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Abstract. Let M be a reductive monoid with unit group G. Let � denote the idempotent cross-section of
the G × G-orbits on M . If W is the Weyl group of G and e, f ∈ � with e ≤ f , we introduce a projection
map from WeW to WfW. We use these projection maps to obtain a new description of the Bruhat-Chevalley
order on the Renner monoid of M . For the canonical compactification X of a semisimple group G0 with Borel
subgroup B0 of G0, we show that the poset of B0 × B0-orbits of X (with respect to Zariski closure inclusion) is
Eulerian.
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Introduction

Reductive monoids M are Zariski closures of reductive groups G. By this we mean that if
G is a closed subgroup of GLn(k), then the closure M of G in Mn(k) is a reductive monoid.
The Bruhat-Chevalley order in G has a natural extension to reductive monoids. The Renner
monoid R takes the place of the Weyl group W . Associated with the Bruhat decomposition
of a G × G-orbit of M is a W × W -orbit of R that is a graded poset and has been explicitly
determined by the author [7]. The ordering on R is more removed from the ordering on
W and hence harder to understand. It is the detailed study of the ordering on R that is the
purpose of this paper.

The W ×W -orbits are indexed by the cross-section lattice � of M . For two W ×W -orbits
WeW, WfW with e ≤ f , we define an upward projection map p : WeW → WfW. These
are order-preserving maps with some pleasing properties. If σ ∈ WeW, θ ∈ WfW, then
we show that σ ≤ θ in R if and only if p(σ ) ≤ θ . Combining with the description of the
order on the W × W -orbits in [7], we obtain a new description of the order on R which
enables us to obtain several consequences. In particular we show that any length 2 interval
in R is either a chain or a diamond. This leads to a conjecture on the Möbius function
on R.

We go on to study canonical reductive monoids associated with the canonical compact-
ification of semisimple groups, cf. [13]. We prove that for a canonical monoid, the poset
R∗ = R\{0} is Eulerian. This extends a classical result of Verma [18] that W is Eulerian
and a recent result of the author [7] that the W × W -orbits in R∗ are Eulerian.
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1. Preliminaries

Let P be a finite partially ordered set with a maximum and minimum element such that
all maximal chains have the same length. Then P admits a rank function with the minimal
element having rank zero. If X ⊆ P , we will say that X is balanced if the number of
even rank elements of X is equal to the number of odd rank elements of X . P is said to
be Eulerian if for α, β ∈ P with α < β, the interval [α, β] is balanced. Eulerian posets
were first defined by Stanley [16] and have been extensively studied. The Dehn-Somerville
equations are valid in these posets and as stated in [17; Section 3.14], Eulerian posets enjoy
remarkable duality properties.

Let k be an algebraically closed field and let G be a reductive group defined over k. Let
T be a maximal torus contained in a Borel subgroup B of G. Let W = NG(T )/T denote
the Weyl group of G and let S denote the generating set of simple reflections of W . Then
G has the Bruhat decomposition:

G =
⊔
w∈W

BwB (1)

As in [1], the Bruhat-Chevalley order on W is defined as:

x ≤ y if BxB ⊆ By B (2)

As is well known, this is equivalent x being a subword of a reduced expression y =
α1 . . . αm, α1, . . . , αm ∈ S. The length l(y) is defined to be m. If w0 is the longest element
of W , then B− = w0 Bw0 is the Borel subgroup of G opposite to B relative to T . If
x1, . . . , xn ∈ W , then let

x1 ∗ · · · ∗ xn =
{

x1 . . . xn if l(x1 . . . xn) = l(x1) + · · · + l(xn)

undefined otherwise

For x, y ∈ W , let x ◦ y, x � y ∈ W be defined as:

B(x ◦ y)B = BxByB, B−(x � y)B = B−x By B (3)

Lemma 1.1 Let x, y ∈ W . Then
(i) x ◦ y = x1 ∗ y = x ∗ y1 for some x1 ≤ x, y1 ≤ y

(ii) x ◦ y = max{xy′ | y′ ≤ y} = max{x ′y | x ′ ≤ x} = max{x ′y′ | x ′ ≤ x, y′ ≤ y}
(iii) x � y = min{xy′ | y′ ≤ y} = min{x ′y | x ′ ≥ x} = min{x ′y′ | x ′ ≥ x, y′ ≤ y}
(iv) x � y = xy1 with y1 ≤ y and x = (xy1) ∗ y−1

1
(v) x � y = xy if and only if l(xy) = l(x) − l(y)

(vi) (x � y) ◦ y−1 = (x � y)y−1 and (x ◦ y) � y−1 = (x ◦ y)y−1

Proof: (i) follows the Tits axioms and induction on length. (ii) then follows from (i) and
(3). (iii) and (iv) follow from (i) and (ii) by noting that x � y = w0((w0x) ◦ y).
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(iv) Let x � y = s. Then by (iv) x = sy−1
1 for some y1 ≤ y. Then by (i), (ii),

x = sy−1
1 ≤ s ◦ y−1

1 ≤ s ◦ y−1 = s ′ ∗ y−1

for some s ′ ≤ s. So x = s ′′ ∗ y−1
2 for some s ′′ ≤ s ′, y2 ≤ y. So

s ≥ s ′ ≥ s ′′ = xy−1
2 ≥ x � y = s

Hence s = s ′ and (x � y) ◦ y−1 = (x � y)y−1.

Corollary 1.2 Let x, x ′, y, y′ ∈ W . If x ≥ x ′ and x ∗ y = x ′ ∗ y′, then y ≤ y′.

Proof: By Lemma 1.1,

x ∗ y = x ′ ∗ y′ = x ′ ◦ y′ ≤ x ◦ y′ = x ∗ y1

for some y1 ≤ y′. By [7; Lemma 2.1], y ≤ y1. So y ≤ y′.

Lemma 1.3 Let x0, y0, s ∈ W such that s0 = x0 � y0 ≤ s. Then

Y = {
y ≤ y−1

0

∣∣ s ◦ y = x0
}

is a balanced subset of W.

Proof: By Lemma 1.1 (iv), s0 = x0 y1, with y1 ≤ y0 and x0 = s0 ∗ y−1
1 . Let y ∈ Y . Then

y ≤ y−1
0 and s ◦ y = x0. By Lemma 1.1 (i), x0 = s ′ ∗ y with s ′ ≤ s. Then

s0 = x0 � y0 ≤ x0 y−1 = s ′

Since s0 ∗ y−1
1 = x0 = s ′ ∗ y, we see by Corollary 1.2 that y ≤ y−1

1 . Hence

Y = {
y ∈ W | y ≤ y−1

1 , x0 = s ◦ y
}

We prove by induction on l(y1) that Y is balanced. If l(y1) = 0, then x0 = s0 < s and
Y = ∅. So let l(y1) > 0. Let y1 = α ∗ y2, α ∈ S. Let

Y1 = {y ∈ Y | yα > y}
Y2 = {y ∈ Y | yα < y, yα ∈ Y }

Let y ∈ Y1. Then y ≤ y−1
1 . So

yα = y ◦ α ≤ y−1
1 ◦ α = y−1

1
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and

s ◦ (yα) = s ◦ y ◦ α = x0 ◦ α = s0 ◦ y−1
1 ◦ α = s0 ◦ y−1

1 = x0

Hence yα ∈ Y2. Thus Y1 
 Y2 is balanced. Let

Y3 = {y ∈ Y | yα < y, yα /∈ Y }

So Y = Y1 
 Y2 
 Y3. Let x1 = s0 y−1
2 = s0 ∗ y−1

2 . Then by induction hypothesis,

Z = {
y ∈ Y | y ≤ y−1

2 , s ◦ y = x1
}

is balanced. Let y ∈ Z . Then x1 = s ◦ y = s1 ∗ y for some s1 ≤ s. Since x1 < x1α, we see
that y < yα. Then

yα = y ◦ α ≤ y−1
2 ◦ α = y−1

1

and

s ◦ (yα) = s ◦ y ◦ α = x1 ◦ α = x0

Thus yα ∈ Y3. Conversely let y ∈ Y3. Then

(yα) ∗ α = y ≤ y−1
1 = y−1

2 ∗ α

Hence yα ≤ y−1
2 . Also s ◦ (yα) �= x0 and

(s ◦ (yα)) ◦ α = s ◦ ((yα) ◦ α) = s ◦ y = x0

Thus

(s ◦ (yα)) ∗ α = x0 = x1 ∗ α

So s ◦ (yα) = x1 and yα ∈ Z . Since Z is balanced, we see that Y3 is balanced. Hence
Y = Y1 
 Y2 
 Y3 is balanced.

If I ⊆ S, then as usual let WI denote the parabolic subgroup of W generated by I and let

DI = {x ∈ W | xw = x ∗ w for all w ∈ WI }

denote the set of minimal length left coset representatives of WI .
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Let M be a reductive monoid having G as its unit group. Thus M is the Zariski closure
of G in some Mn(k), where Mn(k) is the monoid of all n × n matrices over k. We refer to
[6, 14] for details. The idempotent set E(T̄ ) of T̄ is a finite lattice isomorphic to the face
lattice of a rational polytope. As in [5], let

� = {e ∈ E(T̄ ) | Be = eBe}

Then � is a cross-section of the G × G-orbits of M such that for all e, f ∈ �,

e ≤ f ⇔ e ∈ MfM

Here as usual, e ≤ f means e f = e = f e. � is called the cross-section lattice of M . All
maximal chains in � have the same length. We note that for Mn(k),

� =
{[

Ir 0

0 0

] ∣∣∣∣ 0 ≤ r ≤ n

}

is the usual set of idempotent representatives of matrices of different ranks.
By [10], the Bruhat decomposition (1) is extended to M as

M =
⊔
σ∈R

Bσ B (4)

where R = NG(T )/T is the Renner monoid of M . W is the unit group of R and

R =
⊔
e∈�

W eW (5)

The Bruhat-Chevalley order (2) on W extends to R as:

σ ≤ θ if Bσ B ⊆ Bθ B (6)

Then each WeW is an interval in R and by [10] all maximal chains in R have the same
length. R is an inverse semigroup. This means that the map, σ → σ−1 is an involution of
R. Here if σ = xey ∈ WeW, then σ−1 = y−1ex−1. Unlike in W , this involution is not order
preserving. However by [11], the map

σ → w0σ
−1w0 (7)

is an order preserving involution of R. Let e ∈ �. Then as in [8], consider (in R),

λ(e) = {s ∈ S | se = es} (8)
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and

λ∗(e) =
⋂
f ≥e

λ( f ), λ∗(e) =
⋂
f ≤e

λ( f ) (9)

Then

W (e) = Wλ(e) = {w ∈ W | we = ew},
W ∗(e) = Wλ∗(e),

W∗(e) = Wλ∗(e) = {w ∈ W | we = e = ew}

are parabolic subgroups of W with

W (e) = W ∗(e) × W∗(e) (10)

Moreover W ∗(e) is the Weyl group of the unit group of eMe. See [6; Chapter 10] for details.
If I = λ(e), K = λ∗(e), let

D(e) = DI , D∗(e) = DK (11)

Let

W∗
I,K = DI × WI\K × D−1

I (12)

For σ = (x, w, y), σ ′ = (x ′, w′, y′) ∈ W∗
I,K , define

σ ≤ σ ′ if w = w1 ∗ w2 ∗ w3 with xw1 ≤ x ′, w2 ≤ w′, w3 y ≤ y′ (13)

By [7; Theorem 2.5],

W∗
I,K is isomorphic to the dual of WeW (14)

The order on R is more subtle. Let σ ∈ R. Then

σ = xey for unique e ∈ �, x ∈ D∗(e), y ∈ D(e)−1 (15)

This is called the standard form of σ . Let σ = xey, θ = s f t ∈ R in standard form. Then
by [4],

σ ≤ θ ⇔ e ≤ f, x ≤ sw, w−1t ≤ y for some w ∈ W ( f )W∗(e) (16)
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Let σ = xey be in standard form. Let x ≤ x1, y1 ≤ y. Let y1 = uy2, u ∈ W (e), y2 ∈
D(e)−1. Let x1u = x2z, x2 ∈ D∗(e), z ∈ W∗(e). Then x1ey1 = x2ey2 in standard form.
Now

x ≤ x1 = x2zu−1 = x2u−1 · uzu−1

Since uzu−1 ∈ W∗(e) and x ∈ D∗(e), x ≤ x2u−1. Also uy2 = y1 ≤ y. Hence σ ≤ x2ey2.
Thus,

σ = xey in standard form ⇒ σ ≤ x1ey1 for all x1 ≥ x, y1 ≤ y (17)

If e, f ∈ � with e ≤ f , then e ∈ f T and so we see directly from (6) that

xey ≤ x f y for all x, y ∈ W (18)

The length function on R is defined as follows. Let σ = xey in standard form. Then

l(σ ) = l(x) + l(e) − l(y) (19)

where l(e) is the length of the longest element in D(e). We refer to [4, 7, 11, 14] for further
details. In particular,

length function = rank function on WeW, e ∈ � (20)

where the rank function is determined from the grading of WeW.

2. Projections

We wish to better understand the order ≤ on R given by (6), (16). For e ∈ �, let ze denote
the longest element in W∗(e). Let e, f ∈ � with e ≤ f . Let σ = xey ∈ WeW in standard
form. Let ze y = uy1, u ∈ W ( f ), y1 ∈ D( f )−1. We define the projection of σ in W fW as:

pe, f (σ ) = (x � u) f y1 (21)

We claim that (21) is in standard form. Let x = x1v, x1 ∈ D( f ), v ∈ W ( f ). Since x ∈
D∗(e) and W∗( f ) ⊆ W∗(e), we see that v ∈ W ∗( f ). By (10), v � u ∈ W ∗( f ). Thus x � u =
x1(v � u) ∈ D∗( f ). Hence (21) is in standard form. Now z f ze y = u′y1 with u′ = z f u ∈
W ( f ) and by the above, v � u′ = v � u. Hence we also have

pe, f (σ ) = (x � u′) f y1 in standard form (22)

The following result in conjunction with (14) yields a new description of the order on R.



40 PUTCHA

Theorem 2.1 Let e, f ∈ �,e ≤ f. Then
(i) pe, f : WeW → WfW is order preserving and σ ≤ pe, f (σ ) for all σ ∈ WeW.

(ii) If σ ∈ WeW, θ ∈ W fW, then σ ≤ θ if and only if pe, f (σ ) ≤ θ .
(iii) If h ∈ � with e ≤ h ≤ f , then pe, f = ph, f ◦ pe,h.
(iv) pe, f is onto if and only if λ∗(e) ⊆ λ∗( f ).
(v) pe, f is 1 − 1 if and only if λ( f ) ⊆ λ(e).

Proof: Let σ = xey in standard form. Let ze y = uy1, u ∈ W ( f ), y1 ∈ D( f )−1. By
Lemma 1.1, x � u = xu1 with u1 ≤ u. Then

u1 y1 ≤ uy1 = ze y

Hence u1 y1 = zy′ for some z ≤ z1, y′ ≤ y. Then z ∈ W∗(e) and (z−1u1) y1 = y′ ≤ y. Also
since x ∈ D∗(e),

x ≤ xz = (xu1)
(
u−1

1 z
)

By (16), (21),

σ = xey ≤ xu1 f y1 = pe, f (σ ) (23)

Let θ = s f t in standard form such that σ ≤ θ . Then by (16),

x ≤ sw, w−1t ≤ y for some w ∈ W ( f )W∗(e)

So x = s1 ∗ w1 for some s1 ≤ s, w1 ≤ w. Since x ∈ D∗(e), w1 ∈ D∗(e). Now w = w2 ∗ z
for some w2 ∈ W ( f ), z ∈ W∗(e). Then w1 ≤ w2. Since t ∈ D( f )−1 and y ∈ D(e)−1,

w−1
1 t ≤ w−1

2 t = zz−1w−1
2 t = zw−1t ≤ z ◦ (w−1t) ≤ z ◦ y ≤ ze ◦ y = ze y = uy1

Since t, y1 ∈ D( f )−1 and w1, u ∈ W ( f ), we see by [7; Lemma 2.2] that w1 = w3 ∗ w4

with w−1
4 ≤ u, w−1

3 t ≤ y1. So

x � u ≤ xw−1
4 = s1w1w

−1
4 = s1w3 ≤ s ◦ w3 = s ∗ w5

for some w5 ≤ w3. Also w−1
5 t ≤ w−1

3 t ≤ y1. Hence by (21),

pe, f (σ ) = (x � u) f y1 ≤ s f t = θ (24)

So if σ ′ ∈ WeW with σ ≤ σ ′, then by (23), σ ≤ σ ′ ≤ pe, f (σ ′). So by (24), pe, f (σ ) ≤
pe, f (σ ′). This proves (i), (ii).
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Let e ≤ h ≤ f in �. Let σ ∈ WeW, θ = pe, f (σ ). Then by (i), (ii), pe, f (σ ) ≤ ph, f ◦
pe,h(σ ). Let σ = xey, θ = s f t in standard form. Then by (16), x ≤ sw, w−1t ≤ y for some
w ∈ W ( f )W∗(e). So w = w1 ∗ z for some w1 ∈ W ( f ), z ∈ W∗(e). Then by (17), (18),

σ = xey ≤ swew−1t = sw1ew−1
1 t ≤ sw1hw−1

1 t ≤ sw1 f w−1
1 t = θ

So if π = sw1hw−1
1 t ∈ WhW, then σ ≤ π ≤ θ . By (ii), pe, f (σ ) ≤ π and ph, f (π ) ≤ θ . So

by (i),

ph, f ◦ pe, f (σ ) ≤ ph, f (π ) ≤ θ = pe, f (σ )

This proves (iii).
(iv) Suppose first that λ∗(e) ⊆ λ∗( f ). By (9), λ∗(e) ⊆ λ∗( f ). So λ(e) ⊆ λ( f ). Hence

W (e) ⊆ W ( f ) and W∗(e) = W∗( f ). So D∗(e) = D∗( f ) and D( f ) ⊆ D(e). Thus if
θ = x f y ∈ WfW is in standard form, then σ = xey is in standard form and pe, f (σ ) = θ .
Thus pe, f is onto.

Assume conversely that pe, f is onto. Let w be the longest element in W ∗( f ) and let
θ = w f ∈ W f W . There exists σ = xey in standard form such that pe, f (σ ) = θ . By (21),
w = x � u for some u ∈ W ( f ). So w ≤ x and x ∈ W ( f ). By (9), (11), x ∈ D∗(e) ⊆ D∗( f ).
So by (10), x ∈ W ∗( f ). Thus x = w. Since w is the longest element of W ∗( f )x, α < x
for all α ∈ λ∗( f ). Since x ∈ D∗(e), xα > x for all α ∈ λ∗(e). Hence λ∗(e) ∩ λ∗( f ) = ∅.
There exists x1ey1 in standard form such that pe, f (x1ey1) = f . By (21), ze ∗ y1 ∈ W ( f ).
Hence by (10), ze ∈ W ( f ) = W ∗( f ) × W∗( f ). Since W∗(e) ∩ W ∗( f ) = {1}, ze ∈ W∗( f ).
Hence λ∗(e) ⊆ λ∗( f ).

(v) Let λ( f ) ⊆ λ(e). Then W ( f ) ⊆ W (e) and D(e) ⊆ D( f ). Let xey, x ′ey′, s f t be in
standard form such that

pe, f (xey) = pe, f (x ′ey′) = s f t (25)

Let ze = vy1, where v ∈ W ( f ) ∩ W∗(e) and y1 ∈ D( f )−1 ∩ W∗(e). Let u ∈ W ( f ) ⊆ W (e).
Then

u(y1 y) = (uy1)y

= (u ∗ y1)y since y1 ∈ D( f )−1

= (u ∗ y1) ∗ y, since uy1 ∈ W (e), y ∈ D(e)−1

= u ∗ (y1 y)

So y1 y ∈ D( f )−1. Similarly y1 y′ ∈ D( f )−1. By (25),

y1 y = t = y1 y′, x � v = s = x ′ � v

So y = y′. Since v ∈ W∗(e), x = x � v and x ′ = x ′ � v. So x = x ′. Thus pe, f is 1 − 1.
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Assume conversely that pe, f is 1 − 1. Let ve, v f denote the longest elements of W (e) and
W ( f ) respectively. Thus vew0 and v f w0 are respectively the longest elements of D(e)−1

and D( f )−1. Let

zevew0 = vy, v ∈ W ( f ), y ∈ D( f )−1 (26)

Then

pe, f (evew0) = f y = pe, f (v−1evew0)

Since pe, f is 1 − 1, evew0 = v−1evew0. So v ∈ W∗(e). So z = v−1ze ∈ W∗(e) and by (26),

zvew0 = z ∗ (vew0) = y ≤ v f w0

So vew0 ≤ v f w0. Hence v f ≤ ve. Thus W ( f ) ⊆ W (e) and λ( f ) ⊆ λ(e). This completes
the proof.

Example 2.2 Let G = GL3(k), M = M3(k). Then W is the group of permutation matrices
and R is the monoid of partial permutation matrices (rook monoid). Let

e =

1 0 0

0 0 0

0 0 0


 ,

f =

1 0 0

0 1 0

0 0 0


 .

Then λ(e) = λ∗(e) = {(23)}, λ( f ) = {(12)}, λ∗( f ) = ∅. Hence pe, f is not 1−1 or onto. pe, f

is given in Table 1. Since λ∗(I ) = θ, p f,I is onto. p f,I is given in Table 2. Combining with
[7; figures 3 and 4], one obtains the Hasse diagram of R.

Example 2.3 Let φ : Mn(k) → MN (k) be defined as:

φ(A) = A ⊗ ∧2 A ⊗ · · · ⊗ ∧n A

where

N =
n∏

r=1

(
n

r

)
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Table 1. Projection from rank 1 to rank 2.

σ pe, f (σ )




1 0 0
0 0 0

0 0 0







1 0 0
0 0 1

0 0 0







0 1 0
0 0 0

0 0 0







0 1 0
0 0 1

0 0 0







0 0 1
0 0 0

0 0 0







0 1 0
0 0 1

0 0 0







0 0 0
1 0 0

0 0 0







0 0 1
1 0 0

0 0 0







0 0 0
0 1 0

0 0 0







0 0 1
0 1 0

0 0 0







0 0 0
0 0 1

0 0 0







0 1 0
0 0 1

0 0 0







0 0 0
0 0 0

1 0 0







0 0 1
0 0 0

1 0 0







0 0 0
0 0 0

0 1 0







0 0 1
0 0 0

0 1 0







0 0 0
0 0 0

0 0 1







0 1 0
0 0 0

0 0 1




Let M denote the Zariski closure of φ(Mn(k)) in MN (k). Then W is the symmetric group
of degree n and S = {(12), (23), . . . , (n − 1 n)}. Also

� = {eI | I ⊆ S} ∪ {0}

with

eK ≤ eI ⇔ K ⊆ I
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Table 2. Projection from rank 2 to rank 3.

σ p f,I (σ ) σ p f,I (σ )




0 0 0
0 1 0

1 0 0







0 0 1
0 1 0

1 0 0







0 0 0
0 1 0

0 0 1







1 0 0
0 1 0

0 0 1







0 0 0
0 0 1

1 0 0







0 1 0
0 0 1

1 0 0







0 0 1
0 0 0

0 1 0







1 0 0
0 0 1

0 1 0







0 0 0
1 0 0

0 1 0







0 0 1
1 0 0

0 1 0







0 0 1
1 0 0

0 0 0







0 1 0
1 0 0

0 0 1







0 1 0
0 0 0

1 0 0







0 1 0
0 0 1

1 0 0







1 0 0
0 0 0

0 0 1







1 0 0
0 1 0

0 0 1







0 0 0
0 0 1

0 1 0







1 0 0
0 0 1

0 1 0







1 0 0
0 1 0

0 0 0







1 0 0
0 1 0

0 0 1







0 1 0
1 0 0

0 0 0







0 1 0
1 0 0

0 0 1







0 0 1
0 1 0

0 0 0







1 0 0
0 1 0

0 0 1







0 0 0
1 0 0

0 0 1







0 1 0
1 0 0

0 0 1







0 1 0
0 0 0

0 0 1







1 0 0
0 1 0

0 0 1







0 0 1
0 0 0

1 0 0







0 1 0
0 0 1

1 0 0







1 0 0
0 0 1

0 0 0







1 0 0
0 1 0

0 0 1







1 0 0
0 0 0

0 1 0







1 0 0
0 0 1

0 1 0







0 1 0
0 0 1

0 0 0







1 0 0
0 1 0

0 0 1




and

λ(eI ) = λ∗(eI ) = I, λ∗(eI ) = ∅, I ⊆ S

So by Theorem 2.1, peK ,eI is onto for K ⊆ I .

Example 2.4 Let φ : SLn(k) → GL N (k) be defined as:

φ(A) = A ⊕ ∧2 A ⊕ · · · ⊕ ∧n A
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where N = 2n − 1. Let M denote Zariski closure in MN (k) of kφ(SLn(k)). Again W is
symmetric group of degree n and S = {(12), (23), (n − 1 n)}. Then

� = {1} ∪ {eI | I ⊆ S}

with

eI ≤ eK ⇔ K ⊆ I

and

λ(eI ) = λ∗(eI ) = I, λ∗(eI ) = ∅, I ⊆ S

So by Theorem 2.1, peI ,eK is 1 − 1 for K ⊆ I .

Corollary 2.5 Let e < f in �, σ ∈ WeW, θ ∈ WfW. Let σ = xey in standard form, z f ze y =
uy1 with u ∈ W ( f ), y1 ∈ D( f )−1. Then θ covers σ if and only if f covers e in �, pe, f (σ ) = θ

and l(xu) = l(x) − l(u).

Proof: If θ covers σ , then by Theorem 2.1, f covers e in � and θ = pe, f (σ ). So assume that
f covers e in � and θ = pe, f (σ ). The maximum elements of WeW and WfW are respectively
w0zee and w0z f f . Since f covers e, we see by (9) and [6; Chapter 10] that

λ∗( f ) = λ( f ) ∩ λ∗(e)

So by (22),

pe, f (w0zee) = w0ze f z f ze (27)

covers w0zee. By (19), (20), [σ, w0ze] has length

l(w0ze) − l(x) + l(y) (28)

and [w0 f z f ze, w0z f f ] has length

l(w0z f ) − l(w0ze) + l(z f ze) (29)

By (27)–(29), [σ, w0z f f ] has length

l(w0z f ) − l(x) + l(y) + l(z f ze) + 1 (30)

By (22), θ = (x � u) f y1. Also

l(u) + l(y1) = l(z f ze y) = l(z f ze) + l(y) (31)



46 PUTCHA

By (19), (20), [θ, w0z f f ] has length

l(w0z f ) − l(x � u) + l(y1) (32)

By (30)–(32), [σ, θ ] has length

l(x � u) + l(u) − l(x) + 1

Hence θ covers σ if and only if

l(x � u) = l(x) − l(u)

By Lemma 1.1, this is true if and only if l(x � u) = l(xu). This completes the proof.

Corollary 2.6 Any interval in R of length 2 has at most 4 elements.

Proof: Consider an interval [σ, θ ] in R of length 2. Let σ ∈ WeW, θ = WfW. Then e ≤ f .

Case 1. e = f . By (14), WeW is isomorphic to the dual of W∗
I,K where I = λ(e) and

K = λ∗(e). Now W∗
I,K is a subposet of W∗

I,∅ with the same rank function. By [7; Theorem
3.3], W∗

I,∅ is an Eulerian poset. Hence any interval of length 2 in W∗
I,∅ has 4 elements. It

follows that |[σ, θ ]| ≤ 4 in WeW.

Case 2. e < f and f does not cover e in �. Then by Corollary 2.5, [e, f ] has length 2 in
�. Now E(T̄ ) is the face lattice of a polytope. Hence in �, |[e, f ]| ≤ 4. So in �,

[e, f ] = {e, h, h′, f }

with e < h, e< h′ < f and with the possibility that h = h′. So by Theorem 2.1,

[σ, θ ] = {σ, pe,h(σ ), pe,h′ (σ ), θ}

in R.

Case 3. f covers e in � and θ = pe, f (σ ). Let σ = xey in standard form. If π ∈ (σ, θ ), then
π ∈ WeW and π covers σ . So by (14), either Rπ = Rσ or π R = σ R. Let π1, π2 ∈ (σ, θ )
such that Rπ1 = Rσ = Rπ2. Then π1 = x1ey, π2 = x2ey in standard form. Let z f ze y =
uy1, u ∈ W ( f ), y1 ∈ D( f )−1. Since θ covers π1 and π2, we see by Corollary 2.5 that

x1u f y1 = pe, f (π1) = θ = pe, f (π2) = x2u f y1 (33)

in standard form. It follows that x1u = x2u. Hence x1 = x2 and π1 = π2. Dually by (7),
π1 R = π2 R implies that π1 = π2. It follows that |[σ, θ ]| ≤ 4.
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Case 4. f covers e in � and pe, f (σ ) = θ1 < θ . Then θ1 covers σ and θ covers θ1.
Let π1, π2 ∈ (σ, θ ), π1 �= π2, π1 �= θ1, π2 �= θ1. Then π1, π2 ∈ WeW and θ covers π1, π2. So
pe, f (π1) = θ = pe, f (π2). Since π1, π2 cover σ , we see by (14) that for i = 1, 2, πi R = σ R,
or Rσ = Rπi . Since π1 �= π2, we can assume by (33) that Rπ1 = Rσ, Rπ2 �= Rσ . So π1 =
x ′ey, π2 = xey′ in standard form, x ′ covers x and y covers y′. Since θ covers π1, π2,

z f ze y = uy1, z f ze y′ = vy1, u, v ∈ W ( f ), y1 ∈ D( f )−1

Then θ1 = x1 f y1, θ = x ′
1 f y1 in standard form with

x1 = xu, x ′
1 = xv = x ′u

and by Corollary 2.5,

x = x1 ∗ u−1 = x ′
1 ∗ v−1, x ′ = x ′

1 ∗ u−1

Now x ′
1 covers x1 and hence u−1 covers v−1 by Corollary 1.2. Since x ′ covers x , this

contradicts the exchange condition for W . So |[σ, θ ]| ≤ 4, completing the proof.

Corollary 2.6 leads us to the following conjecture concerning the Möbius function µ on
R. We refer to [17; Chapter 3] for the theory of Möbius functions on posets:

Conjecture 2.7 Let σ, θ ∈ R, σ ≤ θ . Then

µ(σ, θ ) =
{

(−1)l[σ,θ ] if every interval of length 2 in [σ, θ ] has 4 elements

0 otherwise

Here l[σ, θ ] denotes the length of the interval [σ, θ ].
Theorem 3.4 below establishes Conjecture 2.7 for canonical monoids.

3. Canonical monoids

In this section we will assume that M is a canonical monoid. This means that �∗ = �\{0}
has a least element e0 with λ(e0) = ∅. Then as in Example 2.3, �∗ is in 1−1 correspondence
with the subsets of S. So we can write:

�∗ = {eI | I ⊆ S} (34)

with

λ(eI ) = λ∗(eI ) = I, λ∗(eI ) = ∅, I ⊆ S
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and

eK ≤ eI ⇔ K ⊆ I

See [9, 13] for details. Example 2.3 is an example of a canonical monoid. More generally
if G0 is a semisimple group and if φ : G0 → GLn(k) is an irreducible representation with
highest weight in the interior of the Weyl chamber, then the Zariski closure in Mn(k) of
kφ(G0) is a canonical monoid. Canonical monoids are closely related to canonical com-
pactifications of semisimple groups in the sense of [2]. The connection between reductive
monoids and embeddings of homogenous spaces is studied in [12]. See also [19]. Basically
the canonical compactification is obtained as the projective variety X = (M\{0})/ center.
Then the B × B-orbits of X are indexed by R∗ = R\{0}. See [13]. The Bruhat-Chevalley
order on R∗ corresponds to the Zariski closure inclusion of B × B-orbits of X , the geometric
properties of which have been studied in [15].

Let M be a canonical monoid. For I ⊆ S, let RI = W eI W = W eI D−1
I . Then by (5), (34),

R∗ = R\{0} =
⊔
I ⊆ S

RI (35)

For K ⊆ I , we write pK ,I for peK ,eI . So pK ,I : RK → RI . By [7; Theorem 3.3], each RI is
an Eulerian poset. We will show in this section that R∗ is an Eulerian poset.

Lemma 3.1 Let σ ∈ R∅, s ∈ W such that p∅,S(σ ) < s. Then [σ, s] ∩ R∅ is balanced.

Proof: Let e = e∅, σ = x0ey0, s0 = p∅,S(σ ) = x0 � y0. Then s0 < s. For y ≤ y0, let

Ay = [σ, s] ∩ W ey = {
xey | x0 ≤ x ≤ s � y−1

}

Thus Ay is a non-trivial interval in R∅ unless x0 = s � y−1. So Ay is balanced unless
x0 = s � y−1. By Lemma 1.3,

Y = {
y ≤ y0 | x0 = s � y−1

}

is balanced. It follows that [σ, s] ∩ R0 is balanced.

Corollary 3.2 Let σ ∈ R∅, θ ∈ RI such that p∅,I (σ ) < θ . Then [σ, θ ] ∩ R∅ is balanced.

Proof: Let e = e∅, f = eI , σ = x0ey0, θ = s f t in standard form. Suppose x0 /∈ sWI . For
t ≤ y ≤ y0, let

Ay = [σ, θ ] ∩ W ey

By [3],

w = wy = max{u ∈ WI | u−1t ≤ y}
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exists. Let xey = Ay . Then x0ey0 ≤ xey ≤ s f t . So x0 ≤ x and there exists u ∈ WI such that
x ≤ su, u−1t ≤ y. Then u ≤ w and su ≤ s � u ≤ s � w. Also s � w = sw1 for some w1 ≤ w and
w−1

1 t ≤ w−1t ≤ y. Hence

σ ≤ x0ey ≤ xey ≤ (s � w)ey ≤ θ

So

Ay = [x0ey, (s � w)ey]

Since x0 /∈ sWI , x0 �= s � w. Since R∅ is Eulerian, Ay is balanced. Thus

[σ, θ ] ∩ R∅ =
⋃

t≤y≤y0

Ay

is balanced. Similarly if y0 /∈ WI t, [σ, θ ] ∩ R∅ is balanced. So let x0 ∈ sWI , y0 ∈ WI t . So
s = s1v, x0 = s1x1, y0 = y1t for some s1 ∈ D1, v, x1, y1 ∈ WI . If σ ′ = x1ey1, θ

′ = veI , then
working in eI ReI , we see by Lemma 3.1 that [σ ′, θ ′] ∩ R∅ is balanced. Hence

[σ, θ ] ∩ R∅ = s1
(
[σ ′, θ ′] ∩ R∅

)
t

is balanced.

Lemma 3.3 Let σ ∈ R∅, θ ∈ RI , σ ≤ θ . Let

Z = {π ∈ [σ, θ ] ∩ R∅ | p∅,I (π ) = θ}

Then

(−1)l(e∅)
∑
π∈Z

(−1)l(π ) = (−1)l(eI )(−1)l(θ )

Proof: We prove by induction on l(θ ). Suppose first that p∅,I (σ ) = θ ′ < θ . For δ ∈ [θ ′, θ ]
let

Zδ = {π ∈ [σ, θ ] ∩ R∅ | p∅,I (σ ) = δ}

Then Z = Zθ and

[σ, θ ] ∩ R∅ =
⊔

δ∈[θ ′,θ ]

Zδ (36)
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By induction hypothesis,

(−1)l(e∅)
∑
π∈Zδ

(−1)l(π ) = (−1)l(eI )(−1)l(δ) (37)

for δ ∈ [θ ′, θ ). By Corollary 3.2,

∑
π∈[σ,θ ]∩R∅

(−1)l(π ) = 0 =
∑

δ∈[θ ′,θ ]

(−1)l(δ) (38)

By (36)–(38) we see that (37) is also valid for δ = θ .
Assume therefore that p∅,I (σ ) = θ . Then as in the proof of Corollary 3.2, we may assume

that θ = s ∈ W . Let e = e∅, σ = x0ey0. Then x0 � y0 = s. So x0 y1 = s, s ∗ y−1 = x0 with
y1 ≤ y0. For y ≤ y0, let

Ay = [σ, θ ] ∩ W ey

Let xey ∈ Ay . Then x0ey0 ≤ xey ≤ s. So x ≤ s ◦ y−1. Hence

σ ≤ x0ey ≤ xey ≤ (s ◦ y−1)ey ≤ s (39)

So

Ay = [x0ey, (s ◦ y−1)ey] (40)

and

Z = [σ, s] ∩ R∅ =
⊔
y≤y0

Ay

If Ay �= ∅, then since p∅,S(σ ) = s, we see that x0 � y = s. So if x0 = s ◦ y−1, then
by Lemma 1.1 (vi), x0 = s ∗ y−1. Hence y = y1. Moreover Ay1 = {x0ey1} and by (19),
l(x0ey1) = l(e) + l(s). If Ay �= ∅ and x0 �= s ◦ y−1, then Ay is balanced by (40). The result
follows.

Theorem 3.4 R∗ is an Eulerian poset.

Proof: Let σ, θ ∈ S∗, σ < θ . We need to show that [σ, θ ] is balanced. Let σ ∈ RK , θ ∈
RI . So K ⊆ I . First assume that pK ,I (σ ) < θ . By Theorem 2.1 (vi), there exists σ0 ∈ R∅
such that p∅,K (σ0) = σ . By Corollary 3.2, [σ0, θ ] ∩ R∅ is balanced. So by Lemma 3.3,
[σ0, θ ]∩ RL is balanced for L ⊆ S. For I ⊆ J ⊆ S, [σ0, θ ]∩ RJ = [σ, θ ]∩ RJ by Thoerem
2.1. It follows that [σ, θ ] is balanced.

Now assume that pK ,I (σ ) = θ . Let θ = sθ ′t, s ∈ DI , t ∈ D−1
I , θ ′ ∈ WI eI . By (21),

σ ′ = s−1σ t−1 ∈ WI eK WI . Then [σ, θ ] = s[σ ′, θ ′]t ∼= [σ ′, θ ′]. Thus without loss of



BRUHAT-CHEVALLEY ORDER 51

generality, we may assume that θ = s ∈ W . Let σ = x0eK y0 in standard form, K �= S.
Then by (21), s = x0 � y0. Hence x0 = s ∗ y−1

1 for some y1 ≤ y0. By Corollary 2.5,


 = {x0eJ y1 | K ⊆ J ⊆ S} = [x0eK y1, s] (41)

Let

y1 = u J vJ , u j ∈ W (J ), vJ ∈ D−1
J , K ⊆ J ⊆ S (42)

For y ∈ D−1
J , let

AJ (y) = [σ, s] ∩ W eJ y

Suppose y ∈ D−1
J , y �= vJ and xeJ y ∈ AJ (y). Then

σ ≤ xeJ y ≤ s (43)

Then y ≤ y0 and by [3],

w = max{u ∈ WJ | uy ≤ y0}

exists. By (16), (43), there exists u ∈ WJ such that x0 ≤ x ∗ u−1, uy ≤ y0. So u ≤ w. By
Lemma 1.1,

x0 � w ≤ x0 � u ≤ (x ∗ u−1) � u = x

Hence

σ ≤ (x0 � w)eJ y ≤ xeJ y (44)

Also by (16), (43),

σ ≤ xeJ y ≤ s ◦ y−1eJ y ≤ s (45)

Since pK ,S(σ ) = s, we see that x � y = s. So by Lemma 1.1 (vi), s ◦ y−1 = s ∗ y−1. Thus
by (44), (45),

AJ (y) = [(x0 � w)eJ y, (s ∗ y−1)eJ y]

Suppose |AJ (y)| = 1. Then x0 � w = s ∗ y−1. By Lemma 1.1, (x0 � w) ∗ w−1
1 = x0 for

some w1 ≤ w. Then

s ∗ y−1
1 = x0 = (x0 � w) ∗ w−1

1 = s ∗ y−1 ∗ w−1
1
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By Corollary 1.2, y−1
1 = y−1 ∗ w−1

1 . So y = w1 y. Since w1 ∈ W (J ) and y ∈ D−1
J , we see

by (42) that y = vJ , a contradiction. Hence AJ (y) is a non-trivial interval in RJ and hence
balanced.

Assume next that y = vJ . Let xeJ vJ ∈ RJ . Then

σ = x0eK y0 ≤ xeJ vJ ≤ s (46)

Since pJ,S(xeJ y) = s, we see by Theorem 2.1 that x � vJ = s. By Lemma 1.1,

x = s ∗ v−1 for some v ≤ vJ (47)

Also by (16), x0 ≤ x ∗ u for some u ∈ W (J ). Hence by (47),

s ∗ y−1
1 = x0 ≤ x ∗ u = s ∗ v−1 ∗ u

By Corollary 1.2, y−1
1 ≤ v−1u. So y1 ≤ u−1v. So we see by (42), (47) that v = vJ . So

x = sv−1
J . Hence

xeJ y = sv−1
J eJ vJ = sv−1

J u−1
J eJ u J vJ = sy−1

1 eJ y1 = x0eJ y1

Thus AJ (vJ ) = {x0eJ y1}. It follows that [σ, s]\
 is balanced. By (41), 
 ∼= 2S\K is also
balanced. Hence [σ, s] is balanced, completing the proof.

Example 3.5 M2(k) is a canonical monoid. The Eulerian poset R∗ is given by:

M3(k) is not a canonical monoid. In this case, Example 2.2 shows that R∗ is not Eulerian.
The monoids in Example 2.3 are canonical. With n = 3, R∗ will be an Eulerian poset with
78 elements.
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