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Abstract. Terwilliger [15] has given the diameter bound d < (s - 1)(k - 1) + 1 for distance-regular
graphs with girth 2s and valency k. We show that the only distance-regular graphs with even girth
which reach this bound are the hypercubes and the doubled Odd graphs. Also we improve this
bound for bipartite distance-regular graphs. Weichsel [17] conjectures that the only distance-regular
subgraphs of a hypercube are the even polygons, the hypercubes and the doubled Odd graphs and
proves this in the case of girth 4. We show that the only distance-regular subgraphs of a hypercube
with girth 6 are the doubled Odd graphs. If the girth is equal to 8, then its valency is at most 12.
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In this paper we assume that a graph is undirected, without loops or multiple edges
and with a finite vertex set. Let F be a connected graph. For x, y two vertices of
F, we denote with d(x, y) the distance between x and y in F. If x is a vertex of F,
we write Fi(x) for the set of vertices y with d(x, y) = i. Instead of F 1 ( X ) we write
F(x). The valency kx of a vertex x is the cardinality of F(x). A graph is regular
(with valency k) if each vertex has the same valency k. For x,y two vertices
of F at distance j we write Cj(x,y) := |F j - 1 (x ) n F ( y ) | , a j ( x , y ) := |Fj(x) n F(y)|
and bj(x,y) := |Fj+1(x) n F(y)| . We say that the number aj (resp. bj, cj) exists if
aj(x,y) (resp. bj(x,y),Cj(x,y)) does not depend on x,y. We put L = a1, u = c2,
when they exist.

The diameter of a connected graph F is the maximal distance between two
vertices occurring in F. The girth of F, denoted by g, is the length of a shortest
circuit (induced subgraph of valency 2) occurring in F.

A connected graph is called uniformly geodetic when for all j the numbers
cj exist. When for all j the numbers aj,bj and cj exist, it is called distance-
regular. The intersection array of a distance-regular graph F is the array
{b0,b1, • • •,bd-1; c1,c2, • • • Cd} where d is the diameter of F. For a description of
the graphs not defined here, see [4].

A graph F is bipartite if its vertex set can be partitioned into two classes M
and N such that there are no edges between vertices of the same class.
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1. Introduction

In this paper we study distance-regular subgraphs of distance-regular graphs. In
the second section we give some sufficient conditions to assure that the graph
induced by the geodesies between two vertices is distance-regular.

Terwilliger [15] has given the diameter bound d < (s - 1)(k - 1) + 1 for
distance-regular graphs with girth 2s and valency k > 3. In the third section
we show that the only distance-regular graphs with even girth which reach this
bound are the hypercubes and the doubled Odd graphs (Theorem 6) and give a
somewhat improved diameter bound for bipartite distance-regular graphs.

In the fourth section we study distance-regular subgraphs in a hypercube. In
this section the subgraphs are not necessarily induced subgraphs. Weichsel [17]
has studied them and conjectured that the only distance-regular subgraphs of a
hypercube are the even polygons, the hypercubes and the doubled Odd graphs
and proved this in the case of girth 4. We show that if the girth is 6, then it
must be a doubled Odd graph (Theorem 13). If the girth is equal to 8 then the
valency is at most 12 (Theorem 16).

2. Substructures

Let F be a graph. For two vertices x, y of F, put C(x, y) := {z | d(z, x) + d(z, y) =
d(x,y)}. Let D(x,y) denote the graph with vertex set C(x,y) and two vertices
u, v E C(x, y) are adjacent iff uv is an edge in F and d(u, x) = d(v, x). In this
section we investigate when D(x, y) is distance-regular.

PROPOSITION 1. Let e be an integer; e>2. Let F be a uniformly geodetic graph
(or, more generally, a graph such that Ci exists for 2<i<e) such that ce-1 < ce.
Then we have the following:

(i) For all vertices u, u' at distance e there exists a bijective map
P: F(u) n F e - 1 (u ' ) -> Fe-1(u) n F(u') such that d(v, P(v)) > e - 2,

(ii) Ci + ce-i < ce for all i, 1 < i < e — 1.

Proof. Let u,u! be two vertices at distance e. Put S := F(u) n F e - 1 (u ' ) and
S ' : = F e - 1 ( u ) D F(u').

(i) Define the set Ps by Ps := {s1 e S' | d ( s , s ' ) > e - 1} for s e S. Analogously
we define P's', for s' e S'. Note that |Ps| = |P's'| = ce - ce-1. Let A be a graph
with vertex set S U S' such that D(s) = Ps and D(s') = P's' for s E S, s' e S'.
Then A is a regular bipartite graph and thus has a complete matching (cf.
[13], Theorem 7.5.2). So we have (i).

(ii) Let v be a vertex such that d(u, v) = i and d(u', v) = e - i for an integer
1 < i < e - 1. Denote A = {s E S | d(s,v) = i - 1} and B = {s1 e
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THEOREM 2. Let e be an integer, e>2. Let F be a uniformly geodetic graph such
that

Then for any two vertices u, u' of F at distance e, the subgraph D(u, u') is a bipartite
distance-regular graph with intersection array {ce, ce-1, • • •, 1; 1,c2, • • •, ce}.

Proof. Let u, u' be two vertices of F at distance e. Let S, S' be defined as in
the proof of the previous lemma. Let s e S, then d(u', s) = e — 1 and so there is
a unique vertex in S', say s', such that d(s, s') > e -1, because ce-1 = ce - 1. We
have d(u, u') = e, d(u, s') = d(u', s) = e - 1 and d(u, s) = d(u', s') = 1 and hence,
by (ii), we get d(s,s') = e - 1. So d(s, s') = e.

Now we will show: C(u,u') = C(s,s'). Let v E C(u,u')\{u,u'}. Then
d(v,u) = i and d(v, u') = e - i for an integer i, 0 < i < e. Let A := {t e S |
d(v,t) = i- 1}, B := {t' E S' | d(v,t') = e-i-1} and A' := {t' E S' | d(a, t') = e
for an a E A}. Now we get A' N B = t and thus

ce = ci + ce-i = |A| + |B| = |A'| + |B| = |A' U B| < ce.

So we have shown that s E A implies s' e B and therefore v e C(s, s') and thus
we get d(s,v) = i - 1 or d(s,v) = i + 1. We conclude that C(u,u') C C(s,s'),
but these two sets have the same cardinality and thus they are equal.

Let vw be an edge in D(s,s ') . Let d(v,u) = i. Then d(v,s) = i - 1 or
d(v, s) = i + 1. Thus if d(w, u) = i, then d(w, s) = d(v, s), but this is impossible
because vw is an edge in D(s, s'). So vw is an edge in D(u, u'). With induction
on min{d(w, u), d(w, u')} it is easy to prove that for all vertices w e C(u, u') there
is a unique w' E C(u, u') such that d(w, w') = e. Furthermore for such a pair we
have D(u,u') = D(w,w').

So we have shown that the subgraph D(u,u') is a bipartite distance-regular
graph with intersection array {ce, ce-1, • • •, 1; 1, c2, • • •, ce}. D

Remark 1. For Ci = i, Mulder [11, 12] has shown the previous theorem without
assumption (ii). More examples are given below.

PROPOSITION 3. If F is the collinearity graph of a near polygon then (ii) holds.

Proof. Let e > 3. Suppose there are two edges xy and zw in F such that
d(x, z) = e and d(x, w) = d(y, z) = d(y, w) = e-1. Let x and y lie on line l. There

S' | d(s',v) = e - i - 1 } . It follows that P(A) n B = T. Now we get
ci + ce-i = |A| + |B| = |P(A) U B| < ce. So we are done. D

(i) ci + ce-i = ce for all i, 0 < i < e, and
(ii) F does not contain two edges xy and zw such that d(x,z) = e and d(x,w) =

d(y,z) = d(y,w) = e-1.
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is a vertex u on l such that d(u, w) = e -2 , but then d(u, z) < d(u, w)+d(w, z) = e-1.
So d(z, x) = e, d(z, y) = e - 1 and d(z, u) < e - 1 and thus u = y, contradiction.

D

Examples, (i) For e = 2 we find the not very surprising statement that in graphs
with u = 2 and without induced K2,1,1 any two vertices at distance 2 determine a
quadrangle. In particular this holds for grids m x n, so that L need not be small,
(ii) Graphs with (ci)i<e = (1,1,2,2,3, • • • ) (e odd) contain doubled Odd graphs.
For example, this holds for Odd graphs and doubled Odd graphs. Thus, apart
from the obvious inclusions Om C Om+1 and 2Om C 2Om+1 we have 2Om C O2m

(e = 2m — 1,m > 1).

COROLLARY 4. Let F be a distance-regular graph with Ci = 1, ci+1 = ... = c2i =
2, C2i+1 = 3 and a1 = ... = a2i-1 = 0, a2i < 2. Then i < 2. Furthermore one of the
following holds

(i) i = 1 and any two vertices at distance 3 determines a unique 3-cube,
(ii) i = 2 and F is a Odd graph or a doubled Odd graph.

Proof. By the previous theorem and Proposition 3, for any pair of vertices x, y
at distance 2i + 1 the subgraph induced by C(x, y) is a bipartite distance-regular
graph with k = 3, Ci = 1,ci+1 = • • • c 2 i = 2 and c2i+1 = 3. By Damerell [7] and
also by Bannai and Ito [1] there are no Moore graphs with diameter at least 3
and valency at least 3. Hence we get i < 2.
By Ray-Chaudhuri and Sprague [14] and Koolen [9] a distance-regular graph
with parameters d > 5 , C2 = 1,c3 = C4 = 2 and a1 = a2 = a3 = 0 is an Odd graph
or a doubled Odd graph. D

Remark 2. The case i = 1 of the previous corollary is contained in Brouwer [2].

Remark 3. Related work is done by Brouwer and Wilbrink [5], Chima [6] (cf.
[4], Proposition 4.3.14), Ivanov [8] and Brouwer [3] (cf. [4], Proposition 4.3.11)
and Koolen [10]. Brouwer and Wilbrink have investigated when there are
geodetically closed substructures in near polygons. Chima has shown that in a
distance-regular graph with parameters c2 = 2, c3 = 4, a1 = 0 and a2 < 3 any
two vertices at distance 3 determine a unique distance-regular graph, which is
isomorphic to the incidence graph of the biplane 2-(7,4,2). Ivanov and Brouwer
have given conditions to assure that graphs contain geodetically closed Moore
geometries. Koolen has shown that in a distance-regular graph with parameters
C2 = 1,c3 = 2, c4 = 3 and a1 = a2 = a3 = 0 any two vertices at distance 4
determine a unique Pappus graph.
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3. On the Terwilliger bound

In this section we give the proofs of the results on the Terwilliger bound we have
mentioned in the Introduction.

THEOREM 5. The only distance-regular graphs with girth 2s - 1 or 2s, valency
k > 3, cs > 2, cs > as-1 and diameter d> (s — 1)(k - 1) + 1 are the hypercubes and
the doubled Odd graphs.

Proof. First let s = 2. Then d > k and by Terwilliger [16] (cf. [4], Corollary
5.2.4) we must have a hypercube.

Now let s > 3. Terwilliger [15] has proved that for a distance-regular graph
with girth 2s -1 or 2s, valency k>3, c s > 2 and cs> as-1 we have ci > ci-s+1 + 1
for s < i < d, and bi < bi-s+1 - 1 for s - 1 < i < d. If the graph is nonbipartite,
then it easy follows that d < (s - 1)(k - 1). So the graphs must be bipartite.
Now the only way to reach d = (s - 1)(k - 1) + 1 is that c2s-2 = 2 and c2s-1 = 3.
By Corollary 4 the only possible graphs are the doubled Odd graphs. D

THEOREM 6. For a bipartite distance-regular graph with valency k>3, and girth
2s > 6, not a doubled Odd graph, the diameter d is bounded by

Proof. Recall that Ci-s+1 + 1 < ci for i = s,···, d. Suppose that c2(s-1) = 2,
this means that d > 2(s - 1) and c2s-1 > cs + 1 > 3. But if c2s-1 = 3 then by
Corollary 4 we have a doubled Odd graph. Now there are two cases:

CASE 1: c2(s-1) > 3.

We shall show with induction that

For i = 1 it is true.
Let now d > 2i(s -1) - i +1, c2i(s-1)-i+1 < 2i and c2i(s-1)-i+2 < 2i + 1 for some

i > 2. If c2(i-1)(s-1)-i+3 > 2i, then c2i(s-1)-i+1 > c2(i-1)(s-1)- i+3+s-1 > 2i + l, contra-
diction. So c2(i-1)(s-1)-i+2 > 2i - 1 and thus c2i(s-1)-i+1 > c2(i-1)(s-1)-i+2+s-1 > 2i
and c2i(s-1)-i+2 > 2i - 1 + 2 = 2i + 1. We have shown that c2i(s-1)-i+1 = 2i and
c2i(s-1)-i+2 = 2i + 1. Now c2(s-1) + c2( i -1) (s -1) - i+2 > 3 + 2i - 1 = 2i + 2, but this
is impossible by Proposition 1.

First let k = 2l. If d > 2(l - 1)(s - 1) - l + 2, then c2(l-1)(s-1)-l+2 > 2l - 1 or
c2(l-1)(s-1)-l+3 > 2l. We get d < 2(l - 1)(s -1) - l + 2 + s -1 = (2l - 1)(s -1) -l + 2.
Now let k = 2l + 1. If d > 2l(s - 1) - l + 2, then c2l(s-1)-l+1 > 2l + 1 or
c2l(s-1)-l+2 > 2l + 2, but both are impossible. So d < 2l(s - 1) - l + 1.

c2i(s-1)-i+1 > 1 + 2i or c2i(s-1)-i+2 > 2 + 2i if d > 2i(s - 1) - i + 1.



358 KOOLEN

CASE 2: c2s-1 > 4.
In the same way as in Case 1 we can show that

First let k = 2l. If d > 2(l - 1)(s - 1) - l + 4, then c2(l-1)(s-1)-l+3 > 2l, or
C2(l-1)(s-1)-l+4 > 2l + 1, but both are impossible. Thus d < 2(l - 1)(s -1) - l + 3 <
(2l - 1)(s -1)-l + 1.

Now let k =2l + 1. If d > 2(l - 1)(s - 1) - l + 4, then C2(l-1)(s-1)-l+3 > 2l, or
c2(l-1)(s-1)-l+4 > 2l + 1. So d < (2l - 1)(s-1) -l + 3 < 2l(s - 1) -l + 1.

The conclusion is that

Remark 4. The above bound is tight. The Foster graph with intersection array
{3, 2, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 2, 2, 2, 3}, has diameter 8, girth 10 and valency 3.

4. On distance-regular subgraphs of a cube

In this section subgraphs are not necessarily induced subgraphs. We show that
the only distance-regular subgraphs of a hypercube with girth 6 are the doubled
Odd graphs. Also we show that distance-regular subgraphs of a cube with girth
8 have valency at most 12. First we give some notation. From now on we say
cube instead of hypercube. Let F be a subgraph of a cube. Let x be a vertex
of F. Without loss of generality we represent x with the vector (000 • • • 0). A
vertex y lies on level r with weight a if d F (x , y) = r and y is represented by a
vector of weight s in the cube.

First we give two elementary lemmas.

LEMMA 7. Let F be a uniformly geodetic subgraph of a cube with parameters (ci)i

and let y be a vertex on level i with weight i. Then for each j, 0 < j < i, we have

Proof. We calculate the number of vertices z on level j with d(z,y) = i — j. On
the one hand we have that this number is

On the other hand we can consider such vertices as j-subsets of a i-set. So we
are done. D

c2i(s-1)-i+3 > 2i + 2 or c2i(s-1)-i+4 > 2i + 3 if d > 2i(s - 1) - i + 3.
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LEMMA 8. Let F be a uniformity geodetic subgraph of a cube with parameters
(ci)i. Let y be a vertex on level i with weight i. If Ci-j = ci- e, then

Proof. We calculate the number of vertices z on level j with d ( z , y ) = i-j. This
number equals the right side of (1).

Suppose that precisely ci - s neighbours of y on level i - 1 (considered as
(i - 1)-sets) contains the vertex z (considered as a j-set). Then 0 < s < e and
we find that the number of vertices z is at most the left hand side of (1). D

The proof of Weichsel [17], Theorem 5 shows

LEMMA 9. Let F be a distance-regular subgraph of a cube with valency k and
girth 2t > 6.

(i) If v is a vertex of F on level r and of weight r, then 2cr-1 + cr < 2r - 1.
(ii) If k>r, then 2cr-1 + cr < 2r - 1.

The next lemma is a modification of Theorem 5 of Weichsel [17].

LEMMA 10. Let F be a distance-regular subgraph of a cube with valency k and
girth 2t (i) t > 3 and v is a vertex on level r and of weight r for an r > 3, then

Cr-1 < 2r-1
/3.

(ii) If t>3 and k>r>3, then cr-1 < 2r-1
/3.

Proof. (i) & (ii). Suppose cr-1 = 2r-1
/3. Then by Lemma 9, we have cr = Cr-1.

By Lemma 8 we get Cr <
 r
/2 and thus 2r-1

/3 <
 r

/2. This implies r < 2. a

PROPOSITION 11. The Pappus graph is not a subgraph of a cube.

Proof. The Pappus graph has intersection array {3,2,2,1; 1,1,2,3} and is the
unique graph with this intersection array. Let F be the Pappus graph. Let
Vi,i = 1,2,3, be three vertices such that d(vi,vj) = 4, i = j. We have

such that d(wi,Wj) = d(zi,Zj) = 4 for i = j and d(wi,Zj) = 2. Let v1 have weight
0. If v2 has weight 4 then {w1,W2,w3,z1,z2,z3} are all 2-subsets of a 4-set, and
so there must be an i and j such that d(wi,Zj) = 4, contradiction.

Let now v2 and v3 be represented by (1100...0) and (10100...0). But then
at least five of (w1,w2,w3,z1,z2,z3} are represented by a word of weight 2 with
an 1 on the first position and this is impossible. D

F2(v1) C F2(v2) = F2(v1) H F2(v2) n F2(v3) = {w1 ,w2 ,w3 , z1 ,Z2 ,Z3},
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THEOREM 12. Let F be a distance-regular graph with valency k and girth 6. If F
is a subgraph of a cube then F is the doubled Odd graph with valency k.

Proof. Ray-Chaudhuri and Sprague [14] have shown that a bipartite distance-
regular graph with c2 = 1, c3 = c4 = 2 is a doubled Odd graph. If k > 5, then
by Lemma 10 we get c4 < 2 and hence c3 = c4 = 2, and so F is a doubled Odd
graph.

If k = 4, then by Lemma 9 we have c3 = 2. Then we have one of the
following possibilities.

(0 C4 = 2,

(ii) c4 = 3,c5 = 3, c6 = 4,

(ill) c4 = 3, c5 = 4,

(iv) c4 = 4.

There are no bipartite distance-regular graphs with the parameters of cases (ii),
(iii) and (iv).

if k = 3, then we have the following possibilities.

(i) c3 = c4 = 2,

(ii) c3 = 2, c4 = 3,

(iii) c3 = 3.

The only possible graph in case (ii) is the Pappus graph and this graph is ruled
out by Proposition 11. Case (iii) is not possible by [17], Theorem 7. D

LEMMA 13. Let F be a distance-regular subgraph of a cube with girth 8. If c11 < 5,
then there is no vertex on level 11 with weight 11.

Proof. Suppose c11 < 5 and there is a vertex y on level 11 with weight 11. By
Lemma 8 we have c9 < 4. Also by this lemma we have c10 < 4 or c8 < 3 and thus
c8 < 3. Then we have c6 = 2 or c6 = 3. If c6 = 2, then c3 = 1, c4 = c6 = 2 and
c7 = 3. If c6 = 3, then c3 = 1, c4 = c5 = 2, c6 = c8 = 3 and C9 = 4. There are no
bipartite distance-regular graphs with k = 3, c3 = 1,c4 = C6 = 2 and c7 = 3, or
with k = 4, c3 = 1,c4 = c5 = 2, C6 = c8 = 3 and c9 = 4. So, by Theorem 2, there
are in both cases there are no bipartite distance-regular graph with these ci's. n

LEMMA 14. Let F be a distance-regular subgraph of a cube with girth 8. Then
there is no vertex on level 14 with weight 14.

Proof. Suppose there is a vertex on level 14 with weight 14.
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If c10 > 6 then by Lemma 8 we have c12 > 7, and thus c10c11c12 > (12
3). This

is a contradiction with Lemma 7. So C10 < 5. By Lemma 8 we get c8 < 4, c6 < 3
and c4 < 2.
Suppose C11 > 6. Then c13 > 7 by Lemma 8. If CM = 7, then by Lemma 8 we
get a contradiction. If C14 > 8, then by Lemma 7 we also get a contradiction.
So c11 < 5 and by previous lemma we are done. n

THEOREM 15. Let F be a distance-regular subgraph of a cube with girth 8. Then
its valency k is at most 12.

Proof. If k > 14, then by [17], Lemma E, we have a vertex on level 14 with
weight 14 and so by Lemma 14 we are done.

If k = 13, then we have a vertex, say y, on level 13 with weight 13. Suppose
there is no vertex z on level 14 with weight 14. We calculate now the number of
vertices u on level 10 with d(u, y) = 3. On one hand there must be a vertex v on
level 12 with d(v,y) = 1 and d(v,u) = 2. So the number is at most (13

3) - (13-c13
3)

On the other hand we have that this number is equal to c13c12c11. Suppose that
c11 > 6. Then c12 > 6 and c13 > 7. We have (13

3) < 8.6.6 and thus c13 = 7. This
is also impossible. So c11 < 5 and we are done by Lemma 13. Q

Remark 5. There are more examples of distance-regular subgraphs in distance-
regular graphs. Some interesting examples are the Peterson graph in J(6,3), the
Shrikhande graph and the 4 x 4-grid in the halved 6-cube and the point-block
incidence graph of the Fano plane in J(7,3). The last example is not an isometric
subgraph of J(7,3).
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