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Type-II Matrices Attached to Conference Graphs
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Abstract. We determine the Nomura algebras of the type-II matrices belonging to the Bose-Mesner algebra of
a conference graph.
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1. Type-II matrices and nomura algebras

We say that an n × n matrix W with complex entries is type II if

W ( j, i)(W −1)(i, j) = 1

n

for i, j = 1, . . . , n. So a type-II matrix is invertible and has no zero entry. We use I and
J to denote the identity matrix and the matrix of all ones respectively. For each integer
n ≥ 2 and a complex number t satisfying nt2 + nt + 1 = 0, the matrix I + t J is a
type-II matrix. These matrices are known as the Potts models, which are examples of spin
models. The matrices of spin models and four-weight spin models are also type II, see [1]
and [8].

Type-II matrices arise from combinatorial objects. For instance, any Hadamard matrix is
type II. Chris Godsil and the first author have shown that the Bose-Mesner algebra of any
strongly regular graphs contains a type-II matrix that is not type-II equivalent to the Potts
model, see [6]. Two type-II matrices W and W ′ are type-II equivalent if W ′ = M1W M2 for
some monomial matrices M1 and M2.

In [9], Jaeger, Matsumoto and Nomura have given the construction of a Bose-Mesner
algebra from a type-II matrix. Let W be an n × n type-II matrix. For i, j = 1, . . . , n, we
define a vector Yi j in C

n with its k-th entry being

Yi j (k) = W (k, i)

W (k, j)
. (1.1)
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The Nomura algebra of W , denoted by NW , is defined as the set of n ×n matrices for which
Yi j is an eigenvector, for i, j = 1, . . . , n. It is easy to see that NW = NcW for any non-zero
scalar c.

For M ∈ NW , we use �W (M) to denote the matrix whose (i, j)-th entry equals the
eigenvalue of M corresponding to the eigenvector Yi j . Note that �W is a linear map, and
we use N ′

W to denote its image of NW . It follows from the definition that W is a type-II
matrix if and only if W T is type II. The following significant result due to Jaeger, Matsumoto
and Nomura, Theorem 4 of [9], links a type-II matrix to a pair of Bose-Mesner algebras.

Theorem 1.1 Let W be an n × n type-II matrix. Then N ′
W = NW T . Moreover, NW and

N ′
W form a formally-dual pair of Bose-Mesner algebras with �W being a formal duality.

A Bose-Mesner algebraB is a commutative algebra that contains I and J and is closed under
the transpose and the Schur product (which is entrywise multiplication of two matrices). It
is well known that B is a Bose-Mesner algebra if and only if it is equal to the span of the
matrices of some association scheme. If B = span(I, J ) then it has dimension two and we
call it the trivial Bose-Mesner algebra. If B has dimension n then it is the Bose-Mesner of
a group scheme. When NW has dimension strictly between 2 and n, we may get a pair of
association schemes that consist of interesting combinatorial objects.

It is known that the Nomura algebra of a Potts model of order n ≥ 5 is the trivial Bose-
Mesner algebra. It follows from a simple counting argument that the Nomura algebra of a
Hadamard matrix is trivial if its order is congruent to 4 mod 8, see Section 5.2 of [9].

Chris Godsil has proved in Section 4 of [5] that a type-II matrix W has two distinct entries
if and only if W = a J + (b − a)N for some a �= b and N is the incidence matrix of a
symmetric design. He has also shown that if b �= −a and n > 3 then the Nomura algebra
of W is trivial. In the same paper, he has determined that a symmetric type-II matrix with
constant diagonal and quadratic minimal polynomial has the form aI + bC where C is a
regular two-graph. Using the method in [5], it can be shown that the Nomura algebra of this
type-II matrix is also trivial for n ≥ 5.

Furthermore, H. Suzuki and the second author have proved in [7] that the Nomura algebra
of a type-II matrix W is imprimitive if and only if W is type-II equivalent to the twisted
tensor product of type-II matrices.

An interesting problem is to find type-II matrices that give formally dual pairs of Bose-
Mesner algebras of dimension strictly between 2 and n. Motivated by this problem, we
consider the type-II matrices in the Bose-Mesner algebra of conference graphs. We report
in this paper that if n > 9 then the Nomura algebras of these type-II matrices are trivial.

2. Conference graphs

A conference graph G is a strongly regular graph with parameter

(4µ + 1, 2µ, µ − 1, µ)
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for some positive integer µ. The eigenvalues of G are 2µ and the roots r and s of the
equation x2 + x − µ = 0. So we have

{r, s} =
{

−1 + √
4µ + 1

2
,
−1 − √

4µ + 1

2

}
.

For basic facts on strongly regular graphs, see [3]. It is easy to verify that the Bose-Mesner
algebra of a conference graph is formally self-dual, i.e., the matrix of eigenvalues coincides
with the matrix of dual eigenvalues, see [4]. Let A be the adjacency matrix of a conference
graph G. It follows from Eq. (32) of [8] that Wε = t0 I + t1 A + t2(J − I − A) is a type-II
matrix if and only if

t1 = εt, t2 = t−1, t0 = −εst − st−1 and t0
−1 = −εst−1 − st (2.1)

for ε = ±1. It follows from Remark (ii) on page 41 of [8] that Wε = −iW−ε . Since
NW = NcW for any non-zero scalar c, we may assume that ε = 1. So Eq. (2.1) becomes
t0 = t0−1 = −s(t + t−1) which has solutions

t0 = ±1, {t, t−1} =
{

t0

(
−s−1 + √

s−2 − 4

2

)
, t0

(
−s−1 − √

s−2 − 4

2

)}
.

Again since NW = Nt0W , we may assume that t0 = 1 and

W = I + t A + t−1(J − I − A). (2.2)

Note that t and t−1 are the solutions to the quadratic t2 + s−1t + 1 = 0, so is t̄ . Since for
all µ ≥ 1

s−2 − 4 = 4

(
1

(1 ± √
4µ + 1)2

− 1

)
< 0,

t is not a real number and we see that t̄ = t−1. If Yi j is the eigenvector of W defined in
Eq. (1.1), then

Yi j = Y j i . (2.3)

3. Nomura algebra of W

A Bose-Mesner algebra B is a commutative matrix algebra with identity that is closed
under conjugate transpose. It is semisimple and it contains a basis of pairwise orthogonal
idempotents (with respect to matrix multiplication), called the principle idempotents. In
addition, each principle idempotent represents the orthogonal projection on an eigenspace
of the matrices in B. See [2] and [4] for more about Bose-Mesner algebras. Let n be the
size of matrices in B. When B = span(I, J ) is the trivial Bose-Mesner algebra, then 1

n J
and I − 1

n J are the principle idempotents of B corresponding to the eigenspaces 1, i.e., the
space spanned by the vector of all ones, and 1⊥, i.e., the space orthogonal to 1, respectively.
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The approach we take here is to show that the Nomura algebra of W has 1⊥ as an
eigenspace. Hence NW has only two principle idempotents, and is therefore equal to the
span of I and J .

Let 〈u, v〉 denote the Hermitian product of vectors u and v in C
n , i.e., 〈u, v〉 =∑n

i=1 u(i)v(i).

Lemma 3.1 Let W be the type-II matrix defined in Eq. (2.2). If the Hermitian product of
Yαβ and Yxα is non-zero for all adjacent vertices α and β and for all x �= α, β, then NW

is trivial.

Proof: Now 〈Yαβ, Yxα〉 �= 0 implies that Yαβ and Yxα belong to the same eigenspace.
This eigenspace, denoted by U , contains Yxα for all x �= α, β.

Since each vertex in G has degree 2µ ≥ 2, the vertex α has a neighbour β ′ distinct from
β. Applying the hypothesis to α and β ′, we conclude that Yαβ ′ and Yyα , for all y �= α, β ′,
belong to the same eigenspace denoted by U ′.

Since n = 4µ+1 ≥ 5, there exists a vertex z distinct from α, β and β ′. Now Yzα belongs
to both U and U ′. Hence U = U ′ and it contains

Yβ ′α, Yβα, and Yxα for all x �= α.

Now

S = {Yxα | x �= α} ⊆ U

is a set of n − 1 columns of �αW , where �α is the diagonal matrix with its (i, i)-th entry
being W (i, α)−1. It follows from the definition of type-II matrix that W has no zero entry
and is invertible. Hence both �α and �αW are invertible. Note that Yαα = 1 �∈ S is the
α-th column of �αW . We see that S ⊆ U is the set of n − 1 linearly independent vectors in
1⊥. Now NW contains J which has 1 and 1⊥ as its eigenspaces. So 1⊥ is an eigenspace of
NW and I − 1

n J is a principle idemptent of NW . Therefore NW = span(I, J ) is the trivial
Bose-Mesner algebra.

Letα, β andγ be vertices of a conference graph G with parameters (4µ + 1, 2µ, µ−1, µ).
For xα ∈ {α, ᾱ}, xβ ∈ {β, β̄} and xγ ∈ {γ, γ̄ }, we define �xα xβ xγ

to be the set of vertices
that are adjacent (not adjacent) to xv if xv = v (xv = v̄, respectively), for v = α, β, γ .
For instance �αβγ is the set of common neighbours of α, β and γ while �αβγ̄ is the set
of common neighbours of α and β that are not adjacent to γ . Now the vertex set of G is
partitioned into

{α, β, γ } ∪ �αβγ ∪ �ᾱβγ ∪ �αβ̄γ ∪ �αβγ̄ ∪ �αβ̄γ̄ ∪ �ᾱβγ̄ ∪ �ᾱβ̄γ ∪ �ᾱβ̄γ̄ .

By Eq. (2.3), we have

Yαβ(x)Yγα(x) = Yαβ(x)Yαγ (x) = W (x, α)2

W (x, β)W (x, γ )
.
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It is easy to verify that

Yαβ(x)Yγα(x) =




1 if x ∈ �αβγ ∪ �ᾱβ̄γ̄

t2 if x ∈ �αβγ̄ ∪ �αβ̄γ

t−2 if x ∈ �ᾱβγ̄ ∪ �ᾱβ̄γ

t4 if x ∈ �αβ̄γ̄

t−4 if x ∈ �ᾱβγ .

Hence the Hermitian product

〈Yαβ, Yγα〉 = W (α, α)2

W (α, β)W (α, γ )
+ W (β, α)2

W (β, β)W (β, γ )
(3.1)

+ W (γ, α)2

W (γ, β)W (γ, γ )
+ |�αβγ ∪ �ᾱβ̄γ̄ | + |�αβ̄γ ∪ �αβγ̄ |t2

+ |�ᾱβγ̄ ∪ �ᾱβ̄γ |t−2 + |�ᾱβγ |t−4 + |�αβ̄γ̄ |t4.

In the following computation, we let α and β be adjacent vertices in a conference graph G.
We now check that for µ > 2 and for all γ �= α, β, the Hermitian product 〈Yαβ, Yγα〉 is
non-zero.

We first consider the case where γ is adjacent to both α and β. We have W (α, β) =
W (α, γ ) = W (β, γ ) = t . We use �v to denote the set of neighbours of v in G. Then we get

�α = �αβγ ∪ �αβ̄γ ∪ �αβγ̄ ∪ �αβ̄γ̄ ∪ {β, γ }
�β = �αβγ ∪ �ᾱβγ ∪ �αβγ̄ ∪ �ᾱβγ̄ ∪ {α, γ }
�γ = �αβγ ∪ �ᾱβγ ∪ �αβ̄γ ∪ �ᾱβ̄γ ∪ {α, β}

�α ∩ �β = �αβγ ∪ �αβγ̄ ∪ {γ }
�α ∩ �γ = �αβγ ∪ �αβ̄γ ∪ {β}
�β ∩ �γ = �αβγ ∪ �ᾱβγ ∪ {α}

V (G) = �αβγ ∪ �ᾱβγ ∪ �αβ̄γ ∪ �αβγ̄ ∪ �αβ̄γ̄ ∪ �ᾱβγ̄ ∪ �ᾱβ̄γ ∪ �ᾱβ̄γ̄ ∪ {α, β, γ }.

Now we translate the above to the following system of equations.

2µ = |�αβγ | + |�αβ̄γ | + |�αβγ̄ | + |�αβ̄γ̄ | + 2

2µ = |�αβγ | + |�ᾱβγ | + |�αβγ̄ | + |�ᾱβγ̄ | + 2

2µ = |�αβγ | + |�ᾱβγ | + |�αβ̄γ | + |�ᾱβ̄γ | + 2

µ − 1 = |�αβγ | + |�αβγ̄ | + 1 (3.2)

µ − 1 = |�αβγ | + |�αβ̄γ | + 1

µ − 1 = |�αβγ | + |�ᾱβγ | + 1

4µ + 1 = |�αβγ | + |�ᾱβγ | + |�αβ̄γ | + |�αβγ̄ | + |�αβ̄γ̄ | + |�ᾱβγ̄ | + |�ᾱβ̄γ | + |�ᾱβ̄γ̄ |
+3.
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Solving this system of equations, we get

|�αβγ | = m, |�ᾱβγ | = |�αβ̄γ | = |�αβγ̄ | = |�ᾱβ̄γ̄ | = µ − 2 − m,

and |�αβ̄γ̄ | = |�ᾱβγ̄ | = |�ᾱβ̄γ | = 2 + m,

for some non-negative integer m. Using Eq. (3.1), we have

〈Yαβ, Yγα〉 = t−2 + 2t + (µ − 2) + 2(µ − 2 − m)t2 + 2(m + 2)t−2

+ (µ − 2 − m)t−4 + (m + 2)t4.

It follows from t̄ = t−1 that the real part of this product is

1

2
(〈Yαβ, Yγα〉 + 〈Yαβ, Yγα〉) = 1

2
((t2 + t−2) + 2(t + t−1) + 2(µ − 2)

+ 2µ(t2 + t−2) + µ(t4 + t−4)).

Note that −s(t + t−1) = 1 which leads to

t2 + t−2 = (t + t−1)2 − 2 = s−2 − 2 and

t4 + t−4 = (t + t−1)4 − 4(t2 + t−2) − 6 = s−4 − 4s−2 + 2.

So we have

1

2
(〈Yαβ, Yγα〉 + 〈Yαβ, Yγα〉)

= 1

2
(s−2 − 2 − 2s−1 + 2µ − 4 + 2µ(s−2 − 2) + µ(s−4 − 4s−2 + 2))

= −1

2s4
((6s2 − 4s + 8µ + 3)(s2 + s − µ) − (4µ + 1)(3s − 2µ)).

Since s is a root of x2 + x − µ = 0, the above expression equals zero if and only if

s = 2µ

3
.

Substituting the above equation into s2 + s − µ = 0 yields

µ(4µ − 3)

9
= 0.

The only integral solution to this equation is µ = 0. So if µ > 0 then 〈Yαβ, Yγα〉 is
non-zero.
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Secondly, we assume that γ is adjacent to α but not to β. So we have W (α, β) =
W (α, γ ) = t and W (β, γ ) = t−1. Similar to the first case, we can set up a system of
equations like that of Eq. (3.2). Solving it, we get

|�αβγ | = |�αβ̄γ̄ | = m, |�ᾱβγ | = |�αβ̄γ | = |�αβγ̄ | = |�ᾱβ̄γ̄ | = µ − 1 − m,

and |�ᾱβγ̄ | = |�ᾱβ̄γ | = m + 1,

for some non-negative integer m. By Eq. (3.1), we get

〈Yαβ, Yγα〉 = t−2 + 2t3 + (µ − 1) + 2(µ − 1 − m)t2 + 2(m + 1)t−2

+ (µ − 1 − m)t−4 + mt4,

and

〈Yαβ, Yγα〉 + 〈Yαβ, Yγα〉 = (t2 + t−2) + 2(t3 + t−3) + 2(µ − 1)

+ 2µ(t2 + t−2) + (µ − 1)(t4 + t−4).

Since t3 + t−3 = (t + t−1)3 − 3(t + t−1) = −s−3 + 3s−1, we get

〈Yαβ, Yγα〉 + 〈Yαβ, Yγα〉
= (s−2 − 2) + 2(3s−1 − s−3) + 2(µ − 1) + 2µ(s−2 − 2) + (µ − 1)(s−4 − 4s−2 + 2)

= −s−4((6s2 − 12s + 8µ + 7)(s2 + s − µ) − (4µ + 1)(5s − 2µ − 1)).

Again s2 + s − µ = 0, the above expression equals zero if and only if

s = 2µ + 1

5
.

Substituting this value into s2 + s − µ yields

(4µ − 3)(µ − 2)

25
= 0.

The only integral solution to this equation is 2. So if µ > 2 then the Hermitian product of
Yαβ and Yγα is non-zero.

Thirdly, suppose γ is adjacent to β but not to α. Then W (α, γ ) = t−1 and W (α, β) =
W (β, γ ) = t . From a system of equations similar to that of Eq. (3.2), we get

|�αβγ | = |�ᾱβγ̄ | = m, |�ᾱβγ | = |�αβ̄γ | = |�αβγ̄ | = |�ᾱβ̄γ̄ | = µ − 1 − m,

and |�αβ̄γ̄ | = |�ᾱβ̄γ | = m + 1,
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for some non-negative integer m. By Eq. (3.1),

〈Yαβ, Yγα〉 = 1 + t + t−3 + (µ − 1) + 2(µ − 1 − m)t2 + (2m + 1)t−2

+ (µ − 1 − m)t−4 + (m + 1)t4.

The imaginary part of 〈Yαβ, Yγα〉 is

1

2
(〈Yαβ, Yγα〉 − 〈Yαβ, Yγα〉) = 1

2

(
(t − t−1) − (t3 − t−3) + (2µ − 4m − 3)(t2 − t−2)

+ (2m + 2 − µ)(t4 − t−4)
)
.

Note that t2 − t−2 = (t − t−1)(−s)−1,

t3 − t−3 = (t − t−1)(t2 + 1 + t−2) = (t − t−1)(s−2 − 1), and

t4 − t−4 = (t − t−1)(t3 + t + t−1 + t−3) = (t − t−1)(2s−1 − s−3).

So the imaginary part of 〈Yαβ, Yγα〉 equals

= (t − t−1)

2
(1 − (s−2 − 1) − (2µ − 4m − 3)s−1 + (2m + 2 − µ)(2s−1 − s−3))

= (t − t−1)(1 + 2s)

2s3

(
s2 + 3s + 4sm − 2sµ − 2m − 2 + µ

)
.

Now we have seen in Section 2 that s2 + s − µ = 0, so

s = −1

2
±

√
4µ + 1

2

and t−1 = t̄ �= t . So the imaginary part of 〈Yαβ, Yγα〉 equals zero if and only if

m = −s2 − 3s − µ + 2sµ + 2

2(2s − 1)

= −(s2 + s − µ) + 2(µ − 1)(s − 1)

2(2s − 1)
.

= (µ − 1)(s − 1)

2s − 1

= (µ − 1)(−3 ± √
4µ + 1)

2(−2 ± √
4µ + 1)

= (µ − 1)

2

(
1 − 1

(−2 ± √
4µ + 1)

)
.
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For µ > 1, m is an integer only when 4µ + 1 is a perfect square. Suppose
√

4µ + 1 is an
integer then we can write

√
4µ + 1 = 2b + 1 for some integer b ≥ 1. So µ = b2 + b and

m = (b2 + b − 1)(b − 1)

(2b − 1)
, or m = (b2 + b − 1)(b + 2)

(2b + 3)
.

Observe that

8m = (4b2 + 2b − 7) + 1

2b − 1
, or 8m = (4b2 + 6b − 5) − 1

2b + 3
,

respectively. In either case, 8m is not an integer for b > 1. But m = |�αβγ | is an integer.
So the imaginary part of 〈Yαβ, Yγα〉 is not zero for µ > 2.

Lastly, suppose γ is not adjacent to α nor β. So W (α, β) = t and W (α, γ ) = W (β, γ ) =
t−1. Using the same argument as above, we get

|�αβγ | = |�αβ̄γ̄ | = |�ᾱβγ̄ | = |�ᾱβ̄γ | = m, |�ᾱβγ | = |�αβ̄γ | = µ − m, and

|�αβγ̄ | = |�ᾱβ̄γ̄ | = µ − 1 − m,

for some non-negative integer m. By Eq. (3.1), the Hermitian product

〈Yαβ, Yγα〉 = 1 + t3 + t−1 + (µ − 1) + (2µ − 1 − 2m)t2 + 2mt−2

+ (µ − m)t−4 + mt4.

The imaginary part of this product is

1

2
(〈Yαβ, Yγα〉 − 〈Yαβ, Yγα〉)

= 1

2
((t3 − t−3) − (t − t−1) + (2µ − 1 − 4m)(t2 − t−2) + (2m − µ)(t4 − t−4))

= (t−1 − t)(2s + 1)

2s3
((s2 + s − µ) + (2sµ − 2s − 4sm + 2m))

= ±(t−1 − t)
√

4µ + 1

s3
(s(µ − 1) − (2s − 1)m)

which equals zero if and only if

m = (µ − 1)s

2s − 1

= (µ − 1)

2

(−1 ± √
4µ + 1

−2 ± √
4µ + 1

)

= (µ − 1)

2

(
1 + 1

(−2 ± √
4µ + 1)

)
.
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Again when µ > 1, m is an integer only if
√

4µ + 1 is an integer. Now suppose
√

4µ + 1 =
2b + 1 for some integer b ≥ 1. Then µ = b2 + b and

m = (b2 + b − 1)b

2b − 1
, or m = (b2 + b − 1)(b + 1)

2b + 3
.

Observe that

8m = (4b2 + 6b − 1) − 1

2b − 1
, or 8m = (4b2 + 2b − 3) + 1

2b + 3
,

respectively. In either case, 8m is not an integer for b > 1. But m = |�αβγ | is an integer,
hence the imaginary part of 〈Yαβ, Yγα〉 is not zero for µ > 2.

Now we have shown that 〈Yαβ, Yγα〉 is non-zero for all γ �= α, β. Applying Lemma 3.1,
we conclude that the Nomura algebra of W is trivial when µ > 2.

Theorem 3.2 Let W ′ be a type-II matrix in the Bose-Mesner algebra of the conference
graph with parameters (4µ + 1, 2µ, µ − 1, µ). If µ > 2 then NW ′ is trivial.

Proof: If W ′ is a non-zero scalar multiple of the type-II matrix W defined in Equation (2.2)
then it follows from Lemma 3.1 that NW ′ = NW is trivial. Otherwise, W ′ is a non-zero
scalar multiple of the Potts model and NW ′ is also trivial.

When µ = 1, the conference graph is the cycle on five vertices, see page 671 of [3]. The
type-II matrix W defined by Eq. (2.2) is type-II equivalent to the cyclic type-II matrix of
size five [10]. Its Nomura algebra is isomorphic to the Bose-Mesner algebra of the cyclic
group of five elements.

When µ = 2, the conference graph is the point graph of the generalized quadrangle
of order (2, 1) (or the 3 × 3 grid), see page 671 of [3]. Solving s2 + s − 2 = 0 we have
s = 1, −2. If s = 1 then W is type-II equivalent to the tensor product of two copies of
the Potts model of size three. The Nomura algebra of W is isomorphic to the Bose-Mesner
algebra of C3 ⊗ C3. If s = −2 then the Nomura algebra of W is trivial.
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