On Certain Coxeter Lattices Without Perfect Sections

ANNE-MARIE BERGÉ
berge@math.u-bordeaux.fr
Laboratoire A2X, Mathématiques, Université Bordeaux 1, 351, cours de la Libération, 33405 TALENCE Cedex, France

Received December 6, 2002; Revised May 12, 2003; Accepted June 5, 2003

Abstract

In this paper, we compute the kissing numbers of the sections of the Coxeter lattices $\mathbb{A}_{n}^{\frac{n+1}{2}}, n$ odd, and in particular we prove that for $n \geq 7$ they cannot be perfect. The proof is merely combinatorial and relies on the structure of graphs canonically attached to the sections.

Keywords: perfect lattice, kissing number, bipartite graph

1. Introduction

A problem of recent interest is to construct integral perfect lattices with odd norm. By lattice we mean an additive subgroup L of a Euclidean space (E, \cdot) which is additively generated by some \mathbb{R}-basis for E. Such a lattice is integral if the inner product $x \cdot y$ takes integral values on it. The norm of a lattice L is the minimal value M of $x \cdot x$ for $x \in L, x \neq 0$, and the vectors $\pm x \in L$ for which $x \cdot x=M$ are the minimal vectors of L. Their number $2 s$ is the kissing number of L, terminology which refers to the sphere packing classically associated to the lattice L.
Perfect lattices arise in determining the densest lattice packing of spheres. A lattice L is perfect if it is uniquely determined up to similarity by the coordinates of its minimal vectors in one of its \mathbb{Z}-bases. In 1877 Korkine and Zolotareff proved that all lattices whose packing density is a local maximum (extreme lattices) are perfect. They also proved that a perfect lattice can be rescaled so as to be integral, and that its kissing number $2 s$ satisfies

$$
s \geq \frac{n(n+1)}{2}
$$

where $n=\operatorname{dim} E$. All similarity classes of perfect lattices are now known up to dimension 7. From dimension 8 onwards, the complete classification seems out of reach. Voronoi's algorithm for perfect forms produced at this date 10916 inequivalent forms of dimension eight (for a catalogue, see http://www.math.u-bordeaux.fr $/ \sim$ martinet $/$).
An intriguing property of this list is that it contains no integral lattice of odd norm. It has recently been proved by Martinet and Venkov that the lattice P_{7}^{2} (in the notation of
[4]) is the unique integral perfect lattice of dimension $2 \leq n \leq 9$ having norm 3 ([7]). Their method consists in finding for the kissing number of integral lattices of norm 3 an upper bound strictly inferior to $n(n+1)$. Note that a first 10 -dimensional example of a perfect lattice having odd norm (namely 11) was recently constructed by Martinet (see [3], Section 4).

A natural method to construct integral perfect lattices having odd norm would consist in taking sections of a known one that contain a great number of its minimal vectors. About this method by sections, note that the algorithms of Batut and Martinet to "X-ray" integral lattices ([1]) showed that out of the known perfect lattices of dimension $3 \leq n \leq 8, P_{7}^{2}$ is also the unique one without perfect sections of dimension >1.

This remarkable lattice P_{7}^{2} belongs to an infinite sequence of perfect lattices with odd norm (when rescaled to be integral). This sequence is part of a family that Coxeter derived from the root lattices \mathbb{A}_{n} (see [6], Section 5.2): for any dimension $n \geq 1$ and any divisor q of $n+1$ the lattice \mathbb{A}_{n}^{q} is the unique sublattice of the dual lattice \mathbb{A}_{n}^{*} that contains \mathbb{A}_{n} to index q. For $n>5$ and $q<\frac{n+1}{2}$, all these lattices have the same norm as \mathbb{A}_{n}, and are therefore perfect (and even extreme) with even norm when rescaled so as to be integral. For $q=\frac{n+1}{2}$ (n odd, $n \geq 5$), the Coxeter lattices are extreme too but with norm $\frac{2 n-2}{n+1}<2$, and their primitive integral copy has odd norm if and only if $n \equiv 3 \bmod 4$. The aim of this paper is to X-ray these lattices. In particular, as a direct consequence of the combinatorial Theorem 2 (stated and proved in Section 4), we find that for $n \geq 7$, any section of $L=\mathbb{A}_{n}^{\frac{n+1}{2}}$ of dimension $r, 1<r<n$, contains at most $r(r-1)+2<r(r+1)$ minimal vectors of L. This enables us to extend to every odd dimension the property of "emptiness" noticed for the lattice $P_{7}^{2} \sim \mathbb{A}_{7}^{4}$:

Theorem 1 In everyodd dimension $n \geq 3$, the Coxeter lattice $\mathbb{A}_{n}^{\frac{n+1}{2}}$ has no perfect section of the same norm in dimension >1, except the lattice \mathbb{A}_{5}^{3} which possesses 15 planar hexagonal sections.

In Section 2 we give a description of the lattice $\mathbb{A}_{n}^{\frac{n+1}{2}}$ which leads to a combinatorial approach of the determination of its sections with best kissing number; this combinatorial problem is interpreted in Section 3 in terms of graphs, and solved in Section 4.
I want to thank J. Martinet for the motivation of this work, and the Reviewers for helpful suggestions and corrections.

2. A conjecture of Martinet

Let E be a Euclidean space of dimension n, and let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis for the dual lattice \mathbb{A}_{n}^{*} with Gram Matrix

$$
\frac{1}{n+1}\left(\begin{array}{ccccc}
n & -1 & -1 & \cdots & -1 \\
-1 & n & -1 & \cdots & -1 \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
-1 & -1 & -1 & \cdots & n
\end{array}\right)
$$

the minimal vectors of \mathbb{A}_{n}^{*} are the $\pm e_{i}, 0 \leq i \leq n$, where $e_{0}=-\left(e_{1}+e_{2}+\cdots+e_{n}\right)$. One possible definition of the Coxeter lattice is

$$
\mathbb{A}_{n}^{\frac{n+1}{2}}=\left\{x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n} \mid\left(x_{i}\right) \in \mathbb{Z}^{n} \text { and } \sum_{i} x_{i} \equiv 0 \bmod 2\right\}
$$

as the right-hand side defines a sublattice of index 2 in \mathbb{A}_{n}^{*} containing the root lattice $\mathbb{A}_{n}=\left\langle e_{i}-e_{0}, 1 \leq i \leq n\right\rangle$. It then has norm $\frac{2 n-2}{n+1}$ and its minimal vectors are $\pm\left(e_{i}+e_{j}\right)$, $0 \leq i<j \leq n$. So, to establish Theorem 1 we shall bound the number of these vectors contained in a given strict subspace of E, discarding its Euclidean structure.

In the following, E_{n} is a real vector space of dimension $n \geq 2$ equipped with a basis $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. Put

$$
e_{0}=-\left(e_{1}+e_{2}+\cdots+e_{n}\right)
$$

For a subspace F of E_{n} we consider its subset

$$
S_{F}=F \cap\left\{e_{i}+e_{j}, 0 \leq i<j \leq n\right\},
$$

with cardinality

$$
s_{F}=\left|S_{F}\right| .
$$

Example A subspace F of E_{n} is said canonical if it is spanned by some vectors $e_{i}, 0 \leq$ $i \leq n$.

For a canonical subspace $F \subset E_{n}$ of rank $r(1 \leq r \leq n-1)$ we have $s_{F}=\frac{r(r-1)}{2}$ if $r \neq n-1$ and $s_{F}=\frac{r(r-1)}{2}+1$ if $r=n-1$. Indeed, up to permutations by the symmetric group S_{n+1} we may assume $F=\left\langle e_{0}, e_{1}, \ldots, e_{r-1}\right\rangle$. It then contains the $\binom{r}{2}$ vectors $e_{i}+e_{j}$, $0 \leq i<j \leq r-1$, and no more except if $r=n-1$, when we must add the vector $e_{n-1}+e_{n}=-e_{0}-e_{1}+\cdots-e_{n-2}$.

For any dimension $n \geq 3$ and any integer $r, 1 \leq r \leq n-1$, we define

$$
s_{n}(r)=\max _{F \subset E_{n}, \operatorname{dim} F=r} s_{F}
$$

Martinet ([5]) stated the following:

Conjecture

1. For $r \geq 5, s_{n}(r)$ is equal to either $\frac{r(r-1)}{2}$ or $\frac{r(r-1)}{2}+1$ according as $r \neq n-1$ or $r=n-1$.
2. For $n \geq 5$ and $r \geq 2$, we have $s_{n}(r)<\frac{r(r+1)}{2}$ except for $(n, r)=(5,2)$, where $s_{5}(2)=3$.

The second part of this conjecture, applied to our lattice problem, implies Theorem 1, the value $s_{5}(2)$ corresponding to the hexagonal sections of the lattice \mathbb{A}_{5}^{3}, which are perfect indeed.
The conjecture will result of the actual determination of all values of $s_{n}(r)$ and of the subspaces F which realize them. To state and prove these results, an interpretation in terms of graphs is needed.

3. Graphs associated with a subspace \boldsymbol{F} of $\boldsymbol{E}_{\boldsymbol{n}}$

The bounds of s_{F} are attained at subspaces F of E generated by their subsets S_{F}; from now on we only consider such subspaces.

Definition 1 With a subspace F of E we associate the graph $G=G_{F}$ of the relation $e_{i}+e_{j} \in F$: its vertex set is $\{0,1, \cdots, n\}$, and two vertices i and j are joined if $e_{i}+e_{j}$ lies in F.

To any basis $\mathcal{B} \subset S_{F}$ of F we attach the subgraph $G_{\mathcal{B}} \subset G_{F}$ obtained by keeping only the edges $i j$ of G_{F} such that $e_{i}+e_{j} \in \mathcal{B}$.

Our aim is to compare the number of edges s_{F} of G_{F} with the number of edges $r=\operatorname{dim} F$ of $G_{\mathcal{B}}$.

Example For a canonical subspace F of dimension $r, 3 \leq r \leq n-1$, there is a basis \mathcal{B} whose graph is a triangle linked to a path: for instance the vectors $e_{0}+e_{1}, e_{1}+e_{2}, e_{2}+$ $e_{0}, e_{2}+e_{3}, \ldots, e_{r-2}+e_{r-1}$ constitute a basis for $F=\left\langle e_{0}, \ldots, e_{r-1}\right\rangle$.

We now discuss the existence of cycles in the graphs G_{F} and $G_{\mathcal{B}}$.

Lemma 1

1. If the vertices i and j are connected in G_{F} by a path of odd length, $i j$ is an edge of G_{F}.
2. The graph $G_{\mathcal{B}}$ does not contain an even cycle of length ≥ 4.
3. If a connected component C of G_{F} contains an odd cycle, then all the vectors $e_{i}, i \in C$ belong to F, and C is a complete graph.

Figure 1. Graphs $G_{\mathcal{B}}$ and $G_{\mathcal{F}}$ for canonical subspaces of dimension 6 (the $s_{F}-r$ edges of $G_{F} \backslash G_{\mathcal{B}}$ appear in dotted lines).

Proof: By induction from the following relations, where $i, j, k, l \in\{0,1, \ldots, n\}$:

$$
\begin{aligned}
\left(e_{i}+e_{j}\right) & =\left(e_{i}+e_{l}\right)+\left(e_{j}+e_{k}\right)-\left(e_{k}+e_{l}\right), \\
e_{i} & =\frac{1}{2}\left(\left(e_{i}+e_{j}\right)-\left(e_{j}+e_{k}\right)+\left(e_{i}+e_{k}\right)\right), \\
e_{i} & =\left(e_{i}+e_{j}\right)-e_{j} .
\end{aligned}
$$

We can now characterize the canonical subspaces by their graphs.
Lemma 2 Let F be an r-dimensional subspace of $E_{n}(3 \leq r \leq n-1)$. Then F is canonical if and only if its graph G_{F} contains a complete r-graph, i.e. a graph with r vertices and $\binom{r}{2}$ edges.

Proof: We have already seen that if F is canonical, its whole graph consists of a complete r-graph and a path of length 1 (resp. $n+1-r$ isolated vertices) if $r=n-1$ (resp. $r<n-1$).

Conversely, suppose that there is in G_{F} a connected component C with $|C|=r$ vertices and $\binom{r}{2}$ edges. Since C is complete of order $r \geq 3$, it contains at least one triangle; it follows from the third part of Lemma 1 that all $e_{i}, i \in C$ belong to F. Since $|C|=\operatorname{dim} F$, we conclude that $F=\left\langle e_{i}, i \in C\right\rangle$.

4. Calculation of $s_{n}(r)$.

Linear type. Let F be a strict subspace of E_{n} and let $G_{F}=\bigcup_{C \in \mathcal{C}} C$ the partition of its graph into connected components. We say that the component $C \in \mathcal{C}$ is of linear type if the subspace

$$
F_{C}=\left\langle e_{i}+e_{j} \text { with } i j \text { edge of } C\right\rangle
$$

of F admits a basis \mathcal{B}_{C} whose graph is a path.
We say that F itself is of linear type if, apart from isolated vertices, every component of G_{F} is of linear type. We label the type by the sequence of the lengths of the paths, the zeros representing the isolated vertices.

For example, figure 2 shows the four possible graph structures for $r=2$ (the graph of a basis $\mathcal{B} \subset \cup \mathcal{B}_{C}$ appears in continuous lines).

Figure 2. Linear types [2], [2, 0, 0], [1, 1, 1] and [1, 1, 0].

Theorem 2 below shows in particular that the invariant s_{F} assumes its greatest value for subspaces which are either canonical or (in low dimension) of linear type.

Theorem 2 Let F be an r-dimensional $(1 \leq r \leq n-1)$ subspace of E_{n}. Then

1. For $r \geq 4$, we have

$$
s_{F} \leq \begin{cases}\frac{r(r-1)}{2} & \text { if } r \neq n-1, \tag{1}\\ \frac{r(r-1)}{2}+1 & \text { if } r=n-1,\end{cases}
$$

except for $r=4, n=5, F$ of linear type [4] where $s_{F}=9$. Equality in (1) holds only when F is either canonical or of one of the following linear types:
$r=4: n \geq 6$, type $[4,0,0, \ldots]$ or $n=7$, type $[3,1,1]$;
$r=5: n=7$, type [5, 1];
$r=6: n=7$, type [6].
2. For $r=1$,
$n \neq 3: s_{n}(1)=1$ attained at type $[1,0, \ldots]$,
$n=3: s_{3}(1)=2$ attained at type $[1,1]$.
3. For $r=2$,
$n \neq 3,5: s_{n}(2)=2$, at types $[1,1,0, \ldots]$ and $[2,0, \ldots]$,
$s_{3}(2)=4$ attained at type [2],
$s_{5}(2)=3$ attained at type $[1,1,1]$.
4. For $r=3$,
$n \neq 5: s_{n}(3)=4$, attained at linear types $[3,0,0, \ldots]$ and $[1,1,1,1]($ if $n=7)$, and at canonical hyperplanes (if $n=4$);
$n=5: s_{5}(3)=5$ attained at type $[3,1]$.
Going back to Euclidean lattices we can interpret some maximal values of s in low dimensions. We first note that the value $s_{3}(2)$ corresponds to square sections of the cubic lattice \mathbb{A}_{3}^{2}, the set S_{F} consisting of two pairs of orthogonal vectors. The sections of \mathbb{A}_{5}^{3} which realize the maximum $s_{5}(2)=3$ (resp. $s_{5}(4)=9$, resp. $s_{5}(3)=5$) are similar to the perfect lattice \mathbb{A}_{2} (resp. to $\mathbb{A}_{2} \otimes \mathbb{A}_{2}$, resp. to the "fragile" lattice of crystallography, see [6], Section 9.5). In dimension 7 , there are coincidences, due to the multiple embeddings of the lattice $\mathbb{A}_{7}^{4} \sim \mathbb{E}_{7}^{*}$ into \mathbb{A}_{7}^{*}; for instance, canonical as well as linear type [6] hyperplanes correspond to sections of \mathbb{E}_{7}^{*} similar to the isodual lattice \mathbb{D}_{6}^{+}. This phenomenon does not occur for $n=9$.

The rest of the paper is devoted to the proof of Theorem 2. Let

$$
G_{F}=\bigcup_{C \in \mathcal{C}} C
$$

be the partition of the graph of F into connected components, where at most one C is complete with $|C| \geq 3$ (by Lemma 2 it corresponds to the canonical subspace $F_{C}=\left\langle e_{i}, i \in\right.$ $C\rangle$ of F).

complete type $\left(s_{C}=3\right)$

Figure 3. Connected components C such that $r_{C}=3$.

For a component $C \in \mathcal{C}$ we denote by
$c=|C|$ the number of vertices of C,
s_{C} the number of edges of C (or size of C),
$r_{C}($ rank of $C)$ the dimension of $F_{C}=\left\langle e_{i}+e_{j}, i j\right.$ edge of $\left.C\right\rangle$. (Of course for isolated vertices $c=1$ and $s_{C}=r_{C}=0$.)

For example there are three possible components of rank 3.
Contribution of a component. Lemma 2 settles this question for complete components. We now describe the other cases.

Lemma 3 Let C be a non-complete component of G_{F}, with $c \geq 2$.

1. There exists an integer $d_{C}, 0 \leq d_{C} \leq c-2, d_{c} \equiv c \bmod 2$, such that

$$
s_{C}=\frac{c^{2}-d_{C}^{2}}{4} \leq\left\lfloor\frac{c^{2}}{4}\right\rfloor .
$$

2. F_{C} admits a basis whose graph is a path linked to a star of degree $d_{C}+1$, and its dimension is

$$
r_{C}= \begin{cases}c-1 & \text { if } c \leq n \\ c-2 & \text { if } c=n+1\left(\text { which requires } n \text { odd and } d_{C}=0\right)\end{cases}
$$

3. $s_{C}=\left\lfloor\frac{c^{2}}{4}\right\rfloor$ only if C is of linear type.
4. The following conditions are equivalent:
(i) $\sum_{i \in C} e_{i} \in F_{C}$
(ii) $d_{C}=0$
(iii) C is of linear type with an even number of vertices.

Proof:

1. Since C is not complete, it does not contain odd cycles. It is thus bipartite (see [2], I.2, Theorem 4), and even by Lemma 1, C is a complete bipartite graph, i.e. there exists a partition $C=V_{0} \cup V_{1}$ of C such that $i j$ is an edge of C if and only if i and j are in distinct sets V_{k}, as we now prove. Indeed, given $i, j \in C$, the lengths of two paths $i-j$ are congruent modulo 2 (otherwise, they would form an odd cycle); then V_{0} and
V_{1} are the equivalence classes for the equivalence relation $i \mathcal{R} j$ if $i=j$ or if i and j are connected by an even path. Clearly two neighbours in C belong to distinct classes; conversely, if i and j are in distinct classes, there are connected by a path of odd length, and by Lemma $1, i j$ is an edge of C. We conclude that $s_{C}=\left|V_{0}\right|\left|V_{1}\right|=\frac{c+d_{C}}{2} \frac{c-d_{C}}{2}$ where $d_{C}=\| V_{0}\left|-\left|V_{1}\right|\right|$; thus we recover Mantel's bound $\left\lfloor c^{2} / 4\right\rfloor$ for graphs without triangles.
2. From Lemma 1 it follows that the subgraph $G_{\mathcal{B}}$ associated with any basis of F_{C} does not contain any cycle. Thus its connected components are trees, $G_{\mathcal{B}}=T_{1} \cup T_{2} \cup \cdots \cup T_{m}$ say. We then have $r_{C}=\sum_{i}\left(\left|T_{i}\right|-1\right)=\left|G_{\mathcal{B}}\right|-m \leq c-1$. Actually, in the case $c=n+1$ (i.e. $G_{F}=C$), we must have $r<n=c-1$, since otherwise $F_{C}=E_{n}$ would be canonical. We now define for F_{C} a standard basis \mathcal{B}_{C} whose graph is a tree depending only on d_{C}.

Put $c=2 p+d_{C}$ so that the vertex classes of C have respectively p and $p+d_{C}$ elements; up to permutation by S_{n+1} we may assume them to be

$$
\{2 k-1,1 \leq k \leq p\} \quad \text { and } \quad\{2 k-2,1 \leq k \leq p\} \cup\left\{2 p+k, 0 \leq k \leq d_{C}-1\right\}
$$

Then the subspace F_{C} contains the following $c-1$ vectors:

$$
f_{i}=\left\{\begin{array}{cc}
e_{i-1}+e_{i} & \text { for } 1 \leq i \leq 2 p-1 \\
e_{2 p-1}+e_{i} & \text { for } 2 p \leq i \leq c-1
\end{array}\right.
$$

For any $\left(\lambda_{i}\right) \in \mathbb{R}^{c-1}$ we have

$$
\sum_{i=1}^{c-1} \lambda_{i} f_{i}=\lambda_{1} e_{0}+\sum_{1}^{2 p-2}\left(\lambda_{i}+\lambda_{i+1}\right) e_{i}+\left(\sum_{2 p-1}^{c-1} \lambda_{i}\right) e_{2 p-1}+\sum_{2 p}^{c-1} \lambda_{i} e_{i}
$$

For any $\lambda \in \mathbb{R}$ we then have the equivalence

$$
\sum_{i=1}^{c-1} \lambda_{i} f_{i}=\lambda \sum_{i \in C} e_{i} \Leftrightarrow \begin{cases}\lambda_{i}=0 & \text { if } i \in\{1, \ldots, 2 p-1\} \text { is even, } \tag{*}\\ \lambda_{i}=\lambda & \text { if } i \in\{1, \ldots, 2 p-1\} \text { is odd } \\ & \text { or if } i \geq 2 p \\ d_{C} \lambda=0\end{cases}
$$

If $c \leq n$, the $e_{i}, i \in C$, are independent, thus from $\left(^{*}\right)$ with $\lambda=0$ we obtain that the $c-1$ vectors f_{i} are independent, and since $r_{C} \leq c-1$, they constitute a basis for F_{C}, whose rank is $r_{C}=c-1$.

If $c=n+1$, we know that $r_{C} \leq c-2$, and the $c-1$ vectors f_{i} must satisfy a nontrivial relation $\sum_{1 \leq i \leq c-1} \lambda_{i} f_{i}=0$. On the other hand, there exists, up to multiplication by a scalar, a unique non-trivial relation between the $e_{i}, i \in C: e_{0}+e_{1}+\cdots+e_{n}=0$. Therefore, using $\left(^{*}\right)$ with $\lambda \neq 0$, we obtain $d_{C}=0$ and thus $n=2 p-1$. Conversely, if $d_{C}=0$, the n vectors $f_{i}=e_{i-1}+e_{i}, \quad i=1, \ldots, n$ satisfy the "unique" relation $f_{n}=-f_{1}-f_{3}-\cdots-f_{n-2}$, and $f_{1}, f_{2}, \ldots, f_{n-1}$ constitute a basis for $F_{C}=F$. Its graph is a path of $c-1=n$ vertices (which does not span C).
3. It is clear from the previous parts of the lemma, as s_{C} attains Mantel's bound if and only if $d_{C}=0$ or 1 .
4. It follows immediately from $\left(^{*}\right)$ with $\lambda=1$.

We now compare Mantel's bound $\left\lfloor\frac{c^{2}}{4}\right\rfloor$ to $\binom{r_{C}}{2}$. The differences $\binom{r_{c}}{2}-\left\lfloor\frac{\left(r_{C}+1\right)^{2}}{4}\right\rfloor$ and $\binom{r_{C}}{2}-\frac{\left(r_{C}+2\right)^{2}}{4}$ are increasing functions of r_{C}. We can thus state the following.

Lemma 4 Let C be a non-complete component of G_{F} of positive rank. Its size s_{C} and rank r_{C} satisfy

$$
s_{C}-\binom{r_{C}}{2}= \begin{cases}3 & \text { if }\left(n, r_{C}\right)=(3,2) \text { or }(5,4) \\ 1 & \text { if }\left(n, r_{C}\right)=(7,6) \text { or if } r_{C} \leq 3 \text { (linear type) }, \\ 0 & \text { if } C \text { is complete, or if } r_{C}=3 \text { (non-linear type) } \\ & \text { or if } \left.r_{C}=4 \text { (linear type, } n \geq 6\right)\end{cases}
$$

and $s_{C}<\binom{r_{C}}{2}$ otherwise.
Right now, Theorem 2 is proved for subspaces F whose graphs contain exactly one component of positive rank. In particular these F realize the bounds $s_{3}(2)$ (figure 2), $s_{n}(4)$ (figure 4) and $s_{7}(6)$ (figure 5).

From now on, we suppose that the graph $G_{F}=\bigcup_{C \in \mathcal{C}} C$ of F contains at least two components of positive rank.

Dimensions. Consider $x=e_{i}+e_{j} \in S_{F}$. The indices i and j belong to the same connected component C, and thus the vector x belongs to the corresponding subspace F_{C}. Since S_{F} spans F, we have $F=\sum F_{C}$. We first discuss whether this sum is direct.

Lemma 5 We have $r=\sum_{C} r_{C}-\delta$ with $\delta=0$ or 1 , where $\delta=1$ if and only if all non-complete components $C \in \mathcal{C}$ have linear type and odd rank.

Figure 4. Linear types $[4]\left(s_{F}=9\right)$ and $[4,0,0]\left(s_{F}=6\right)$.

Figure 5. Linear type [6] $\left(s_{F}=16\right)$.

Proof: Note that for $|C| \geq 2$ the typical vector of F_{C} can be written $x_{C}=\sum_{i \in C} \lambda_{i} e_{i}$. Since any relation of dependence between the e_{i} has the form $\lambda\left(e_{0}+e_{1}+\cdots+e_{n}\right)=0$ for some $\lambda \in \mathbb{R}$, and since \mathcal{C} is a partition of $\{0,1, \ldots, n\}$, we have the following equivalence:

$$
\left(\sum_{C \in \mathcal{C}} x_{C}=0, x_{C} \in F_{C}\right) \Longleftrightarrow\left(\exists \lambda \in \mathbb{R} \mid \forall C \in \mathcal{C}: x_{C}=\lambda \sum_{i \in C} e_{i}\right) .
$$

Using the last part of Lemma 3, we are left with two possibilities:
(1) there is an isolated vertex or a non-complete component with invariant $d_{C} \neq 0$: the above λ is null, and $F=\oplus F_{C}$.
(2) every non-complete component C has order $|C| \geq 2$ and invariant $d_{C}=0$: then for all $C \in \mathcal{C}$, the nonzero vector $x_{C}=\sum_{i \in C} e_{i}$ belongs to F_{C}, and we have a nontrivial relation $\sum x_{C}=0$. As this is up to scale the only one, we have $\operatorname{dim}\left(\sum F_{C}\right)=$ $\sum \operatorname{dim} F_{C}-1$.

Proof of Theorem 2: We have to compare the size $s_{F}=\sum r_{C}$ of G_{F} to the dimension $r=\sum r_{C}-\delta$ of F.
Type $[1, \ldots, 1,0, \ldots, 0]$ case: the graph G_{F} consists of $1 \leq k \leq \frac{n+1}{2}$ paths of length 1 and of $n+1-k$ isolated vertices; it then has $s_{F}=k$ edges, while by Lemma $5, r=k-\delta$, where $\delta=1$ if and only if there are no isolated vertices i.e. $n=2 k-1=2 r+1$. Thus

$$
s_{F}=r+\delta= \begin{cases}r & \text { if } n \geq 2 r, n \neq 2 r+1 \\ r+1 & \text { if } n=2 r+1\end{cases}
$$

is $<\binom{r}{2}$ if and only if $r \geq 4$. In contrast, this linear type realizes the values $s_{n}(1), s_{n}(2)$ (in particular $\left.s_{5}(2)=3\right)$ and $s_{7}(3)$.
General case: $\max _{C} r_{C}=r_{0} \geq 2$. From Lemma 4 we deduce

$$
s_{F}=\sum s_{C} \leq \sum\binom{r_{C}}{2}+k
$$

where k denotes the number of components C of linear type and rank $r_{C} \leq 3$. Now, writing $\sum\left(r_{C}^{2}-r_{C}\right)=\left(\sum r_{C}\right)^{2}-\sum r_{C}-2 \sum \sum_{C \neq C^{\prime}} r_{C} r_{C^{\prime}}$ where $\sum r_{C}=r+\delta$ by Lemma 5, we obtain the inequality

$$
\begin{equation*}
\binom{r}{2}-s_{F} \geq \sum_{C \neq C^{\prime}} r_{C} r_{C^{\prime}}-k-\delta r, \tag{3}
\end{equation*}
$$

which, by Lemma 4, is strict if there is a non-complete component of rank $r_{C}>4$.
If $\delta=0$, (3) implies $s_{F} \leq\binom{ r}{2}$ (equality only for $r=3$) as stated in Theorem 2. Indeed
if $k \leq 2: \sum_{C \neq C^{\prime}} r_{C} r_{C^{\prime}}-k \geq r_{0}-k \geq r_{0}-2 \geq 0$, equality holding only for F of type [2, 1] (and $r=3$);
if $k \geq 3: \sum_{C \neq C^{\prime}} r_{C} r_{C^{\prime}}-k \geq r_{0}(k-1)-k \geq 2(k-1)-k \geq 1$.
From now on we suppose $\delta=1$: all non-complete $C \in \mathcal{C}$ are of linear type with odd ranks. In particular, we have $r_{0} \geq 3$. We write $G_{F}=C_{0} \cup C_{1} \cup \cdots \cup C_{m}(m \geq 1)$ with $r_{0} \geq r_{1} \geq r_{m} \geq 1$ and $\sum\left|C_{i}\right|=n+1$.

We shall use for $r+1=r_{0}+r_{1}+\cdots+r_{m}$ and $\sum r_{C} r_{C^{\prime}}=r_{0} r_{1}+\cdots$ the estimations

$$
\begin{align*}
r+1 & \geq r_{0}+k-1, \tag{4}\\
\sum r_{C} r_{C}^{\prime} & \geq r_{0}\left(r+1-r_{0}\right) . \tag{5}
\end{align*}
$$

Note that the equality in (4) (resp. (5)) holds if and only if F is of linear type $[3,1, \ldots, 1]$ (resp. $m=1$). We then obtain the estimation

$$
\binom{r}{2}-s_{F} \geq M,
$$

with

$$
M=\left(r-r_{0}\right)\left(r_{0}-2\right)-2,
$$

where $r-r_{0}=r_{1}+\cdots+r_{m}-1 \geq m-1 \geq 0$ and $r_{0}-2 \geq 1$. We then have $M \geq-2$. We even obtain $M>0$ (i.e. $s_{F}<\binom{r}{2}$) if $r-r_{0} \geq 3$. We now concentrate on the three cases $0 \leq r-r_{0} \leq 2$.
(a) $r=r_{0}: G_{F}=C_{0} \cup C_{1}$, with $r_{1}=1$. If C_{0} is complete, F is a canonical hyperplane and $s_{F}=\binom{r}{2}+1$ as asserted in Theorem 2. If C_{0} is linear of rank 3, 5, 7, \ldots, it follows from Lemma 3 that $s_{F}=1+s_{C_{0}}$ is equal to $1+\left(r_{0}+1\right)^{2} / 4=5,10,17, \ldots$, strictly smaller than $\binom{r}{2}$ except for the cases $[3,1]$ (which realizes the maximum $s_{5}(3)$) and $[5,1]$ (which realizes $s_{n}(5)$), see figure 6 .
(b) $r=r_{0}+1: G_{F}=C_{0} \cup C_{1} \cup C_{2}$, with $r_{1}=r_{2}=1$. Since (5) is no more an equality, we obtain $\binom{r}{2}-s_{F} \geq M+1=r_{0}-3 \geq 0$, where the equality requires that equality (4) holds, i.e. that F is of type $[3,1,1]$, which indeed realizes the maximum $s_{7}(4)=6$ (figure 7).
(c) $r=r_{0}+2$, i.e. $r_{1}+\cdots+r_{m}=3$. There are two occurrences of this situation: $m=3, r_{1}=r_{2}=r_{3}=1$, or $m=1, r_{1}=3$. In the first case, equality (5) does not

Figure 6. Linear types [3, 1] and [5, 1].

Figure 7. Type $[3,1,1]$.
hold. In the second case, (4) does not hold. Anyway, we have $\binom{r}{2}-s_{F} \geq M+1=$ $2 r_{0}-5>0$.

This completes the proof of Theorem 2.

References

C. Batut and J. Martinet, "Radiographie des réseaux parfaits", Experimental Math. 3 (1994), 39-49.
B. Bollobás, Modern Graph Theory, Graduate texts in Mathematics 184, Springer-Verlag, Heidelberg, 1998.

3 A.M. Bergé and J. Martinet, "Symmetric groups and lattices", Monatschefte für Math. 140(3) (2003), 179-195.
4 J.H. Conway and N.J.A. Sloane, "Low-dimensional lattices. III. Perfect forms", Proc. Royal Soc. London A 418 (1988), 43-80.
5 J. Martinet, personal communication.
6 J. Martinet, Perfect Lattices in Euclidean Spaces, Grundlehren 327, Springer-Verlag, Heidelberg, 2003.
7 J. Martinet and B. Venkov, "On integral lattices having an odd minimum," Algebra and Analysis, SaintPetersburg 16(3) (2004), 198-237.

