On Subgraphs in Distance-Regular Graphs

J.H. KOOLEN
Dept. of Math. and Comp. Sci., Eindhoven Univ. of Techn., P.O. Box 513, 5600MB Eindhoven, The Netherlands

Received November 18, 1991; Revised September 10, 1992

Abstract

Terwilliger [15] has given the diameter bound $d \leq(s-1)(k-1)+1$ for distance-regular graphs with girth $2 s$ and valency k. We show that the only distance-regular graphs with even girth which reach this bound are the hypercubes and the doubled Odd graphs. Also we improve this bound for bipartite distance-regular graphs. Weichsel [17] conjectures that the only distance-regular subgraphs of a hypercube are the even polygons, the hypercubes and the doubled Odd graphs and proves this in the case of girth 4 . We show that the only distance-regular subgraphs of a hypercube with girth 6 are the doubled Odd graphs. If the girth is equal to 8 , then its valency is at most 12 .

Keywords: distance-regular graph, hypercubes, doubled odd graph, subgraph, uniformly geodetic graph.

In this paper we assume that a graph is undirected, without loops or multiple edges and with a finite vertex set. Let Γ be a connected graph. For x, y two vertices of Γ, we denote with $d(x, y)$ the distance between x and y in Γ. If x is a vertex of Γ, we write $\Gamma_{i}(x)$ for the set of vertices y with $d(x, y)=i$. Instead of $\Gamma_{1}(x)$ we write $\Gamma(x)$. The valency k_{x} of a vertex x is the cardinality of $\Gamma(x)$. A graph is regular (with valency k) if each vertex has the same valency k. For x, y two vertices of Γ at distance j we write $c_{j}(x, y):=\left|\Gamma_{j-1}(x) \cap \Gamma(y)\right|, a_{j}(x, y):=\left|\Gamma_{j}(x) \cap \Gamma(y)\right|$ and $b_{j}(x, y):=\left|\Gamma_{j+1}(x) \cap \Gamma(y)\right|$. We say that the number a_{j} (resp. b_{j}, c_{j}) exists if $a_{j}(x, y)$ (resp. $\left.b_{j}(x, y), c_{j}(x, y)\right)$ does not depend on x, y. We put $\lambda=a_{1}, \mu=c_{2}$, when they exist.

The diameter of a connected graph Γ is the maximal distance between two vertices occurring in Γ. The girth of Γ, denoted by g, is the length of a shortest circuit (induced subgraph of valency 2) occurring in Γ.

A connected graph is called uniformly geodetic when for all j the numbers c_{j} exist. When for all j the numbers a_{j}, b_{j} and c_{j} exist, it is called distanceregular. The intersection array of a distance-regular graph Γ is the array $\left\{b_{0}, b_{1}, \cdots, b_{d-1} ; c_{1}, c_{2}, \cdots c_{d}\right\}$ where d is the diameter of Γ. For a description of the graphs not defined here, see [4].

A graph Γ is bipartite if its vertex set can be partitioned into two classes M and N such that there are no edges between vertices of the same class.

1. Introduction

In this paper we study distance-regular subgraphs of distance-regular graphs. In the second section we give some sufficient conditions to assure that the graph induced by the geodesics between two vertices is distance-regular.

Terwilliger [15] has given the diameter bound $d \leq(s-1)(k-1)+1$ for distance-regular graphs with girth $2 s$ and valency $k \geq 3$. In the third section we show that the only distance-regular graphs with even girth which reach this bound are the hypercubes and the doubled Odd graphs (Theorem 6) and give a somewhat improved diameter bound for bipartite distance-regular graphs.

In the fourth section we study distance-regular subgraphs in a hypercube. In this section the subgraphs are not necessarily induced subgraphs. Weichsel [17] has studied them and conjectured that the only distance-regular subgraphs of a hypercube are the even polygons, the hypercubes and the doubled Odd graphs and proved this in the case of girth 4 . We show that if the girth is 6 , then it must be a doubled Odd graph (Theorem 13). If the girth is equal to 8 then the valency is at most 12 (Theorem 16).

2. Substructures

Let Γ be a graph. For two vertices x, y of Γ, put $C(x, y):=\{z \mid d(z, x)+d(z, y)=$ $d(x, y)\}$. Let $\Delta(x, y)$ denote the graph with vertex set $C(x, y)$ and two vertices $u, v \in C(x, y)$ are adjacent iff $u v$ is an edge in Γ and $d(u, x) \neq d(v, x)$. In this section we investigate when $\Delta(x, y)$ is distance-regular.

PROPOSITION 1. Let e be an integer; $e \geq 2$. Let Γ be a uniformly geodetic graph (or, more generally, a graph such that c_{i} exists for $2 \leq i \leq e$) such that $c_{e-1}<c_{e}$. Then we have the following:
(i) For all vertices u, u^{\prime} at distance e there exists a bijective map $\phi: \Gamma(u) \cap \Gamma_{e-1}\left(u^{\prime}\right) \rightarrow \Gamma_{e-1}(u) \cap \Gamma\left(u^{\prime}\right)$ such that $d(v, \phi(v))>e-2$,
(ii) $c_{i}+c_{e-i} \leq c_{\mathrm{e}}$ for all $i, 1 \leq i \leq e-1$.

Proof. Let u, u^{\prime} be two vertices at distance e. Put $S:=\Gamma(u) \cap \Gamma_{e-1}\left(u^{\prime}\right)$ and $S^{\prime}:=\Gamma_{e-1}(u) \cap \Gamma\left(u^{\prime}\right)$.
(i) Define the set P_{s} by $P_{s}:=\left\{s^{\prime} \in S^{\prime} \mid d\left(s, s^{\prime}\right) \geq e-1\right\}$ for $s \in S$. Analogously we define $P_{s^{\prime}}^{\prime}$ for $s^{\prime} \in S^{\prime}$. Note that $\left|P_{s}\right|=\left|P_{s^{\prime}}^{\prime}\right|=c_{e}-c_{e-1}$. Let Δ be a graph with vertex set $S \cup S^{\prime}$ such that $\Delta(s)=P_{s}$ and $\Delta\left(s^{\prime}\right)=P_{s^{\prime}}^{\prime}$ for $s \in S, s^{\prime} \in S^{\prime}$. Then Δ is a regular bipartite graph and thus has a complete matching (cf. [13], Theorem 7.5.2). So we have (i).
(ii) Let v be a vertex such that $d(u, v)=i$ and $d\left(u^{\prime}, v\right)=e-i$ for an integer $1 \leq i \leq e-1$. Denote $A=\{s \in S \mid d(s, v)=i-1\}$ and $B=\left\{s^{\prime} \in\right.$

```
S'|d(s',v)=e-i-1}. It follows that }\phi(A)\capB=\emptyset\mathrm{ . Now we get
``` \(c_{i}+c_{e-i}=|A|+|B|=|\phi(A) \cup B| \leq c_{e}\). So we are done.

THEOREM 2. Let e be an integer, \(e \geq 2\). Let \(\Gamma\) be a uniformly geodetic graph such that
(i) \(c_{i}+c_{e-i}=c_{e}\) for all \(i, 0<i<e\), and
(ii) \(\Gamma\) does not contain two edges \(x y\) and \(z w\) such that \(d(x, z)=e\) and \(d(x, w)=\) \(d(y, z)=d(y, w)=e-1\).

Then for any two vertices \(u, u^{\prime}\) of \(\Gamma\) at distance \(e\), the subgraph \(\Delta\left(u, u^{\prime}\right)\) is a bipartite distance-regular graph with intersection array \(\left\{c_{e}, c_{e-1}, \cdots, 1 ; 1, c_{2}, \cdots, c_{e}\right\}\).

Proof. Let \(u, u^{\prime}\) be two vertices of \(\Gamma\) at distance \(e\). Let \(S, S^{\prime}\) be defined as in the proof of the previous lemma. Let \(s \in S\), then \(d\left(u^{\prime}, s\right)=e-1\) and so there is a unique vertex in \(S^{\prime}\), say \(s^{\prime}\), such that \(d\left(s, s^{\prime}\right) \geq e-1\), because \(c_{e-1}=c_{e}-1\). We have \(d\left(u, u^{\prime}\right)=e, d\left(u, s^{\prime}\right)=d\left(u^{\prime}, s\right)=e-1\) and \(d(u, s)=d\left(u^{\prime}, s^{\prime}\right)=1\) and hence, by (ii), we get \(d\left(s, s^{\prime}\right) \neq e-1\). So \(d\left(s, s^{\prime}\right)=e\).

Now we will show: \(C\left(u, u^{\prime}\right)=C\left(s, s^{\prime}\right)\). Let \(v \in C\left(u, u^{\prime}\right) \backslash\left\{u, u^{\prime}\right\}\). Then \(d(v, u)=i\) and \(d\left(v, u^{\prime}\right)=e-i\) for an integer \(i, 0<i<e\). Let \(A:=\{t \in S \mid\) \(d(v, t)=i-1\}, B:=\left\{t^{\prime} \in S^{\prime} \mid d\left(v, t^{\prime}\right)=e-i-1\right\}\) and \(A^{\prime}:=\left\{t^{\prime} \in S^{\prime} \mid d\left(a, t^{\prime}\right)=e\right.\) for an \(a \in A\}\). Now we get \(A^{\prime} \cap B=\emptyset\) and thus
\[
c_{e}=c_{i}+c_{e-i}=|A|+|B|=\left|A^{\prime}\right|+|B|=\left|A^{\prime} \cup B\right| \leq c_{e}
\]

So we have shown that \(s \notin A\) implies \(s^{\prime} \in B\) and therefore \(v \in C\left(s, s^{\prime}\right)\) and thus we get \(d(s, v)=i-1\) or \(d(s, v)=i+1\). We conclude that \(C\left(u, u^{\prime}\right) \subseteq C\left(s, s^{\prime}\right)\), but these two sets have the same cardinality and thus they are equal.

Let \(v w\) be an edge in \(\Delta\left(s, s^{\prime}\right)\). Let \(d(v, u)=i\). Then \(d(v, s)=i-1\) or \(d(v, s)=i+1\). Thus if \(d(w, u)=i\), then \(d(w, s)=d(v, s)\), but this is impossible because \(v w\) is an edge in \(\Delta\left(s, s^{\prime}\right)\). So \(v w\) is an edge in \(\Delta\left(u, u^{\prime}\right)\). With induction on \(\min \left\{d(w, u), d\left(w, u^{\prime}\right)\right\}\) it is easy to prove that for all vertices \(w \in C\left(u, u^{\prime}\right)\) there is a unique \(w^{\prime} \in C\left(u, u^{\prime}\right)\) such that \(d\left(w, w^{\prime}\right)=e\). Furthermore for such a pair we have \(\Delta\left(u, u^{\prime}\right)=\Delta\left(w, w^{\prime}\right)\).

So we have shown that the subgraph \(\Delta\left(u, u^{\prime}\right)\) is a bipartite distance-regular graph with intersection array \(\left\{c_{e}, c_{e-1}, \cdots, 1 ; 1, c_{2}, \cdots, c_{e}\right\}\).

Remark 1. For \(c_{i}=i\), Mulder [11, 12] has shown the previous theorem without assumption (ii). More examples are given below.

Proposition 3. If \(\Gamma\) is the collinearity graph of a near polygon then (ii) holds.
Proof. Let \(e \geq 3\). Suppose there are two edges \(x y\) and \(z w\) in \(\Gamma\) such that \(d(x, z)=e\) and \(d(x, w)=d(y, z)=d(y, w)=e-1\). Let \(x\) and \(y\) lie on line \(l\). There
is a vertex \(u\) on \(l\) such that \(d(u, w)=e-2\), but then \(d(u, z) \leq d(u, w)+d(w, z)=e-1\). So \(d(z, x)=e, d(z, y)=e-1\) and \(d(z, u) \leq e-1\) and thus \(u=y\), contradiction.

Examples. (i) For \(e=2\) we find the not very surprising statement that in graphs with \(\mu=2\) and without induced \(K_{2,1,1}\) any two vertices at distance 2 determine a quadrangle. In particular this holds for grids \(m \times n\), so that \(\lambda\) need not be small. (ii) Graphs with \(\left(c_{i}\right)_{i \leq e}=(1,1,2,2,3, \cdots)\) (\(e\) odd) contain doubled Odd graphs. For example, this holds for Odd graphs and doubled Odd graphs. Thus, apart from the obvious inclusions \(O_{m} \subseteq O_{m+1}\) and \(2 O_{m} \subseteq 2 O_{m+1}\) we have \(2 O_{m} \subseteq O_{2 m}\) (\(e=2 m-1, m \geq 1\)).

Corollary 4. Let \(\Gamma\) be a distance-regular graph with \(c_{i}=1, c_{i+1}=\ldots=c_{2 i}=\) \(2, c_{2 i+1}=3\) and \(a_{1}=\ldots=a_{2 i-1}=0, a_{2 i} \leq 2\). Then \(i \leq 2\). Furthermore one of the following holds
(i) \(i=1\) and any two vertices at distance 3 determines a unique 3-cube,
(ii) \(i=2\) and \(\Gamma\) is a Odd graph or a doubled Odd graph.

Proof. By the previous theorem and Proposition 3, for any pair of vertices \(x, y\) at distance \(2 i+1\) the subgraph induced by \(C(x, y)\) is a bipartite distance-regular graph with \(k=3, c_{i}=1, c_{i+1}=\cdots c_{2 i}=2\) and \(c_{2 i+1}=3\). By Damerell [7] and also by Bannai and Ito [1] there are no Moore graphs with diameter at least 3 and valency at least 3 . Hence we get \(i \leq 2\).
By Ray-Chaudhuri and Sprague [14] and Koolen [9] a distance-regular graph with parameters \(d \geq 5, c_{2}=1, c_{3}=c_{4}=2\) and \(a_{1}=a_{2}=a_{3}=0\) is an Odd graph or a doubled Odd graph.

Remark 2. The case \(i=1\) of the previous corollary is contained in Brouwer [2].
Remark 3. Related work is done by Brouwer and Wilbrink [5], Chima [6] (cf. [4], Proposition 4.3.14), Ivanov [8] and Brouwer [3] (cf. [4], Proposition 4.3.11) and Koolen [10]. Brouwer and Wilbrink have investigated when there are geodetically closed substructures in near polygons. Chima has shown that in a distance-regular graph with parameters \(c_{2}=2, c_{3}=4, a_{1}=0\) and \(a_{2} \leq 3\) any two vertices at distance 3 determine a unique distance-regular graph, which is isomorphic to the incidence graph of the biplane 2-(7,4,2). Ivanov and Brouwer have given conditions to assure that graphs contain geodetically closed Moore geometries. Koolen has shown that in a distance-regular graph with parameters \(c_{2}=1, c_{3}=2, c_{4}=3\) and \(a_{1}=a_{2}=a_{3}=0\) any two vertices at distance 4 determine a unique Pappus graph.

\section*{3. On the Terwilliger bound}

In this section we give the proofs of the results on the Terwilliger bound we have mentioned in the Introduction.

THEOREM 5. The only distance-regular graphs with girth \(2 s-1\) or \(2 s\), valency \(k \geq 3, c_{s} \geq 2, c_{s} \geq a_{s-1}\) and diameter \(d \geq(s-1)(k-1)+1\) are the hypercubes and the doubled Odd graphs.

Proof. First let \(s=2\). Then \(d \geq k\) and by Terwilliger [16] (cf. [4], Corollary 5.2.4) we must have a hypercube.

Now let \(s \geq 3\). Terwilliger [15] has proved that for a distance-regular graph with girth \(2 s-1\) or \(2 s\), valency \(k \geq 3, c_{s} \geq 2\) and \(c_{s} \geq a_{s-1}\) we have \(c_{i} \geq c_{i-s+1}+1\) for \(s \leq i \leq d\), and \(b_{i} \leq b_{i-s+1}-1\) for \(s-1 \leq i \leq d\). If the graph is nonbipartite, then it easy follows that \(d \leq(s-1)(k-1)\). So the graphs must be bipartite. Now the only way to reach \(d=(s-1)(k-1)+1\) is that \(c_{2 s-2}=2\) and \(c_{2 s-1}=3\). By Corollary 4 the only possible graphs are the doubled Odd graphs.

THEOREM 6. For a bipartite distance-regular graph with valency \(k \geq 3\), and girth \(2 s \geq 6\), not a doubled Odd graph, the diameter \(d\) is bounded by
\[
d \leq(s-1)(k-1)-\left\lfloor\frac{k-3}{2}\right\rfloor
\]

Proof. Recall that \(c_{i-s+1}+1 \leq c_{i}\) for \(i=s, \cdots, d\). Suppose that \(c_{2(s-1)}=2\), this means that \(d>2(s-1)\) and \(c_{2 s-1} \geq c_{s}+1 \geq 3\). But if \(c_{2 s-1}=3\) then by Corollary 4 we have a doubled Odd graph. Now there are two cases:

CASE 1: \(\quad c_{2(s-1)} \geq 3\).
We shall show with induction that
\[
c_{2 i(s-1)-i+1} \geq 1+2 i \text { or } c_{2 i(s-1)-i+2} \geq 2+2 i \text { if } d>2 i(s-1)-i+1
\]

For \(i=1\) it is true.
Let now \(d>2 i(s-1)-i+1, c_{2 i(s-1)-i+1} \leq 2 i\) and \(c_{2 i(s-1)-i+2} \leq 2 i+1\) for some \(i \geq 2\). If \(c_{2(i-1)(s-1)-i+3} \geq 2 i\), then \(c_{2 i(s-1)-i+1} \geq c_{2(i-1)(s-1)-i+3+s-1} \geq 2 i+1\), contradiction. So \(c_{2(i-1)(s-1)-i+2} \geq 2 i-1\) and thus \(c_{2 i(s-1)-i+1} \geq c_{2(i-1)(s-1)-i+2+s-1} \geq 2 i\) and \(c_{2 i(s-1)-i+2} \geq 2 i-1+2=2 i+1\). We have shown that \(c_{2 i(s-1)-i+1}=2 i\) and \(c_{2 i(s-1)-i+2}=2 i+1\). Now \(c_{2(s-1)}+c_{2(i-1)(s-1)-i+2} \geq 3+2 i-1=2 i+2\), but this is impossible by Proposition 1.

First let \(k=2 l\). If \(d>2(l-1)(s-1)-l+2\), then \(c_{2(l-1)(s-1)-l+2} \geq 2 l-1\) or \(c_{2(l-1)(s-1)-l+3} \geq 2 l\). We get \(d \leq 2(l-1)(s-1)-l+2+s-1=(2 l-1)(s-1)-l+2\). Now let \(k=2 l+1\). If \(d \geq 2 l(s-1)-l+2\), then \(c_{2 l(s-1)-l+1} \geq 2 l+1\) or \(c_{2 l(s-1)-l+2} \geq 2 l+2\), but both are impossible. So \(d \leq 2 l(s-1)-l+1\).

CASE 2: \(\quad c_{2 a-1} \geq 4\).
In the same way as in Case 1 we can show that
\[
c_{2 i(s-1)-i+3} \geq 2 i+2 \text { or } c_{2 i(s-1)-i+4} \geq 2 i+3 \text { if } d>2 i(s-1)-i+3 .
\]

First let \(k=2 l\). If \(d \geq 2(l-1)(s-1)-l+4\), then \(c_{2(l-1)(s-1)-l+3} \geq 2 l\), or \(c_{2(l-1)(s-1)-l+4} \geq 2 l+1\), but both are impossible. Thus \(d \leq 2(l-1)(s-1)-l+3 \leq\) \((2 l-1)(s-1)-l+1\).

Now let \(\mathrm{k}=2 l+1\). If \(d \geq 2(l-1)(s-1)-l+4\), then \(c_{2(l-1)(s-1)-l+3} \geq 2 l\), or \(c_{2(l-1)(s-1)-l+4} \geq 2 l+1\). So \(d \leq(2 l-1)(s-1)-l+3 \leq 2 l(s-1)-l+1\).

The conclusion is that
\[
d \leq(k-1)(s-1)-\left\lfloor\frac{k-3}{2}\right\rfloor .
\]

Remark 4. The above bound is tight. The Foster graph with intersection array \(\{3,2,2,2,2,1,1,1 ; 1,1,1,1,2,2,2,3\}\), has diameter 8 , girth 10 and valency 3 .

\section*{4. On distance-regular subgraphs of a cube}

In this section subgraphs are not necessarily induced subgraphs. We show that the only distance-regular subgraphs of a hypercube with girth 6 are the doubled Odd graphs. Also we show that distance-regular subgraphs of a cube with girth 8 have valency at most 12 . First we give some notation. From now on we say cube instead of hypercube. Let \(\Gamma\) be a subgraph of a cube. Let \(x\) be a vertex of \(\Gamma\). Without loss of generality we represent \(x\) with the vector \((000 \cdots 0)\). A vertex \(y\) lies on level \(r\) with weight \(s\) if \(d_{\Gamma}(x, y)=r\) and \(y\) is represented by a vector of weight \(s\) in the cube.

First we give two elementary lemmas.
Lemma 7. Let \(\Gamma\) be a uniformly geodetic subgraph of a cube with parameters \(\left(c_{i}\right)_{i}\) and let \(y\) be a vertex on level \(i\) with weight \(i\). Then for each \(j, 0 \leq j \leq i\), we have
\[
\binom{i}{j} \geq \frac{c_{i} c_{i-1} \cdots c_{i-j+1}}{c_{1} c_{2} \cdots c_{j}}
\]

Proof. We calculate the number of vertices \(z\) on level \(j\) with \(d(z, y)=i-j\). On the one hand we have that this number is
\[
\frac{c_{i} c_{i-1} \cdots c_{i-j+1}}{c_{1} c_{2} \cdots c_{j}}
\]

On the other hand we can consider such vertices as \(j\)-subsets of a \(i\)-set. So we are done.

Lemma 8. Let \(\Gamma\) be a uniformily geodetic subgraph of a cube with parameters \(\left(c_{i}\right)_{i}\) Let \(y\) be a vertex on level \(i\) with weight \(i\). If \(c_{i-j}=c_{i}-e\), then
\[
\begin{equation*}
\sum_{s=0}^{e}\binom{i-c_{i}}{j-s}\binom{c_{i}}{s} \geq \frac{c_{i} c_{i-1} \cdots c_{i-j+1}}{c_{1} c_{2} \cdots c_{j}} \tag{1}
\end{equation*}
\]

Proof. We calculate the number of vertices \(z\) on level \(j\) with \(d(z, y)=i-j\). This number equals the right side of (1).

Suppose that precisely \(c_{i}-s\) neighbours of \(y\) on level \(i-1\) (considered as (\(i-1\))-sets) contains the vertex \(z\) (considered as a \(j\)-set). Then \(0 \leq s \leq e\) and we find that the number of vertices \(z\) is at most the left hand side of (1).

The proof of Weichsel [17], Theorem 5 shows
Lemma 9. Let \(\Gamma\) be a distance-regular subgraph of a cube with valency \(k\) and girth \(2 t \geq 6\).
(i) If \(v\) is a vertex of \(\Gamma\) on level \(r\) and of weight \(r\), then \(2 c_{r-1}+c_{r} \leq 2 r-1\).
(ii) If \(k \geq r\), then \(2 c_{r-1}+c_{r} \leq 2 r-1\).

The next lemma is a modification of Theorem 5 of Weichsel [17].
Lemma 10. Let \(\Gamma\) be a distance-regular subgraph of a cube with valency \(k\) and girth \(2 t\). (i) If \(t \geq 3\) and \(v\) is a vertex on level \(r\) and of weight \(r\) for an \(r \geq 3\), then \(c_{r-1}<\frac{2 r-1}{3}\).
(ii) If \(t \geq 3\) and \(k \geq r \geq 3\), then \(c_{r-1}<\frac{2 r-1}{3}\).

Proof. (i) \& (ii). Suppose \(c_{r-1}=\frac{2 r-1}{3}\). Then by Lemma 9, we have \(c_{r}=c_{r-1}\). By Lemma 8 we get \(c_{r} \leq \frac{r}{2}\) and thus \(\frac{2 r-1}{3} \leq \frac{r}{2}\). This implies \(r \leq 2\).

Proposition 11. The Pappus graph is not a subgraph of a cube.
Proof. The Pappus graph has intersection array \(\{3,2,2,1 ; 1,1,2,3\}\) and is the unique graph with this intersection array. Let \(\Gamma\) be the Pappus graph. Let \(v_{i}, i=1,2,3\), be three vertices such that \(d\left(v_{i}, v_{j}\right)=4, i \neq j\). We have
\[
\Gamma_{2}\left(v_{1}\right) \cap \Gamma_{2}\left(v_{2}\right)=\Gamma_{2}\left(v_{1}\right) \cap \Gamma_{2}\left(v_{2}\right) \cap \Gamma_{2}\left(v_{3}\right)=\left\{w_{1}, w_{2}, w_{3}, z_{1}, z_{2}, z_{3}\right\},
\]
such that \(d\left(w_{i}, w_{j}\right)=d\left(z_{i}, z_{j}\right)=4\) for \(i \neq j\) and \(d\left(w_{i}, z_{j}\right)=2\). Let \(v_{1}\) have weight 0 . If \(v_{2}\) has weight 4 then \(\left\{w_{1}, w_{2}, w_{3}, z_{1}, z_{2}, z_{3}\right\}\) are all 2 -subsets of a 4 -set, and so there must be an \(i\) and \(j\) such that \(d\left(w_{i}, z_{j}\right)=4\), contradiction.

Let now \(v_{2}\) and \(v_{3}\) be represented by \((1100 \ldots 0)\) and (\(10100 \ldots 0\)). But then at least five of \(\left\{w_{1}, w_{2}, w_{3}, z_{1}, z_{2}, z_{3}\right\}\) are represented by a word of weight 2 with an 1 on the first position and this is impossible.

Theorem 12. Let \(\Gamma\) be a distance-regular graph with valency \(k\) and girth 6. If \(\Gamma\) is a subgraph of a cube then \(\Gamma\) is the doubled Odd graph with valency \(k\).

Proof. Ray-Chaudhuri and Sprague [14] have shown that a bipartite distanceregular graph with \(c_{2}=1, c_{3}=c_{4}=2\) is a doubled Odd graph. If \(k \geq 5\), then by Lemma 10 we get \(c_{4} \leq 2\) and hence \(c_{3}=c_{4}=2\), and so \(\Gamma\) is a doubled Odd graph.

If \(k=4\), then by Lemma 9 we have \(c_{3}=2\). Then we have one of the following possibilities.
(i) \(\quad c_{4}=2\),
(ii) \(c_{4}=3, c_{5}=3, c_{6}=4\),
(iii) \(c_{4}=3, c_{5}=4\),
(iv) \(c_{4}=4\).

There are no bipartite distance-regular graphs with the parameters of cases (ii), (iii) and (iv).
if \(k=3\), then we have the following possibilities.
(i) \(c_{3}=c_{4}=2\),
(ii) \(c_{3}=2, c_{4}=3\),
(iii) \(c_{3}=3\).

The only possible graph in case (ii) is the Pappus graph and this graph is ruled out by Proposition 11. Case (iii) is not possible by [17], Theorem 7.

Lemma 13. Let \(\Gamma\) be a distance-regular subgraph of a cube with girth 8. If \(c_{11} \leq 5\), then there is no vertex on level 11 with weight 11.

Proof. Suppose \(c_{11} \leq 5\) and there is a vertex \(y\) on level 11 with weight 11. By Lemma 8 we have \(c_{9} \leq 4\). Also by this lemma we have \(c_{10} \leq 4\) or \(c_{8} \leq 3\) and thus \(c_{8} \leq 3\). Then we have \(c_{6}=2\) or \(c_{6}=3\). If \(c_{6}=2\), then \(c_{3}=1, c_{4}=c_{6}=2\) and \(c_{7}=3\). If \(c_{6}=3\), then \(c_{3}=1, c_{4}=c_{5}=2, c_{6}=c_{8}=3\) and \(c_{9}=4\). There are no bipartite distance-regular graphs with \(k=3, c_{3}=1, c_{4}=c_{6}=2\) and \(c_{7}=3\), or with \(k=4, c_{3}=1, c_{4}=c_{5}=2, c_{6}=c_{8}=3\) and \(c_{9}=4\). So, by Theorem 2, there are in both cases there are no bipartite distance-regular graph with these \(c_{i}\) 's.

Lemma 14. Let \(\Gamma\) be a distance-regular subgraph of a cube with girth 8. Then there is no vertex on level 14 with weight 14.

Proof. Suppose there is a vertex on level 14 with weight 14.

If \(c_{10} \geq 6\) then by Lemma 8 we have \(c_{12} \geq 7\), and thus \(c_{10} c_{11} c_{12}>\binom{12}{3}\). This is a contradiction with Lemma 7. So \(c_{10} \leq 5\). By Lemma 8 we get \(c_{8} \leq 4, c_{6} \leq 3\) and \(c_{4} \leq 2\).
Suppose \(c_{11} \geq 6\). Then \(c_{13} \geq 7\) by Lemma 8. If \(c_{14}=7\), then by Lemma 8 we get a contradiction. If \(c_{14} \geq 8\), then by Lemma 7 we also get a contradiction. So \(c_{11} \leq 5\) and by previous lemma we are done.

Theorem 15. Let \(\Gamma\) be a distance-regular subgraph of a cube with girth 8. Then its valency \(k\) is at most 12.

Proof. If \(k \geq 14\), then by [17], Lemma E, we have a vertex on level 14 with weight 14 and so by Lemma 14 we are done.

If \(k=13\), then we have a vertex, say \(y\), on level 13 with weight 13 . Suppose there is no vertex \(z\) on level 14 with weight 14 . We calculate now the number of vertices \(u\) on level 10 with \(d(u, y)=3\). On one hand there must be a vertex \(v\) on level 12 with \(d(v, y)=1\) and \(d(v, u)=2\). So the number is at most \(\binom{13}{3}-\binom{13-c_{13}}{3}\) On the other hand we have that this number is equal to \(c_{13} c_{12} c_{11}\). Suppose that \(c_{11} \geq 6\). Then \(c_{12} \geq 6\) and \(c_{13} \geq 7\). We have \(\binom{13}{3}<8.6 .6\) and thus \(c_{13}=7\). This is also impossible. So \(c_{11} \leq 5\) and we are done by Lemma 13.

Remark 5. There are more examples of distance-regular subgraphs in distanceregular graphs. Some interesting examples are the Peterson graph in \(J(6,3)\), the Shrikhande graph and the \(4 \times 4\)-grid in the halved 6 -cube and the point-block incidence graph of the Fano plane in \(J(7,3)\). The last example is not an isometric subgraph of \(J(7,3)\).

\section*{Acknowledgments}

The author wishes to thank A.E. Brouwer, E.W. Lambeck, and H.A. Wilbrink for their contributed useful remarks. He is also grateful for the suggestions of a referee for the proof of Theorem 6 and for references [1] and [7]. This research was supported by the Dutch organisation for scientific research (NWO).

\section*{References}
1. E. Bannai and T. Ito, "On finite Moore graphs," J. Fac. Sci. Univ. Tokyo, Sect IA 20 (1973) 191-208.
2. A.E. Brouwer, "On the uniqueness of a certain thin near octagon (or partial 2-geometry, or parallelism) derived from the binary Golay code," IEEE Trans. Inform. Theory IT-29 (1983) 370-371.
3. A.E. Brouwer, "Uniqueness and non-existence of some graphs related to \(M_{22}\)," Graphs Combin. 2 (1986) 21-29.
4. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik 3.18, Springer, Heidelberg, 1989.
5. A.E. Brouwer and H.A. Wilbrink, "The structure of near polygon with quads," Geom. Dedicata 14 (1983) 145-176.
6. J. Chima, "Near \(n\)-gons with thin lines," Ph.D. Dissertation, Kansas State University (1982).
7. R.M. Damerell, "On Moore graphs," Proc. Cambridge Philos. Soc. 74 (1973) 227-236.
8. A.A. Ivanov, "On 2-transitive graphs of girth 5," European J. Combin. 8 (1987) 393-420.
9. J.H. Koolen, "On uniformly geodetic graphs," preprint (1990), submitted to Graphs Combin.
10. J.H. Koolen, "A new condition for distance-regular graphs," European J. Combin. 13 (1992) 63-64.
11. H.M. Mulder, "The interval function of a graph," Ph.D. Thesis, Math. Centre Tract 132, Mathematisch Centrum, Amsterdam, 1980.
12. H.M. Mulder, "Interval-regular graphs," Discrete Math. 41 (1982) 253-269.
13. O.Ore, Theory of graphs, Amer. Math. Soc., Providence, R.I. (1962).
14. D.K. Ray-Chaudhuri and A.P. Sprague, "Characterization of projective incidence structures," Geom. Dedicata 5 (1976) 361-376.
15. P. Terwilliger, "Distance-regular graphs and (\(s, c, a, k\))-graphs," J. Combin. Theory Ser. B 34 (1983) 151-164.
16. P. Terwilliger, "Root systems and the Johnson and Hamming graphs," European J. Combin. 8 (1987) 73-102.
17. P.M. Weichsel, "Distance regular subgraphs of a cube," preprint, to appear in Discrete Math.```

