Modular Adjacency Algebras of Hamming Schemes

MASAYOSHI YOSHIKAWA
Department of Mathematical Sciences, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

Received January 15, 2003; Revised October 27, 2003; Accepted October 27, 2003

Abstract

To each association scheme G and to each field R, there is associated naturally an associative algebra, the so-called adjacency algebra $R G$ of G over R. It is well-known that $R G$ is semisimple if R has characteristic 0 . However, little is known if R has positive characteristic. In the present paper, we focus on this case. We describe the algebra $R G$ if G is a Hamming scheme (and R a field of positive characteristic). In particular, we show that, in this case, $R G$ is a factor algebra of a polynomial ring by a monomial ideal.

Keywords: association scheme, Hamming scheme, modular adjacency algebra

1. Introduction

Let p be a prime number, and let \mathbb{F}_{p} denote a field with p elements. Let n and q be positive integers, and let $H(n, q)$ denote the Hamming scheme the point set of which consists of all n-tuples of elements of $\{0,1, \ldots, q-1\}$. It follows from [2, III.Theorem 2.3] that the Frame number of $H(n, q)$ is $q^{n(n+1)}$. Therefore from [1, Theorem 1.1] or [5, Theorem 4.2], we know that $\mathbb{F}_{p} H(n, q)$ is semisimple iff p does not divide q. Moreover, in Section 2.3 of the present paper, we shall show that, if p divides $q, \mathbb{F}_{p} H(n, p) \cong \mathbb{F}_{p} H(n, q)$. Therefore, we shall focus our attention to the investigation of $\mathbb{F}_{p} H(n, p)$.
From [4, Theorem 3.4, Corollary 3.5] we know that \mathbb{F}_{p} is a splitting field for $\mathbb{F}_{p} H(n, p)$. Therefore, if we determine the structure of $\mathbb{F}_{p} H(n, p)$, we know the structure over any field of characteristic p.

We will describe $\mathbb{F}_{p} H(n, p)$ as a factor algebra of a polynomial ring by a monomial ideal for the clarity of the structure. A monomial ideal is the ideal that is generated by only monomials.

2. Preparation

For the definitions in this section, refer to [2].

2.1. Association schemes

Let X be a finite set of cardinality n. We define $R_{0}:=\{(x, x) \mid x \in X\}$. Let $R_{i} \subseteq X \times X$ be given. We set $R_{i}^{*}:=\left\{(z, y) \mid(y, z) \in R_{i}\right\}$. Let G be a partition of $X \times X$ such that $R_{0} \in G$ and the empty set $\emptyset \notin G$, and assume that, $R_{i}^{*} \in G$ for each $R_{i} \in G$. Then, the pair (X, G)
will be called an association scheme if, for all $R_{i}, R_{j}, R_{k} \in G$, there exists an integer $p_{i j k}$ such that, for all $y, z \in X$

$$
(y, z) \in R_{k} \Rightarrow \sharp\left\{x \in X \mid(y, x) \in R_{i},(x, z) \in R_{j}\right\}=p_{i j k} .
$$

The elements of $\left\{p_{i j k}\right\}$ will be called the intersection numbers of (X, G).
For each $R_{i} \in G$, we define the $n \times n$ matrix A_{i} indexed by the elements of X,

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if }(x, y) \in R_{i} \\ 0 & \text { otherwise }\end{cases}
$$

and this matrix A_{i} will be called the adjacency matrix of R_{i}.
Let the cardinal number of G be $d+1$ and let J be the $n \times n$ all 1 matrix. Then, by the definition, it follows that $\sum_{i=0}^{d} A_{i}=J$. It follows that for all A_{i}, A_{j},

$$
A_{i} A_{j}=\sum_{k=0}^{d} p_{i j k} A_{k}
$$

From this fact, we can define an algebra naturally. For the commutative ring R with 1 , we put $R(X, G)=\bigoplus_{i=0}^{d} R A_{i}$ as a matrix ring over R, and it will be called the adjacency algebra of (X, G) over R.

For all $i, j, k \in\{0,1, \ldots, d\}$, we define the matrix B_{i} by $\left(B_{i}\right)_{j k}=p_{i j k}$. This matrix B_{i} will be called the i-th intersection matrix. It follows that for all $B_{i}, B_{j}, B_{i} B_{j}=\sum_{k=0}^{d} p_{i j k} B_{k}$. Therefore we can define an algebra $R B=\bigoplus_{i=0}^{d} R B_{i}$ for a commutative ring R with 1 , and it will be called the intersection algebra of (X, G) over R. Then the mapping from the adjacency algebra to the intersection algebra of (X, G) over $R, A_{i} \mapsto B_{i}$, is an algebra isomorphism.

2.2. P-polynomial schemes

A symmetric association scheme ($X,\left\{R_{i}\right\}_{0 \leq i \leq d}$) is called a P-polynomial scheme with respect to the ordering $R_{0}, R_{1}, \ldots, R_{d}$, if there exist some complex coefficient polynomials v_{i} of degree $i(0 \leq i \leq d)$ such that $A_{i}=v_{i}\left(A_{1}\right)$, where A_{i} is the adjacency matrix of R_{i}.

We use the following notation: a tridiagonal matrix

$$
B=\left(\begin{array}{ccccc}
a_{0} & c_{1} & & & 0 \\
b_{0} & a_{1} & \ddots & & \\
& b_{1} & \ddots & \ddots & \\
& & \ddots & \ddots & c_{d} \\
0 & & & b_{d-1} & a_{d}
\end{array}\right)
$$

is denoted by

$$
\left\{\begin{array}{ccccc}
* & c_{1} & \cdots & c_{d-1} & c_{d} \\
a_{0} & a_{1} & \cdots & a_{d-1} & a_{d} \\
b_{0} & b_{1} & \cdots & b_{d-1} & *
\end{array}\right\}
$$

Then the following (i) and (ii) are equivalent to each other (see [2, Proposition 1.1]).
(i) B_{1} is a tridiagonal matrix with non-zero off-diagonal entries:

$$
\left\{\begin{array}{cccccc}
* & 1 & c_{2} & \cdots & c_{d-1} & c_{d} \\
0 & a_{1} & a_{2} & \cdots & a_{d-1} & a_{d} \\
b_{0} & b_{1} & b_{2} & \cdots & b_{d-1} & *
\end{array}\right\}\left(b_{i} \neq 0, c_{i} \neq 0\right) .
$$

(ii) $\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ is a P-polynomial scheme with respect to the ordering $R_{0}, R_{1}, \ldots, R_{d}$, i.e.,

$$
A_{i}=v_{i}\left(A_{1}\right) \quad(i=0,1, \ldots, d)
$$

for some polynomials v_{i} of degree i.

2.3. Hamming schemes

Let Σ be an alphabet of q symbols $\{0,1, \ldots, q-1\}$. We define Ω to be the set Σ^{n} of all n-tuples of elements of Σ, and let $\rho(x, y)$ be the number of coordinate places in which the n-tuples x and y differ. Thus $\rho(x, y)$ is the Hamming distance between x and y. we set

$$
R_{i}=\{(x, y) \in \Omega \times \Omega \mid \rho(x, y)=i\}
$$

and then $\left(\Omega,\left\{R_{i}\right\}_{0 \leq i \leq n}\right)$ is an association scheme. This will be called the Hamming scheme, and denoted by $H(n, q)$.

We consider the intersection numbers $p_{i j k}^{(n, q)}$ of $H(n, q)$. For the convenience of the argument, we extend the binomial coefficient as follows.

$$
\binom{0}{x}= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

and for each integer x and each negative integer y,

$$
\binom{x}{y}=0, \quad\binom{y}{x}=0 .
$$

We consider the following three elements in Ω,

$$
\begin{aligned}
& \overbrace{0,0, \ldots, 0}^{k}, 0, \ldots, 0), \\
& \left(\alpha_{0}, \alpha_{1}, \alpha_{*}, \beta\right), \\
& (\underbrace{1,1, \ldots, 1}_{k}, 0, \ldots, 0),
\end{aligned}
$$

where $\alpha_{0}, \alpha_{1}, \alpha_{*}$, and β means that there are $\alpha_{0} 0$'s, $\alpha_{1} 1$'s, and α_{*} other symbols among first k figures, and β non-zero symbols among remaining $(n-k)$ figures.

Then if we assume that

$$
\begin{aligned}
& \left((0, \ldots, 0),\left(\alpha_{0}, \alpha_{1}, \alpha_{*}, \beta\right)\right) \in R_{i} \\
& \left(\left(\alpha_{0}, \alpha_{1}, \alpha_{*}, \beta\right),(1, \ldots, 1,0, \ldots, 0)\right) \in R_{j} \\
& ((0, \ldots, 0),(1, \ldots, 1,0, \ldots, 0)) \in R_{k}
\end{aligned}
$$

the system of equations must hold that

$$
\left\{\begin{array}{l}
\alpha_{1}+\alpha_{*}+\beta=i \\
\alpha_{0}+\alpha_{*}+\beta=j \\
\alpha_{0}+\alpha_{1}+\alpha_{*}=k
\end{array}\right.
$$

From the definition, since $p_{i j k}^{(n, q)}$ is the total of n-tuples that satisfy the above the system of equations,

$$
p_{i j k}^{(n, q)}=\sum_{\beta=0}^{n-k}\binom{k}{k-i+\beta}\binom{i-\beta}{k-j+\beta}\binom{n-k}{\beta}(q-1)^{\beta}(q-2)^{i+j-k-2 \beta}
$$

Therefore if $p \mid q$ for some prime number $p, p_{i j k}^{(n, q)} \equiv p_{i j k}^{(n, p)} \quad(\bmod p)$. Since the intersection numbers are the structure constants of the adjacency algebra, $\mathbb{F}_{p} H(n, q) \cong \mathbb{F}_{p} H(n, p)$.

The Hamming scheme $H(n, q)$ is a P-polynomial scheme (see [2]), and

$$
B_{1}=\left\{\begin{array}{cccccc}
* & 1 & \cdots & i & \cdots & n \\
0 & q-2 & \cdots & i(q-2) & \cdots & n(q-2) \\
n(q-1) & (n-1)(q-1) & \cdots & (n-i)(q-1) & \cdots & *
\end{array}\right\}
$$

For the remainder of this paper, let p be a fixed prime number. Therefore we set $H(n):=H(n, p)$. And we denote the intersection numbers, the adjacency matrices, and the intersection matrices of $H(n)$ respectively by $p_{i j k}^{(n)}, A_{i}^{(n)}, B_{i}^{(n)}$ and so on.

If we index the adjacency matrices by a suitable order, for example, the lexicographic order on Σ^{n}, then it follows that

$$
A_{i}^{(n+1)}=I \otimes A_{i}^{(n)}+K \otimes A_{i-1}^{(n)} \quad \text { for } \forall i \in\{0,1, \ldots, n+1\},
$$

where I is the $p \times p$ identity matrix, K is the $p \times p$ matrix such that the diagonal entries are 0 and the others $1, A_{-1}^{(n)}=A_{n+1}^{(n)}=O$ (the $p^{n} \times p^{n}$ zero matrix), and \otimes is the Kronecker product. The Kronecker product $A \otimes B$ of matrices A and B is defined as follows. Suppose $A=\left(a_{i j}\right)$. Then $A \otimes B$ is obtained by replacing the entry $a_{i j}$ of A by the matrix $a_{i j} B$, for all i and j. The most important property of this product is that, provided the required products exist,

$$
(A \otimes B)(X \otimes Y)=A X \otimes B Y
$$

3. $H\left(p^{r}-1\right)$

The intersection numbers are the structure constants of the adjacency algebra. Therefore, if we consider the adjacency algebra over a field of characteristic p, we may consider the intersection numbers modulo p.

The size of the adjacency matrix of $H(n)$ is p^{n}. Therefore, the adjacency algebra of $H(n)$ over a field of characteristic p is local. Moreover the unique irreducible representation is $A_{i} \mapsto p_{i i^{*} 0}$ (see [4, Theorem 3.4, Corollary 3.5]). Therefore \mathbb{F}_{p} is a splitting field for $\mathbb{F}_{p} H(n)$. Thus, if we determine the structure of $\mathbb{F}_{p} H(n)$, we know the structure over any field of characteristic p.

For the remainder of this paper, since we consider the adjacency algebras only over \mathbb{F}_{p}, we set $\mathfrak{A}_{n}:=\mathbb{F}_{p} H(n)$.

By the definition,

$$
B_{1}^{\left(p^{r}-1\right)}=\left(\begin{array}{llll}
B_{1}^{(p-1)} & & & \\
& B_{1}^{(p-1)} & & \\
& & \ddots & \\
& & & B_{1}^{(p-1)}
\end{array}\right),
$$

therefore if we set $A_{i}^{(p-1)}=v_{i}\left(A_{1}^{(p-1)}\right)$, it follows that for $0 \leq \alpha \leq p-1$,

$$
A_{p i+\alpha}^{\left(p^{r}-1\right)}=v_{\alpha}\left(A_{1}^{\left(p^{r}-1\right)}\right) A_{p i}^{\left(p^{r}-1\right)} .
$$

Then since any $c_{i}^{(p-1)} \not \equiv 0 \quad(\bmod p)$, we can define v_{α} over \mathbb{F}_{p} for $0 \leq \alpha \leq p-1$. For calculating $B_{p i+\alpha}^{\left(p^{r}-1\right)}$, we prepare the following theorem and corollary.

Theorem 1 (Lucas' theorem [3, Theorem 3.4.1]) Let p be prime, and let

$$
\begin{aligned}
m & =a_{0}+a_{1} p+\cdots+a_{k} p^{k}, \\
n & =b_{0}+b_{1} p+\cdots+b_{k} p^{k},
\end{aligned}
$$

where $0 \leq a_{i}, b_{i}<p$ for $i=0,1, \ldots, k-1$. Then

$$
\binom{m}{n} \equiv \prod_{i=0}^{k}\binom{a_{i}}{b_{i}}(\bmod \mathrm{p})
$$

Corollary 2 Let p, m, and n be as in Theorem 1. Then, for any two elements α and β in $\{0,1, \ldots, p-1\}$, we have

$$
\binom{p m+\alpha}{p n+\beta} \equiv\binom{m}{n}\binom{\alpha}{\beta}(\bmod \mathrm{p})
$$

Now we want to culculate $B_{p i+\alpha}^{\left(p^{r}-1\right)}$, that is the coefficients of $A_{p i+\alpha}^{\left(p^{r}-1\right)} A_{p j+\beta}^{\left(p^{r}-1\right)}$. But it is enough to investigate $A_{p i}^{\left(p^{r}-1\right)} A_{p j}^{\left(p^{r}-1\right)}$, i.e. $p_{p i}^{\left(p^{r}-1\right)}$ because we know $v_{\alpha}\left(A_{1}^{\left(p^{r}-1\right)}\right) v_{\beta}\left(A_{1}^{\left(p^{r}-1\right)}\right)$.

Here we recall from Section 2.3 that

$$
\begin{aligned}
p_{p i p j k}^{\left(p^{r}-1\right)}= & p_{p i p j k}^{\left(p^{r}-1, p\right)}=\sum_{s=0}^{p^{r}-1-k}\binom{k}{k-p i+s}\binom{p i-s}{k-p j+s}\binom{p^{r}-1-k}{s} \\
& \times(p-1)^{s}(p-2)^{p i+p j-k-2 s} .
\end{aligned}
$$

We assume that $k=k^{\prime}+p k^{\prime \prime}$ and $s=s^{\prime}+p s^{\prime \prime}$ where $0 \leq k^{\prime}, s^{\prime}<p$. Then by Corollary 2, it follows that

$$
\begin{array}{r}
0<s^{\prime}<p-k^{\prime} \Rightarrow\binom{k}{k-p i+s} \equiv 0 \quad(\bmod p), \\
p-1-k^{\prime}<s^{\prime}<p \Rightarrow\binom{p^{r}-1-k}{s} \equiv 0 \quad(\bmod p),
\end{array}
$$

and if $s^{\prime}=0$,

$$
k^{\prime} \neq 0 \Rightarrow\binom{p i-s}{k-p j+s} \equiv 0 \quad(\bmod p)
$$

Therefore it follows that if $k=p k^{\prime \prime}$,

$$
\begin{aligned}
p_{p i}^{\left(p^{r}-1\right)}= & \sum_{s=0}^{p^{r}-1-k}\binom{k}{k-p i+s}\binom{p i-s}{k-p j+s}\binom{p^{r}-1-k}{s} \\
& \times(p-1)^{s}(p-2)^{p i+p j-k-2 s} \\
\equiv & \sum_{s^{\prime \prime}=0}^{p^{r-1}-1-k^{\prime \prime}}\binom{p k^{\prime \prime}}{p k^{\prime \prime}-p i+p s^{\prime \prime}}\binom{p i-p s^{\prime \prime}}{p k^{\prime \prime}-p j+p s^{\prime \prime}}\binom{p^{r}-1-p k^{\prime \prime}}{p s^{\prime \prime}} \\
& \times(p-1)^{p s^{\prime \prime}}(p-2)^{p i+p j-p k^{\prime \prime}-2 p s^{\prime \prime}} \\
\equiv & \sum_{s^{\prime \prime}=0}^{p^{r-1}-1-k^{\prime \prime}}\binom{k^{\prime \prime}}{k^{\prime \prime}-i+s^{\prime \prime}}\binom{i-s^{\prime \prime}}{k^{\prime \prime}-j+s^{\prime \prime}}\binom{p^{r-1}-1-k^{\prime \prime}}{s^{\prime \prime}}\binom{p-1}{0} \\
& \times(p-1)^{s^{\prime \prime}}(p-2)^{i+j-k^{\prime \prime}-2 s^{\prime \prime}} \\
\equiv & p_{i j k^{\prime \prime}}^{\left(p^{r-1}-1\right)}(\bmod p),
\end{aligned}
$$

and if $p \nmid k, p_{p i}^{\left(p^{r}-1\right)} \equiv 0 \quad(\bmod p)$.
Thus

$$
\begin{aligned}
A_{p i+\alpha}^{\left(p^{r}-1\right)} A_{p j+\beta}^{\left(p^{r}-1\right)} & =v_{\alpha}\left(A_{1}^{\left(p^{r}-1\right)}\right) v_{\beta}\left(A_{1}^{\left(p^{r}-1\right)}\right) A_{p i}^{\left(p^{r}-1\right)} A_{p j}^{\left(p^{r}-1\right)} \\
& \equiv \sum_{k=0}^{p^{r-1}-1} \sum_{\gamma=0}^{p-1} p_{i j k}^{\left(p^{r-1}-1\right)} p_{\alpha \beta \gamma}^{(p-1)} A_{p k+\gamma}^{\left(p^{r}-1\right)}
\end{aligned}
$$

By the above argument, it follows that

$$
B_{p i+\alpha}^{\left(p^{r}-1\right)}=B_{i}^{\left(p^{r-1}-1\right)} \otimes B_{\alpha}^{(p-1)}
$$

Repeating the same argument, we know that for each non-negative integer m such that $0 \leq m \leq p^{r}-1$ and $m=m_{0} p^{0}+m_{1} p^{1}+\cdots+m_{r-1} p^{r-1}$,

$$
B_{m}^{\left(p^{r}-1\right)}=B_{m_{r-1}}^{(p-1)} \otimes B_{m_{r-2}}^{(p-1)} \otimes \cdots \otimes B_{m_{0}}^{(p-1)}
$$

From this fact, we obtain that

$$
\mathfrak{A}_{p^{r}-1} \cong \overbrace{\mathfrak{A}_{p-1} \otimes \mathfrak{A}_{p-1} \otimes \cdots \otimes \mathfrak{A}_{p-1}}^{r} .
$$

Theorem $3 \quad \mathfrak{A}_{p-1} \cong \mathbb{F}_{p} C_{p} \cong \mathbb{F}_{p}[X] /\left\langle X^{p}\right\rangle$
Proof: Since $B_{1}^{(p-1)}-B_{0}^{(p-1)}$ is nilpotent and its rank is $p-1$, the theorem holds.

Therefore the following theorem holds.
Theorem 4 For each positive integer $r, \mathfrak{A}_{p^{r}-1}$ is isomorphic to the group algebra of the elementary abelian group of order p^{r} over \mathbb{F}_{p}.

4. The structure of $\boldsymbol{\mathfrak { A }}_{\boldsymbol{n}}$

In the previous section, we considered the structure of $\mathfrak{A}_{p^{r}-1}$. To determine the structure of \mathfrak{A}_{n}, in general, we construct an algebra homomorphism $\mathfrak{A}_{n+1} \rightarrow \mathfrak{A}_{n}$.

From Section 2.3, $A_{i}^{(n+1)}=I \otimes A_{i}^{(n)}+K \otimes A_{i-1}^{(n)}$. This means that \mathfrak{A}_{n+1} is a subalgebra of $\mathfrak{A}_{1} \otimes \mathfrak{A}_{n}$. The unique irreducible representation of \mathfrak{A}_{1} is $A_{0}^{(1)} \mapsto 1, A_{1}^{(1)} \mapsto-1$.

Therefore we can define naturally the mapping f_{n+1} for each positive integer n by

$$
\begin{aligned}
& f_{n+1}: \mathfrak{A}_{n+1} \rightarrow \mathfrak{A}_{n} \\
& A_{i}^{(n+1)}=I \otimes A_{i}^{(n)}+K \otimes A_{i-1}^{(n)} \mapsto A_{i}^{(n)}-A_{i-1}^{(n)}
\end{aligned}
$$

Proposition 5 For each positive integer n, $f_{n+1}: \mathfrak{A}_{n+1} \rightarrow \mathfrak{A}_{n}$ above is an algebra epimorphism.

By Theorem 4, $\mathfrak{A}_{p^{r}-1}$ is isomorphic to $\mathbb{F}_{p}(\underbrace{c_{p \times c} \times \cdots \times c_{p}})$ for each positive integer r. Let $x_{1}, x_{2}, \ldots, x_{r}$ be the generators of each C_{p} starting from the right. Then the element of $\mathfrak{A}_{p^{r}-1}$ corresponding to x_{i} by the algebra homomorphism above, is $A_{p^{i-1}}^{\left(p^{r}-1\right)}$.

From the representation theory of the finite group, there exists the algebra isomorphism g from the quotient ring $\mathfrak{P}_{r}=F_{p}\left[X_{1}, X_{2}, \ldots, X_{r}\right] /\left\langle X_{1}^{p}, \cdots, X_{r}^{p}\right\rangle$ of the polynomial ring of r variables over \mathbb{F}_{p} to $\mathbb{F}_{p}(\underbrace{c_{p \times c_{p} \times \cdots \times c_{p}}})$ by $g\left(X_{i}\right)=1-x_{i}$. Therefore we can define an algebra isomorphism $s_{r}: \mathfrak{P}_{r} \rightarrow \mathfrak{A}_{p^{r}-1}$ by

$$
s_{r}\left(X_{i}\right)=A_{0}^{\left(p^{r}-1\right)}-A_{p^{i-1}}^{\left(p^{r}-1\right)}
$$

We define a weight function $w t$ on the set of the monomials of \mathfrak{P}_{r} by

$$
w t\left(X_{i}\right)=p^{i-1}, \quad w t\left(\prod_{j} X_{j}^{k_{j}}\right)=\sum_{j} k_{j} p^{j-1}
$$

Proposition 6 For each positive integer m such that $1 \leq m \leq p-1$,

$$
\left(A_{0}^{\left(p^{r}-1\right)}-A_{p^{i}}^{\left(p^{r}-1\right)}\right)^{m}=m!\sum_{n=0}^{m}\binom{m}{n}(-1)^{n} A_{n p^{i}}^{\left(p^{r}-1\right)}
$$

And if $i \neq j, 0 \leq \alpha, \beta \leq p-1$,

$$
A_{\alpha p^{i}}^{\left(p^{r}-1\right)} A_{\beta p^{j}}^{\left(p^{r}-1\right)}=A_{\alpha p^{i}+\beta p^{j}}^{\left(p^{r}-1\right)} .
$$

Proof: We obtain the first equation by the induction and the second equation by considering tensor expression of $B_{\alpha p^{i}}^{\left(p^{r}-1\right)}$ (see Section 3).

Let $Y_{i}=X_{i_{0}}^{k_{0}} X_{i_{1}}^{k_{1}} \ldots X_{i_{s}}^{k_{s}}$ be the monomial of \mathfrak{P}_{r} such that $w t\left(Y_{i}\right)=i$. Then by the above two equations, the following Proposition holds.

Proposition 7

$$
\begin{aligned}
s_{r}\left(Y_{i}\right) & =\prod_{j=0}^{s}\left(A_{0}^{\left(p^{r}-1\right)}-A_{p^{i_{j}-1}}^{\left(p^{r}-0\right)}\right)^{k_{j}} \\
& =\left(\prod_{j=0}^{s} k_{j}!\right) \sum_{n=0}^{p^{r}-1}\binom{i}{n}(-1)^{n} A_{n}^{\left(p^{r}-1\right)} .
\end{aligned}
$$

Proof: The first equation means that the expansion of $\left(A_{0}^{\left(p^{r}-1\right)}-A_{p^{i}}^{\left(p^{r}-1\right)}\right)^{m}$ is the formula that one expands $\left(X^{0}-X^{p^{i}}\right)^{m}$ and replaces X^{n} with $A_{n}^{\left(p^{r}-1\right)}$ and multiplies it by m !. The second equation means that we can apply the same way to $\prod_{j=0}^{s}\left(A_{0}^{\left(p^{r}-1\right)}-A_{p^{i_{j}}-1}^{\left(p^{i}-1\right)}\right)^{k_{j}}$. Namely, $\prod_{j=0}^{s}\left(A_{0}^{\left(p^{r}-1\right)}-A_{p^{i_{j}}-1}^{\left(p^{r}-1\right)}\right)^{k_{j}}$ is the formula that one expands $\prod_{j=0}^{s}\left(X^{0}-X^{p^{i_{j}-1}}\right)^{k_{j}}=$ $\left(X^{0}-X^{1}\right)^{i}$ and replaces X^{n} with $A_{n}^{\left(p^{r}-1\right)}$ and multiplies it by $\prod_{j=0}^{s} k_{j}!$.

Then the following theorem, that is the main theorem in this paper, holds.

Theorem 8 We set $\mathfrak{P}=\mathbb{F}_{p}\left[X_{1}, X_{2}, \ldots\right] /\left\langle X_{1}^{p}, X_{2}^{p} \ldots\right\rangle$, and for each positive integer n, we set

$$
\left.W_{n}=\langle x| x \text { is the monomial of } \mathfrak{P} \text { such that } w t(x)>n\right\rangle .
$$

Then it holds that $\mathfrak{P} / W_{n} \cong \mathfrak{A}_{n}$ as algebras.

Proof: It is enough that we show that,

$$
\mathfrak{P}_{r} / W_{n} \cong \mathfrak{A}_{n} \quad \text { for } n<p^{r} .
$$

Furthermore it is enough that we show that for each positive integer n such that $n \leq p^{r}-1$, $Y_{n} \in \operatorname{Ker} f_{n} f_{n+1} \ldots f_{p^{r}-1} s_{r}$. Since

$$
\begin{aligned}
f_{n} & f_{n+1} \ldots f_{p^{r}-1} s_{r}\left(Y_{n}\right) \\
& =\left(\prod_{j=0}^{s} k_{j}!\right) f_{n} f_{n+1} \ldots f_{p^{r}-1}\left(\sum_{i=0}^{p^{r}-1}\binom{n}{i}(-1)^{i} A_{i}^{\left(p^{r}-1\right)}\right) \\
& =\left(\prod_{j=0}^{s} k_{j}!\right) f_{n} f_{n+1} \ldots f_{p^{r}-2}\left(\sum_{i=0}^{p^{r}-2}\left(\binom{n}{i}(-1)^{i}-\binom{n}{i+1}(-1)^{i+1}\right) A_{i}^{\left(p^{r}-2\right)}\right) \\
& =\left(\prod_{j=0}^{s} k_{j}!\right)(-1) f_{n} f_{n+1} \ldots f_{p^{r}-2}\left(\sum_{i=0}^{p^{r}-2}\binom{n+1}{i+1}(-1)^{i+1} A_{i}^{\left(p^{r}-2\right)}\right) \\
& =\left(\prod_{j=0}^{s} k_{j}!\right)(-1)^{p^{r}-n} \sum_{i=0}^{n-1}\binom{p^{r}}{i+p^{r}-n}(-1)^{i+p^{r}-n} A_{i}^{(n-1)} \\
& =0,
\end{aligned}
$$

the theorem holds.
Remark 1 We set $G_{n, q}=S_{q} w r S_{n}, H_{n, q}=S_{q-1} w r S_{n}$ for positive integers n, q. Let K be a field. Then $K H(n, q)$ and the Hecke algebra $\operatorname{End}_{K G_{n, q}}\left(1_{H_{n, q}}^{G_{n, q}}\right)$ are isomorphic as algebras (see [2, III.2]). Therefore we also could determine the structure of $\operatorname{End}_{K G_{n, q}}\left(1_{H_{n, q}}^{G_{n, q}}\right)$. In particular, Theorem 4 means that for each positive integer r, if $n=p^{r}-1$, the Hecke algebra $\operatorname{End}_{\mathbb{F}_{p} G_{n, p}}\left(11_{H_{n, p}}^{G_{n, p}}\right)$ is isomorphic to the group algebra of the elementary abelian group of order p^{r}.

Acknowledgment

The author is thankful to Akihide Hanaki for valuable suggestions and comments and to the referee for lots of helpful remarks and suggestions.

References

1. Z. Arad, E. Fisman, and M. Muzychuk, "Generalized table algebras," Israel J. Math. 144 (1999), 29-60.
2. E. Bannai and T. Ito, Algebraic Combinatorics. I. Association Schemes, Benjamin-Cummings, Menlo Park, CA, 1984.
3. P.-J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994.
4. A. Hanaki, "Locality of a modular adjacency algebra of an association scheme of prime power order," Arch. Math (to appear).
5. A. Hanaki, "Semisimplicity of adjacency algebras of association schemes," J. Alg. 225 (2000), 124-129.
6. P.-H. Zieschang, An Algebraic Approach to Association Schemes, Lecture Notes in Math. vol. 1628, Springer, Berlin-Heidelberg-New York, 1996.
