ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Bailey Lemma and Kostka Polynomials

S.Ole Warnaar

DOI: 10.1023/B:JACO.0000047280.16877.1f

Abstract

Using the theory of Kostka polynomials, we prove an A n-1 version of Bailey's lemma at integral level. Exploiting a new, conjectural expansion for Kostka numbers, this is then generalized to fractional levels, leading to a new expression for admissible characters of A (1) n-1 and to identities for A-type branching functions.

Pages: 131–171

Keywords: Kostka polynomials; bailey's lemma; branching functions; $q$-series

Full Text: PDF

References

1. G.E. Andrews, “An analytic generalization of the Rogers-Ramanujan identities for odd moduli,” Proc. Nat. Acad. Sci. USA 71 (1974), 4082-4085.
2. G.E. Andrews, “The Theory of Partitions,” Encyclopedia of Mathematics and its Applications, vol. 2 (Addison- Wesley, Reading, Massachusetts, 1976).
3. G.E. Andrews, “Multiple series Rogers-Ramanujan type identities,” Pacific J. Math. 114 (1984), 267-283.
4. G.E. Andrews, “Bailey's transform, lemma, chains and tree,” in Special Functions 2000: Current Perspective and Future Directions, J. Bustoz et al. (Eds.), (Kluwer Academic Publishers, Dordrecht, 2001), pp. 1-22. WARNAAR
5. G.E. Andrews, A. Schilling, and S.O. Warnaar, “An A2 Bailey lemma and Rogers-Ramanujan-type identities,” J. Amer. Math. Soc. 12 (1999), 677-702.
6. W.N. Bailey, “Some identities in combinatory analysis,” Proc. London Math. Soc. 49(2) (1947), 421-435.
7. W.N. Bailey, “Identities of the Rogers-Ramanujan type,” Proc. London Math. Soc. 50(2) (1949), 1-10.
8. A. Berkovich, “Fermionic counting of RSOS-states and Virasoro character formulas for the unitary minimal series M(ν, ν+ 1). Exact results,” Nucl. Phys. B 431 (1994), 315-348.
9. D.M. Bressoud, “An analytic generalization of the Rogers-Ramanujan identities with interpretation,” Quart. J. Maths. Oxford 31(2) (1980), 385-399.
10. L.M. Butler, “Subgroup lattices and symmetric functions,” Memoirs of the Amer. Math. Soc. 112 (1994) 539.
11. B. Feigin and A.V. Stoyanovsky, “Quasi-particle models for the representations of Lie algebras and geometry of flag manifold,” arXiv:hep-th/9308079.
12. W. Fulton, “Young tableaux: With applications to representation theory and geometry,” London Math. Soc. student texts vol. 35 (Cambridge University Press, Cambridge, 1997).
13. G. Gasper and M. Rahman, “Basic Hypergeometric Series,” Encyclopedia of Mathematics and its Applications, vol. 35 (Cambridge University Press, Cambridge, 1990).
14. G. Georgiev, “Combinatorial construction of modules for infinite-dimensional Lie algebras. II. Parafermionic space,” arXiv:q-alg/9504024.
15. G. Hatayama, A.N. Kirillov, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, “Character formulae of slnmodules and inhomogeneous paths,” Nucl. Phys. B 536 [PM] (1999), 575-616.
16. G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, “Remarks on fermionic formula,” in Recent Developments in Quantum Affine Algebras and Related Topics, N. Jing and K.C. Misra (Eds.), Contemp. Math. vol. 248 (AMS, Providence, 1999), pp. 243-291.
17. V.G. Kac, “Infinite-dimensional Lie algebras, and the Dedekind η-function,” Functional Anal. Appl. 8 (1974), 68-70.
18. V.G. Kac, “Infinite-dimensional algebras, Dedekind's η-function, classical M\ddot obius function and the very strange formula,” Adv. in Math. 30 (1978), 85-136.
19. V.G. Kac, “An elucidation of: “Infinite-dimensional algebras, Dedekind's η-function, classical M\ddot obius function and the very strange formula”. E(1) and the cube root of the modular invariant j ,” Adv. in Math. 35 (1980), 8 264-273.
20. V.G. Kac, Infinite-Dimensional Lie Algebras, 3rd edition Cambridge University Press, Cambridge, 1990.
21. V.G. Kac and D.H. Peterson, “Infinite-dimensional Lie algebras, theta functions and modular forms,” Adv. in Math. 53 (1984), 125-264.
22. V.G. Kac and M. Wakimoto, “Modular invariant representations of infinite-dimensional Lie algebras and superalgebras,” Proc. Nat. Acad. Sci. USA 85 (1988), 4956-4960.
23. V.G. Kac and M. Wakimoto, “Branching functions for winding subalgebras and tensor products,” Acta Appl. Math. 21 (1990), 3-39.
24. A.N. Kirillov and N. Yu. Reshetikhin, “The Bethe Ansatz and the combinatorics of Young tableaux,” J. Soviet Math. 41 (1988), 925-955.
25. A.N. Kirillov, A. Schilling, and M. Shimozono, “A bijection between Littlewood-Richardson tableaux and rigged configurations,” Selecta Math. (N.S.) 8 (2002), 67-135.
26. A.N. Kirillov and M. Shimozono, “A generalization of the Kostka-Foulkes polynomials,” J. Algebraic Combin 15 (2002), 27-69.
27. A. Kuniba, T. Nakanishi, and J. Suzuki, “Characters of conformal field theories from thermodynamic Bethe ansatz,” Mod. Phys. Lett. A 8 (1993) 1649-1660.
28. A. Lascoux and M.-P. Sch\ddot utzenberger, “Le mono\ddot ıde plaxique,” in Noncommutative Structures in Algebra and Geometric Combinatorics, A. de Luca (Ed.), Quad. Ricerca Sci. vol. 109, (CNR, Rome, 1981), pp. 129-156.
29. J. Lepowsky and M. Primc, “Structure of the standard modules for the affine Lie algebra A(1),” Contemp. 1 Math. vol. 46 (AMS, Providence, 1985).
30. D.E. Littlewood and A.R. Richardson, “Group characters and algebra,” Phil. Trans. Royal. Soc. London. Ser. A 233 (1934), 99-141.
31. I.G. Macdonald, “Affine root systems and Dedekind's function,” Invent. Math. 15 (1972), 91-143.
32. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press, Oxford, 1995.
33. L. Manivel, “Symmetric functions, Schubert polynomials and degeneracy loci,” SMF/AMS Texts and Mono- graphs, vol. 6 (2001).
34. S.C. Milne, “Balanced 3φ2 summation theorems for U(n) basic hypergeometric series,” Adv. Math. 131 (1997), 93-187.
35. S.C. Milne, “Transformations of U (n + 1) multiple basic hypergeometric series,” in Physics and Combinatorics, A.N. Kirillov et al. (Eds.), (World Scientific, Singapore, 2001) pp. 201-243.
36. S.C. Milne and G.M. Lilly, “The Al and Cl Bailey transform and lemma,” Bull. Amer. Math. Soc. (N.S.) 26 (1992), 258-263.
37. S.C. Milne and G.M. Lilly, “Consequences of the Al and Cl Bailey transform and Bailey lemma,” Discrete Math. 139 (1995), 319-346.
38. M. Okado, A. Schilling, and M. Shimozono, “Crystal bases and q-identities,” in q-Series with Applications to Combinatorics, Number Theory, and Physics, B.C. Berndt and K. Ono (Eds.), Contemp. Math. vol. 291 (AMS, Providence, 2001) pp. 29-53.
39. L.J. Rogers, “Second memoir on the expansion of certain infinite products,” Proc. London Math. Soc. 25 (1894), 318-343.
40. A. Schilling and M. Shimozono, “Bosonic formula for level-restricted paths,” in Combinatorial Methods in Representation Theory, K. Koike et al. (Eds.), Adv. Studies in Pure Math. vol. 28, (Kinokuniya, Tokyo, 2000) pp. 305-325.
41. A. Schilling and M. Shimozono, “Fermionic formulas for level-restricted generalized Kostka polynomials and coset branching functions,” Commun. Math. Phys. 220 (2001), 105-164.
42. A. Schilling and S.O. Warnaar, “A higher level Bailey lemma: Proof and application,” The Ramanujan Journal 2 (1998), 327-349.
43. A. Schilling and S.O. Warnaar, “Supernomial coefficients, polynomial identities and q-series,” The Ramanujan Journal 2 (1998), 459-494.
44. A. Schilling and S.O. Warnaar, “Inhomogeneous lattice paths, generalized Kostka polynomials and An - 1 supernomials,” Commun. Math. Phys. 202 (1999), 359-401.
45. A. Schilling and S.O. Warnaar, “A generalization of the q-Saalschutz sum and the Burge transform,” in Physical Combinatorics, M. Kashiwara and T. Miwa (Eds.), Progress in Mathematics vol. 191 (Birkhauser, Boston, 2000) pp. 163-183.
46. A. Schilling and S.O. Warnaar, “Conjugate Bailey pairs,” in Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory, S. Berman et al. (Eds.), Contemp. Math. vol. 297 (AMS, Providence, 2002).
47. M. Shimozono, “A cyclage poset structure for Littlewood-Richardson tableaux,” European J. Combin. 22 (2001), 365-393.
48. M. Shimozono, “Multi-atoms and monotonicity of generalized Kostka polynomials,” European J. Combin. 22 (2001), 395-414.
49. M. Shimozono, “Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties,” J. Alg. Combin. 15 (2002), 151-187.
50. M. Shimozono and J. Weyman, “Graded characters of modules supported in the closure of a nilpotent conjugacy class,” European J. Combin. 21 (2000), 257-288.
51. S.O. Warnaar, “Fermionic solution of the Andrews-Baxter-Forrester model. II. Proof of Melzer's polynomial identities,” J. Stat. Phys. 84 (1996), 49-83.
52. S.O. Warnaar, “Supernomial coefficients, Bailey's lemma and Rogers-Ramanujan-type identities. A survey of results and open problems,” Sém. Lothar. Combin. 42 (1999), Art. B42n, 22 pp.
53. S.O. Warnaar, “50 Years of Bailey's lemma,” in Algebraic Combinatorics and Applications, A. Betten et al. (Eds.), (Springer, Berlin, 2001), pp. 333-347.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition