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Abstract. In this paper, we compute the kissing numbers of the sections of the Coxeter lattices A, 2 , n odd,
and in particular we prove that for n > 7 they cannot be perfect. The proof is merely combinatorial and relies on

the structure of graphs canonically attached to the sections.
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1. Introduction

A problem of recent interest is to construct integral perfect lattices with odd norm. By lattice
we mean an additive subgroup L of a Euclidean space (E, -) which is additively generated
by some R-basis for E. Such a lattice is integral if the inner product x - y takes integral
values on it. The norm of a lattice L is the minimal value M of x - x forx € L, x # 0,
and the vectors =x € L for which x - x = M are the minimal vectors of L. Their number
2s is the kissing number of L, terminology which refers to the sphere packing classically
associated to the lattice L.

Perfect lattices arise in determining the densest lattice packing of spheres. A lattice
L is perfect if it is uniquely determined up to similarity by the coordinates of its mini-
mal vectors in one of its Z-bases. In 1877 Korkine and Zolotareff proved that all lattices
whose packing density is a local maximum (extreme lattices) are perfect. They also proved
that a perfect lattice can be rescaled so as to be integral, and that its kissing number 2s
satisfies

. nn + 1)’
- 2
where n = dim E. All similarity classes of perfect lattices are now known up to dimension
7. From dimension 8 onwards, the complete classification seems out of reach. Voronoi’s
algorithm for perfect forms produced at this date 10916 inequivalent forms of dimension
eight (for a catalogue, see http://www.math.u-bordeaux.fr/~ martinet/).
An intriguing property of this list is that it contains no integral lattice of odd norm. It
has recently been proved by Martinet and Venkov that the lattice P72 (in the notation of
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[4]) is the unique integral perfect lattice of dimension 2 < n < 9 having norm 3 ([7]).
Their method consists in finding for the kissing number of integral lattices of norm 3 an
upper bound strictly inferior to n(n + 1). Note that a first 10-dimensional example of a
perfect lattice having odd norm (namely 11) was recently constructed by Martinet (see [3],
Section 4).

A natural method to construct integral perfect lattices having odd norm would consist in
taking sections of a known one that contain a great number of its minimal vectors. About
this method by sections, note that the algorithms of Batut and Martinet to “X-ray” integral
lattices ([1]) showed that out of the known perfect lattices of dimension 3 <n < 8§, P72 is
also the unique one without perfect sections of dimension > 1.

This remarkable lattice P belongs to an infinite sequence of perfect lattices with odd
norm (when rescaled to be integral). This sequence is part of a family that Coxeter derived
from the root lattices A,, (see [6], Section 5.2): for any dimension n > 1 and any divisor
g of n + 1 the lattice A7 is the unique sublattice of the dual lattice A’ that contains A,
to index g. Forn > Sand g < %, all these lattices have the same norm as A, and are
therefore perfect (and even extreme) with even norm when rescaled so as to be integral.
Forg = % (n odd, n > 5), the Coxeter lattices are extreme too but with norm 2;:12 < 2,
and their primitive integral copy has odd norm if and only if » = 3 mod 4. The aim of this
paper is to X-ray these lattices. In particular, as a direct consequence of the combinatorﬂigll
Theorem 2 (stated and proved in Section 4), we find that for n > 7, any section of L = A,,*
of dimension r, 1 < r < n, contains at most r(r — 1) +2 < r(r + 1) minimal vectors of L.
This enables us to extend to every odd dimension the property of “emptiness” noticed for
the lattice P7 ~ A3:

n+l

Theorem 1 [Ineveryodddimensionn >3, the Coxeter lattice A,> has no perfect section of
the same norm in dimension > 1, except the lattice Ag which possesses 15 planar hexagonal
sections.
n+l

In Section 2 we give a description of the lattice An% which leads to a combinatorial
approach of the determination of its sections with best kissing number; this combinatorial
problem is interpreted in Section 3 in terms of graphs, and solved in Section 4.

I want to thank J. Martinet for the motivation of this work, and the Reviewers for helpful
suggestions and corrections.

2. A conjecture of Martinet

Let E be a Euclidean space of dimension n, and let (ey, . . ., e,) be a basis for the dual lattice
A¥ with Gram Matrix

no -1 -1 - -1
1 |-t n -1 .. -1
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the minimal vectors of A* are the +e¢;, 0 <i < n, where ey = —(e;j + e, +--- +¢,). One
possible definition of the Coxeter lattice is

n+l
2

A, = {xlel + x0ey + - - - + xpe, | (x;) € Z" and Zx,» =0mod?2;,

as the right-hand side defines a sublattice of index 2 in A} containing the root lattice
A, = (e; — ey, 1 <i < n). It then has norm 2’1':12 and its minimal vectors are £(e; + ¢;),
0 <i < j < n.So, to establish Theorem 1 we shall bound the number of these vectors
contained in a given strict subspace of E, discarding its Euclidean structure.

In the following, E, is a real vector space of dimension n > 2 equipped with a basis

(e1, ez, ...,e,). Put

eo=—(e1+ex+---+e).
For a subspace F of E, we consider its subset
Sr=FN{e;+e;,0<i < j=<n}
with cardinality

sF = |Sk|.

Example A subspace F of E, is said canonical if it is spanned by some vectors ¢;, 0 <
i <n.

For a canonical subspace F C E, of rankr (1 <r <n — 1) we have sp = @ if
r#n—1landsp = ’(’—EI) + lif r = n — 1. Indeed, up to permutations by the symmetric
group S, +1 we may assume F = (e, ey, ..., e,_1). It then contains the (;) vectors e; + e,
0 <i < j<r—1,and no more except if r = n — 1, when we must add the vector
en—1te, =—e—e +---—ey .

For any dimension n > 3 and any integerr, | <r <n — 1, we define

sp(r) = max SF.
FCE,,dim F=r

Martinet ([5]) stated the following:

Conjecture

1. Forr > 5, s,(r) is equal to either @ or @ + 1 according as r # n — 1 or
r=n-—1.

2. Forn>5andr >2, we have s,(r) < @ except for (n,r) = (5, 2), where s5(2) = 3.
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The second part of this conjecture, applied to our lattice problem, implies Theorem 1,
the value 55(2) corresponding to the hexagonal sections of the lattice A2, which are perfect
indeed.

The conjecture will result of the actual determination of all values of s,(r) and of the
subspaces F' which realize them. To state and prove these results, an interpretation in terms
of graphs is needed.

3. Graphs associated with a subspace F of E,

The bounds of sy are attained at subspaces F of E generated by their subsets Sg; from now
on we only consider such subspaces.

Definition 1 With a subspace F of E we associate the graph G = G of the relation
e; +e; € F:its vertex setis {0,1, - - - ,n}, and two vertices i and j are joined if ¢; + ¢; lies
in F.

To any basis B C Sg of F we attach the subgraph Gg C G obtained by keeping only
the edges ij of G such that e; +e; € B.

Our aim is to compare the number of edges sy of G  with the number of edges r = dim F
of GB~

Example For a canonical subspace F of dimension r, 3 < r < n — 1, there is a basis B
whose graph is a triangle linked to a path: for instance the vectors ey + e1, e; + e, e2 +
ey, ex +es, ..., e+ e,_ constitute a basis for F = (eg, ..., e,_1).

‘We now discuss the existence of cycles in the graphs G ¢ and G.

Lemma 1

1. Ifthe vertices i and j are connected in G g by a path of odd length, ij is an edge of G .

2. The graph G g does not contain an even cycle of length > 4.

3. If a connected component C of G g contains an odd cycle, then all the vectors e;, i € C
belong to F, and C is a complete graph.

, [ ]

.

. o - [ ] [ ]

N — PN — _
n=", sF:16:(g)+1 n=8, sF:15:(g)

Figure 1. Graphs G and G £ for canonical subspaces of dimension 6 (the sr — r edges of G r\Gp appear in
dotted lines).
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Proof: By induction from the following relations, where i, j, k,l € {0, 1, ..., n}:

(ei +ej)=(e; +e)+ (e +ep)—(ex +ep),
1
e = 5((6,' +e;) —(ej +ep) + (e +ep)),
€i:(€i+€j)—€j. O

We can now characterize the canonical subspaces by their graphs.

Lemma2 Let F be anr-dimensional subspace of E,, (3 <r < n—1).Then F is canonical
if and only if its graph G contains a complete r-graph, i.e. a graph with r vertices and
( ; ) edges.

Proof: We have already seen that if F is canonical, its whole graph consists of a complete
r-graph and a path of length 1 (resp. n 4+ 1 — r isolated vertices) ifr = n—1 (resp.r < n—1).

Conversely, suppose that there is in G ¢ a connected component C with |C| = r vertices
and (;) edges. Since C is complete of order r > 3, it contains at least one triangle; it
follows from the third part of Lemma 1 that all ¢;,i € C belong to F. Since |C| = dim F,
we conclude that F = (¢;, i € C). U

4. Calculation of s, (r).

Linear type. Let F be a strict subspace of E, and let Gy = J C the partition of its
graph into connected components. We say that the component C € C is of linear type if the
subspace

Fc = (e; +e; with ij edge of C)

of F admits a basis B¢ whose graph is a path.

We say that F itself is of linear type if, apart from isolated vertices, every component of
G is of linear type. We label the type by the sequence of the lengths of the paths, the zeros
representing the isolated vertices.

For example, figure 2 shows the four possible graph structures for » = 2 (the graph of a
basis B C UB¢ appears in continuous lines).

[ ) [ ] [ ] o [ ] . o [ [}
n=3: sp=4 n#3 (exn=4): sp=2 n=>5: sp=3 n#5 (ex.n=4) sp=2

Figure 2. Linear types [2], [2,0,0], [1, 1, 1] and [1, 1, 0].
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Theorem 2 below shows in particular that the invariant sy assumes its greatest value for
subspaces which are either canonical or (in low dimension) of linear type.

Theorem 2 Let F be an r-dimensional (1 <r <n — 1) subspace of E,. Then
1. Forr > 4, we have

r(r—1)

2 l:fr#n_ly
Sp = I’(V—l) . (1)
5 +1 ifr=n-1,

except forr = 4,n = 5, F of linear type [4] where sp = 9. Equality in (1) holds only
when F is either canonical or of one of the following linear types:
r=4:n>6,typel4,0,0,...Jorn =17, type [3, 1, 1];
r=5n=17,typel5,1];
r=6:n="717, type [6].
2. Forr =1,
n # 3:s,(1) = 1 attained at type [1,0, .. .],
n = 3: s3(1) = 2 attained at type [1, 1].
3. Forr =2,
n#3,55,2)=2,attypes[1,1,0,...]and [2,0,...],
$3(2) = 4 attained at type [2],
s5(2) = 3 attained at type [1, 1, 1].
4. Forr =3,
n #£ 5:5,(3) = 4, attained at linear types [3,0,0, ...]and [1, 1, 1, 1] (ifn = 7), and at
canonical hyperplanes (if n = 4);
n = 5: s5(3) = 5 attained at type [3, 1].

Going back to Euclidean lattices we can interpret some maximal values of s in low dimen-
sions. We first note that the value s3(2) corresponds to square sections of the cubic lattice
A%, the set S consisting of two pairs of orthogonal vectors. The sections of Ag which
realize the maximum s5(2) = 3 (resp. s5(4) = 9, resp. s5(3) = 5) are similar to the perfect
lattice A, (resp. to A, ® A,, resp. to the “fragile” lattice of crystallography, see [6], Section
9.5). In dimension 7, there are coincidences, due to the multiple embeddings of the lattice
A;‘ ~ EZ into A%; for instance, canonical as well as linear type [6] hyperplanes correspond
to sections of ¥ similar to the isodual lattice D;}. This phenomenon does not occur for
n=09.
The rest of the paper is devoted to the proof of Theorem 2. Let

GF=UC

ceC

be the partition of the graph of F into connected components, where at most one C is
complete with |C| > 3 (by Lemma 2 it corresponds to the canonical subspace Fc = (e;, i €
C)of F).
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e — o ° ° °
complete type (s¢ = 3) linear type (s¢ =4) non-linear type (s¢ = 3)

Figure 3. Connected components C such that rc = 3.

For a component C € C we denote by

¢ = |C| the number of vertices of C,

sc¢ the number of edges of C (or size of C),

rc (rank of C) the dimension of Fc = (e; + e;,ij edge of C). (Of course for isolated
vertices c = 1l and s¢ = r¢ = 0.)

For example there are three possible components of rank 3.
Contribution of a component. Lemma 2 settles this question for complete components.
We now describe the other cases.

Lemma 3 Let C be a non-complete component of G g, with ¢ > 2.
1. There exists an integer dc, 0 < d¢c < ¢ — 2, d. = ¢ mod 2, such that

2_d2 2
Sc=c 4 Cf\‘ch

2. Fc¢ admits a basis whose graph is a path linked to a star of degree d¢c + 1, and its
dimension is

c—1 ifc<n,
14 =
¢ c—2 if c =n+ 1 (Which requires n odd and d¢c = 0).

b

Ssc = L%J only if C is of linear type.
4. The following conditions are equivalent:
() Xjecei € Fe
(i) de =0
(iii) C is of linear type with an even number of vertices.

Proof:

1. Since C is not complete, it does not contain odd cycles. It is thus bipartite (see [2], 1.2,
Theorem 4), and even by Lemma 1, C is a complete bipartite graph, i.e. there exists
a partition C = Vo U V) of C such that ij is an edge of C if and only if i and j are
in distinct sets Vi, as we now prove. Indeed, given i, j € C, the lengths of two paths
i—j are congruent modulo 2 (otherwise, they would form an odd cycle); then V, and
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Vi are the equivalence classes for the equivalence relation iRj if i = j or if i and j
are connected by an even path. Clearly two neighbours in C belong to distinct classes;
conversely, if i and j are in distinct classes, there are connected by a path of odd length,
and by Lemma 1, ij is an edge of C. We conclude that s¢c = |Vy|| V1| = %’1“ C_Tdc where
dc = ||Vo| — |Vi||; thus we recover Mantel’s bound | ¢? /4] for graphs without triangles.
. From Lemma 1 it follows that the subgraph G 5 associated with any basis of F does not
contain any cycle. Thus its connected components are trees, Gg = T/ UT, U ---U T,
say. We then have rc = > .(IT;| — 1) = |Gg| —m < ¢ — 1. Actually, in the case
c=n+1(@Ge Gr = C),we must have r <n=c — 1, since otherwise Fr = E, would
be canonical. We now define for F¢ a standard basis B¢ whose graph is a tree depending
only on d¢.

Put ¢ = 2p + d¢ so that the vertex classes of C have respectively p and p + d¢
elements; up to permutation by S, ,; we may assume them to be

Rk—1,1<k<p} and {2k—2,1<k<plU2p+k 0<k <dc—1}.

Then the subspace F¢ contains the following ¢ — 1 vectors:
; { eio1+e forl<i<2p—1,

eyp_1+e for2p<i<c-—1

For any (4;) € R~ we have

c—1 2p—2 c—1 c—1
Y hifi =hieo + pX:()»i + Aive + ( > )"i>62pl +) e
i= i )

2p—1
For any A € R we then have the equivalence

Ai=0 ifi e{l,...,2p — 1}iseven,

c—1 PN .
Ai=A ifief{l,...,2p—1}isodd
i=1 hifi =2 “< orifi > 2p, )

ieC
deh =0.

If ¢ < n,thee;, i € C, are independent, thus from (*) with A = 0 we obtain that the
¢ — 1 vectors f; are independent, and since r¢ < ¢ — 1, they constitute a basis for Fc,
whose rank is rc = ¢ — 1.

Ifc =n+ 1, we know that rc < ¢ — 2, and the ¢ — 1 vectors f; must satisfy a non-
trivial relation Zl<i<c71 Ai fi = 0. On the other hand, there exists, up to multiplication
by a scalar, a uniqﬁe_non-trivial relation between the ¢;,i € C:eg+e; +---+ ¢, = 0.
Therefore, using (*) with A # 0, we obtain d¢ = 0 and thus n = 2p — 1. Conversely,
if do = 0, the n vectors f; = e;_1 +¢;, i = 1,...,n satisfy the “unique” relation
fi=—fH—fz— - — fu—,and fi, f2,..., fu—1 constitute a basis for Fc = F. Its
graph is a path of ¢ — 1 = n vertices (which does not span C).
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3. Ttis clear from the previous parts of the lemma, as s¢ attains Mantel’s bound if and only
ifde =0orl.
4. Tt follows immediately from (*) with A = 1.
O

2
We now compare Mantel’s bound L%J to (rzc ). The differences (rzc) — L%J and
(5)— # are increasing functions of r¢. We can thus state the following.

Lemma 4 Let C be a non-complete component of G g of positive rank. Its size s¢ and
rank rc¢ satisfy

3 if(n,rc)=@3,2)or(5,4),

(i’c> B 1 if (n,rc) = (7,6) orif rc < 3 (linear type),
5¢ 2) ]o if C is complete, or if rc = 3 (non-linear type)

or ifrc = 4 (linear type, n > 6),
and s¢ < ('y) otherwise.

Right now, Theorem 2 is proved for subspaces F whose graphs contain exactly one
component of positive rank. In particular these F realize the bounds s3(2) (figure 2), s,,(4)
(figure 4) and s7(6) (figure 5).

From now on, we suppose that the graph Gy = Jo. C of F contains at least two
components of positive rank.

Dimensions. Consider x = ¢; +¢; € Sr. The indices i and j belong to the same con-
nected component C, and thus the vector x belongs to the corresponding subspace Fc.
Since Sy spans F, we have F = ) Fc. We first discuss whether this sum is direct.

Lemma 5 We have r = ) ~rc — & withd = 0or 1, where § = 1 if and only if all
non-complete components C € C have linear type and odd rank.

Figure 5. Linear type [6] (sr = 16).
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Proof: Note that for |C| > 2 the typical vector of F¢ can be written x¢ = Zi cc hiei.
Since any relation of dependence between the e; has the form A(ey +e; + - -+ ¢,) = 0 for

some A € R, and since C is a partition of {0, 1, ..., n}, we have the following equivalence:
(Z}CC:O, XCGFc><ﬁ<3)»€R|VC€CZXC=)\Z€,'>.
CceC ieC

Using the last part of Lemma 3, we are left with two possibilities:

(1) there is an isolated vertex or a non-complete component with invariant d¢c # 0: the
above Aisnull, and F = @ Fc.

(2) every non-complete component C has order |C| > 2 and invariant d¢ = 0: then for
all C e C, the nonzero vector x¢ = Ziec e; belongs to F¢, and we have a non-
trivial relation Y  xc = 0. As this is up to scale the only one, we have dim(}_ F¢) =

O

Proof of Theorem 2: We have to compare the size sp = Y_ rc of GF to the dimension
r=>%rc—38of F.

Dype[l,...,1,0,...,0] case: the graph G consistsof 1 <k < % paths of length 1 and
of n + 1 — k isolated vertices; it then has s = k edges, while by Lemma 5, r = k — 4,
where § = 1 if and only if there are no isolated vertices i.e. n = 2k — 1 = 2r + 1. Thus

r ifn>2r, n#2r+1
sp=r+48§= .
r+1 ifn=2r+1

is < (;) if and only if r > 4. In contrast, this linear type realizes the values s,(1), s,(2) (in
particular s5(2) = 3) and s7(3).
General case: maxc rc = ro > 2. From Lemma 4 we deduce

SF=ZSCSZ(r§)+k

where k denotes the number of components C of linear type and rank r¢ < 3. Now, writing

Z(r(zj —re)=0Cre)? =Y re -2 ZC;ﬁC’ rcre where Y rc = r + 8 by Lemma 5, we
obtain the inequality

.
<2> —sp > Y rerer—k—8r, 3)

C#C

which, by Lemma 4, is strict if there is a non-complete component of rank r¢ > 4.
If 6 =0, (3) implies sp < (;) (equality only for r = 3) as stated in Theorem 2. Indeed
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ifk <2 Zc;éc' rcrer —k > ry —k > rg — 2 > 0, equality holding only for F of type
[2, 1] (and r = 3);
ithk>3:3 c crcro —k=rotk —1) =k =2k —1)—k > 1.

From now on we suppose § = 1: all non-complete C € C are of linear type with odd
ranks. In particular, we have ryp > 3. We write Gp = CoUC, U ---UC,, (m > 1) with
ro>r >rp>land ) |Ci|=n+1.

We shalluse forr +1=rog+r; + -+ ryand Y rcrer = rory + - - - the estimations

r+1z=rg+k—1, “)
> rere = ro(r 4 1= rg). (5)

Note that the equality in (4) (resp. (5)) holds if and only if F is of linear type [3, 1, ..., 1]
(resp. m = 1). We then obtain the estimation

—sp>M
s s
) =

M = (r —ro)(ro —2) — 2,

with

wherer —ro=ri+---+r,—1>m—1>0andry—2 > 1. We then have M > —2. We
even obtain M > 0 (i.e. sp < (;)) if r — rp > 3. We now concentrate on the three cases
O0<r—ro<2.

(@ r =ry: Gp = Cyp U Cy, with r; = 1. If Cy is complete, F is a canonical hyperplane
and sp = (;) + 1 as asserted in Theorem 2. If Cy is linear of rank 3, 5, 7, . . ., it follows
from Lemma 3 that s = 1 4 s¢, is equal to 1 + (ro + 1)2/4 =5,10,17, ..., strictly
smaller than (;) except for the cases [3, 1] (which realizes the maximum s5(3)) and
[5, 1] (which realizes s, (5)), see figure 6.

®r =rg+1: Gp = CyUCy UCy, withr; = r, = 1. Since (5) is no more an
equality, we obtain (;) —sp > M+ 1 =ry—3 > 0, where the equality requires that
equality (4) holds, i.e. that F is of type [3, 1, 1], which indeed realizes the maximum
s7(4) = 6 (figure 7).

) r =rg+2,ie.ri+---+r, = 3. There are two occurrences of this situation:
m=3,rp=r, =r3 =1,orm = 1,r; = 3. In the first case, equality (5) does not

Figure 6. Linear types [3, 1] and [5, 1].
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Figure 7. Type[3,1, 1].

hold. In the second case, (4) does not hold. Anyway, we have (;) —sp>M+1=
2ro— 5> 0.

This completes the proof of Theorem 2. O
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