ZG can
then only take three distinct values (which are in arithmetic progression) under
every nonprincipal character. We somewhat strengthen a result of Ma [17] that
characterizes the elements of ZG with this property in the case in which G is
cyclic.

Applying these results, in Section 4 we consider the case where G is cyclic.
We show that we cannot have D = D’ then (unless I is trivial), which will be
fundamental for the subsequent results. Assuming that n is odd, we show that
all cyclic examples must belong to the series of strongly regular graphs with
parameters

2n=4s+4s+2, k=2"+s, A=52—1, p=s° (1.3)
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We thus considerably strengthen the work of Marusic {19}, who obtained the
result in question in the special case in which n is a prime. The only known
examples for this situation arise for s = 1,2, and 4. Additionally, there is a
noncyclic example with s = 3. We discuss semi-Cayley graphs with parameters
(1.3) in Section 6.

In Section 5 we assume that I' is actually a Cayley graph with regular
automorphism group H and that G is a subgroup (of index 2) of H. This
somewhat simplifies the description of I" by a partial difference triple, since
it forces D and D’ to be related by an inner automorphism of H. Applying
the results of the preceding sections, we obtain proofs for the nonexistence of
nontrivial strongly regular Cayley graphs over dihedral and generalized quaternion
groups, as well as over two other series of non-Abelian 2-groups. These have
been up to now, the only known general nonexistence results for strongly regular
Cayley graphs over non-Abelian groups; only the first of these cases was previously
obtained (by Ma [17] with a different proof).

2. Semi-Cayley graphs and partial difference triples
Standard arguments give the following characterization of semi-Cayley graphs:

LEMMA 2.1. Let G be a group or order n, and let C, D, and D’ be three subsets
of G satisfying e ¢ D, I’ as well as D = DUV gnd D' = D'V, Define a graph
I' = (V, E) = I'(C, D, D'; G) as follows:

V=GuUGqG, 2.1)
where G' = {¢’ : g € G} is a copy of G;
E=E UE,UE;, (2.2)

where E; = {{g,dg}: de€ D, g€ G}, E, = {{¢',(dg)'}: d € D', g € G}, and
E; = {{d,cg}: c€ C,g € G}. Then I' is a semi-Cayley graph with respect to G
(which acts on T' by right translation). Moreover, every semi-Cayley graph can be
obtained in this way.

THEOREM 2.2. Let G be a group of order n, and consider the semi-Cayley graph
I'=(V, E) = I(C, D, D'; G). Denote the regularity of I" by k. Then I is strongly
regular with parameters 2n, k, ), and p if and only if the three subsets C, D, and
D' of G satisfy the following three equations in the group ring ZG:

D*+CCYY = AD + w(G~D —e) + ke = pG + 8D + e, (2.3)

D?+COVY = )\D'+ y(G-D' —e)+ke=pG + D +ve, (24)
DC + CD' = X\C + u(G ~ C) = uG + C. (2.5)
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Proof. Again, the proof is quite standard. For the convenience of the reader, we
will include part of it. One shows that the three equations stated above directly
reflect the defining property of a strongly regular graph for the three possible
distributions of two arbitrarily given points » and v over the two “halves” G and
G’ of I Assume first that u, v € G. By the transitivity of G on itself, we may
assume without loss of generality that » = e. Consider a third vertex w € G,
respectively w’ € G’, which is joined to both v and v. We first deal with the
case w € G. Here Lemma 2.1 shows that w must belong to D (since it is joined
to e) and is of the form w = dv for some d € D (since it is joined to v). The
number of such vertices is the number of solutions of the equation v = d~lw
with d, w € D = DD and hence equals the coefficient of v in the group ring
element D2, Now consider the case w’ € G'. We obtain the conditions e = bw
and v = cw for some b, c € C (since w' is joined to both e and v). The number
of such vertices is the number of solutions of the equation v = cb~! with b, c € C,
i.e., the coefficient of v in CCY, It is now clear that Equation (2.3) is satisfied
if and only if the number of vertices which are adjacent to both u and v equals
A whenever v € D (i.e., whenever v and v are adjacent) and u otherwise. (Note
that the coefficient of e agrees on both sides of (2.3) since I' is regular of degree
k.) In the same way, the case «/, v' € G’ yields Equation (2.4). Finally, similar
arguments for the case u € G and v’ € G’ give Equation (2.5). m]

Thus the strongly regular semi-Cayley graphs (with respect to a group G)
correspond to the triples of subsets of G satisfying Equations (2.3) through (2.5).
We will call any such triple a partial difference triple. We give examples for these
concepts at the end of this section, but first we determine the sizes of the three
subsets of G occurring in a partial difference triple.

PROPOSITION 2.3. Let G be a group of order n, and let (C, D, D) be a partial
difference triple over G associated with a strongly regular semi-Cayley graph with
parameters 2n, k, A\, and 1. Then one has

_%-fxA

ol = 24

and |D|=|D'|=k-|C|, (2.6)
where we write
1/2
A= (8 +4) @2.7)

and, as usual, 5 = A\ —pand v = k— p. Moreover, A is an integer. (Note that A is
the square root occurring in the well-known rationality condition for strongly regular

graphs.)

Proof. Since I' is regular with degree k, we clearly have |C|+|D| = |C|+|D'| = k.
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Thus Equation (2.5) implies
2|C|(k - |Cl) = BIC| + np,

which gives

2% — B+ (4k2 + B2 — 4kB — 8np)'

4 ’

using the standard equation relating the parameters of a strongly regular graph,
i.e.,

IC} =

k(k—1-5) = p(2n-1), (2.8)

yields the desired formula for C. Since the number of vertices of I' is even,
I'" cannot be a “type I” strongly regular graph, which shows that A must be an
integer (see [6]). mi

We now give some examples for strongly regular semi-Cayley graphs. Of
course, strongly regular Cayley graphs on an even number of vertices will occur
here.

Example 2.4. Let I' be a strongly regular Cayley graph with respect to H on
an even number, say 2n, of vertices. If H contains a (normal) subgroup G of
index 2, then I' is also a semi-Cayley graph with respect to G' (since G clearly
has two orbits of size n on the set of vertices). Thus any strongly regular Cayley
graph on an even number of vertices with an Abelian group also is a semi-Cayley
graph. In particular, every difference set S with multiplier —1 which does not
contain e satisfies Equation (1.2) with 8 = 0 and thus can be considered as a
partial difference set. If S contains e, one may omit e from S to obtain a partial
difference set with @ = —2. Hence any Abelian difference set with multiplier
~1 gives rise to a strongly regular semi-Cayley graph (with 4 = 0 or 8 = -2)
since the order of G has to be even in this case. (We refer the reader to {2] for
basic results and to a recent survey [14] for the present state of knowledge on
difference sets, in particular, those with multiplier —1.)

The following example gives a family of strongly regular semi-Cayley graphs
which cannot be considered as Cayley graphs.

Example 2.5. Let I' be the triangular graph T(g), a strongly regular graph on
g(qg — 1)/2 vertices with k = 2¢—4, A = ¢ -2, and p = 4 (see [6]). We now
assume that ¢ = 5 mod 8 is a prime power and use as vertices of I' the 2-subsets
of the finite field GF(g). It is then clear that the affine group AGL(1, ¢) is an
automorphism group of I'; let G be the subgroup of index 4 of this group, i.c.,

G={z—az+b: a, be GF(g), aa 4th power}. (2.9)

Since we have ¢ -1 = 4 mod 8, G contains no involutions and hence acts
semiregularly on the vertices of I' (i.e., the only automorphism in G fixing some
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vertex is the identity). Thus G has two orbits of size n = ¢g(¢ — 1) /4, each on the
set of vertices of I', which shows that I" is indeed a strongly regular semi-Cayley
graph. We now show that I" cannot be a Cayley graph. Note that any regular
automorphism group H of I" would actually be a (sharply) 2-homogeneous but
not 2-transitive permutation group on the g elements of GF(g). To see this, it
suffices to observe that the element = of GF(g) can be identified with the clique
C, of I' of size ¢ — 1 formed by the vertices {z, y}. Since the g cliques C,
are the only cliques of size ¢ — 1 of I', any automorphism of I" must indeed be
induced by a permutation of GF(q). Now a result of Kantor [15] shows that the
only sharply 2-homogeneous but not 2-transitive groups are the groups ASL(1, ¢)
with ¢ = 3 mod 4. Hence the triangular graph T(q) is a Cayley graph if and only
if ¢ =3 mod 4 is a prime power.

We conclude the present section with a few examples. For instance, the
Petersen graph is clearly a semi-Cayley graph. (Note that the triangular graph
T(S) is the complement of the Petersen graph, so this fits in with Example 2.5.)
In Section 4 we shall see that the Hoffman-Singleton graph is also a semi-Cayley
graph. We finally give an example with parameters (1.3) for s = 2, which is due
to Adel’son-Vel’skii, Veisfeiler, Leman, and Faradzev [1]; it is one of the first
examples of a distance-regular graph which is not actually distance transitive and
is actually the unique semi-Cayley graph with parameters (1.3) and s = 2. (This
example was rediscovered by Marusic [19].)

Example 2.6. The following three sets form a partial difference triple for the
parameters n = 13,k = 10, A = 3, and g = 4 over G = Z;3 (with additive
notation):

D=1{1,3,4,9,10,12}, D =G-D-e={2,5,6,7, 8,11}, C = {0, 1, 3, 9},

as can be easily checked directly. (Alternatively, one may also use multiplicative
notation and derive Equations (2.3) through (2.5) by observing that D is a partial
difference set for the Paley graph on 13 vertices and that C is a difference set
for the projective plane of order 3 and by using the equations satisfied by these
two objects; see Proposition 6.4 below.)

3. The Abelian case
From now on we shall assume that G is Abelian, so that we may apply (ordinary
complex) characters to our group G, extended by linearity to the group ring ZG.

Theorem 2.2 implies the following basic result:

PROPOSITION 3.1. Let (C, D, D) be a partial difference triple over G for a strongly
regular semi-Cayley graph with parameters 2n, k, A, and p, where G is Abelian, and
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let x be a nonprincipal character of G. Then either

x(©) =0 and x(D)= X(D) = (8 4) 3.1

or
x(D) + x(D') = B. (3.2)
In particular,

x(D+ D')e {B- A, B, B+ A} for every nonprincipal character x. 3.3)

Proof. By applying x to Equations (2.3), (2.4), and (2.5), we obtain the following

identities:
X(D?) + x(O)f* = Bx(D) +, (3.4)
X(D?) + |x(O)* = Bx(D') + 7, 3.5)
X(C)x(D) + x(D)) = Bx(C). (3.6)

Clearly (3.6) implies the validity of (3.2) if one has x(C) # 0. Thus we may
assume x(C) = 0. Subtracting (3.5) from (3.4) gives the equation

((D) + x(DN(x(D) - x(D)) = B(x(D) — x(D)).

If one has x(D) # x(D'), one again obtains the validity of (3.2). Hence we may
now assume x(C) = 0 and x(D) = x(D'). On substituting these values in (3.4)
or (3.5), we obtain the equation

x(D*) - Bx(D) -7 =0,
which implies (3.1). Now the validity of (3.3) is an immediate consequence. 0O

We next show that there always must be characters x with x(C) # 0 (so that
(3.2) will hold) unless I is trivial.

PROPOSITION 3.2. Let (C, D, D') be a partial difference triple over G for a strongly
regular semi-Cayley graph I, and assume x(C) = 0 for every nonprincipal character
x of G. Then I is trivial (i.e., either I' or its complement is a disjoint union of
complete graphs).

Proof. Recall the well-known inversion formula for group ring elements (which
is an immediate consequence of the orthogonality relations for characters): One
can recover the coefficients of A = 3 - a,9 € ZG by means of the formula

o = 17 2 XAXE™),

x€g*
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where G* denotes the character group of G. In particular, if A, B € ZG satisfy
x(A) = x(B) for all nonprincipal characters x of G, then B must be a rational
multiple of A. Hence the assumption that x(C) = 0 for every nonprincipal
character x of G implies that C' is a multiple of G and hence C = G, since C
is a subset of G. But then the complementary graph of I" is a disconnected
strongly regular graph (it contains no edges between the two halves G and G')
and is therefore the disjoint union of complete graphs. Hence I' is trivial. O

We state a simple consequence of the preceding results which will be used
later.

COROLLARY 3.3. Let (C, D, D’) be a partial difference triple over G for a strongly
regular semi-Cayley graph with parameters 2n, k, ), and i, where G is Abelian, and
assume D = D'. Then all of 8, )\, u, and A are even.

Proof. Because of Proposition 3.2, we may select a nonprincipal character x of G
satisfying x(C) # 0. Thus Proposition 3.1 shows that x satisfies Equation (3.2),
which (together with D = D’) immediately implies that 8 is even. Hence
Equation (2.5) can be written as 2C(D — 8/2) = uG. Then it is straightforward
that » and hence also ) are even. Finally, (2.7) shows that A is likewise even. O

By Propositions 3.1 and 2.3, application of any nonprincipal character x to
the element D + D' of ZG will yield one of the three integral values 8 — 4, f,
and B + A, which are in arithmetic progression. Clearly this will severely restrict
the possibilities for D + D', In particular, this element will have to be invariant
under all numerical automorphisms of ZG, i.e, under all automorphisms of the

form
A= Z agg — AW = Z a.q’, (3.7
9€G geG
where t is an integer coprime with the order of G. This assertion already follows

from the rationality of the character values.

LEMMA 3.4, Let A=3" a9 € ZG, and assume that x(A) is rational for every
character x of G. Then A is fixed under every numerical automorphism of ZG.

Proof. We use a standard argument and consider the cyclotomic field K = Q(¢),
where { is a primitive nth root of unity (with n the exponent of G). Let o
denote the automorphism of K which maps ¢ to ¢, to let x be any character of
G. Then we have

X (A(") = X (Z aggt) = ax(g") =) a,(x(9))"
> ax) = (T ax() = x4 = x(4),
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since x(A) is rational. Thus the inversion formula implies the assertion. QO
If G is actually cyclic, one cay say . much more.

LEMMA 3.5. Let A=} . aeg € ZG, where G is a cyclic group of order n. Assume
x(A) € {x —y, ©, x + y} for every nonprincipal character x of G, where x and y are
integers. Then one has

A= E cmUm  for some integers ¢, (3.8)

min

where U, denotes the unique subgroup of order m of G. If m # 1, n, then cn, has
the form

_ vn
on = L2, (39)

where w,, € Z and w,, # 0 only if m divides 2y. Moreover, if the coefficients of A
can take only the values 0, 1, and 2, one has

cm =0 unless me M :={1,n,2y,y, y/2}n{k: kin}; (3.10)
finally, if the coefficients of A can take only the values 0 and 1, one even has

cm =0 unless m € M := {1, n, 2y, y} N {k: kin}. (3.11)

Proof. By Lemma 3.4, A is fixed under every numerical automorphism of ZG.
This implies that the coefficients in A of any two elements of G which have
the same order must agree. A simple induction argument now shows that A is
indeed an integral linear combination of the subgroups of G. The validity of
(3.9) will also be proved by induction. Thus assume that m # 1, n is a divisor
of n, and (3.9) holds for all divisors d # 1, m of m. Note first that

A =N qU =Y ed+ Y U™, (3.12)
dln dim din,dfm

where the terms in the last sum correspond to nontrivial subgroups of G (and
where we have extended the notation introduced in (3.7) to arbitrary integers).
We now apply a character x of order n to Equations (3.8) and (3.12) to obtain

X(A) = c; and x™(A) = x(4A™) = Y cad,
dlm

since x annihilates nontrivial subgroups. These two equations give

Z cad = x™(A4) ~ x(4) € £{0, y, 2y}
djm, d#1



180 de RESMINI AND JUNGNICKEL

by our hypothesis on the values nontrivial characters can take when applied to
A. Hence we have

cmm=cy— Y. cgd (with e € £{0,1,2})
dim,d#1,m

and, by induction,

cnm =y (E - Z wd) = Yywp, (3.13)

dim,d#1,m

for suitable integers wy. It immediately follows that c,, also has the form asserted
in (3.9). It still remains to show that ¢, = 0 if m does not divide 2y. In this
case we write § = gcd(m, 2y); now an argument similar to the previous one gives

x (A™) = x (40) = 3 cud = com € {0, 3, 20},
dim, d[6

since the only value of d for which ¢; is possibly not 0 is d = m (for all other
values of d, the induction hypothesis gives ¢4 = 0). Using the assumption that
m does not divide 2y, we obtain the desired conclusion ¢, = 0. This finishes
the proof of (3.9).

We now assume that A has only coefficients 0, 1, and 2. If g € G has order
m, we see from (3.8) that

ay=spn:= ) cs€{0,1,2}. (3.14)

midin

It remains to show that ¢,, = 0 if m divides 2y and n but does not belong to M.
By induction, we may assume that this assertion holds for all proper multiples
of m dividing n. Denote by ¢ the smallest element of M which is a multiple of
m. We then obtain from (3.9) and (3.14)

YWm = _ - _
T = Cn = Sm z cd = 8m — 84 € £{0, 1, 2}.
midin,d#m
In particular, we see that
Y [wnl < 2m. (3.15)

But since wy, is an integer, we have |w,| > 1 for w,, # 0; in view of (3.15), this
can hold only if we have m > y/2. By assumption, m divides 2y but does not
belong to M. Hence the only possible value for m would be 2y/3. But in this
case wy, # 0 implies that w,, is even (since ¢, is an integer) and (3.15) yields
the contradiction m > y. Thus we indeed obtain the validity of (3.10). A similar
argument rules out the possibility that m = y/2 and thus shows the validity of
(3.11) if we assume that A has coefficients 0 and 1 only. m|
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Except for the case of coefficients 0, 1, and 2, Lemma 3.5 is essentially due
to Ma [17]: It is a translation of his Lemma 3.2 from the language of roots of
unity and polynomials over Z into that of group rings and characters.

4. The Cyclic Case

In this section we shall assume that I' is a strongly regular semi-Cayley graph
with respect to a cyclic group G. Here the parameters (1.3) will play a prominent
role. We begin with a relatively simple example of a situation leading to these
parameters.

THEOREM 4.1. Let I' be a strongly regular semi-Cayley graph with respect to
a cyclic group G with parameters 2n, k, \, and 1, and assume that A does not
divide 2n (where A is defined as in (2.7)). If I is nontrivial, then it has—up to
complementation — parameters of the form

=48 +4s+2, k=28+s A=s—1, p=s 4.1)

Proof. Let (C, D, D') be the partial difference triple associated with I". Because
of Proposition 3.2, we may select a nonprincipal character ¥ of G satisfying
¥(C) # 0. By Proposition 3.1, this implies ¥(D) + ¥(D’) = 5. Because of (3.3)
and Proposition 2.3, we may apply Lemma 3.5 to D + D’. Since D + D’ has
coefficients 0, 1, and 2 only and since 4 does not divide 2n by hypothesis, we
obtain

D+ D' =aG + be 4.2)

for suitable integers a and b. Applying ¥ to this equation shows that b = .
Since neither D nor D’ involves e, we also obtain ¢ = —5. Thus (4.2) becomes

D + D' — fe = ~fG. (4.3)

But D + D’ has to involve at least one group element with coefficient 1 (because
I' is nontrivial); thus (4.3) implies 8 = -1 i.e.,

D+D +e=0G. (4.4)

Clearly this implies |D| = (n — 1)/2. We can now use Proposition 2.3 to show
that I'" has the desired parameters. Define s by A% = 1 + 4(k — p) = (2s + 1)?,
i.e.,

p=k—g—s. 4.5)

If we use this, (2.6) gives

k+1x(2s+1) n-1

k=|C|+|D| = - >

(4.6)
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If we choose the minus sign in (4.6), we obtain
n=k+s+1. 4.7

Substituting these values for ¢ and n (and 8 = -1) in the standard equation
(2.8) gives
K = (k—s* — 8)(2k + 25 + 1),

which gives the solution k = 2s% + s leading to the parameters (4.1). If one
instead chooses the plus sign in (4.6), one obtains

n=k-—s, 4.7)
which will lead to the complementary parameters of (4.1). O

The next result requires more work. Although it looks quite special, it will
have interesting consequences.

THEOREM 4.2. Let G be a cyclic group of order n, and let (C, D, D') be a partial
difference triple over G associated with a strongly regular semi-Cayley graph I" with
parameters 2n, k, A\, and p. If D = D/, then I is trivial.

Proof. Assume that I' is nontrivial. By Proposition 3.1, we have

x(D) € {(B— 42)/2, B/2, (B + 4)/2} (4.8)

for every nonprincipal character x. By Corollary 3.3, both 8 and A are even, so
that the assumptions of Lemma 3.5 are satisfied for A = D with z = 8/2 and
y = A/2. Since D has coefficients 0 and 1 only, it is a linear combination of
the subgroups G = Uy, Ua, Uaj2, and Uy = {e} satisfying the restriction given in
(3.11). Without loss of generality we assume |D| < n/2 (if necessary, we replace
I’ by its complement and thus D by G — D —e). Then the linear combination
for D cannot involve G. By taking into account that e does not belong to D,
we obtain only the following three possibilities for D:

Casel. D= UA—e;
Case 2. D =Upp ~¢;
Case 3. D = Ups — UA/Z-
Since I' is nontrivial, we may select a nonprincipal character x of G satisfying
x(C) # 0 and hence

x(D) = B2 (49)
by Propositions 3.1 and 3.2. We also note

A2 |6 +1, (4.10)
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which is immediate by (2.7). We now consider the Cases 1 and 2 first and claim
that x is actually nontrivial on Uy and Uy, respectively. Assume otherwise.
Then applying x to D gives

A-1=x(D) = p/2 (4.11)

in Case 1 and
A/2-1=x(D) = p/2 (4.11)

in Case 2. We note that (4.10) obviously contradicts (4.11), proving our auxiliary
assertion for Case 1. In Case 2 we would obtain

A=8+2, (4.12)

which implies v = 8+ 1 by (2.7). Substituting 8 = A —p and v = k — u, we
obtain A = k — 1. It is easily seen that this forces I" to be a disjoint union of
copies of K., a contradiction. Hence x is indeed nontrivial on the subgroup
involved in D, and we now obtain (because of (4.9)) -1 = x(D) = 5/2, i.e.,

g=-2 (4.13)
for Cases 1 and 2. Substituting the value for D and (4.13) in (2.5) yields
2CH = pG (with H = U, and H = Uypp, respectively). (4.14)
We now obtain from Equations (2.3) and (4.14)
uGIC| = 20C¢DH = [zﬂc — 4(H - €) + 27 - AH - ¢)’| H,
i.e., an identity of the form
(ICl - 2ulH)G = HX, (4.15)

where X is a linear combination of H and e. Clearly this implies that both sides
of (4.15) are equal to 0. Using u # 0 and |C] = k~|D| = k—|H| + 1, we obtain
the condition
0=|C|-2|H|=k+1-3|H|. (4.16)
By applying Proposition 2.3, we have
4k —4|H|+4=4|C|=2k+ 2+ 4;

hence from (4.16)
6|H| = 4|H| £ A.
This implies H = Uy, ruling out Case 1. Thus k = 34/2 — 1 by (4.16), and

therefore
A=+ 4y =4+ 4(k—p) = 64— 4u < 6A-8.
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Using (2.8) also, we get either the parameters
A=2 A=0pu=2,k=2,n=2
(and thus I' = K; ; is trivial, a contradiction) or
A=4r=0,pu=2,k=5n=8. 4.17)
We now substitute these values into Equation (2.3) and obtain
Uy — €)* + CCD = 2G - 2U; + Se,

implying
etV =G~ Us) + de. (4.18)

One can now either check directly that Equation (4.18) has no solution or appeal
to the theory of relative difference sets: (4.18) means that C would be a cyclic
relative difference set with parameters (2, 4, 4, 2), and it is well known that
such a relative difference set does not exist. (We refer the reader to [12] for
background on relative difference sets; we use the notation of this paper. The
result quoted is due to Elliott and Butson [7].) This contradiction rules out Case
2, and we are left with Case 3. As in Cases 1 and 2, one first shows that x is
actually nontrivial on both Ua and Uyps; this is easily seen by using (4.9) and
(4.10). Applying x to D now gives, by using (4.9) and (2.7),

B=0and A’ = 4y in Case 3. (4.19)
On the other hand, from (2.6) we obtain 2A = 4|D| = 4k — 2k + 4), i.e,,
2=2k+ A (4.20)

We first show that we cannot have the plus sign in (4.20), ie., k& = A/2.
Otherwise, (4.19) would yield

A’ =24A-4p <244

(since A = g # Q), a contradiction. Thus we must have the minus sign in (4.20),
ie, k=3A/2. Now (4.19) implies

A'=6A-4p <644
Using (2.8) also, we get either the parameters
A=2, A =u=2,k=3,n=2
(and thus I = K, is trivial, a contradiction) or

A=4 A=p=2,k=6n=_38. (4.21)
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We now substitute these values into Equation (2.3) and obtain
U - Uz)z +CCHY = 2G + 4e.

Again this reduces to Equation (4.18), which we have already seen is impossible.
This final contradiction finishes the proof. a

One of the referees pointed out that Theorem 4.2 is somewhat related to the
work of Bridges and Mena [4]. As an immediate consequence of 4.2, one obtains
the nonexistence of a nontrivial strongly regular circulant graph of even order,
which gives a special case of the results in [4]. In the opposite direction, if one
also assumes that C is symmetric (i.c., C = C"V) and n is odd in Theorem 4.2,
then I is actually a circulant graph (since it then admits an involution commuting
with the underlying cyclic automorphism); so this special case follows from [4].

Example 4.3. The assumption of Theorem 4.2 that G is cyclic is necessary.
To give an explicit example, it is possible to construct strongly regular semi-
Cayley graphs with parameters (4.17) and (4.21), respectively, in the additively
written group G = Z, @ Z;: Suitable partial difference triples are given by
C = {(0,0), (1, 0), (0, 1), (3, 1)}, together with D = D' = {(2,0)} and D =
D' = {(1, 0), (3, 0)}, respectively. More generally, it is well known that the
elementary Abelian group of order 224+2 contains difference sets with parameters
v =232 | = 2%+1 424 and X = 2% + 29, which have —1 as a multiplier (see
[2] or [14]). These difference sets lead to strongly regular Cayley graphs and
thus also to semi-Cayley graphs with D = D’ (see Example 2.4 and Lemma 5.1
below).

We can now improve Theorem 4.1 as follows:

THEOREM 4.4. Let G be a cyclic group of order n, and let (C, D, D') be a partial
difference triple over G associated with a nontrivial strongly regular semi-Cayley graph
I" with parameters 2n, k, A, and p. If n is odd or not divisible by A, then I" has —up
to complementation — parameters of the form (4.1).

Proof. We may assume without loss of generality
|D| = |D'| < n/2. (4.22)
Because of Theorem 4.2 we must have
D#D. (4.23)
As in the proof of Theorem 4.1, we can use Lemma 3.5 to write D + D’ as

a linear combination of subgroups of G. By our hypothesis on n, this linear
combination does not involve the subgroup Uza. Moreover, the subgroup Uju/s
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can occur only if A is even and if some element of G has coefficient 2 in D + D',
In this case neither Us nor G can occur (by the hypothesis on n and by (4.22),
respectively). This leaves only the possibility D = D' = Uy, — e, contradicting
(4.23). Hence Uy, cannot occur, and D + D' is a linear combination of G, U,,
and e. Taking into account (4.22), (4.23), and e ¢ D, D', we are left with the
following three possibilities:

Case]. D+ D' =G —¢;
Case 2. D+ D' =G —-U,u;
Case 3. D+ D =Uy ~e.

In Case 1 we obtain the assertion as in the second part of the proof of
Theorem 4.1. Thus we have to consider only Cases 2 and 3; here n» must
be divisible by A, and thus n is odd by hypothesis. Since I is nontrivial, we may
select a nonprincipal character x of G satisfying x(C) # 0, and hence

x(D+D)=p (4.24)

by Propositions 3.1 and 3.2. As before, we also have the validity of (4.10). Using
(4.10) and (4.24), one immediately obtains that x must be nonprincipal on U, in
Case 2. We claim that this assertion also holds in Case 3. Otherwise, we would
obtain A = g+ 1, and then (2.7) would yield the contradiction 28 + 1 = 4.
Hence yx is indeed nonprincipal on Us. In Case 2, (4.24) and (2.7) now imply
B =0 and A? = 4+, hence A is an even divisor of n, a contradiction. Thus we
are left with Case 3. Here we obtain

B=-1 and A?=4dvy+1. (4.25)
By Proposition 2.3, we also have
2(A-1)=4|D| =4k~ (2k + 1% AQ),
and therefore either
2k=A4A-1 (4.26)

or
2% =3A-1. (4.27)

If (4.26) would hold, we would obtain 4p = 1+ 4k — A? = 24 —1 - A? by (4.25).
But this is impossible because A > 0, and hence p > 1. Thus we must have
(4.27), and therefore

4u=64—-1-24% (4.28)

Since A is odd and p > 1, (4.28) and (2.8) give

A=1,2=0,p=1k=1,n=1 (so that I would be trivial)
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or
A=3,A=1,pu=2k=4,2n~1=8 (a contradiction)

or
A=5A=0,u=1k=7n=25|D=2|C|=S5. (4.29)

In this final case we have to use the equations in Theorem 2.2 for a more detailed
analysis. Equations (2.3) and (2.5) now yield

D*+¢cCY =G - D+ 6e (4.30)

and
CU; = G. (4.31)

Note that (4.31) forces C to be the sum of a system of coset representatives of
U = Us in G. Hence CC(-V cannot contain any element of U except for e. On
the other hand, D? contains only elements of U. Because of these two facts,
Equation (4.30) is equivalent to the following condition:

CCV=G-U+5eand D*+D=U +e. (4.32)

But this means that C would be a cyclic relative difference set with parameters
(5, 5,5,1), and once more it is well known that such a relative difference set
does not exist (by a result of [7]). This finishes the proof. a

Example 4.5. There exists a unique strongly regular graph with parameters (4.29),
the Hoffman-Singleton graph (see [6] and [9]). Now let G be the elementary
Abelian group of order 25, and let U be a subgroup of order 5 generated by
an element » # e. Then G contains a relative difference set C with parameters
(5, 5, 5, 1) with respect to U. Thus C and D = {u, u*} satisfy condition (4.32),
and therefore (C, D, D) with D’ = U — D —e is a partial difference triple for the
parameters (4.29) over G. The resulting strongly regular graph I must be the
Hoffman-Singleton graph, which thus is a semi-Cayley graph. It follows from
Proposition 5.2 below that I" cannot be a Cayley graph.

Theorem 4.4. considerably strengthens a result of Marusic [19], who obtained
the special case where n = p is an odd prime (stating the parameters in terms of
p, not as in (4.1)). We note that strongly regular graphs with parameters (4.1)
are known to exist whenever 2s + 1 is a prime power; see, ¢.g., [6, p. 40]. We
shall discuss the existence question for strongly regular semi-Cayley graphs with
parameters (4.1) in Section 6. An interesting open problem is the following:

Problem 4.6. Does Theorem 4.4. remain valid if the assumption that n is odd
or not a multiple of A is dropped?

With the present method of attack, one would have to analyze too many
further cases which, moreover, become increasingly involved.
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5. Applications to strongly regular Cayley graphs

We now apply the results of the preceding sections to obtain some interesting
restrictions on strongly regular Cayley graphs with an even number of vertices.
To this purpose, we first note the following simple but fundamental result.

LEMMA 5.1. Let I' be a strongly regular Cayley graph with parameters 2n, k, A, and
u with respect to a group H which contains a normal subgroup G of index 2 (so that
T is also a semi-Cayley graph with respect to G), and let h be an element of H\G.
Then I' may be represented by a partial difference triple (C, D, D') over H satisfying

D' = D*, (5.1)
where D* = h™'Dh denotes the image of D under conjugation with h.
Proof. Because I' is a Cayley graph with respect to H, the vertices may be
identified with the elements of H, as described in the introduction. Then the
two orbits of the subgroup G of H are G and G’ = H\G. Without loss of

generality, we can select the given element h of H as the base point € of G,
i.e., we define the copy G’ of G in (2.1) by

g =hg forgegG. 5.2)
Because I' is a Cayley graph with respect to H, (5.2) implies
u~v & uh~vh e h(h7luh) ~ h(h 'vh) & (huh) ~ (A" vh) (5.3)

for any two vertices u, v € G. By Lemma 2.1, we have

u~veouw'leD forallu,ve@ (5.4)
and
v~vouwleD foralv,ved. (5.5)
Combining (5.3) through (5.5), we see that
w!leD& (huh)(h vh) ' e D' & (w ) e D, (5.6)
implying the validity of (5.1). m|

We now use Lemma 5.1 to obtain some nonexistence results for strongly
regular Cayley graphs over certain non-Abelian groups. The first of these is
particularly simple.

PROPOSITION 5.2. Let I be a nontrivial strongly regular Cayley graph with parameters
2n, k, A, and p with respect to a group H which contains an Abelian normal subgroup
G of index 2, and let h be an element of H\G. If

D" = D, ;5.7
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then all of B, A\, u, and A are even. In particular, this conclusion holds if H is an
Abelian or a generalized dihedral group.

Proof. The first assertion is an immediate consequence of Lemma 5.1 and
Corollary 3.3. If H is a generalized dihedral group, there is an involution
h € H\G such that h acts on G as inversion. Thus one has D* = D(-1) = D by
Lemma 2.1. In the Abelian case, (5.7) holds for every choice of h. a

THEOREM S5.3. Let H be either the dihedral group D,, of order 2m or the group
Q. of order 4m defined by

Qm = <w y lm"' =y y oy = 27! >; (5.8)

see [22, p. 258]. (If m is even, this group is usually called the generalized quaternion
group of order 4m.) Then there is no strongly regular Cayley graph with respect to
H.

Proof. Recall that the dihedral group may be defined as follows:
Dm=<x,y lzm=y2=1, y lay = 271 > 5.9

In both cases the element y acts on the cyclic normal subgroup G of index 2
generated by « as inversion. Since we have D = D1, we obtain the validity of
D" = D for the partial difference triple (C, D, D’) corresponding to the choice
h =y in Lemma 5.1. Thus the assertion is an immediate consequence of (5.1)
and Theorem 4.2. |

The case of dihedral groups in Theorem 5.3 was already proved by Ma [17]
in terms of partial difference sets (without mentioning strongly regular graphs).
Up to now, this was the only general nonexistence result for strongly regular
graphs with respect to a non-Abelian group. Theorem 5.3 thus rules out a further
interesting series of non-Abelian groups and also gives a unified proof for the
impossibility of these two families. We shall exclude two further series of groups
below.

It is tempting to suggest the following conjecture:

Conjecture 5.4. Every strongly regular Cayley graph with respect to a group G
which has a cyclic normal subgroup H of index 2 is trivial.

For every such group, the elements of odd order form a characteristic subgroup
N, and G is a semidirect product of N with the Sylow 2-subgroup S of H. The
possible Sylow 2-subgroups are as follows (see Hupper [11, Satz 1.14.9]):

Result 5.5. Let G be a group of order 2n which has a cyclic normal subgroup of
order n, where n = 2™, m > 3. Then G is isomorphic to one of the following
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six groups: the cyclic group of order 2n, the group Z; & Z,, the dihedral group
of order 2n, the generalized quaternion group of order 2n, the group defined by

SD,, = <m, y ‘:L‘zm =yl =1, yloy = o 1¥ > (5.10)
(the semidihedral group of order 2n), and the group defined by
Mn(2) = <w, y |fv2m =y’ =1,y oy = £ > (5.11)

(which does not seem to have a name; our notation is as in Gorenstein [8, p.
193)).

We now obtain some further evidence for Conjecture 5.4 by proving its validity
for 2-groups or order # 16,64.

THEOREM 5.6. Let H be a 2-group of order # 16,64 with a cyclic subgroup G of
index 2. Then there is no nontrivial strongly regular Cayley graph with respect to H.

Proof. By Result 5.5, there are six cases to be considered. If H is one of the
two Abelian groups occurring, then clearly any h € H\G satisfies D* = D (where
(C, D, D') is an arbitrary partial difference triple over H), and the assertion
follows from Lemma 5.1 and Theorem 4.2, (Alternatively, it may be obtained
as a special case of the general theory due to Bridges and Mena (4], [5].) The
cases for which H is either a dihedral or a generalized quaternion group are
covered by Theorem 5.3, Thus it remains to consider the two groups defined
in (5.10) and (5.11), respectively. Denote the unique involution in G by 2, and
note that y operates on G as follows :

- g° ifgeUl,
y gy = _ (512)
gz if ggU,

where U = U,/; denotes the unique subgroup of G of index 2 and where ¢ = —1
in case (5.10) and € = 1 in case (5.11). Now let I" be a nontrivial strongly
regular Cayley graph with respect to H, and consider the partial difference
triple (C, D, D’) corresponding to the choice h = y in Lemma 5.1. Because of
Lemma 5.1, we have

D' =y'Dy. (5.13)
Thus (5.12) implies D = D’ if D is a subset of U; in this case the assertion
follows from Theorem 4.2. Hence we may assume now that D is not contained
in U, which means that in the representation of D + D’ as a linear combination
of the subgroups G = Uy, Uza, Ua, Usj; and Uy = {e} of G (as in Lemma 3.5)
the group G itself has to occur. As usual, without loss of generality we assume

ID| < n/2; (5.14)
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hence G occurs with coefficient 1. In view of (5.12) and (5.13), no element of
U can occur in D + D’ with coefficient 1. Thus the putative linear combination
must involve the subgroup U. In particular, this implies (by Lemma 3.5)

A€ {n, n/2, n/4}. (5.15)

Because of (5.14), we see that U occurs with coefficient —1 in the linear
combination. It is now easily seen that D + D’ has the following form:

D+ D' = G-Uy;+ Awith A € {0, 2Up s = 22Uy 8, 2Uy 4 — 2e, 2Uy 8 — 2¢}. (5.16)
We now choose a character x of G satisfying x(z) = —1 and obtain from (5.16)
x(D + D") € {0, -2}. (5.17)

By comparing this with condition (3.3), we conclude
B € {0, -2, A, £A - 2}. (5.18)

Of these cases, A = 3 cannot occur since this would contradict condition
(4.10). 'If we have £A = 8 + 2 (i.e., essentially Equation (4.12)), we obtain a
contradiction exactly as in the proof of Theorem 4.2. Hence (5.18) leaves only
two cases:

Case 1. 8 = 0. In this case the partial difference set S in the 2-group H associated
with the Cayley graph I" (as in the introduction) is an ordinary difference set
with multiplier —1 (see Example 2.4). It is well known that this forces S to have
parameters

o =222 gt = Q2+l 9d ) = 92 4 9 (5.19)

see, €.g., [2] or [14]. Hence the parameters of I' are
no=2%t p =M L od N = =022 408 A= 2041 (5.20)

In view of (5.15), this forces d < 2, i.e., n = 8,32, contradicting the hypothesis
|H{ # 16, 64.

Case 2. g = —2. In this case the partial difference set S in the 2-group H
associated with the Cayley graph I' (as in the introduction) yields the ordinary
difference set T = S U {e} with multiplier —1 (see Example 2.4). Thus T has
parameters (5.19), and we now obtain

n=221 k=224 0 p=2"22  A=p-2,4=2""  (521)

for the parameters of I. As in Case 1, this gives the contradiction 4 < 2, i.e.,
n = 16,32, ]
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We note that Conjecture 5.4 would be an immediate consequence of Lemma
5.1 if Problem 4.6 could be answered in the affirmative. This might be another
indication that Problem 4.6 is presumably quite difficult.

6. Strongly regular semi-Cayley graphs with parameters (4.1)

In this final section, we discuss the existence question for strongly regular Cayley
graphs with parameters (4.1). In view of the results of Section 4, this is a very
natural problem (in particular, in the cyclic case). We begin with a nonexistence
result which is an immediate consequence of Proposition 5.2.

PROPOSITION 6.1. No strongly regular graph with parameters (4.1) can be a Cayley
graph with respect to an Abelian or a generalized dihedral group.

Let us note the following interesting consequence of Theorem 4.4 and Propo-
sition 6.1.

COROLLARY 6.2. Let I' be a nontrivial strongly regular Cayley graph with parameters
2n, k, X, and u with respect to a group H of order 2n which has a cyclic normal
subgroup G of order n. Then n is a multiple of A.

Proof. Assume otherwise. Then I' must have parameters (4.1) because of
Theorem 4.4. Hence n is odd, and thus H is either an Abelian or a dihedral
group. But this contradicts Proposition 6.1. |

Proposition 6.1 is also of some interest in the study of conference matrices
(and generalized conference matrices [10]) which are invariant under a group. It
has been shown in [13] that a conference matrix of order 2) + 2 which is invariant
under a group H (of the same order) can exist only if one has 2A+2 = 4s* +4s+2
for a suitable integer s; moreover, in this case such a matrix exists if and only
if there is a strongly regular Cayley graph with parameters (4.1) with respect to
H. By applying a result of Bridges and Mena [5], it was also shown in [13] that
such a graph cannot exist if H is Abelian, but the non-Abelian case was left
undecided. Now Proposition 6.1 rules out a large family of possible candidates.
In fact, we propose the following conjecture.

Conjecture 6.3. There are no strongly regular Cayley graphs with parameters
(4.1) and hence no group invariant conference matrices.

However, there do exist at least a few semi-Cayley graphs with parameters
(4.1). Obviously, the Petersen graph is a cyclic example for s = 1, and the
graph of Example 2.6 covers the case s = 2. The following generalization of the
construction given in Example 2.6 is basically due to Marusic [19].
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PROPOSITION 6.4. Assume that q = 25> + 2s + 1 is a prime power, and let D be the
set of nonzero squares in the additive group G of GF(q) (i.e., D is a partial difference
set describing the Paley graph P(q); see [6]). Then D forms part of a partial
difference triple (C, D, D' = G — D — e) for a strongly regular semi-Cayley graph
with parameters (4.1) if and only if G contains a difference set C with parameters

(2s* + 25 + 1, §%, s(s — 1)/2). (6.1)

Proof. Switching to multiplicative notation, we find that D satisfies the following
equation in ZG:

D*=-D+ S(s; Des s(s; D, (6.2)
Substituting (6.2) in Equation (2.3) shows that C' has to satisfy the following
identity:

1) = s(s—1) s(s+1)
ccC 3 G+ 7 (6.3)
which is the defining equation for a difference set with parameters (6.1). a

Unfortunately, no such difference set is known for any s > 3; in fact, none
exists in the range 3 < s < 7, see the table given in [14]. Of course, this does not
yet rule out the existence of strongly regular semi-Cayley graphs with parameters
(4.1) for these values of s. First of all, there may be other groups of order
252 4+ 2s + 1, and even if one uses the group G of Proposition 6.4, it is not
at all clear whether D must be a Paley partial difference set for every partial
difference triple (C, D, D') over G. In fact, we will now give a construction
which will provide examples for s = 3 and s = 4; this is essentially due to one
of the referees, who pointed out the example for s = 3 to us. For the required
background from design theory (i.e., Steiner systems and difference families),
the reader may consult [2]; line graphs of Steiner systems are considered in [6,
Section 5].

PROPOSITION 6.5. Led D be any Steiner system S(2, s + 1, 28* + 25 + 1). Then the
complement I of the line graph of D is strongly regular with parameters (4.1). If D
actually belongs to a (2s* + 2s + 1, s + 1, 1)-difference family over a group G, then
I' is a semi-Cayley graph with respect to G.

Proof. By a result of Bose [3], the line graph of any Steiner system D is strongly
regular. If D is an 8§(2, s+ 1, 2s° + 2s + 1), one easily checks that the parameters
of the line graph are given by

v=2n,n=2+2s+1, k=2 +3s+ 1, A =8 +2s, u=8"+2s+ 1. (6.4)

(Alternatively, one may obtain these values by substituting in Proposition (5.2)
of [6].) Hence the complementary graph I has parameters (4.1); see, for
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instance, Proposition (2.7) of [6]. Now assume that D actually belongs to a
(2% + 2s + 1, s + 1, 1)-difference family over G. Then G has two orbits on
the line set of D (and acts regularly on each of these orbits), and so I' is a
semi-Cayley graph in this case. a

Example 6.6. There exists a (25, 4, 1)-difference family in G = Zs & Zs (see, for
instance, (2, p. 311]); this gives a (noncyclic) semi-Cayley graph with parameters
(4.1) for s = 3. (Note that there is no cyclic (25, 4, 1)-difference family; see [2,
Table VII.3.8]). Similarly, one can use a cyclic (41, 5, 1)-difference family (see,
e.g., [2, p. 326]) to obtain a cyclic example for s = 4.

Unfortunately, no (2s*> + 2s + 1, s + 1, 1)-difference family is known for any
s > 5. Indeed, according to the tables given by Mathon and Rosa [20], the
existence of any S(2, s+ 1, 2s% + 2s + 1) is still undecided in the range 5 < s < 20.
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