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Abstract. A two-variable analogue of the descents monomials is defined and is shown to form a basis for the
dense Garsia-Haiman modules. A two-variable generalization of a decomposition of a P-partition is shown to give
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1. Introduction

Let A denote the infinite collection
A=1{..,(0,3),(0,2),(0,1),(0,0),(1,0),(2,0),3,0),...}. (1.1)

For (ai, b1), (az, b»), € A, we define (ay, by) <4 (as, br) whenever a; — by < a, — by. Let
S ={(a1,b1), (a2, b2), ..., (an, by)} C A

denote a finite subset of A listed so that (a;, b;) <4 (a;+1, bi+1). Furthermore, let Mg denote
the n x n matrix

Ms = (x5} (12

1<i,k<n

and let Ag(X, Y) denote the determinant of M. Set C[X, Y] to be the polynomial ring over
the complex field C with variables in X = {x{, x2, ..., x,},and Y = {y1, y2, ..., y,}. With
P(X,Y) e C[X, Y], we will set

P(dx, dy) = P(ax,, Oxys ooy Ox,s Oyys Oy oees Byn),
where 0y, denotes the partial differential operator with respect to x;. With

Is(X,Y)={P(X,Y) e C[X, Y] : P(dx, dy)As(X,Y) =0}, (1.3)
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set Cs[X, Y] to be the polynomial quotient ring
CslX,Y]=C[X,Y]/Zs(X, Y). (1.4)

These rings Cg[ X, Y] are called Garsia-Haiman modules. A. Garsia and M. Haiman intro-
duced modules of a similar nature to study the Kostka g, ¢ coefficients (see[5]). The ideas,
however, can be traced back to Macaulay.

Associated with a subset

S={0,51),(0,by),...,(0,bj_1),(0,0), (@j+1,0), ..., (an, 0)} (1.5)

of A, listed in increasing order with respect to < 4, are two sequences s and E,,, defined
as follows.
First, for 1 < j <n — 1, set g to be

Vs =1L, B2, ..., Bl [, ey oo ctng1— 11,
with By =y = landfor2 <k < j,
Bx =bjr1-k —bjio .
andfor2 <h<n+4+1-—j,
Op =djip—1 — Ajyh-2
where b; = 0 and a; = 0. Collections
Vs =I[B1, B2, ..., Bul. Y]
or
Vs =Y, lar, oa, ..., o]

will be dealt with in Section 7.
Second, set

Eys ={lots > 01,0, pjy1, ..o, oal)p (1.6)
where

0 <k < by —bry1 = Bjyi-k,
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forl <k <j—1,and
0<pn <an—an1=an_jq1,
forj+1<h<n.

For o € S, (the symmetric group), ¥ = [ [1, B2, ..., B, [1, 2, ..., ctpy1—;]] and
o =1[p1, 02, ..., pul € Ey,, define

-1
d; (X, Y) = (H Yoty yf,’ﬁk)> l_[ Yoy Yoli)
k=1

I<i<j-1
o(i)>o(i+1)
. h
P Ph Ph
x l_[ XoemyXom+1) " Xo(m) l_[ Xo@@) * Xom) | - (1.7)
h=j+1 jHl<izn

o(i—1)>o(i)
For example, ifo = (5,8,4,2,3,6,1,7), p =1[4,0,3,1,0,1,0,7] and j = 5 then

d; (X.Y)
= (v3)(y5 ¥8) (v3 ¥3 ¥3) (3 ¥5 ¥4 ¥2) s ¥8)(¥s ¥s ya)(xe X1 x7)(x7 ) (x1 X7)
= X} ¥273 3" X6 X; Y.

Note that the terms

1_[ Yo(1) =« Yo(i)

I<i<j-1

o(i)>o(i+1)

and

1_[ Xo(i) * " " Xo(n)

j+l<i=n

o(i—1)>o(i)

are partial terms of descent monomials and that

j—1
ok o
k=1

1<i<j-—1

o(i)>o(i+1)

and

n
o P o
( l_[ xa’zh) xa’fh+1) e 'xa’fn)) l_[ XoG)*** Xo(n)

h=j+1 jHl<i<n
oi_1>0(i)
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are correspondingly partial terms in the P-partition decomposition given in [10] (see
page 213).

The purpose of this paper is to prove the following theorem. Note that the definition of a
dense sequence will be given in Section 2. Also, recall that j is implicitly defined in S.

Theorem 1.1 Let S be a dense sequence. The collection
Ds ={d] (X.Y):0 €5,.p € By} (1.8)
is a basis for Cs[ X, Y] with coefficients from C.

Note that Theorem 1.1 is a generalization of a well-studied theorem. If ¥ = [[1, ...,
1, 1], [1]] then j = n and

8y, =1{[0,0,...,0]}.
The only possible choice for p is
p=1[0,0,...,0].

In this case, dg, o(X, Y) reduces to the normal descent monomial

dl (X, V)= [] yo s

0;>0i41

and Dg becomes the collection of descent monomials in the variables Y. Furthermore,
As(X,Y) becomes the Vandermonde determinant in Y and Zg(X, Y) becomes the ideal
generated by the elementary symmetric functions in the variables Y and {x;, x2, ..., x,}.
Essentially, Cs[X, Y] is the coinvariant ring (i. e., C[yy, y2, ..., y,]/I where I is the ideal
generated by the elementary symmetric functions in the variables Y) associated with the
symmetric group S,. In [1, 4] and [8], various proofs have been given that show that the
descent monomials are a basis for C[yy, y2, ..., Y.1/1.
Additionally, with 1 < h < g and

Ys=Ilh,g, ..., 8 gl 9], (1.9)

the ideal Zg(X, Y) is generated by the following symmetric polynomials

— 8.8 8
€ = Z YirYi, = Vip

i) <ip<--<iy

forl <k <n-—1and

en =y ya- oyt
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The rings Cg[X, Y] are the coinvariant rings associated with certain complex reflection
groups—(i.e., C41 S, and some particular subgroups of C, 2 S,,, where C, denotes the cyclic
group of order g—see, for example, [2] for two sets of variables X and Y or [7, 10], or [11]
for the one variable X case. For example, when the sequence Vs = [[2,2,2,...,2], 4]
the module Cg[X, Y] corresponds to the coinvariant ring associated to the hyperoctahedral
group. These rings in a single variable have been studied by various individuals. For example,
in [11] the Hilbert Series of Cg[X, Y] was calculated (with ¥g given in Eq. (1.9)). Morita
and Yamada studied the one variable case using bideterminants in [7]. In [2], a bipermanent
basis was constructed over variables X and Y. As we will see, s = [[h, g, ..., g, g], 0] is
an example of certain sequences that we will call dense (see Section 2). Thus, the results
in this paper apply not only to the coinvariant rings associated to these certain complex
reflection groups but also to a much larger classification of rings. Particularly, this paper
deals with a certain two-variable generalization of these rings and an extension of the theory
of descent monomials and P-Partitions to a broader class of rings, specifically the class of
dense Garsia-Haiman modules. A generalization of a P-Partition decomposition gives us
the needed combinatorics to prove the necessary theorems.

In Section 2, dense Garsia-Haiman modules will be defined. In Section 3 we will review
some results about cocharge tableaux and the Hilbert series of Cs[X, Y] and prove that a
summation of a statistic over the collection of descent monomials gives the Hilbert series for
Cs[X, Y]. In Section 4, we will identify some particular polynomials in the ideal Zg(X, Y).
In Section 5, we will describe a decomposition that is a generalization of the P-partition
decomposition. In Section 6, we will prove that the descent monomials given in Eq. (1.8)
are a basis for Cg[ X, Y]. Specifically, we will give an algorithm for expressing a monomial
P(X, Y) as a linear combination of elements of Dg. In Section 7, we will look at analogous
results for dense one-variable Garsia-Haiman modules.

2. Dense sequences

Recall that

Vs =11, B2, ..., Bjl. [1, 2, ..., g1 11 2.1)

We will consider ¢y = ) = 1. For 1 <k < j, set
k
fi=—1+4) B (2.2)
i=1
andforl <h <n+4+1-—j,set

h
gn=-1+)Y a. (2.3)
i=1

Note that fy = bj_41 and g, = aj,—1 where fi, gn, bj_x+1 and a1, are as defined in
Egs. (1.5), (2.2) and (2.3). We will say that g is dense if and only if both of the following
two conditions hold.
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1. For all j such that 1 < k < j and for all sequences c, ..., ¢; of nonnegative integers
not all zero, either

J
fe= i <0. 2.4)
i—k
or
J
fk_zci Bi = fps (2.5)
i=k
for some p.
2. Forallksuchthat1 < k < n— j+1 and for all sequences d, . . ., d,— j+1 of nonnegative

integers not all zero, either

n—j+1
g — Z d;a; <0, (2.6)
i=k
or
n—j+1
ge— Y diey =g, 2.7)
i=k
for some g.

The collection of dense sequences is somewhat extensive. For example, any sequence of
the form

vs=1I1,g,8,...,¢l,[1,h, h,..., }]]

(with both g, i > 1) is dense. Another possibility is

Yy =1, B2, ..., Bi1, [1, a2, .o 111

where Bi|Br+1 for 1 < k < j — 1 and o]y for 2 < h < n — j. A third example
occurs when we require o > Zf:ll ajforl <k <n+1-—jorpf > 21:1] B; for
1 <k < j. Many types of examples exist. Furthermore, note that being dense is a function
of the sequences [1, B, ..., Bjland [1, a2, ..., ot,41— ;] separately. Thus in these previous
example, we could have interchanged a [1, B, ..., B,] from one example into another and
the resulting sequence

Vs =I[[1, B2, ..., BjL 1, 2, s g1

would have remained dense.
We will say that the Garsia-Haiman module Cs[X, Y] is dense, whenever the subset S is
dense.
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3. Cocharge tableaux and the Hilbert series of Cg[X, Y]

We will use French notation to denote ferrers diagrams and taleaux. Let . = (A1, Ao, ...,
An) be a partition of n. Specifically, we have that A; > A, > .- > X, > Oand n =
AL+ Xy + - 4+ Ap. A ferrers diagram of shape A has A; cells in its first row, A; cells in its
second row and, in general, A; cells in its kth cell as 1 < k < h. A tableau of shape A is
a ferrers diagram of shape A where the cells contain entries from some ordered alphabet.
A standard tableau is a tableau where the entries are taken from the set {1, 2, ..., n}, each
entry appears exactly once and the entries strictly increase from left to right (west to east)
in each row and from bottom to top (south to north) in each column. Let si2(7) denote the
shape of T'.
Define

1 if i is southeast of i + 1;
0 if i is northwest of i + 1.

8(i) = {

By southeast, we mean strictly south and weakly east. Similarly, by northwest, we mean
strictly west and weakly north.
With

Vs =11, B, ..., Bl [L, aa, ..oy tny1 1],
/):[101’,027“-’:011]6 E‘/’S

and a standard tableau T', we can construct a cocharge tableau C = C,(T') with sh(C) =
sh(T) in the following manner (see [3]).

A. Replace j in T by (0, 0) and set ¢; = (c; 1, ¢j2) = (0, 0).

B. Assuming that we have replaced % in T by (cj,1, 0) (for some h > j), replace h 4 1 in
T by (cn1 + pr+1 +8(h), 0).

C. Assuming that we have replaced g in T by (0, ¢,,») (for some g < j), replace g — 1 in
T by (0,ce2 + pg—1 + (g — 1)).

Note that C,(T') has entries from the alphabet A and that the entries of C,(T) increase
strictly from south to north and increase weakly from west to east (with respect to < 4).

Example Let 7 be the standard tableau of shape (5, 4, 3)

10
7 12
4 8 11

~N

Il
—_— W O
N L O

With

vs =1[[1,1,2,5,5,10],[1,2,2,2,6,6, 12]]
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and
0=12,3,3,01,0,0,1,0,2,4,7],

we have n = 12, j = 6 and

0,0 20 &0
C,(T)= (0,6) (0,2) (0,0) (16,0) . (3.1)
0,12) (0,10) (0,3) (1,0) (8,0)

Let |C, 1(T)| and |C, »(T)| denote the sum of the first coordinate entries and the sec-
ond coordinate entries, respectively, of C,(T), With C,(T) given in Eq. (3.1) we have
|Cp,1(T)| =31 and |C, »(T)| = 33, respectively.

Given a graded module R in the variables X and Y, we will let R; , denote the homoge-
neous subspace of total degree s in the variables X = {x|, x5, ..., x,} and of total degree
rinY = {y1, 2, ..., yn}. The Hilbert Series H(R) of R is defined as

HR) =) dim(R, )'q".
st

The following theorem is proved in [3].

Theorem 3.1 If S is dense then the Hilbert Series H(Cs[X, Y]) is given by

H((CS[X,Y])zz Z Z £1C 1Dl 1€, 2T

An, U, TeST, peByg

— th Z Z tlcp.l(T)\q\Cp,z(T)I (3.2)

An TeST, pelyyg

where ST, denotes the collection of standard tableaux of shape A, h;_denotes the number
of standard tableaux of shape A and |C, (T)| and |C, »(T)| denote the sum of the first and
second coordinates, respectively, of the entries of C,(T).

Let (P,, T,) denote the pair of standard tableaux that we obtain by the row insertion
algorithm corresponding to the permutation o € S, (see [6] or [9], note, however, that we
are using the French notation for describing our tableaux). We denote the relationship
between a permutation o € S, and a pair of standard tableaux (P,, 7,) induced by the
row-insertion algorithm by 0 —> (P,, T, »

Witho = (01,03, ...,0,) € S, ando —> (P, T,), note thatif 6(i) > o (i + 1) then in
T, the cell containing i is southeast (strictly south and weakly east) of the cell containing
i + 1 (follow the bumping path as described in [6]). Similarly, if o(i) < o(i + 1) then in
T, the cell containing i is northwest (weakly north and strictly west) of the cell containing
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i + 1. The entry in C,(T5) that replaced j in 7, is (0,0). Not that the exponents of x,(;, and
Yojy indy ,(X, Y) (see Eq. (1.7) are both precisely 0.

Now assume that (c,,, 0) replaced m (for some m such that j <m < n — 1)in T, and
that ¢,, is the exponent of x,, and 0 is the exponent of y,(m) in ds ,(X, Y).

If m is southeast of m + 1 in T, then in C,(T5), (¢ + pm+1 + 1, 0) replaced the entry
m + 1 of T,. If m is southeast of m + 1 in T, then o (m) > o(m + 1) and the exponent of
Xo(m+1) 1 da o(X, Y)is ¢y + pms1 + 1. The exponent of ys (1) in di. o(X,Y)is 0.

If m is northwest of m + 1 in T, then (¢, + Pm+1, 0) replaced the entry m + 1 of T,,.
Furthermore, o (m) < o (m + 1) and the exponent of X4 (»+1) 1S ¢,y + Pm+1 and the exponent
of Yo(m+1) is O in dép(X, Y)

Similar situations occur for m when 2 < m < j and in which we consider the entry ¢,
in C,(T5) and the exponent of X, (,—1y and ys(n—1) in dy. (X, Y).

Thus if (a, b)is the entry thatreplaced i in 7, when we constructed C, (7, ), then the expo-
nents of x,(;) and y, () in d(, o are precisely a and b, respectively. Therefore, if o L (P, Ty)
then |C, 1(T,)| = |d’p /| and |C, o (T,)| = |d]p ,|, where Id’p | and |d/ ) o2l denotes the
sum of the exponents in the variables X = {x;,x2,...,x,} and ¥ = {y1, y2,..., ya} of
ds ,(X,Y), respectively. Thus,

Theorem 3.2 If S is dense then the Hilbert Series H(Cs[X, Y]) is given by

H(C,[X, Y]):Z Z Z £1C 1Dl 1€y 2T

An U,.TeST, peBy;

> (1l gl 2, (33)

dgipEDS

where |dj 5.0, || and | .0, 2| denote the sum of the exponents of the variables in X and Y

respectively, of dg, o

Thus to prove Theorem 1.1 all we need to do is show that the collection Dy spans
Cs[X, Y]. To do so, we will need to identify some polynomials in the ideal Zg(X, Y) (recall
Eq. (1.3)). This is the object of Section 4.

It should be noted that in [3], it is shown that the Hilbert series H(Cs[X, Y]) of Cs[X, Y]
is given by

H(Cs[X, YD = fys(q, HH(Cs, [X, Y])
where
Jo1— qUiTI=D: nHl=j o pn2— =Dy
s, = 11 (71 ERE ) 11 (—1 — ) (34)

and H(Cg, [X, Y]) is the Hilbert series corresponding to shape ¥ = [[171, [1#H-11.
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4. Some polynomials in Zg(X, Y)

With y; = (yi.1, ¥i2) and ¥ = [y1, ¥2, - - - » ¥u] @ sequence of length n with entries from A,
we set

_ Vo)1 Yu).2 V@1 | Vu(@).2 Vo).l Vo(n).2
m,(X,Y) = E Xy B A A 4.1)

ves,

Essentially, we are permuting the exponents in Eq. (4.1) (defining m,, (X, Y) in this manner
becomes very useful in Eq. (4.6) and (6.2)). Note that

omy(X,Y)=m,(X,Y)
for all o € S, where the action of S, on a polynomial P(X, Y) is defined by setting

OP (X1, X0, c ooy Xy Y1y Y2y e v ey V) = P(xa(l), Xg(2)s -+ s Xan)s Yo(1)s Yo(2)s « -+ » y(,(,,)).
With

Vs =11, B2, ..., BjL [1, s ..oy g1 11,
set I'y to be the collection of sequences

Ly, ={lej ej-1,...,€,(0,0), ha, ..., hyy1—j]
te o tei+0+ -+ 6041-; >0}, 4.2)

where each ¢; and each 6; is a nonnegative integer, and

k
e = (0, Ze,ﬂ,) (4.3)
i=2

(for2 <k < j)and

8
hy = (Z 0; i, 0) (4.4)
i=2

(for2<g=<n+1-)).
Theorem 4.1 If S is dense and if y € I'y then

m,(X,Y) e Iy(X, Y). (4.5)
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Proof: Recall that Zg(X, Y) is defined in Eq. (1.3). With f; and g, defined as in Eqs. (2.2)
and (2.3), and

Yy = [ej9ej717 e, €2, (Os 0)9 h27 oo 9hn+17j] = [yls V2yenns Vn] [S Fx/f57
it is not difficult to see that

my (9x, dy)As(X, Y)
: 0=y (D),1_ fi—yu(1).2 0—nG—D.1_ fi—nG—1.2 _0—n(j),1
— ZC\JZSIgn(a))w(x] r(D) i A VY yf' n(i=1.2,.0=%,(J)

Jj—1 Jj—1 J
ves, wes,
0—yu(j),2 _8L1=n+na  0=Vui+1)2 8n—j+1,1—Yom,1 . 0= Vo) 2
yj xj+1 yj+1 e Xp yn )’ (46)

where ¢, = 0 if any of the exponents are negative.

Suppose that ¢, # 0 (specifically that none of the exponents in Eq. (4.6) are negative).
Suppose that there exists a k where 1 < k < j such that y,j11_x # (0, 0). Without
loss of generality, let k be the largest such integer. The fact that vy is dense implies that
O, fv — voj+1-k) = (0, f;) where y,j+1—n = (0, 0) for some ¢ (see Eqgs. (2.4)—(2.7)).
Therefore the exponents of x; and y; are exactly equal to the exponents of x; and y; in
Eq. (4.6). Therefore,

. O=yun1  fi=vom2  O—na . fi-1=me).2
>~ sign(@)o(x) y; X, ¥
wEeS,

0=Yuy.1 . fi=Vowr2  O=Voij+11 . O=2ugi+1)2 gn—j—11— Vw1 . O—Vom 2\ __
Xj Yj j+ i+l T n Yn )=0.

Similar comments can be made if there existsak in j+2 < k < n such that y, ) # (0, 0).

Therefore, if we have that {5 is dense and y € I'y, then m, € Zs(X,Y). Complete
details with all of the calculations can be found in [3]. a

5. A P-partition type decomposition
Let P(X, Y) be a monomial such that
PX,Y) = x{"y{'x*y3 - xiy & Ts(X, Y).

The condition that P(X, Y) € Zs(X, Y) implies that (p;, ¢;) € Afor 1 <i < n. We define
the exponent sequence es (P, (X, Y)) of P(X,Y)tobe

es(P(X,Y)) = (p1,q1). (P2.42), - - -, (P Gn)- GRY;

Label the entries of the sequence es(P) from smallest to largest with respect to < 4 breaking
ties by which is farthest left (an example can be found in Eq. (5.14)). With ¢; denoting the
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label of (p;, g;), set ¢p to be the permutation

é _|:l 2 3 ... n:| 52)
" o1 b Pz - Py '

and
op = (¢p) " (5.3)

Particularly, op(i) = k implies that (pg, gx) was labelled i.
Let (r;,1, ri,2) denote the entry of es(P(X, Y)) labelled i. We can assume that (1 1, r;2) =
(0,0) orelse P(dx, d0y)As =0and P(X,Y) € Zg(X, Y). With

Ys=I[[1, B2, ..., B, [1, 02, ..., py1—4]]
and

1 ifop@)>op(i+1)
0 ifop@i) <op(+1),

Xop(i) = {
forl <k <j—1,set

Pk = (re2 — Fir12 — Xop (k) (mod B 1), (5.4)
forj+1<h <n,set

o= n1 —T-11— Xop(h — 1)) (mod apy1-;) (5.5)
and

Pp = [)01» P25 -5 Pj—1, 07 Pj+1, "°7pn]'

Note that we are considering (mod o4 ;) and (mod ;) as functions so that 0 < o <
Birik—1(forl <k <j—1and0 =< p, <apy1—;—1(for j+1=<h <n).
With

es(d], ,,(X,Y)) = (hi1,h12), (ha1s hoo), ..o (B tha ), (5.6)
let (g;.1, g&i2) denote the entry of es(dép, op) labelled i. Set

vi=Wi1vi2) = i1 — &1, T2 — &i2) (5.7)
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and yp to be the sequence

Yp = [Vl’ Y2, eees Vn]
with y; = (0, 0).

Suppose the entry labelled j —1ines(P(X, Y))is (0, r;_1 »). Note that the entry labelled
Jjines(P(X,Y)) mustbe (0, 0) (orelse P(X,Y) € Zg(X, Y)). Now, p;_1 = (rj—12 — 0 —
Xop(J — 1)) (mod Bs). Thus

rici2 = pj-1+ fic1Be + X6, (G — 1), (5.8)
some nonnegative integer f;_;. Now, g;_1 > is the exponent of y,(j_1) so that

8j-12=pPj-1+ Xop(J — 1)

and

Vi-12 =Fj-12 —§8j-12 =Fj-12 — Pj—-1 — Xop(j— 1= fj—lﬁz

by Eq. (5.8).
Assume (reverse) inductively that some k + 1 (where | < k < j — 1), we have that
j—1
Fk412 — 8k+12 = Vip12 = JiBjv1-i (3.9)
i=k+1

where each f; is a nonnegative integer. Note that g » is the exponent of y,,(x) and thus
Eq. (1.7) implies

gk2 = &k+1.2 + Pk + Xop (k).
Recall from Eq. (5.4) that

Pk = (k2 = Tev12 = Xop (k) (mod Bj11), (5.10)
or equivalently,

k2 = Pk + Tkr1.2 + Xop () + fi Bj1-ks
some nonnegative integer f;. Using Eq. (5.9), we have

Y2 =Tk2 — 8k2
= ok + Tit1.2 + Xop (K) + fi Biti—k — 8k+12 — Pk — Xop (k)
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=112 + fi Bjr1-k — 8k+1.2
= fi Bj+i—k + Yi+12

j—1
=Y fiBii
i=k

where each f; is a nonnegative integer.
Now (0, yx2) = ej11—2 when g; = fj;1_; (recalling Eq. (4.3)) for2 <i < j.
The cases when k > j + 1 are similar. Therefore, we have that

yp = [ylv Y2, -~-7yn] € wa

With ¢ = ¢p, set

tp =vrg = [Yo) Yo - - -+ Yo - (5.11)

Itis easy to see that ¢pp(1) = ¢ng o D), Pp2) = ¢da,, o (2), etc. This gives pp = ¢,; .
’ k op.Pp

Note thatif o(k) = i (sothat¢(i) = (op)~ (i) = k) then (p;, g;)is labelled k in Eq. (5.1) and
(hi1, h;2) is labelled k in Eq. (5.6). Therefore, we have (p;, i) = (r.1, 1x.2), (hi1, hi2) =
(8k,15 &k.2)5

Vits Yi2) = (Voir1» Voir.2) = ity Gi2)
and by Eq. (5.7)
hiv hiz i1 Gi2

Pi \4i T\, Th2 — 4-8k14,8k2 4 Vi1, VE2 —
Xi Vi =X Vo =X, Yo Ko Vo, =X i XY (5.12)

Thus, we have the following theorem.

Theorem 5.1 Given a sequence

WS = [[15 ﬂ27 SRR ﬂ]]a [15 o, ..., an+1—j]]
and a sequence

P = (pi,1, P1,2), (P21, P2.2), (P31, P3,2)s -+ s (P15 Pn,2)

where (p; 1, pip) € Aand (pj 1, pj2) = (0,0), there is a unique triple (cp, pp, yp), where
op € Sy, pp € By, and yp € 'y, such that if P = es(P(X,Y)) and {p = yp gy, =
es(Q(X,Y)) then

P(X,Y)=d! (X,Y)Q(X,Y). (5.13)

ap.pp

Theorems 4.1 and 5.1 then yield
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Theorem 5.2 [f S is dense, if (op, pp, yp) is the decomposition of P and if yp is not a
sequence consisting entirely of entries (0, 0) then m,,,(X, Y) € Zs(X, Y).

This decomposition of es(P(X, Y)) in Theorem 5.1 into the triple (es(d({P), PP, VpP)
is a generalization of a P-partition decomposition given in [10] (see page 213). It will
reduce to exactly this P-partition decomposition when ¥ = [[1, 1, ..., 1], #] (forcing
pp = 10,0,...,0]). Note that in this case, the requirement that (v, 7;2) = (0, 0) (the
entry in Eq. (5.1) labelled j) is not needed (see Section 7).

Example Withn =8, ¢ =1[1,1,3,3],[1, 1, 2, 2, 4]] (which implies j = 4) and
P(X,Y)=x] x3> 3 y3' v x¢° x4

then es(P (X, Y)) with its labelling is

es(P(X,Y)) = (5, 0), (23, 0)5, (0, 9)2, (0, 21)1, (0, 1)3, (15, 0)7, (0, O)4, (1, 0)s.

(5.14)
Now,
P 1 2 3 45 6 7 8
P7l6 8 213 7 4 5/
1 2 3 45 6 7 8
op = .
4 357 81 6 2
and
p=[21-9—1(mod3),9—1—-0(mod3),1 —0—0(mod 1),0,
1—0—-—0(mod1),5—1—1(mod?2),15—-5—0(mod 2),
23 — 15 — 1 (mod 4)]
=1[2,2,0,0,0,1,0,3].
Note
d} (X, Y) = (v7) (¥353) e (x1x663%2) (x5 ) (x1x6x2)(x2) = x{x5y3 yjxe, (5.15)
es(di p(X , Y)) (along with its exponent labelling) is
eS(di,,(X, Y))=(2, 0)s, (6, 0)s, (0, 2)2, (0, 5)1, (0, 0)3, (2, 0)7, (0, 0)4, (0, 0)s
(5.16)

and

yp =[(0, 16), (0, 7), (0, 1), (0, 0), (1, 0), (3, 0), (13, 0), (17, 0)] € T'y;,.
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Note that this correspondsto e, = 1,63 =2,64 =3,6, = 1,603 =1,0, =5and 65 = 1 in
Egs. (4.3) and (4.4).

tp=vre =13,0),(17,0),(0,7), (0, 16), (0, 1), (13, 0), (0, 0), (1, 0)]. (5.17)

6. Spanning

The type of P(X, Y), denoted by 7(P(X, Y)), is the rearrangement of the exponent sequence
es(P(X, Y))inincreasing with respect to < 4. For any two sequences it = [ft1, (o, -« ., Unl
and v = [vy, vy, ..., v,] of length n with entries from the set .4, we will say that © <4 v
whenever u; = v; forl <i <k—1and u; <4 v¢ . We will say that P(X,Y) <,. OQ(X,Y)
whenever

1. 7(P(X,Y)) <4 1(Q(X, Y));
2. ift(P(X,Y)) =1(Q(X,Y)) thenes(P(X, Y)) <4 es(Q(X, Y)).

The largest monomial N (X, Y) with respect to <, such that N(X, Y) & Zg(X, Y) is the
monomial

N(X,Y) = xixt o x)

n—j’

where S is listed with respect to increasing order of < 4 asin Eq. (1.5). Note that N(X, Y) =
dy ,(X,Y) where

1 2 e j—=1 7 j+1 j+2 - n—1n
o =
n—j+1 n—-j+2 -+ n=—1nn—j n—j—1 --- 2 1
and p =1[0,0,...,0, a0 — 1,03 = 1 - -+, a4 j—1 — 1]. Particularly, N(X, Y) € Dy .
Let P(X,Y) &€ Z5(X, Y) be the monomial that is largest with respect to <,, such that

P(X,Y)is notin the span of Ds. Since P(X, Y) & Dg then yp € I'y, and (from Eq. (5.11)
and Theorem 5.2)

me, (X, Y) =my, (X, Y)=m,(X,Y) € Iy(X, Y). (6.1)

Now, using the notation of Egs. (5.6) and (5.11) and setting 0 = op and p = p,, we
have

me, (X, V)d,, (X, Y)

< C\I 2 Lz 1 Sno {.,l 1. Sm2 h] 1k, 2y hay hao Bt < hn
= § :x Y2 © Yn VIUX Yy
veSs,
[ R I SPS T T R SRS R B SRV P [ C o +h
v 1L v 2L vy, 1712, vy 2722 v 1L Py 2702
= E X1 Y1 Xy Y2 crcXn Yn . (6.2)

ves,
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Note that we have the following cases.
1. If for some i (with 1 <i <n) (Ly,1 + hixs L2 + hip) € Athen

Sopathin o 2thin Gy athan Lo 2than Sopthny Loy athnn
X by X, ¥, s X Yn € Zs(X,Y).

Gathiy  Giothie Gathan  Gothan Snathny  Cnothan
2. xy I 2 ¥s X Yn = P(X,Y).

If (hix, hin) <a (A, he2) then (&1, 82) <a (Grots Gi2)-

4. If (hi 1, hio) = (hi,1, he2) and i < k then ¢; < ¢ (from Eq. (5.2)) and (;1, &i2) <a
(Sk.15 Gk.2)-

5. It (hig, hin) <a (B, hep), (mi1, min) <4 (myg 1, my ) and if both (h; 1 +m; 1, hiz +

m;i) € Aand (hyy +my 1, b o +myi2) € Athen (b +my 1, hio +mio) <a (e +

my 1, o +my ).

bl

Let

F=A{(fi,1, f1.2), (o1, f2.2)5 - s (fo, 15 fo.2))

denote the collection of elements of A that make up the entries of es(dé, »(X, Y)) listed in
increasing order with respect to < 4. Let

Ki={ki koo kg )

be the collection of integers such that (hx, 1, hk,.2) = (fi.1, fi2). Set n; to be the ordered
sequence

N = [(Ckl,l, Ckl,z), (;kz,l’ §k2,2)7 cee (qui,ly qui,z)]
of all the elements in ¢{p (see Eq. (5.11)) such that
(hy1 hi,2) = (fin, fi2)

listed so that k; < k;4; (recall that (h; 1, h; ) are defined in Eq. (5.6)). By Property 4, we
have that

(Ck,,l» Ck,,z) <4 (é’k,-“,l, Ck,+.,2)
forl <i <gq; — 1. Set

Niyy = [({vkl,l s é‘vkl,Z)’ (Cvkz,l s gvk2,2)a cees ({vkqi,l s ;vkqi ,2)],

where v € §,,.
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Example With d; , given in Eq. (5.15), we have
F ={(0,5),(0,2),(0,0),(2,0), (6, 0)}.

Thus (f1.1, fi2) = (0,5) and K; = {4}. Similarly, (f3.1, f32) = (0,0) and K3 = {5, 7, 8}.
Therefore n; = [(0, 16)] and 13 = [(0, 1), (0, 0), (1, 0)]. With v a permutation such that

1 23 45 6 78
V= ,
36 8 2 51 47

we have
My = [¢paw] = 1(17.0)].
Similarly,
m,v = [(0, 1), (0, 16), (0, 0)].

On the other hand, if

12345678
=11 234 7 6 8 s/

then
m.. = [(0,0), (1, 0), (0, 1)].

Note that 3 , is a permutation of the sequence 73 while the sequence 13 ,, is not a permutation
of the sequence 73 (i.e., n3,, has different entries than 73).

If n; = n;,, (as an ordered sequence) for all 1 <i < v then we have (by Property 2) that

Sopathin o2 thin Gy athan Lo 2than Sopathny Loy athan
X1 N X Y2 CXn Yn

_ Guthia Giathia Lathan Gothan Lot Fhnt o Cnathano
=X Y1 X2 Y2 Xy Yn

= P(X,Y).

If each 7, , is a non-identity permutation of the respective sequence n; forall 1 <i <wv
then

Sopathin Soothin Sy athan Guothan Sop 1t ey Gy athn
(1 i X Y2 © X Yn )

= 1(P(X,Y)).
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but by Property 4, we have that

Copathin Goyathin Gyathan Gun2than ConaFhnt  Logathns
(1 S s

> 1es(P(X,Y)).

Finally, suppose 7; , is not a permutation of the sequence 7; for some i. By considering
the smallest integer m such that 7,, , is not a permutation of the sequence 7,,, it is not
difficult to see that Property 3 implies

1 1 2 2
>4 T(P(X,Y)).

Copathin Gy athin Gyathan Gn2than o Fhn1  Cog2thns
.L.(xl yl X2 yz xrf 1 ])’rf 2 7)

Thus we have

Theorem 6.1 Let s be dense, let P(X, Y) be a monomial such that P(X,Y) & Zs(X,Y)
and let (op, pp, yp) be the generalized P-partition decomposition of

P =es(P(X,Y))
given by Theorem 5.1. Then

my, (X, Y)d], (X,Y)=cpP(X,Y)

+ ). cO(X,Y) (modZs(X,Y))
P(X.,Y)<, Q(X,Y)

where cp # 0. Therefore, in Cs[X, Y] we have

1
PX,Y)=—— Z co Q(X,Y) (modZg(X,Y)) (6.3)
CP p(X,¥) < O(X.Y)

Since we assumed that P(X, Y) is the largest monomial with respect to <,, such that
P(X,Y) € TIs(X,Y)and P(X, Y)isnotin the span of Dg, Theorem 6.1 yields a contradic-
tion. Thus P(X, Y) must be in the span of Ds and combining this with Theorem 3.2 yields
Theorem 1.1. Specifically,

Theorem 6.2 Let S be a dense sequence. The collection
Ds = {d] (X.Y):0 €S,,p € Ey} (6.4)

is a basis for Cs[ X, Y] with coefficients from C.
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7. Notes about the one-variable case

When

Vs =19,181, B2, ... Bull (7.1)
or

¥s = [log, a2, ..., @], 0], (7.2)
Ag(X,Y) reduces to a determinant in a single collection of variables ¥ = {yj, ..., y,}
or X = {xy,...,x,}, respectively. Note that in these cases, we do not require 8y = 1 or

o« = 1. The definition of dense in these two cases in exactly the same as that described in
Eqgs. (2.2)-(2.7). We define the collection & as

El//s = {[pl’ -~-7pn]}p7 (73)

where either 0 < p; < By+1-k,forl <k <n(incase(7.1))or0 < p, < ap,forl <h <n
(in case (7.2)).
The analogous descent monomials are defined as

n
; k
dj (X, Y)= (Hyﬁfl)yﬁfz) o yﬁEkZ) l_[ Yo)Yo@) " * Yoli)
k=1

1<i<n—1
o(i)>o(i+1)

and

n

i ok P o

d; (X, Y)=(Hxafk)xafm)'“xa?n)) [T *owin Xom |
k=1

1<i<n—1
o(i)>o(i+1)

respectively. Note that in fact these monomials correspond directly with P-partitions
(see [10]).

The definition for a cocharge tableaux is the same as that given in Section 3, except step A
is replaced by

A’. With g given by (7.2) (or s given by Eq. (7.1), respectively)and p = (p1, 02 ..., Pu)
then replace 1 (or n respectively) by ¢; = (c1,1,¢12) = (p1,0) (or ¢, = (cn1,Cn2) =
(0, p,), respectively).

The analogues for I'y are that we set

Fys ={(en, €n-1,...,2,€1) 161+ -+ &, >0}
in situation (7.1), and

Fwsz{(hlth,-u»hn):Gl+"'+9n>O}
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in situation (7.2), where &; and 6;, are nonnegative integers,

k
e =10, Zsiﬂi

i=1

(for1 <k <n)and

h = ngei,af,o

i=1

(for 1 < g < n) respectively.
The analogues for Theorems 3.2, 5.1, 5.2, 6.1 and 6.2 follow immediately.
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