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Abstract. For a Coxeter group W , X a subset of W and α a positive root, we define the negative orbit of α under
X to be {w · α | w ∈ X} ∩ �−, where �− is the set of negative roots. Here we investigate the sizes of such sets as
α varies in the case when W is a finite Coxeter group and X is a conjugacy class of W .
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1. Introduction

Suppose W is a Coxeter group, accompanied by its usual entourage of �, its system of
roots, together with �, �+ and �−, respectively the fundamental roots, the positive and
the negative roots. Let X be a subset of W and let α ∈ �+. We define the negative orbit,
X−(α), of α under X to be

X−(α) = {w · α | w ∈ X} ∩ �−.

Set n−
X (α) = |X−(α)|. In this paper we consider the case when W is a finite Coxeter group

and X is a conjugacy class of W , and will describe how the size of X−(α) varies as α

runs through �+. This, we remark, is somewhat unusual as we are considering orbits under
sets which are (usually) not groups. This work is, in fact, a serendipitous spin-off of [5]
where a more general notion of ‘Coxeter length’ was introduced. Our main results are as
follows.

Theorem 1.1 Suppose W is a finite crystallographic Coxeter group. Let α = ∑
αr ∈� λrαr

and β = ∑
αr ∈� µrαr be positive roots in the same orbit �(α) := W · α of �. Then for a

conjugacy class X of W , there exists a constant f (X ) ∈ {0, ±1} dependent only on X and
�(α) such that

n−
X (α) − n−

X (β) = f (X )

( ∑
αr ∈�∩�(α)

λr −
∑

αr ∈�∩�(α)

µr

)
.
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Table 1. Values of n−
X in A4.

Representative n−
X (α), α ∈ �+

1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

(1 2) 4, 4, 4, 4, 3, 3, 3, 2, 2, 1

(1 2) (3 4) 7, 7, 7, 7, 6, 6, 6, 5, 5, 4

(1 2 3) 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

(1 2 3 4) 9, 9, 9, 9, 9, 9, 9, 9, 9, 9

(1 2 3 4 5) 6, 6, 6, 6, 7, 7, 7, 8, 8, 9

(1 2 3) (4 5) 7, 7, 7, 7, 8, 8, 8, 9, 9, 10

To better illustrate Theorem 1.1, we give n−
X (α) for all positive roots α and all conjugacy

classes X in the Coxeter groups A4 (Table 1) and D4 (Table 2). For each class a representative
of the class is given, then a list of n−

X (α), for α ∈ �+, in increasing order of height. The
‘signed cycle’ notation for the class representatives is explained in Section 2.

Put slightly differently, for W a finite, simply laced crystallographic Coxeter group, if
we fix a conjugacy class X , and order the roots according to height then the sequence of
integers {n−

X (α)}α∈�+ is either constant or monotonic increasing or monotonic decreasing.
This is remarkably uniform behaviour. In stark contrast we have the non-crystallographic
finite Coxeter groups H3 and H4 which appear on the one hand chaotic yet there may still

Table 2. Values of n−
X in D4.

Representative n−
X (α), α ∈ �+

1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

(
−
1)(

−
2)(

−
3)(

−
4) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(
−
1)(

−
2)(

+
3)(

+
4) 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

(
+
1

+
2)(

+
3

+
4) 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

(
−
1

−
2)(

+
3

+
4) 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

(
+
1

+
2)(

+
3)(

+
4) 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 1

(
+
1

+
2)(

−
3)(

−
4) 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9

(
+
1

+
2

+
3)(

+
4) 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8

(
−
1

+
2)(

−
3

+
4) 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

(
−
1

+
2)(

−
3)(

+
4) 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9

(
+
1

+
2

+
3

+
4) 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9

(
−
1

−
2

+
3

+
4) 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9

(
−
1

+
2

+
3)(

−
4) 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
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be some underlying patterns. In Section 4 we tabulate the values of n−
X for H3 as well as

those for B3 and F4. The latter two groups, on account of � having two W -orbits, exhibit
a wider range of behaviour.

In the remainder of this section we summarize some well-known properties of finite Cox-
eter groups and their root systems. Let W be a finite Coxeter group and R its distinguished
set of fundamental reflections. The length l(w) of a non-trivial element w in W is defined
to be

l(w) = min{l ∈ N | w = r1r2 · · · rl some ri ∈ R}

and l(1) = 0. For r, s ∈ R, mrs (= msr ) denotes the order of rs (so mrr = 1 for all
r ∈ R). Let V be an R-vector space with basis �, where � = {αr | r ∈ R} is in one-to-one
correspondence with R. For αr , αs ∈ � we define

〈αr , αs〉 = − cos(π/mrs),

and this extends to an inner product on V in the standard way. Defining, for r ∈ R,
v ∈ V ,

r · v = v − 2〈v, αr 〉αr

yields a faithful action of W on V which also preserves the inner product 〈,〉 (see [4],
Section 5.4). The root system � of W in V is defined to be the set {w·αr | w ∈ W, r ∈ R}. Put
V + = {∑r∈R λrαr ∈ V | λr ≥ 0 for all r ∈ R}, �+ = � ∩ V + and �− = −�+. The sets
�+ and �− are called, respectively, the positive and negative roots of � and it is well known
that � = �+ ∪̇ �− (again, see [4] Section 5.4). The elements in {wrw−1 | r ∈ R, w ∈ W }
are referred to as the reflections of W .

Remark We have chosen here to define root systems in terms of unit vectors. If W is
crystallographic (that is, it stabilizes a lattice in R

n), it is usual to work with a slightly
different definition of the root system within which, for r ∈ R, r · α differs from α by an
integer multiple of αr . Such root systems may require roots of different lengths. However,
our results do not depend upon root length and so, since we discuss the groups H3 and H4,
we use a definition of root system that does not require W to be crystallographic.

For w ∈ W we define the following subset of �+: N (w) = {α ∈ �+ | w · α ∈ �−}.

Proposition 1.2 l(w) = |N (w)| for all w ∈ W .

We recall the notion of depth and height of a positive root.

Definition 1.3 For each α = ∑
r∈R λrαr ∈ �+ the depth of α (relative to R) is dp(α) =

min {l ∈ N | w · α ∈ �− for some w ∈ W with l(w) = l} and the height of α (relative to R)
is ht(α) = ∑

r∈R λr .
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There is a connection between depth and inner products as given in the next
proposition.

Proposition 1.4 Let r ∈ R and α ∈ �+ − {αr }. Then

dp(r · α) =




dp(α) − 1 if 〈α, αr 〉 > 0,

dp(α) if 〈α, αr 〉 = 0,

dp(α) + 1 if 〈α, αr 〉 < 0.

Proof: See [1], Lemma 1.7.

It can be shown that depth is a partial order on the positive roots. We end this section
with the following elementary, but key, observation.

Lemma 1.5 Suppose X is a conjugacy class of W, r ∈ R and let α, β be positive roots
for which β = r · α. Then

n−
X (β) =




n−
X (α) + 1 if αr ∈ X · α, −αr /∈ X · α

n−
X (α) − 1 if αr /∈ X · α, −αr ∈ X · α

n−
X (α) if either αr ∈ X · α and − αr ∈ X · α

or αr /∈ X · α and − αr /∈ X · α

Proof: Since X is a conjugacy class, we have r Xr = X . Thus X · β = r Xr · β =
r X · α. Suppose αr ∈ X · α and −αr /∈ X · α. Then r · αr = −αr ∈ X · β. Also
−αr /∈ X · α. Hence X−(β) = r X · (α) ∩ �− ⊇ r X−(α). That is X−(β) = r X−(α) ∪
{−αr } and so n−

X (β) = n−
X (α) + 1. The other parts of the lemma follow in a similar

fashion.

2. The classical groups

For a Coxeter group W , the Coxeter graph � of W is the (labelled) graph whose vertex set
is R and an edge labelled mrs joins r, s ∈ R whenever mrs ≥ 3. If � is a connected graph,
then we say that W is irreducible. Let W = Wn be a Coxeter group of type either An , Bn

or Dn . The corresponding Coxeter graphs are given below.

�� �

r1 r2 rn

An(n ≥ 1)

��� �

rnr1 r2 rn−1

Bn(n ≥ 2)
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�
�

��

�
�

��

�

�

�� �

rn−1

rn

r1 r2 rn−2

Dn(n ≥ 4)

We may regard An−1 and Dn as subgroups of Bn , and their root systems as subsys-
tems of the root system of Bn , by considering their action on the vector space R

m . Let
e1, . . . , en be an orthogonal basis of R

m and define εi =
√

2
2 ei for 1 ≤ i ≤ n. Then

the permutation group Sm acts on the basis ε1, . . . , εm by permuting the indices of the
vectors εi . It is clear that, for 1 ≤ i < j ≤ m, (i j) · (εi − ε j ) = −(εi − ε j ). Let
m = n + 1. The group An is isomorphic to Sn+1. We may set ri = (i i + 1) for each
1 ≤ i ≤ n. It is easy to check that these elements satisfy all the relations given in the
Coxeter graph and do indeed generate Sn+1. We may now set the fundamental root corre-
sponding to the fundamental reflection ri to be εi − εi+1. The set of positive roots is then
given by

�+
An

= {εi − ε j | 1 ≤ i < j ≤ n + 1}.

Now let m = n and consider the ‘sign change’ reflection sending εi to −εi and fix-
ing all other ε j . The set of such reflections generates a group of order 2n , isomorphic to
(Z2)n . It is well known that Bn may be thought of as the semidirect product of this group
and Sn . We write elements of (Z2)n as n-vectors of 0’s or 1’s. A general element of Bn

is of the form (σ, g) with σ ∈ Sn and g = (g1, . . . , gn) ∈ (Z2)n . Its action on R
n is

given by

(σ, g) ·
n∑

i=1

λiεi =
n∑

i=1

(−1)gi λiεσ (i).

Writing 0 for the identity in (Z2)n , we set ri = ((i i + 1), 0) for 1 ≤ i ≤ n − 1.
These are precisely the elements chosen to generate An−1. Let rn be the reflection send-
ing εn to −εn; in our notation rn is (1, (0, . . . , 0, 1)). All the Coxeter relations for Bn

are satisfied with this choice of fundamental reflections and we may take the unit vectors
ε1 − ε2, . . . , εn−1 − εn and en as the set of fundamental roots. The set of positive roots is
then

�+
Bn

= {εi ± ε j | 1 ≤ i < j ≤ n} ∪ {ei | 1 ≤ i ≤ n}.

For n ≥ 4, Dn is the subgroup (of index 2) of Bn generated by Sn and the elements
of (Z2)n involving an even number of sign changes. In terms of the semidirect prod-
uct, it is the subgroup whose elements (σ, g) all have an even number of 1’s in the
expression for g. The following elements can be shown to generate Dn and obey all
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the relations in the Dn Coxeter graph:- ri = ((i i + 1), 0) for 1 ≤ i ≤ n − 1, and
rn = ((n − 1 n), (0, . . . , 0, 1, 1)). For 1 ≤ i ≤ n − 1 the fundamental root corresponding to
ri is εi − εi+1 and the fundamental root corresponding to rn is εn−1 + εn . The set of positive
roots for Dn is

�+
Dn

= {εi ± ε j | 1 ≤ i < j ≤ n}.

Since both An−1 and Dn may be thought of as subgroups of Bn , we will set W = Wn

to be An−1, Bn or Dn , and write an element of W as an element (σ, g) of Bn , though
of course if W = An−1 then we have g = 0. For ease of notation, we will use a more
concise way of expressing elements of W , as follows. Given (σ, (g1, . . . , gn)) ∈ W we
suppress mention of (g1, . . . , gn) and write a plus sign above i (in its occurrence in σ ) if
gi = 0 and a minus sign above i if gi = 1. We say i is positive or negative accordingly.
In this scheme, for example, the element ((1 3 2)(4), (1, 0, 0, 0)) of B4 will be written
(
−
1

+
3

+
2)(

+
4). Expressing σ as a product of disjoint cycles, we say that a cycle (i1 · · · ir ) of

σ is positive if there is an even number of minus signs above its elements, and negative
if the number of minus signs is odd. In our example, (

−
1

+
3

+
2) is a negative cycle, whereas

(
+
4) is positive. We now define the signed cycle type of an element of W to be the cycle

type with a (+) or a (−) over each cycle, according as it is positive or negative (cycles of
length 1 must be included). We will omit positive 1-cycles where possible, so for example

(
+
1

+
2) will be taken to mean (

+
1

+
2)(

+
3)(

+
4) · · · (

+
n). A ∗ above a number will indicate ‘plus or

minus’.
We may now state the following well known result (see [3]).

Proposition 2.1
(i) Let W = An. Then two elements of W are conjugate if and only if they have the same

cycle type.
(ii) Elements of Bn are conjugate if and only if they have the same signed cycle

type.
(iii) Conjugacy classes in Dn are parameterised by signed cycle type, with one class for

each signed cycle type except in the case where the signed cycle type contains only
even length, positive cycles, in which case there are two classes for each signed cycle
type.

For the remainder of this section, let W be one of An , Bn and Dn and X a conjugacy class
of W , with w an arbitrary element of X . Let α, β ∈ �+ with dp(α) > dp(β) and r · α = β

for some r ∈ R. We will consider the possible forms for α, that is εi − ε j , or εi + ε j , for
some i < j , or ei , and in each case, with Lemma 1.5 in mind, establishing whether or not
it is possible, for some x ∈ X , to have x · α = ±αr .

We begin with the possibility that α = εi − ε j .

Lemma 2.2 Suppose α = εi − ε j , for some i < j . Then αr ∈ X · α whenever w has a
positive 1-cycle and a cycle of length at least 2, or, if W is either Bn or Dn, whenever w

has a cycle of length at least 3. Also, −αr ∈ X ·α whenever w has a cycle of length at least
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3, or, if W is either Bn or Dn, whenever w has a negative 1-cycle and a cycle of length at
least two.

Proof: Since dp(r · α) < dp(α), the only possible r are (
+
i

+
i + 1) or (

+
j − 1

+
j ), giving

β = εi+1 − ε j or εi − ε j−1 respectively. We will consider the former case, identical
arguments being employed to deal with the latter. So let α = εi − ε j , β = εi+1 − ε j and
r = (

+
i

+
i + 1). We wish to find some x ∈ X for which x · α = αr , that is, x · (εi − ε j ) =

εi − εi+1. Clearly then, either x · εi = εi and x · ε j = εi+1 or x · εi = −εi+1 and x · ε j =−εi .
In the first case x is forced to have a positive 1-cycle (

+
i ) and a cycle (

+
j

∗
i + i . . .). The fact

that we require a 1-cycle means that the class X contains all elements of the same signed
cycle type as w (that is, the class does not split in Dn). Hence if w has a positive 1-cycle
and a cycle of length at least 2, we may manufacture an element x of the required form
(choosing ∗ to be a plus or a minus as required). In the second case, where x · εi = −εi+1

and x · ε j = −εi , a cycle in x of the form (
−
j

−
i

∗
i + 1 . . .) is required. This immediately

eliminates An from our enquiries. Suppose that W is of type Bn or Dn and that w has a cycle
of length at least 3. In Bn , since all elements of the same signed cycle type are conjugate, we
are done. In Dn , if the cycle is a 3-cycle then the class does not split so again we are done.
If the cycle is at least a 4-cycle then w is conjugate to an element containing at least one
of the cycles (

−
j

−
i

+
i + 1

+
k . . .), (

−
j

−
i

+
i + 1

−
k . . .), (

−
j

−
i

−
i + 1

+
k . . .) or (

−
j

−
i

−
i + 1

−
k . . .)(for

some k), any of which will suffice for the required x . Thus the classes for which we may
find x such that x · α = αr are as described in the lemma.

Suppose that x · α = −αr = εi+1 − εi . Then either x · εi = εi+1 and x · ε j = εi or
x · εi = −εi and x · ε j = −εi+1. In the first case all we require is a cycle (

+
j

+
i

∗
i + 1 . . .).

This can be arranged whenever w has a cycle of length at least 3. For the second case we
must have a cycle (

−
i ) and a cycle (

−
j

∗
i + 1 . . .). This cannot occur in An . Since we have

a 1-cycle, the class cannot split in Dn , so an appropriate x will exist whenever w has a
negative 1-cycle as well as a cycle of length at least 2.

Proposition 2.3 Let W = An, X a conjugacy class of W and w an arbitrary element of
X. Then

n−
X (β) =




n−
X (α) + 1 if w is an involution with a 1-cycle

n−
X (α) − 1 if w has a cycle of length at least 3, and no 1-cycles

n−
X (α) otherwise.

Proof: The root system of An only contains roots of the form εi − ε j , so we may apply
Lemma 2.2 to any root α. Now by Lemma 1.5, n−

X (β) = n−
X (α)+1 whenever αr ∈ X ·α and

−αr /∈ X · α. By Lemma 2.2 this occurs whenever w has a 1-cycle and a cycle of length at
least 2, but no cycles of length 3 or above. That is, w must be an involution with a 1-cycle.
The other statements follow in a similar manner.

We now concentrate on the groups Bn and Dn:
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Lemma 2.4 Let W be of type Bn or Dn, X a conjugacy class of W and w an arbitrary
element of X. Suppose additionally that α = εi − ε j . Then

n−
X (β) =




n−
X (α)+1 if w has a positive 1-cycle but no negative 1-cycles,

and all the cycles of w are at most 2-cycles;

n−
X (α) − 1 if w has a negative 1-cycle but no positive 1-cycles,

and all the cycles of w are at most 2-cycles;

n−
X (α) otherwise.

Proof: The result follows from Lemmas 1.5 and 2.2

We next consider the case α = εi + ε j , i < j . The possibilities for r here are (
+
ı

+
i + 1)

(if i + 1 �= j), (
+
j

+
j + 1), or (

−
n) (in Bn), (

−
n − 1

−
n) (in Dn).

Lemma 2.5 Suppose α = εi + ε j , for some i < j and r = (
+
k

+
k + 1), some k. Then

αr ∈ X · α whenever w has a positive 1-cycle and a cycle of length at least 2, or whenever

w has a cycle of length at least 3, except in the class of (
+
1

+
2

+
3

+
4) in D4. Also, −αr ∈ X · α

whenever w has a cycle of length at least 3, except in the class of (
+
1

+
2

+
3

+
4) in D4, or

whenever w has a negative 1-cycle and a cycle of length at least two.

Proof: We will assume that αr = εi − εi+1 (the other case is similar). If x · α = αr , that
is x · (εi + ε j ) = εi − εi+1, then either x · εi = εi and x · ε j = −εi+1 or x · εi = −εi+1 and
x ·ε j = εi . We see that either x has cycles (

+
i ) and (

−
j

∗
i + 1 . . .) or a cycle (

+
j

−
i

∗
i + 1 . . .). In

the first case, because the conjugacy class X cannot split in Dn (we have a 1-cycle), such an
x will occur in X whenever w has a positive 1-cycle and a cycle of length at least 2. In the
second case, suppose w has a cycle of length at least 3. Since the sign above ∗ is arbitrary,
we are done in all cases except those where there are two classes with the same signed cycle
type as w, that is, elements whose cycles are all positive and of even length. If we have a
cycle of length l ≥ 6 then we may choose x to contain either (

+
j

−
i

−
i + 1

−
k1

−
k2

−
k3

+
k4 . . .

+
kl)

or (
+
j

−
i

−
i + 1

+
k1 . . .

+
kl) as appropriate. If w has another cycle C then we may fix the number

of minus signs in the corresponding cycle of x so that w and x are conjugate. Therefore the
only exception is the conjugacy class of (

+
1

+
2

+
3

+
4) in D4, within which it is clear that the

required x cannot lie.
Similar considerations show that there is an element x of X such that x · α = −αr

whenever w has a cycle of length at least 3, again except in the class of (
+
1

+
2

+
3

+
4) in D4, or

whenever w has a negative 1-cycle and a cycle of length at least two.

In the group Dn , it only remains to consider α = εi − ε j and r = (
−

n − 1
−
n). The only way

that r can reduce the depth of α is if j is either n − 1 or n. To clarify this, we give the
relevant part of the root system below, with the roots arranged by depth (which coincides
with height here):
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↙
↘

↘
↙

εi − εn

εi − εn−1

εi + εn

εi + εn−1

(
−

n − 1
−
n ) (

+
n − 1

+
n )

(
+

n − 1
+
n ) (

−
n − 1

−
n )

We have therefore to consider the cases α = εi + εn−1 and α = εi + εn; the results
are given in the next lemma. The proof is similar to those seen above, and is therefore
omitted.

Lemma 2.6 Let W = Dn, α = εi + ε j ( j = n − 1 or n), and r = (
−

n − 1
−
n). Then

αr ∈ X · α whenever w has a positive 1-cycle and a cycle of length at least 2, or whenever
w has a cycle of length at least 3. Also, −αr ∈ X · α whenever w has a cycle of length at
least 3, or whenever w has a negative 1-cycle and a cycle of length at least two.

We now have

Proposition 2.7 Let W = Dn, with X a conjugacy class of W and w an arbitrary element
of X. If w has a cycle of length at least 3 then n−

X (β) = n−
X (α). If not, then we have

n−
X (β) =




n−
X (α) + 1 if w has a 2-cycle, a positive 1-cycle but no negative 1-cycles,

n−
X (α) − 1 if w has a 2-cycle, a negative 1-cycle but no positive 1-cycles,

n−
X (α) otherwise.

Proof: The result follows from Lemmas 1.5, 2.4, 2.5 and 2.6.

We are now left only with the group Bn .

Lemma 2.8 Let W = Bn and X a conjugacy class of W . If α = εi ± ε j (i < j) and r = (
−
n)

then ±αr /∈ X ·α. In addition, if α = ei then, for any r with dp(r ·α) < dp(α), ±αr /∈ X ·α.

Proof: There are two W -orbits in the root system of Bn . One contains all roots of the
form ±εi ± ε j and the other, all roots of the form ±ei . So there is no x ∈ W such that
x · (εi ±ε j ) = ±en . Similarly, the only fundamental reflection r which can reduce the depth

of α = ei is r = (
+
ı

+
i + 1), so it is impossible to have ±αr ∈ X · α.

Proposition 2.9 Let W = Bn, X a conjugacy class of W and w an arbitrary element
of X. If either α = εi for some i, r = (

−
n) or w has a cycle of length at least 3, then
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n−
X (β) = n−

X (α). If none of these holds then

n−
X (β) =




n−
X (α) + 1 if w has a 2-cycle, a positive 1-cycle but no negative 1-cycles,

n−
X (α) − 1 if w has a 2-cycle, a negative 1-cycle but no positive 1-cycles,

n−
X (α) otherwise.

Proof: The proof follows from Lemmas 1.5, 2.4, 2.5 and 2.8.

Theorem 2.10 Theorem 1.1 holds for An, Bn and Dn.

Proof: By Propositions 2.3 and 2.7, if W = An or Dn we see that the number f (X ) :=
n−

X (α) − n−
X (β) depends only on the conjugacy class X , and that f (X ) ∈ {−1, 0, 1}. Once

X is fixed then, we may calculate n−
X (α̃) for the (unique) highest root α̃, and then apply

a sequence of fundamental roots r to α̃ until we reach our chosen root α. Each time r
decreases the height, we subtract f (X ) from the current value of n−

X . Therefore for all
γ = ∑

αr ∈ �νrαr ∈ �+, n−
X (α) − n−

X (γ ) = f (X )(
∑

αr ∈� λr − ∑
αr ∈� νr ). In particular

if ht(α) = ht(γ ) then n−
X (α) = n−

X (γ ). If W = Bn then there are two W -orbits of the root
system �. By Proposition 2.9, n−

X (ei ) is constant for all i . In the other orbit, for β = r · α,
there are two possibilities. Unless r = (

−
n), then as before f (X ) := n−

X (β) − n−
X (α) depends

only on the conjugacy class X . If r = (
−
n) then n−

X (α) = n−
X (β), but in this situation α

and β only differ by some multiple of αr . Therefore for all γ = ∑
αr ∈ �νrαr ∈ �+,

n−
X (α) − n−

X (γ ) = f (X )(
∑

αr ∈� λr − ∑
αr ∈� νr ), as required.

3. The exceptional groups

This section is largely devoted to establishing some criteria which will enable easier calcu-
lation of n−

X (α), α ∈ �+ in the case of the exceptional groups E6, E7 and E8. However all
the results hold for Dn as well, so we have included it.

Proposition 3.1 Suppose W is one of Dn, E6, E7 or E8. Let α ∈ � and Stab(α) =
{w ∈ W | w · α = α}. Then Stab(α) acts transitively on the sets {β ∈ � | 〈α, β〉 = 1

2 } and
{β ∈ � | 〈α, β〉 = − 1

2 }.

Proof: It suffices to prove the result for the highest root, α̃. In each of the Coxeter groups
we are considering, there is exactly one fundamental root, αr say, which is not orthogonal
to α̃. Suppose that α ∈ � is such that 〈α, α̃〉 = 1

2 . Writing α = ∑
s∈R λsαs we have, as

〈α̃, αr 〉 = 1
2 , 1

2 = ∑
s∈R λs〈αs, α̃〉 = 1

2λr . Thus λr = 1.
Since W acts transitively on�, there existsw ∈ W of minimal length such thatw · αr = α.

We will show by induction on l(w) that there exists v ∈ Stab(α̃) with v · αr = α. If l(w) = 0
then we are done. Assume then that l(w) > 0. Then w = sw′ for some s ∈ R, where
l(w) = 1 + l(w′). Let γ = w′ · αr . Then by induction there exists v′ ∈ Stab(α̃) such that
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γ = v′ · αr . We may set v = sv′ unless s = r . However in this case:

1

2
= 〈α̃, α〉 = 〈α̃, r · γ 〉

= 〈α̃, γ 〉 − 2〈αr , γ 〉〈α̃, αr 〉
= 〈(v′)−1 · α̃, αr 〉 − 〈αr , γ 〉
= 1

2
− 〈αr , γ 〉

So 〈αr , γ 〉 = 0. Hence α = w · αr = r · γ = γ and we may set v = v′. Therefore, we
have shown that whenever 〈α̃, α〉 = 1

2 there exists v ∈ Stab(α̃) such that v · αr = α. By
symmetry, whenever 〈α̃, α〉 = − 1

2 , there exists v ∈ Stab(α̃) such that v · (−αr ) = α. The
result follows immediately.

Proposition 3.2 Let W be one of Dn, E6, E7 and E8. Suppose that α, β ∈ �+ and r ∈ R
with α = r · β and dp(α) > dp(β). Let X be a conjugacy class of W and w an arbitrary
element of X. If there is a root γ such that 〈γ, w · γ 〉 = 1

2 , then there exists x ∈ X such
that x · α = αr . If there is a root γ such that 〈γ, w · γ 〉 = − 1

2 , then there exists x ∈ X such
that x · α = −αr .

Proof: Suppose α, β, and r are as stated and that there is a root γ such that 〈γ, w · γ 〉 = 1
2 .

Then because W acts transitively on �, we have α = z · γ for some z ∈ W . Writing
x ′ = zwz−1 we see that 〈α, x ′ · α〉 = 〈γ, w · γ 〉 = 1

2 . Now dp(α) > dp(β) and so,
by Proposition 1.4, 〈α, αr 〉 = 1

2 . By Proposition 3.1, there exists y ∈ Stab(α̃) such that
y(x ′ · α) = αr . Now setting x = yx ′y−1 we find x · α = yx ′y−1 · α = yx ′ · α = αr . An
identical argument applies for the case 〈γ, w · γ 〉 = − 1

2 .

Corollary 3.3 Let X be a conjugacy class of W where W is one of Dn, E6, E7 and E8.
Suppose α, β are positive roots in � with dp(α) > dp(β) and α = r · β for some r ∈ R.
Let x ∈ X be arbitrary. Assume that for some γ ∈ � we have 〈γ, x · γ 〉 = 1

2 , but that
there is no δ ∈ � for which 〈δ, x · δ〉 = − 1

2 . Then n−
X (β) = n−

X (α) + 1. Conversely, if
there is no γ ∈ � for which 〈γ, x · γ 〉 = 1

2 , but 〈δ, x · δ〉 = − 1
2 for some root δ, then

n−
X (β) = n−

X (α) − 1. In all other cases n−
X (β) = n−

X (α).

Proof: The proof follows immediately from Lemma 1.5 and Proposition 3.2.

A manual check shows that Theorem 1.1 holds for G2. Employing MAGMA [2] we obtain
the n−

X values for F4 as given in (4.3). Thus combining Theorem 2.10, Corollary 3.3 and
(4.3) yields Theorem 1.1.

We discuss further the groups E6, E7 and E8. Note that Theorem 1.1 implies that in these
groups, whenever ht(α) = ht(β) then n−

X (α) = n−
X (β). Corollary 3.3 allows us to decide,

for a conjugacy class X , whether n−
X is increasing, decreasing or constant by examining just

one element of X . This has been done again using the computer algebra package MAGMA

[2] and we summarize our conclusions below. In E6, for eight of the 25 conjugacy classes,
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Table 3. Classes X for which n−
X is not constant in E6.

n−
X decreasing with height n−

X increasing with height

Cycle type � Cycle type �

130 · 221 A1 324 A3
2

112 · 230 A2
1 16 · 322 A2

2

418 D4(a1) 26 · 415 A3 × A2
1

612 E6(a2) 23 · 611 A5 × A1

Table 4. Classes X for which n−
X is not constant in E7.

n−
X decreasing with height n−

X increasing with height

Cycle type � Cycle type �

160 · 233 A1 12 · 262 A6
1

126 · 250 A2
1 14 · 261 A5

1

16 · 430 D4(a1) 342 A3
2

14 · 21 · 430 A2
3 23 · 430 A2

3 × A1

621 E7(a4) 12 · 22 · 430 D4(a1) × A1

32 · 620 E6(a2) 38 · 617 A5 × A2

n−
X (α) is not constant for all α ∈ �+. In Table 3 we give the cycle types of representatives

of these classes, viewed as permutations of the roots, along with the type of the graph �

associated with each class, using the notation of [3].
In E7, n−

X (α) is constant on 48 of its 60 conjugacy classes. The other classes are described
in Table 4.

In E8 there are 112 classes, for 96 of which n−
X (α) is constant. The other classes are

described in Table 5.

Table 5. Classes X for which n−
X is not constant in E8.

n−
X decreasing with height n−

X increasing with height

Cycle type � Cycle type �

1126 · 257 A1 12 · 2119 A7
1

160 · 290 A2
1 14 · 2118 A6

1

124 · 454 D4(a1) 380 A4
2

16 · 29 · 454 A2
3 × A1 16 · 378 A3

2

640 E8(a8) 212 · 454 A2
3 × A2

1

23 · 639 E7(a4) × A1 12 · 211 · 454 D4(a1) × A1

16 · 36 · 636 E6(a2) 548 A2
4

1024 E8(a6) 23 · 38 · 635 E6(a2) × A2
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4. The groups H3, B3 and F4

4.1. Values of n−
X in H3

In Table 6, we give the values of n−
X for conjugacy classes of H3. The roots are ordered

according to depth. More precisely, denote the fundamental roots by αr , αs and αt with
mrs = 5, mst = 3. Then we write each positive root as a triple (µr , µs, µt ) where the µ are
the coefficients of the fundamental roots. Let λ := (1 + √

5)/2. The roots are ordered as
follows: (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, λ, 0), (λ, 1, 0), (0, 1, 1), (λ, λ, 0), (1, λ, λ), (λ, 1, 1),
(λ, λ, λ), (λ, λ2, 1), (λ, λ2, λ), (λ2, λ2, 1), (λ2, λ2, λ), (λ2, 2λ + 1, λ). A representative of
each conjugacy class is given (where w0 denotes the central longest element of H3), along

Table 6. Values of n−
X in H3.

Representative Cycle type n−
X (α), α ∈ �+

1 130 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

w0 215 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

r t 12 · 214 7, 7, 7, 8, 8, 8, 7, 9, 9, 8, 10, 9, 11, 10, 9

r 14 · 213 7, 7, 7, 6, 6, 6, 7, 5, 5, 6, 4, 5, 3, 4, 5

st 310 8, 8, 8, 7, 7, 9, 8, 6, 8, 7, 7, 8, 8, 9, 10

rsrs 56 6, 6, 6, 7, 7, 5, 8, 8, 6, 9, 7, 8, 6, 7, 8

rs 56 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 2, 2, 1, 0

w0st 65 8, 8, 8, 9, 9, 7, 8, 10, 8, 9, 9, 8, 8, 7, 6

w0rs 103 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 12

rst 103 6, 6, 6, 5, 5, 7, 4, 4, 6, 3, 5, 4, 6, 5, 4

Table 7. Values of n−
X in B3.

Representative n−
X (α), α ∈ �+

1 0, 0, 0, 0, 0, 0; 0, 0, 0

(
−
1)(

−
2)(

−
3) 1, 1, 1, 1, 1, 1; 1, 1, 1

(
−
1)(

−
2)(

+
3) 2, 2, 2, 2, 2, 2; 1, 1, 1

(
−
1)(

+
2)(

+
3) 1, 1, 1, 1, 1, 1; 1, 1, 1

(
+
1

+
2)(

+
3) 3, 3, 3, 2, 2, 1; 2, 2, 2

(
+
1

+
2)(

−
3) 3, 3, 3, 4, 4, 5; 3, 3, 3

(
+
1

+
2

+
3) 4, 4, 4, 4, 4, 4; 2, 2, 2

(
−
1

+
2)(

−
3) 3, 3, 3, 4, 4, 5; 3, 3, 3

(
−
1

+
2)(

+
3) 3, 3, 3, 2, 2, 1; 2, 2, 2

(
−
1

+
2

+
3) 4, 4, 4, 4, 4, 4; 2, 2, 2
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with its cycle type as a permutation of roots. Although n−
X is constant across fundamental

roots (which is also the case for H4), there seems to be little other obvious structure to the
values taken by n−

X (α).

4.2. Values of n−
X in B3

Let r1 = (
+
1

+
2)(

+
3), r2 = (

+
1)(

+
2

+
3), r3 = (

−
3) and write αi for αri . Suppose that α, β

are positive roots both of the form εi ± ε j , for some i < j . Let α = ∑3
i=1 λiαi , and

β = ∑3
i=1 µiαi . Then Theorem 1.1 implies that n−

X (α) = n−
X (β) whenever λ1 + λ2 =

µ1 + µ2. Table 7 illustrates this fact for group B3. For each conjugacy class X of B3, a
representative of X is given, followed by n−

X (α) for each α ∈ �+. The roots are ordered

Table 8. Values of n−
X in F4.

Cycle type � n−
X (α), α ∈ �+

148 ∅ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

224 A4
1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

12 · 223 A2
1 × Ã1 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

12 · 223 A3
1 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9

118 · 215 Ã1 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 1 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

118 · 215 A1 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 1

18 · 220 A2
1 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

14 · 222 A1 × Ã1 12,12,12,12,12,12,12,12,12,12,12,12 12,12,12,12,12,12,12,12,12,12,12,12

316 A2 × Ã2 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8

16 · 314 A2 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8

16 · 314 Ã2 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

412 D4(a1) 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

24 · 410 A3 × Ã1 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 12 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 12

18 · 410 B2 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 4, 3 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 4, 3

12 · 23 · 410 A3 11,11,11,11,11,11,11,11,11,11,11,11 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

12 · 23 · 410 B2 × A1 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 11,11,11,11,11,11,11,11,11,11,11,11

68 F4(a1) 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 0 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 0

23 · 67 C3 × A1 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8

23 · 67 D4 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

12 · 22 · 67 B3 11,11,11,11,11,11,11,11,11,11,11,11 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8

12 · 22 · 67 C3 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 11,11,11,11,11,11,11,11,11,11,11,11

23 · 36 · 64 A2 × Ã1 12,12,12,12,12,12,12,12,12,12,12,12 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8

23 · 36 · 64 Ã2 × A1 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 12,12,12,12,12,12,12,12,12,12,12,12

86 B4 11,11,11,11,11,11,11,11,11,11,11,11 11,11,11,11,11,11,11,11,11,11,11,11

124 F4 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
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within orbits, as follows α1, α2, α2 + √
2α3, α1 + α2, α1 + α2 + √

2α3, α1 + 2α2 + √
2α3;

α3, α3 + √
2α2, α3 + √

2α2 + √
2α1.

4.3. Values of n−
X in F4

In Table 8, n−
X (α) is given for the roots, which are ordered in the manner suggested in

Theorem 1.1: short roots first, ordered by height, then long roots, ordered by height. For
each conjugacy class, the cycle type of its elements as permutations of the roots is given,
along with the associated graph � (again, using the notation of [3]).
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