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Abstract. In this paper, we compute the kissing numbers of the sections of the Coxeter lattices A

n+1
2

n , n odd,
and in particular we prove that for n ≥ 7 they cannot be perfect. The proof is merely combinatorial and relies on
the structure of graphs canonically attached to the sections.
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1. Introduction

A problem of recent interest is to construct integral perfect lattices with odd norm. By lattice
we mean an additive subgroup L of a Euclidean space (E, ·) which is additively generated
by some R-basis for E . Such a lattice is integral if the inner product x · y takes integral
values on it. The norm of a lattice L is the minimal value M of x · x for x ∈ L , x �= 0,
and the vectors ±x ∈ L for which x · x = M are the minimal vectors of L . Their number
2s is the kissing number of L , terminology which refers to the sphere packing classically
associated to the lattice L .

Perfect lattices arise in determining the densest lattice packing of spheres. A lattice
L is perfect if it is uniquely determined up to similarity by the coordinates of its mini-
mal vectors in one of its Z-bases. In 1877 Korkine and Zolotareff proved that all lattices
whose packing density is a local maximum (extreme lattices) are perfect. They also proved
that a perfect lattice can be rescaled so as to be integral, and that its kissing number 2s
satisfies

s ≥ n(n + 1)

2
,

where n = dim E . All similarity classes of perfect lattices are now known up to dimension
7. From dimension 8 onwards, the complete classification seems out of reach. Voronoi’s
algorithm for perfect forms produced at this date 10916 inequivalent forms of dimension
eight (for a catalogue, see http://www.math.u-bordeaux.fr/∼martinet/).

An intriguing property of this list is that it contains no integral lattice of odd norm. It
has recently been proved by Martinet and Venkov that the lattice P2

7 (in the notation of
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[4]) is the unique integral perfect lattice of dimension 2 ≤ n ≤ 9 having norm 3 ([7]).
Their method consists in finding for the kissing number of integral lattices of norm 3 an
upper bound strictly inferior to n(n + 1). Note that a first 10-dimensional example of a
perfect lattice having odd norm (namely 11) was recently constructed by Martinet (see [3],
Section 4).

A natural method to construct integral perfect lattices having odd norm would consist in
taking sections of a known one that contain a great number of its minimal vectors. About
this method by sections, note that the algorithms of Batut and Martinet to “X-ray” integral
lattices ([1]) showed that out of the known perfect lattices of dimension 3 ≤ n ≤ 8, P2

7 is
also the unique one without perfect sections of dimension > 1.

This remarkable lattice P2
7 belongs to an infinite sequence of perfect lattices with odd

norm (when rescaled to be integral). This sequence is part of a family that Coxeter derived
from the root lattices An (see [6], Section 5.2): for any dimension n ≥ 1 and any divisor
q of n + 1 the lattice A

q
n is the unique sublattice of the dual lattice A

∗
n that contains An

to index q . For n > 5 and q < n+1
2 , all these lattices have the same norm as An , and are

therefore perfect (and even extreme) with even norm when rescaled so as to be integral.
For q = n+1

2 (n odd, n ≥ 5), the Coxeter lattices are extreme too but with norm 2n−2
n+1 < 2,

and their primitive integral copy has odd norm if and only if n ≡ 3 mod 4. The aim of this
paper is to X-ray these lattices. In particular, as a direct consequence of the combinatorial
Theorem 2 (stated and proved in Section 4), we find that for n ≥ 7, any section of L = A

n+1
2

n

of dimension r , 1 < r < n, contains at most r (r − 1) + 2 < r (r + 1) minimal vectors of L .
This enables us to extend to every odd dimension the property of “emptiness” noticed for
the lattice P2

7 ∼ A
4
7:

Theorem 1 In every odd dimension n ≥3, the Coxeter lattice A

n+1
2

n has no perfect section of
the same norm in dimension >1, except the lattice A

3
5 which possesses 15 planar hexagonal

sections.

In Section 2 we give a description of the lattice A

n+1
2

n which leads to a combinatorial
approach of the determination of its sections with best kissing number; this combinatorial
problem is interpreted in Section 3 in terms of graphs, and solved in Section 4.

I want to thank J. Martinet for the motivation of this work, and the Reviewers for helpful
suggestions and corrections.

2. A conjecture of Martinet

Let E be a Euclidean space of dimension n, and let (e1, . . . , en) be a basis for the dual lattice
A

∗
n with Gram Matrix

1

n + 1




n −1 −1 · · · −1

−1 n −1 · · · −1

· · · · · · ·
−1 −1 −1 · · · n


 ;
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the minimal vectors of A
∗
n are the ±ei , 0 ≤ i ≤ n, where e0 = −(e1 + e2 + · · · + en). One

possible definition of the Coxeter lattice is

A

n+1
2

n =
{

x1e1 + x2e2 + · · · + xnen | (xi ) ∈ Z
n and

∑
i

xi ≡ 0 mod 2

}
,

as the right-hand side defines a sublattice of index 2 in A
∗
n containing the root lattice

An = 〈ei − e0, 1 ≤ i ≤ n〉. It then has norm 2n−2
n+1 and its minimal vectors are ±(ei + e j ),

0 ≤ i < j ≤ n. So, to establish Theorem 1 we shall bound the number of these vectors
contained in a given strict subspace of E , discarding its Euclidean structure.

In the following, En is a real vector space of dimension n ≥ 2 equipped with a basis
(e1, e2, . . . , en). Put

e0 = −(e1 + e2 + · · · + en).

For a subspace F of En we consider its subset

SF = F ∩ {ei + e j , 0 ≤ i < j ≤ n},

with cardinality

sF = |SF |.

Example A subspace F of En is said canonical if it is spanned by some vectors ei , 0 ≤
i ≤ n.

For a canonical subspace F ⊂ En of rank r (1 ≤ r ≤ n − 1) we have sF = r (r−1)
2 if

r �= n − 1 and sF = r (r−1)
2 + 1 if r = n − 1. Indeed, up to permutations by the symmetric

group Sn+1 we may assume F = 〈e0, e1, . . . , er−1〉. It then contains the ( r
2 ) vectors ei + e j ,

0 ≤ i < j ≤ r − 1, and no more except if r = n − 1, when we must add the vector
en−1 + en = −e0 − e1 + · · · − en−2.

For any dimension n ≥ 3 and any integer r , 1 ≤ r ≤ n − 1, we define

sn(r ) = max
F⊂En , dim F=r

sF .

Martinet ([5]) stated the following:

Conjecture

1. For r ≥ 5, sn(r ) is equal to either r (r−1)
2 or r (r−1)

2 + 1 according as r �= n − 1 or
r = n − 1.

2. For n ≥ 5 and r ≥ 2, we have sn(r ) < r (r+1)
2 except for (n, r ) = (5, 2), where s5(2) = 3.
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The second part of this conjecture, applied to our lattice problem, implies Theorem 1,
the value s5(2) corresponding to the hexagonal sections of the lattice A

3
5, which are perfect

indeed.
The conjecture will result of the actual determination of all values of sn(r ) and of the

subspaces F which realize them. To state and prove these results, an interpretation in terms
of graphs is needed.

3. Graphs associated with a subspace F of En

The bounds of sF are attained at subspaces F of E generated by their subsets SF ; from now
on we only consider such subspaces.

Definition 1 With a subspace F of E we associate the graph G = G F of the relation
ei + e j ∈ F : its vertex set is {0,1, · · · ,n}, and two vertices i and j are joined if ei + e j lies
in F .

To any basis B ⊂ SF of F we attach the subgraph GB ⊂ G F obtained by keeping only
the edges i j of G F such that ei + e j ∈ B.

Our aim is to compare the number of edges sF of G F with the number of edges r = dim F
of GB.

Example For a canonical subspace F of dimension r , 3 ≤ r ≤ n − 1, there is a basis B
whose graph is a triangle linked to a path: for instance the vectors e0 + e1, e1 + e2, e2 +
e0, e2 + e3, . . . , er−2 + er−1 constitute a basis for F = 〈e0, . . . , er−1〉.

We now discuss the existence of cycles in the graphs G F and GB.

Lemma 1
1. If the vertices i and j are connected in G F by a path of odd length, ij is an edge of G F .
2. The graph GB does not contain an even cycle of length ≥ 4.
3. If a connected component C of G F contains an odd cycle, then all the vectors ei , i ∈ C

belong to F, and C is a complete graph.

Figure 1. Graphs GB and GF for canonical subspaces of dimension 6 (the sF − r edges of G F \GB appear in
dotted lines).
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Proof: By induction from the following relations, where i, j, k, l ∈ {0, 1, . . . , n}:

(ei + e j ) = (ei + el) + (e j + ek) − (ek + el),

ei = 1

2
((ei + e j ) − (e j + ek) + (ei + ek)),

ei = (ei + e j ) − e j .

We can now characterize the canonical subspaces by their graphs.

Lemma 2 Let F be an r-dimensional subspace of En (3 ≤ r ≤ n−1). Then F is canonical
if and only if its graph G F contains a complete r-graph, i.e. a graph with r vertices and
( r

2 ) edges.

Proof: We have already seen that if F is canonical, its whole graph consists of a complete
r -graph and a path of length 1 (resp. n + 1 − r isolated vertices) if r = n−1 (resp. r < n−1).

Conversely, suppose that there is in G F a connected component C with |C | = r vertices
and ( r

2 ) edges. Since C is complete of order r ≥ 3, it contains at least one triangle; it
follows from the third part of Lemma 1 that all ei , i ∈ C belong to F . Since |C | = dim F ,
we conclude that F = 〈ei , i ∈ C〉.

4. Calculation of sn(r ).

Linear type. Let F be a strict subspace of En and let G F = ⋃
C∈C C the partition of its

graph into connected components. We say that the component C ∈ C is of linear type if the
subspace

FC = 〈ei + e j with i j edge of C〉

of F admits a basis BC whose graph is a path.
We say that F itself is of linear type if, apart from isolated vertices, every component of

G F is of linear type. We label the type by the sequence of the lengths of the paths, the zeros
representing the isolated vertices.

For example, figure 2 shows the four possible graph structures for r = 2 (the graph of a
basis B ⊂ ∪BC appears in continuous lines).

Figure 2. Linear types [2], [2, 0, 0], [1, 1, 1] and [1, 1, 0].
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Theorem 2 below shows in particular that the invariant sF assumes its greatest value for
subspaces which are either canonical or (in low dimension) of linear type.

Theorem 2 Let F be an r-dimensional (1 ≤ r ≤ n − 1) subspace of En. Then

1. For r ≥ 4, we have

sF ≤




r (r − 1)

2
if r �= n − 1,

r (r − 1)

2
+ 1 if r = n − 1,

(1)

except for r = 4, n = 5, F of linear type [4] where sF = 9. Equality in (1) holds only
when F is either canonical or of one of the following linear types:
r = 4: n ≥ 6, type [4, 0, 0, . . .] or n = 7, type [3, 1, 1];
r = 5: n = 7, type [5, 1];
r = 6: n = 7, type [6].

2. For r = 1,

n �= 3: sn(1) = 1 attained at type [1, 0, . . .],
n = 3: s3(1) = 2 attained at type [1, 1].

3. For r = 2,

n �= 3, 5: sn(2) = 2, at types [1, 1, 0, . . .] and [2, 0, . . .],
s3(2) = 4 attained at type [2],
s5(2) = 3 attained at type [1, 1, 1].

4. For r = 3,

n �= 5: sn(3) = 4, attained at linear types [3, 0, 0, . . .] and [1, 1, 1, 1] (if n = 7), and at
canonical hyperplanes (if n = 4);
n = 5: s5(3) = 5 attained at type [3, 1].

Going back to Euclidean lattices we can interpret some maximal values of s in low dimen-
sions. We first note that the value s3(2) corresponds to square sections of the cubic lattice
A

2
3, the set SF consisting of two pairs of orthogonal vectors. The sections of A

3
5 which

realize the maximum s5(2) = 3 (resp. s5(4) = 9, resp. s5(3) = 5) are similar to the perfect
lattice A2 (resp. to A2 ⊗A2, resp. to the “fragile” lattice of crystallography, see [6], Section
9.5). In dimension 7, there are coincidences, due to the multiple embeddings of the lattice
A

4
7 ∼ E

∗
7 into A

∗
7; for instance, canonical as well as linear type [6] hyperplanes correspond

to sections of E
∗
7 similar to the isodual lattice D

+
6 . This phenomenon does not occur for

n = 9.
The rest of the paper is devoted to the proof of Theorem 2. Let

G F =
⋃
C∈C

C

be the partition of the graph of F into connected components, where at most one C is
complete with |C | ≥ 3 (by Lemma 2 it corresponds to the canonical subspace FC = 〈ei , i ∈
C〉 of F).
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Figure 3. Connected components C such that rC = 3.

For a component C ∈ C we denote by

c = |C | the number of vertices of C ,
sC the number of edges of C (or size of C),
rC (rank of C) the dimension of FC = 〈ei + e j , i j edge of C〉. (Of course for isolated

vertices c = 1 and sC = rC = 0.)

For example there are three possible components of rank 3.
Contribution of a component. Lemma 2 settles this question for complete components.

We now describe the other cases.

Lemma 3 Let C be a non-complete component of G F , with c ≥ 2.
1. There exists an integer dC , 0 ≤ dC ≤ c − 2, dc ≡ c mod 2, such that

sC = c2 − d2
C

4
≤

⌊
c2

4

⌋
.

2. FC admits a basis whose graph is a path linked to a star of degree dC + 1, and its
dimension is

rC =
{

c − 1 if c ≤ n,

c − 2 if c = n + 1 (which requires n odd and dC = 0).

3. sC = � c2

4 � only if C is of linear type.
4. The following conditions are equivalent:

(i)
∑

i∈C ei ∈ FC

(ii) dC = 0
(iii) C is of linear type with an even number of vertices.

Proof:

1. Since C is not complete, it does not contain odd cycles. It is thus bipartite (see [2], I.2,
Theorem 4), and even by Lemma 1, C is a complete bipartite graph, i.e. there exists
a partition C = V0 ∪ V1 of C such that i j is an edge of C if and only if i and j are
in distinct sets Vk , as we now prove. Indeed, given i, j ∈ C , the lengths of two paths
i– j are congruent modulo 2 (otherwise, they would form an odd cycle); then V0 and
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V1 are the equivalence classes for the equivalence relation iR j if i = j or if i and j
are connected by an even path. Clearly two neighbours in C belong to distinct classes;
conversely, if i and j are in distinct classes, there are connected by a path of odd length,
and by Lemma 1, i j is an edge of C . We conclude that sC = |V0||V1| = c+dC

2
c−dC

2 where
dC = ||V0|− |V1||; thus we recover Mantel’s bound �c2/4� for graphs without triangles.

2. From Lemma 1 it follows that the subgraph GB associated with any basis of FC does not
contain any cycle. Thus its connected components are trees, GB = T1 ∪ T2 ∪ · · · ∪ Tm

say. We then have rC = ∑
i (|Ti | − 1) = |GB| − m ≤ c − 1. Actually, in the case

c = n + 1 (i.e. G F = C), we must have r < n = c − 1, since otherwise FC = En would
be canonical. We now define for FC a standard basis BC whose graph is a tree depending
only on dC .

Put c = 2p + dC so that the vertex classes of C have respectively p and p + dC

elements; up to permutation by Sn+1 we may assume them to be

{2k − 1, 1 ≤ k ≤ p} and {2k − 2, 1 ≤ k ≤ p} ∪ {2p + k, 0 ≤ k ≤ dC − 1}.

Then the subspace FC contains the following c − 1 vectors:

fi =
{

ei−1 + ei for 1 ≤ i ≤ 2p − 1,

e2p−1 + ei for 2p ≤ i ≤ c − 1.

For any (λi ) ∈ R
c−1 we have

c−1∑
i=1

λi fi = λ1e0 +
2p−2∑

1

(λi + λi+1)ei +
(

c−1∑
2p−1

λi

)
e2p−1 +

c−1∑
2p

λi ei .

For any λ ∈ R we then have the equivalence

c−1∑
i=1

λi fi = λ
∑
i∈C

ei ⇔




λi = 0 if i ∈ {1, . . . , 2p − 1} is even,

λi = λ if i ∈ {1, . . . , 2p − 1} is odd

or if i ≥ 2p,

dCλ = 0.

(*)

If c ≤ n, the ei , i ∈ C , are independent, thus from (∗) with λ = 0 we obtain that the
c − 1 vectors fi are independent, and since rC ≤ c − 1, they constitute a basis for FC ,
whose rank is rC = c − 1.

If c = n + 1, we know that rC ≤ c − 2, and the c − 1 vectors fi must satisfy a non-
trivial relation

∑
1≤i≤c−1 λi fi = 0. On the other hand, there exists, up to multiplication

by a scalar, a unique non-trivial relation between the ei , i ∈ C : e0 + e1 + · · · + en = 0.
Therefore, using (∗) with λ �= 0, we obtain dC = 0 and thus n = 2p − 1. Conversely,
if dC = 0, the n vectors fi = ei−1 + ei , i = 1, . . . , n satisfy the “unique” relation
fn = − f1 − f3 − · · · − fn−2, and f1, f2, . . . , fn−1 constitute a basis for FC = F . Its
graph is a path of c − 1 = n vertices (which does not span C).
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3. It is clear from the previous parts of the lemma, as sC attains Mantel’s bound if and only
if dC = 0 or 1.

4. It follows immediately from (∗) with λ = 1.

We now compare Mantel’s bound � c2

4 � to ( rC

2 ). The differences ( rC

2 ) − � (rC +1)2

4 � and
( rC

2 ) − (rC +2)2

4 are increasing functions of rC . We can thus state the following.

Lemma 4 Let C be a non-complete component of G F of positive rank. Its size sC and
rank rC satisfy

sC −
(

rC

2

)
=




3 if (n, rC ) = (3, 2) or (5, 4),

1 if (n, rC ) = (7, 6) or if rC ≤ 3 (linear type),

0 if C is complete, or if rC = 3 (non-linear type)

or if rC = 4 (linear type, n ≥ 6),

and sC < ( rC

2 ) otherwise.

Right now, Theorem 2 is proved for subspaces F whose graphs contain exactly one
component of positive rank. In particular these F realize the bounds s3(2) (figure 2), sn(4)
(figure 4) and s7(6) (figure 5).

From now on, we suppose that the graph G F = ⋃
C∈C C of F contains at least two

components of positive rank.
Dimensions. Consider x = ei + e j ∈ SF . The indices i and j belong to the same con-

nected component C , and thus the vector x belongs to the corresponding subspace FC .
Since SF spans F , we have F = ∑

FC . We first discuss whether this sum is direct.

Lemma 5 We have r = ∑
C rC − δ with δ = 0 or 1, where δ = 1 if and only if all

non-complete components C ∈ C have linear type and odd rank.

Figure 4. Linear types [4] (sF = 9) and [4, 0, 0] (sF = 6).

Figure 5. Linear type [6] (sF = 16).
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Proof: Note that for |C | ≥ 2 the typical vector of FC can be written xC = ∑
i∈C λi ei .

Since any relation of dependence between the ei has the form λ(e0 + e1 + · · ·+ en) = 0 for
some λ ∈ R, and since C is a partition of {0, 1, . . . , n}, we have the following equivalence:

( ∑
C∈C

xC = 0, xC ∈ FC

)
⇐⇒

(
∃λ ∈ R | ∀C ∈ C : xC = λ

∑
i∈C

ei

)
.

Using the last part of Lemma 3, we are left with two possibilities:

(1) there is an isolated vertex or a non-complete component with invariant dC �= 0: the
above λ is null, and F = ⊕FC .

(2) every non-complete component C has order |C | ≥ 2 and invariant dC = 0: then for
all C ∈ C, the nonzero vector xC = ∑

i∈C ei belongs to FC , and we have a non-
trivial relation

∑
xC = 0. As this is up to scale the only one, we have dim(

∑
FC ) =∑

dim FC − 1.

Proof of Theorem 2: We have to compare the size sF = ∑
rC of G F to the dimension

r = ∑
rC − δ of F .

Type [1, . . . , 1, 0, . . . , 0] case: the graph G F consists of 1 ≤ k ≤ n+1
2 paths of length 1 and

of n + 1 − k isolated vertices; it then has sF = k edges, while by Lemma 5, r = k − δ,
where δ = 1 if and only if there are no isolated vertices i.e. n = 2k − 1 = 2r + 1. Thus

sF = r + δ =
{

r if n ≥ 2r, n �= 2r + 1

r + 1 if n = 2r + 1

is < ( r
2 ) if and only if r ≥ 4. In contrast, this linear type realizes the values sn(1), sn(2) (in

particular s5(2) = 3) and s7(3).
General case: maxC rC = r0 ≥ 2. From Lemma 4 we deduce

sF =
∑

sC ≤
∑

( rC

2 ) + k

where k denotes the number of components C of linear type and rank rC ≤ 3. Now, writing∑
(r2

C − rC ) = (
∑

rC )2 − ∑
rC − 2

∑
C �=C ′ rCrC ′ where

∑
rC = r + δ by Lemma 5, we

obtain the inequality

(
r

2

)
− sF ≥

∑
C �=C ′

rCrC ′ − k − δr, (3)

which, by Lemma 4, is strict if there is a non-complete component of rank rC > 4.
If δ = 0, (3) implies sF ≤ ( r

2 ) (equality only for r = 3) as stated in Theorem 2. Indeed
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if k ≤ 2:
∑

C �=C ′ rCrC ′ − k ≥ r0 − k ≥ r0 − 2 ≥ 0, equality holding only for F of type
[2, 1] (and r = 3);

if k ≥ 3:
∑

C �=C ′ rCrC ′ − k ≥ r0(k − 1) − k ≥ 2(k − 1) − k ≥ 1.

From now on we suppose δ = 1: all non-complete C ∈ C are of linear type with odd
ranks. In particular, we have r0 ≥ 3. We write G F = C0 ∪ C1 ∪ · · · ∪ Cm (m ≥ 1) with
r0 ≥ r1 ≥ rm ≥ 1 and

∑ |Ci | = n + 1.
We shall use for r + 1 = r0 + r1 + · · · + rm and

∑
rCrC ′ = r0r1 + · · · the estimations

r + 1 ≥ r0 + k − 1, (4)∑
rCr ′

C ≥ r0(r + 1 − r0). (5)

Note that the equality in (4) (resp. (5)) holds if and only if F is of linear type [3, 1, . . . , 1]
(resp. m = 1). We then obtain the estimation(

r

2

)
− sF ≥ M,

with

M = (r − r0)(r0 − 2) − 2,

where r − r0 = r1 +· · ·+ rm − 1 ≥ m − 1 ≥ 0 and r0 − 2 ≥ 1. We then have M ≥ −2. We
even obtain M > 0 (i.e. sF < ( r

2 )) if r − r0 ≥ 3. We now concentrate on the three cases
0 ≤ r − r0 ≤ 2.

(a) r = r0: G F = C0 ∪ C1, with r1 = 1. If C0 is complete, F is a canonical hyperplane
and sF = ( r

2 ) + 1 as asserted in Theorem 2. If C0 is linear of rank 3, 5, 7, . . ., it follows
from Lemma 3 that sF = 1 + sC0 is equal to 1 + (r0 + 1)2/4 = 5, 10, 17, . . ., strictly
smaller than ( r

2 ) except for the cases [3, 1] (which realizes the maximum s5(3)) and
[5, 1] (which realizes sn(5)), see figure 6.

(b) r = r0 + 1: G F = C0 ∪ C1 ∪ C2, with r1 = r2 = 1. Since (5) is no more an
equality, we obtain ( r

2 ) − sF ≥ M + 1 = r0 − 3 ≥ 0, where the equality requires that
equality (4) holds, i.e. that F is of type [3, 1, 1], which indeed realizes the maximum
s7(4) = 6 (figure 7).

(c) r = r0 + 2, i.e. r1 + · · · + rm = 3. There are two occurrences of this situation:
m = 3, r1 = r2 = r3 = 1, or m = 1, r1 = 3. In the first case, equality (5) does not

Figure 6. Linear types [3, 1] and [5, 1].
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Figure 7. Type [3, 1, 1].

hold. In the second case, (4) does not hold. Anyway, we have ( r
2 ) − sF ≥ M + 1 =

2r0 − 5 > 0.

This completes the proof of Theorem 2.
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