
Journal of Algebraic Combinatorics, 20, 219–235, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

The Regular Near Polygons of Order (s, 2)

AKIRA HIRAKI hiraki@cc.osaka-kyoiku.ac.jp
Division of Mathematical Sciences, Osaka Kyoiku University, Asahigaoka 4-698-1, Kashiwara,
Osaka 582-8582, Japan

JACK KOOLEN∗ jhk@amath.kaist.ac.kr
Division of Applied Mathematics, KAIST, 373-1 Kusongdong, Yusongku, Daejon 305-701, Korea

Received October 8, 2002; Revised July 24, 2003; Accepted August 26, 2003

Abstract. In this note we classify the regular near polygons of order (s, 2).
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1. Introduction

Regular near polygons were introduced by Shult and Yanushka [18] as point-line geome-
tries satisfying certain axioms. It is well known that (the collinearity graph of) a regu-
lar near polygon of order (s, t) is a distance-regular graph of valency s(t + 1), diameter
d and ai = ci (s − 1) for all 1 ≤ i ≤ d − 1 such that for any vertex x the sub-
graph induced by the neighbors of x is the disjoint union of t + 1 complete graphs of
size s.

Let � be (the collinearity graph of) a regular near polygon of order (s, t). If t = 0, it is
clear that � is a complete graph. If t = 1, then � is a line graph and we have a classification
of such graphs. (See [6, 17].)

In this note we consider the case t = 2 and classify the regular near polygons of order
(s, 2).

First we recall our notation and terminology.
Let � = (V �, E�) be a connected graph without loops or multiple edges. For vertices

x and y in � we denote by ∂�(x, y) the distance between x and y in �. The diameter of �,
denoted by d , is the maximal distance of two vertices in �. We denote by �i (x) the set of
vertices which are at distance i from x .

A connected graph � with diameter d is said to be distance-regular if there are numbers
ci (1 ≤ i ≤ d), ai (0 ≤ i ≤ d) and bi (0 ≤ i ≤ d − 1) such that for any two vertices x and
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y in � at distance i the sets

�i−1(x) ∩ �1(y), �i (x) ∩ �1(y) and �i+1(x) ∩ �1(y)

have cardinalities ci , ai and bi , respectively. Then � is regular with valency k := b0.
Let � be a distance-regular graph with diameter d. The array

ι(�) =




∗ c1 . . . ci . . . cd−1 cd

a0 a1 . . . ai . . . ad−1 ad

b0 b1 . . . bi . . . bd−1 ∗




is called the intersection array of �. Define r := max{i | (ci , ai , bi ) = (c1, a1, b1)}.
Let ki := |�i (x)| for all 0 ≤ i ≤ d which does not depend on the choice of x .

By an eigenvalue of � we will mean an eigenvalue of its adjacency matrix A. Its multi-
plicity is its multiplicity as eigenvalue of A.

Define the polynomials ui (x) (0 ≤ i ≤ d) by u0(x) := 1, u1(x) := x
k and

ci ui−1(x) + ai ui (x) + bi ui+1(x) = xui (x), for i = 1, 2, . . . , d − 1.

Let θ be an eigenvalue of � with multiplicity m(θ ). It is well known that

m(θ ) = |V �|∑d
i=0 ki ui (θ )2

.

For more information on distance-regular graphs we would like to refer to the books
[1, 3, 6, 10].

A graph � is said to be of order (s, t) if �1(x) is a disjoint union of t +1 complete graphs
of size s for every vertex x in �. In this case, � is a regular graph of valency k = s(t + 1).

A graph � is called (the collinearity graph of) a regular near polygon of order (s, t)
if it is a distance-regular graph of order (s, t) with diameter d and ai = ci (s − 1) for all
1 ≤ i ≤ d − 1.

For a regular near polygon of order (s, t) with diameter d it is known that ci ≤ t + 1
holds for all 1 ≤ i ≤ d and equality implies i = d.

A regular near polygon is called a regular near 2d-gon if cd = t + 1, a regular near
(2d + 1)-gon, otherwise.

A regular near 2d-gon of order (s, t) with c1 = · · · = cd−1 = 1 and cd = t + 1 is called
a generalized 2d-gon of order (s, t). When d = 2, 3 and 4 a generalized 2d-gon of order
(s, t) is denoted by GQ(s, t), GH(s, t) and GO(s, t), respectively.

More information on regular near polygons and generalized polygons will be found in
[6, Sections 6.4–6.6].

The following is our main result.

Theorem 1 A regular near polygon of order (s, 2) is isomorphic to one of the following
graphs.
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Graph k d {b0, b1, . . . , bd−1; c1, . . . , cd } v

(1-a) K3,3 3 2 {3, 2; 1, 3} 6

(1-b) O3 3 2 {3, 2; 1, 1} 10

(1-c) The Heawood graph 3 3 {3, 2, 2; 1, 1, 3} 14

(1-d) The Pappus graph 3 4 {3, 2, 2, 1; 1, 1, 2, 3} 18

(1-e) Tutte’s 8 cage 3 4 {3, 2, 2, 2; 1, 1, 1, 3} 30

(1-f) The Desargues graph 3 5 {3, 2, 2, 1, 1; 1, 1, 2, 2, 3} 20

(1-g) Tutte’s 12 cage 3 6 {3, 2, 2, 2, 2, 2; 1, 1, 1, 1, 1, 3} 126

(1-h) The Foster graph 3 8 {3, 2, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 2, 2, 2, 3} 90

(2-i) GQ(2,2) 6 2 {6, 4; 1, 3} 15

(2-j) GH(2,2) 6 3 {6, 4, 4; 1, 1, 3} 63

(2-k) GQ(4,2) 12 2 {12, 8; 1, 3} 45

(2-l) GO(4,2) 12 4 {12, 8, 8, 8; 1, 1, 1, 3} 2925

(2-m) GH(8,2) 24 3 {24, 16, 16; 1, 1, 3} 2457

(3) H(3,s+1) 3s 3 {3s, 2s, s; 1, 2, 3} (s + 1)3

Let � be a distance-regular graph of order (s, 2). We have cd ≤ 3.

If s = 1, then k = 3 and a1 = a2 = · · · = ad−1 = 0. The result easily follows from
the result of Ito [16]. See also [4]. If s = 2, then k = 6 and a1 = 1. Such distance-regular
graphs were classified by Hiraki et al. in [15]. This shows that our theorem is true for the
case s = 2. Hence we may assume s ≥ 3. In Section 2 we will show that if d = r + 1, then
� has to be a generalized 2d-gon and those are easy to classify. For d ≥ r + 2 and s ≥ 3
we show in Section 3 that cr+2 ≥ 3, and hence under the assumption that � is a regular
near polygon of order (s, 2) it follows that cr+1 = 2, cr+2 = 3 and d = r + 2. To finish our
classification we only need to show the following proposition.

Proposition 2 Let � be a distance-regular graph with the intersection array

ι(�) =




∗ 1 · · · 1 2 3

0 s − 1 · · · s − 1 2(s − 1) 3(s − 1)

3s 2s · · · 2s s ∗


 ,

where r = max{i | (ci , ai , bi ) = (c1, a1, b1)}. Suppose s ≥ 3. Then r = 1.

It is known that a distance-regular graph of order (s, 2) with the above intersection array
is isomorphic to the Hamming graph H (3, s + 1) if r = 1. ( See [7] or [6, Section 9.2].)

Our theorem is a direct consequence of Proposition 2.
Proposition 2 will be shown in Sections 4 and 5. In Section 4 we treat the case s �= 3, 6 and

show that r = 1 by looking at the integrality of the multiplicity of the smallest eigenvalue. In
Section 5 we treat the case s = 3, 6. In here we will use the eigenvalue method of Bannai-Ito
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to show r ≤ 21. Then r = 1 follows by looking at the integrality of the multiplicity of the
smallest eigenvalue. We prove Theorem 1 in Section 6.

2. Preliminaries

In this section first we introduce the following famous result.

Proposition 3 Let � be a distance-regular graph of diameter d with the intersection array

ι(�) =




∗ 1 · · · 1 cd

0 s − 1 · · · s − 1 ad

s(t + 1) st · · · st ∗


 .

Suppose t ≥ 2. Then d ≤ 13 and the following hold.
(1) If cd = 1, then d = 2.

(2) If cd = t + 1 then d ∈ {2, 3, 4, 6}. Moreover if s ≥ 2, then d �= 6 and the following
hold.
(i) If d = 2, then s ≤ t2 and t ≤ s2.

(ii) If d = 3, then s ≤ t3, t ≤ s3 and st is a square.
(iii) If d = 4, then s ≤ t2, t ≤ s2 and 2st is a square.

Proof: The first assertion is proved by Fuglister [9]. (See also [6, pp. 208–209].) The rest
of the assertions are proved by Feit and Higman [8], Higman [12, 13] and Haemers and
Roos [11]. (See also [6, Theorem 6.5.1].)

Lemma 4 Let � be a distance-regular graph of order (s, 2) with diameter d and the
intersection array

ι(�) =




∗ 1 · · · 1 cd

0 s − 1 · · · s − 1 ad

3s 2s · · · 2s ∗


 .

Suppose s ≥ 2. Then cd = 3 and (d, s) = (2, 2), (2, 4), (3, 2), (3, 8) or (4, 4).

Proof: By counting the number of complete subgraphs of size s + 1 in � we have

3|V �| ≡ 0 (mod s + 1).

Suppose cd = 1.Then it follows, by Proposition 3, that d = 2 and thus |V �| = 1 + 3s + 6s2.

We have s = 2, 3, 5 or 11 from the first assertion. We can show that no such graphs exist
by calculating the multiplicity of the eigenvalues.
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Suppose cd = 2. Then we have d ≤ 13 from Proposition 3. We have

3|V �| = 3

2s − 1
[−1 − s + 3s2(2s + 1)(2s)d−2] ≡ 0 (mod s + 1)

from the first assertion. For given d with d ≤ 13 there are only finitely many possible values
for s. All of them are ruled out by integrality of the multiplicities of eigenvalues.

Suppose cd = 3. Then Proposition 3 (2) shows that (d, s) = (2, 2), (2, 3), (2, 4), (3, 2),
(3, 8) or (4, 4). We can show that the case (d, s) = (2, 3) is impossible by calculating the
multiplicity of the eigenvalues. The desired result is proved.

Remark There are unique G Q(2, 2), G Q(4, 2) and G H (8, 2). There are exactly two
G H (2, 2) and those are dual each other. There exists a G O(4, 2) but the uniqueness problem
has not been settled yet.

3. Circuit chasing

In this section we prove the following result.

Proposition 5 Let � be a distance-regular graph with r = max{i | (ci , ai , bi ) = (c1, a1,

b1)} and (cr+1, ar+1) = (2, 2a1). If a1 > 0, then cr+2 �= 2.

In [14] we have shown that (cr+2, ar+2) �= (2, 2a1) by using the circuit chasing technique.
Let � be a distance-regular graph of diameter d and let (u, v) be an edge in �. Set

Di
j = Di

j (u, v) := �i (u) ∩ � j (v). The intersection diagram with respect to (u, v), is the
collection {Di

j }0≤i, j≤d with lines between them. If there is no line between Di
j and Ds

t ,

it means that there is no edge (x, y) with x ∈ Di
j and y ∈ Ds

t . We write e(x, Di
j ) for the

number of neighbors of a vertex x in Di
j .

Take a circuit and write down the distance distribution, which is called the profile, with
respect to one of its edges and then to derive the profile with respect to the next edge,
using the intersection diagram. We continue this procedure successively to obtain some
information for �.

More information on the intersection diagram and circuit chasing can be found in [5, 14].
We recall the following lemma, which was proved in [14, Section 3] except for the

statement (3).

Lemma 6 Let � be a distance-regular graph as in Proposition 5 with r ≥ 2, a1 > 0 and
cr+2 = 2. Let (u, v) be an edge of �. Then the intersection diagram with respect to (u, v)
has the shape as in Figure 1. Moreover the following hold.

(1) Let x ∈ Dr+1
r+1 . Then e(x, Dr

r ) = e(x, Dr
r+1) = e(x, Dr+1

r ) = 1. Let {α} = Dr
r+1 ∩�1(x)

and {β} = Dr+1
r ∩ �1(x). Then α and β are adjacent.

(2) Let y ∈ Dr+1
r , {y′} = Dr

r+1 ∩ �1(y) and B = Dr+1
r+1 ∩ �1(y). Then {y, y′} ∪ B is a

clique.
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Figure 1.

(3) Let z ∈ Dr+2
r+2 with e(z, Dr+1

r+1) �= 0. Then e(z, Dr+1
r+1) = 2. Let {z′, z′′} = Dr+1

r+1 ∩ �1(z).
Then z′ and z′′ are not adjacent.

Proof: (3) There exist z′ ∈ Dr+1
r+1 ∩�1(z) and zr ∈ Dr

r ∩�1(z′) from (1). Then there exists
zi ∈ Di

i such that ∂�(z, zi ) = r + 2 − i for all i = r, r − 1, . . . , 1.

It is clear that �r (z1) ∩ �1(z) ⊆ Dr+1
r+1 . Thus we have

2 = cr+1 = |�r (z1) ∩ �1(z)| ≤ e
(
z, Dr+1

r+1

) ≤ cr+2 = 2.

Hence we have e(z, Dr+1
r+1) = 2 and {z′, z′′} = Dr+1

r+1 ∩ �1(z) = �r (z1) ∩ �1(z).
Consider the intersection diagram with respect to (z1, z2). Then z′ ∈ Dr

r−1, z ∈ Dr+1
r

and z′′ ∈ Dr
r+1. The lemma is proved.

Proof of Proposition 5: Since 1 < c2 implies c2 < c3, we may assume r ≥ 2.

Suppose cr+2 = 2 and derive a contradiction. Let C = (x0, x1, . . . , x2r+4) be a circuit of
length 2r + 5 whose profile with respect to (x0, x1) is as follows.

(This circuit is the same to the first circuit in the proof of the theorem in [14]. We may
only consider the middle part of the profiles. See [14, Section 3].) It is not hard to see that
there exists such a circuit C and that no three vertices of C do not form a triangle by Lemma
6 (3). Now we can uniquely determine the profiles of C with respect to (x1, x2) and with
respect to (x2, x3) as follows:
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And the profiles of C with respect to (x3, x4) is the same to the profile with respect to
(x0, x1). It follows that the profile of C with respect to (xi , xi+1) is the same as one of these
three types of profile for any 0 ≤ i ≤ 2r + 4.

The profiles with respect to (x0, x1), (x1, x2), (x2, x3) and (x3, x4) give us the distance
relation between {xr+4, xr+5} and {x0, x1, x2, x3, x4} as follows.

Then the profile of C with respect to (xr+4, xr+5) is different from the above three types
of profile. This is a contradiction.

4. The case of s �= 3, 6

Let � be a regular near polygon of order (s, 2) with r = max{i | (ci , ai , bi ) = (c1, a1, b1)}.
Assume d ≥ r + 2. Then we have cr+1 = 2, cr+2 = 3 and d = r + 2 from Proposition 5.
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Therefore we only need to consider the regular near 2d-gon as in Proposition 2.
Throughout this section � denotes a distance-regular graph as in Proposition 2 with

s ≥ 3.

It is known that regular near 2d-gon of order (s, t) has the smallest eigenvalue −t − 1.

So we have the following result by a well known multiplicity formula.

Lemma 7 Let � be a regular near 2d-gon as in Proposition 2. Then −3 is the smallest
eigenvalue of � with multiplicity

m(−3) = sr+2(s − 2){2r−1sr+1(2s + 3) − 1}
(2s − 1){sr+2 − (3s + 2)2r−1} .

Proof: We have k0 = 1, ki = 3s(2s)i−1 for 1 ≤ i ≤ r, kr+1 = 3s
2 (2s)r and kr+2 = s2

2 (2s)r .

It is straightforward to see that ui (−3) = (−s)−i for all 0 ≤ i ≤ r + 2. Hence

|V �| = s + 1

2s − 1
{2r−1sr+1(2s + 3) − 1}

and

d∑
i=0

(
ki

s2i

)
= s + 1

sr+2(s − 2)
{sr+2 − (3s + 2)2r−1}.

The desired result is proved.

Lemma 8
(1) Suppose s = 4n for some integer n. Let q := 2r+4nr+2 − 6n − 1. Then

(2n − 1){23r+1nr+1(8n + 3) − 1} ≡ 0 (mod q).

(2) If s is odd, then

(
s

4

)r

<
3s + 2

2
.

(3) If s = 2z for some odd integer z, then

(
z

4

)r

<
(z − 1)(3z + 1)(4z + 3)

2z2
.
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Proof: (1) Lemma 7 implies that

m(−3) = 2r+5nr+2(2n − 1){23r+1nr+1(8n + 3) − 1}
(8n − 1)(2r+4nr+2 − 6n − 1)

.

Since 2r+5nr+2 and q are relatively prime, the assertion follows from the integrality of
m(−3).

(2) Let q ′ := sr+2 − (3s + 2)2r−1. Then s and q ′ are relatively prime. By the integrality
of m(−3) and Lemma 7 we have

(s − 2){2r−1sr+1(2s + 3) − 1} ≡ 0 (mod q ′).

Since sr+2 ≡ (3s + 2)2r−1 (mod q ′), we have

0 ≡ (s − 2){2r−1sr+1(2s + 3) − 1}s
≡ (s − 2){(2s + 3)(3s + 2)4r−1 − s} (mod q ′)

and hence

{sr+2 − (3s + 2)2r−1} = q ′ ≤ (s − 2){(2s + 3)(3s + 2)4r−1 − s}.

This implies

sr+2 < (s − 2)(2s + 3)(3s + 2)4r−1 + (3s + 2)2r−1 < 2s2(3s + 2)4r−1.

The desired result is proved.
(3) It follows, by Lemma 7, that

m(−3) = 8zr+2(z − 1){4r zr+1(4z + 3) − 1}
(4z − 1)(4zr+2 − 3z − 1)

.

Let q ′′ := 4zr+2 − 3z − 1. Then z and q ′′ are relatively prime and thus

0 ≡ 8(z − 1){4r zr+1(4z + 3) − 1}z
≡ 8(z − 1){4r−1(3z + 1)(4z + 3) − z} (mod q ′′).

Hence we have

(4zr+2 − 3z − 1) = q ′′ ≤ 8(z − 1){4r−1(3z + 1)(4z + 3) − z}.

The desired result is proved.

Lemma 9 If s �= 3, 6, then r = 1.
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Proof: Assume r ≥ 2.

Suppose s is odd. Then s ≥ 5 from our assumption. It follows, by Lemma 8(2), that
s < 25. For given odd integer s with 5 ≤ s ≤ 23 there are only finitely many possible
values for r. All of them are ruled out by integrality of m(−3).

Suppose there exists an odd integer z such that s = 2z. Then z ≥ 5 from our assumption.
It follows, by Lemma 8(3), that z < 97. For given odd integer z with 5 ≤ z ≤ 95 there are
only finitely many possible values for r. All of them are ruled out by integrality of m(−3).

Suppose there exists an integer n such that s = 4n. First we assume n = 1. Then it
follows, by Lemma 8(1), that

0 ≡ {11 · 23r+1 − 1}211 ≡ {11 · 73 − 211} (mod 2r+4 − 7).

We have 2r+4 − 7 ≤ 11 · 73 − 211 and thus r < 8. They are ruled out by integrality of
m(−3). Next we assume n = 2. Then Lemma 8(1) implies that

0 ≡ 3{19 · 24r+2 − 1}210 ≡ 3{19 · 132 − 210} (mod 22r+6 − 13).

We have 22r+6 − 13 ≤ 3{19 · 132 − 210} and thus r = 2 which is impossible as 3{19 · 132 −
210} �≡ 0 (mod 210 − 13). Finally we assume n ≥ 3. Let q := 2r+4nr+2 − 6n − 1. Then

0 ≡ (2n − 1){23r+1nr+1(8n + 3) − 1}n
≡ (2n − 1){22r−3(6n + 1)(8n + 3) − n} (mod q).

It follows that

(2r+4nr+2 − 6n − 1) = q ≤ (2n − 1){22r−3(6n + 1)(8n + 3) − n}.

This is a contradiction as n ≥ 3 and r ≥ 2. The desired result is proved.

5. The case of s = 3, 6

In this section we prove the remaining case s = 3, 6 of Proposition 2.
First we recall some basic results of distance-regular graphs.
Let � be a distance-regular graph of diameter d ≥ 3 and valency k ≥ 3. Let θ0 =

k, θ1, . . . , θd be the distinct eigenvalues of �.

The monic polynomials Fi (x) (0 ≤ i ≤ d) are defined by the recurrence relation

Fi (x) := (x − k + bi−1 + ci )Fi−1(x) − bi−1ci−1 Fi−2(x) for i = 2, . . . , d

with F0(x) = 1 and F1(x) = x + 1. It is well known that

Fd (x) = (x − θ1)(x − θ2) . . . (x − θd )
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and

m(θi ) = |V �|b0b1 . . . bd−1c2 . . . cd−1

(k − θi )F ′
d (θi )Fd−1(θi )

.

for all 1 ≤ i ≤ d.

Let θ be an eigenvalue of � with θ �= k. Then the minimal polynomial of θ over the
rational field divides Fd (x) and thus its algebraic conjugate ρ is also an eigenvalue of �. In
particular, m(θ ) = m(ρ). (See [1, Section III.1] and [6, Chapter 4].)

Throughout this section � denotes a distance-regular graph as in Proposition 2 with
s = 3, 6. We assume r ≥ 2 to derive a contradiction.

Let x = s − 1 + 2
√

2s cos φ and σ = eφ
√−1. Let

hi = hi (σ ) :=




√
2s

i−1

σ i (σ 2 − 1)
[
√

2s(σ 2i+2 − 1) + sσ (σ 2i − 1)] if σ �= ±1,

(
√

2s σ )i−1[
√

2s(i + 1)σ + si] if σ = ±1.

Then the sequence {hi } satisfies the recurrence relation

hi = (x − s + 1)hi−1 − 2shi−2 for i = 2, 3, . . .

with h0 = 1 and h1 = x + 1. Let

P(σ ) := 2sσ 2 +
√

2s(1 − s)σ + s,

Q(σ ) := sσ 2 +
√

2s(1 − s)σ + 2s

and

R(σ ) :=
(

σ +
√

2s

2

)(
σ + 2√

2s

)
= σ 2 + s + 2√

2s
σ + 1.

Lemma 10 (1) Fi (x) = hi for all i = 0, 1, . . . , r and Fr+1(x) = hr+1 + hr .

(2) If σ �= ±1, then

Fr+1(x) =
√

2s
r−1

σ r+1(σ 2 − 1)
[σ 2r+2(P(σ ) + (

√
2s)3σ ) − (Q(σ ) + (

√
2s)3σ )],

Fr+2(x) =
√

2s
r
R(σ )

σ r+2(σ 2 − 1)
[σ 2r+2 P(σ ) − Q(σ )].
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Proof: (1) The first assertion follows by induction on i. Then we have

Fr+1(x) = (x − s + 2)Fr (x) − 2s Fr−1(x)

= (x − s + 1)Fr (x) − 2s Fr−1(x) + Fr (x) = hr+1 + hr .

(2) We have

Fr+2(x) = (x − 2s + 3)Fr+1(x) − 2s Fr (x)

= (x − s + 1)Fr+1(x) − 2s Fr (x) + (2 − s)Fr+1(x)

= (x − s + 1)(hr+1 + hr ) − 2shr + (2 − s)(hr+1 + hr )

= hr+2 + (3 − s)hr+1 + (2 − s)hr + 2shr−1.

The assertions follow by putting

hi :=
√

2s
i−1

σ i (σ 2 − 1)
[
√

2s(σ 2i+2 − 1) + sσ (σ 2i − 1)].

Remarks (1) σ = ±1 if and only if x = s − 1 ± 2
√

2s.
(2) We have

√
2s R(σ ) = σ (x + 3). Hence R(σ ) = 0 if and only if x = −3.

For functions p(x) and q(σ ) we denote by p′(x) and q∗(σ ) the derived functions corre-
sponding to x and σ, respectively.

Let

f0(x) := x2 + 5(1 − s)x + 6s2 − 11s + 6,

f1(x) := (1 − s)x + s2 + 4s + 1,

f2(x) := (x − s + 1 + 2
√

2s)(x − s + 1 − 2
√

2s)

= x2 + 2(1 − s)x + s2 − 10s + 1,

g1(x) := f1(x)

f0(x)
and g2(x) := (x − 3s)(x + 3)

f2(x)
.

Then it is straightforward to see that P(σ )Q(σ ) = sσ 2 f0(x), P∗(σ )Q(σ )−P(σ )Q∗(σ ) =
sσ f1(x) and 2s(σ 2 − 1)2 = σ 2 f2(x).

Lemma 11 Let θ be an eigenvalue of � with θ �= 3s, −3, s − 1 ± 2
√

2s. Let θ =
s − 1 + 2

√
2s cos ψ and τ = eψ

√−1. Then the following hold.
(1) τ 2r+2 P(τ ) = Q(τ ) and P(τ ) �= 0.

(2) Let

G(x) := g2(x){2r + 2 + g1(x)}.
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If the multiplicity of θ is m, then θ is a root of the equation G(x) = 3|V �|
m .

Proof: (1) The first assertion follows from Lemma 10(2). The second assertion follows
from P(τ )(τ 2r+2 − 1) = Q(τ ) − P(τ ) = −s(τ 2 − 1) �= 0.

(2) By the assertion (1) and Lemma 10(2) we have

Fr+1(θ ) =
√

2s
r−1

τ r+1(τ 2 − 1)
[(

√
2s)3τ (τ 2r+2 − 1)] =

√
2s

r+2

τ r+1

[ −sτ

P(τ )

]
.

Let N (σ ) :=
√

2s
r

R(σ )
σ r+2(σ 2−1) and L(σ ) := [σ 2r+2 P(σ ) − Q(σ )]. Then Fr+2(x) = N (σ )L(σ )

and thus

F ′
r+2(x) = N ∗(σ )σ ′L(σ ) + N (σ )L∗(σ )σ ′.

Since x = s − 1 + √
2s(σ + 1

σ
), we have σ ′ = σ 2√

2s(σ 2−1)
. It follows that

F ′
r+2(θ ) = N (τ )L∗(τ )

τ 2

√
2s(τ 2 − 1)

=
√

2s
r−1

τ 2 R(τ )

τ r+2(τ 2 − 1)2
[(2r + 2)τ 2r+1 P(τ ) + τ 2r+2 P∗(τ ) − Q∗(τ )]

=
√

2s
r−2

τ 2(θ + 3)

τ r+2(τ 2 − 1)2 P(τ )
[(2r + 2)P(τ )Q(τ ) + τ {P∗(τ )Q(τ ) − P(τ )Q∗(τ )}]

=
√

2s
r
(θ + 3)

τ r+2 f2(θ )P(τ )
[(2r + 2)sτ 2 f0(θ ) + sτ 2 f1(θ )].

Since

m = |V �|b0b1 . . . bd−1c2 . . . cd−1

(k − θ )F ′
d (θ )Fd−1(θ )

= |V �|3s(2s)r+1

(3s − θ )F ′
r+2(θ )Fr+1(θ )

,

we have

3|V �|
m

= (θ − 3s)(θ + 3)

f0(θ ) f2(θ )
[(2r + 2) f0(θ ) + f1(θ )] = G(θ ).

The lemma is proved.

Lemma 12 (1) Let θ be an eigenvalue of � with θ �= 3s, −3. Then

s − 1 − 2
√

2s < θ < s − 1 + 2
√

2s.
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(2) The second largest eigenvalue θ1 of � satisfies

θ1 > s − 1 + 2
√

2s cos

(
π

r

)
.

(3) If θ1 > s − 1 + √
8s − 1, then there exists an algebraic conjugate ρ of θ1 such that

s − 1 − √
8s − 2 < ρ < s − 1 + √

8s − 2.

Proof: (1) Let α = s − 1 + 2
√

2s. Then Fi (α) = hi = √
2s

i−1
[
√

2s(i + 1) + si] > 0 for
all 0 ≤ i ≤ r, Fr+1(α) = hr+1 + hr > 0 and

Fr+2(α) = (2 + 2
√

2s − s)Fr+1(α) − 2s Fr (α)
= (2 + 2

√
2s − s)hr+1 + (2 + 2

√
2s − 3s)hr > 0.

Since {Fi (x)} is a Sturm series, the largest root of Fr+2(x) is less than α. In particular, α is
not an eigenvalue of � and hence its algebraic conjugate s − 1 − 2

√
2s is not an eigenvalue

of � either.
Suppose there exists an eigenvalue θ with −3 < θ < s − 1 − 2

√
2s. Then g2(θ ) < 0 <

g1(θ ). We have G(θ ) < 0 which contradicts Lemma 11(2). The assertion is proved.
(2) Let ψ := (

π
r

)
, τ = eψ

√−1 and β := s − 1 + 2
√

2s cos ψ. Then Lemma 10 implies
that

Fr (β) =
√

2s
r−1

τ r (τ 2 − 1)
[
√

2s(τ 2r+2 − 1) + sτ (τ 2r − 1)]

=
√

2s
r−1

(τ − τ−1)

[√
2s

(
τ r+1 − τ−(r+1)

) + s(τ r − τ−r )
]

=
√

2s
r−1

sin ψ
[
√

2s sin(r + 1)ψ + s sin rψ] < 0.

This implies that the largest root of Fr (x) is greater than β. Since {Fi (x)} is a Sturm series,
the largest root of Fr+2(x) is greater than the largest root of Fr (x). The desired result is
proved.

(3) Let

γ :=
∏
θ

|(θ − s + 1)2 − (8s − 1)|,

where θ through over all algebraic conjugates of θ1. Then γ has to be a non-zero integer.
Since |(θ1 − s + 1)2 − (8s − 1)| < 1, there exists an algebraic conjugates ρ of θ1 such

that |(ρ − s + 1)2 − (8s − 1)| > 1. The assertion follows from (1).
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Lemma 13 (1) If s = 3 then r ≤ 15.

(2) If s = 6, then r ≤ 21.

Proof: Note that

g′
1(x) = 1

f0(x)2
{(s − 1)x2 − 2(s2 + 4s + 1)x − (s − 1)(s2 − 31s + 1)}

and

g′
2(x) = 1

f2(x)2
(x − 3 + 3s){(s − 1)x − s2 + 4s − 1}.

(1) Suppose s = 3 and r ≥ 16. Then the second largest eigenvalue θ1 satisfies

θ1 > 2 + 2
√

6 cos

(
π

16

)
> 2 +

√
23

and there exists an algebraic conjugate ρ of θ1 such that 2 − √
22 < ρ < 2 + √

22 from
Lemma 12. We remark that g2(x) is a decreasing function in 2 − 2

√
6 < x < −1 and an

increasing function in −1 < x < 2 + 2
√

6. Hence we have

g2(θ1) > g2(2 +
√

23) > 21

and

g2(ρ) < max{g2(2 −
√

22), g2(2 +
√

22)} < 12.

Note that 0 < g1(x) < 7 for any 2 − 2
√

6 < x < 2 + 2
√

6. It follows, by Lemma 11(2),
that

21(2r + 2) < g2(θ1){2r + 2 + g1(θ1)}
= g2(ρ){2r + 2 + g1(ρ)} < 12(2r + 2 + 7).

This is a contradiction.
(2) Suppose s = 6 and r ≥ 22. Then the second largest eigenvalue θ1 satisfies

θ1 > 5 + 4
√

3 cos

(
π

22

)
> 5 +

√
47

and that there exists an algebraic conjugate ρ of θ1 such that 5−√
46 < ρ < 5+√

46 from
Lemma 12. Since g′

1(x) > 0 and g′
2(x) = 1

f2(x)2 (5x − 13)(x + 15), we have g1(ρ) < g1(θ1)
and

g2(ρ) < max{g2(5 −
√

46), g2(5 +
√

46)} < g2(5 +
√

47) < g2(θ1).
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Hence we have

g2(ρ){2r + 2 + g1(ρ)} < g2(θ1){2r + 2 + g1(θ1)}.

This is a contradiction. The lemma is proved.

Proof of Proposition 2: The case s �= 3, 6 is proved by Lemma 9.
Suppose s = 3 or 6. Then there are only finitely many possible values for r from Lemma

13.
All possible values for r with r ≥ 2 are ruled out by integrity of m(−3) and Lemma 7.

Hence the desired result is proved.

6. Proof of the theorem

We prove our main theorem.

Proof of Theorem 1: Let � be a regular near polygon of order (s, 2) with diameter d.

If s = 1 or 2, then our theorem is true by the classifications of distance-regular graphs of
valency 3, and of distance-regular graphs with k = 6 and a1 = 1. (See [4, 15, 16].) Hence
we may assume s ≥ 3. Let r = max{i | (ci , ai , bi ) = (c1, a1, b1)}.

Suppose d = r + 1. Then the assertion follows from Lemma 4.
Suppose d ≥ r + 2. Then we have cr+1 = 2, cr+2 = 3 and d = r + 2 from Proposition

5. It follows, by Proposition 2, that r = 1 and hence � has to be the Hamming graph
H (3, s + 1).

The theorem is proved.
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