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Abstract. To each association scheme G and to each field R, there is associated naturally an associative algebra,
the so-called adjacency algebra RG of G over R. It is well-known that RG is semisimple if R has characteristic 0.
However, little is known if R has positive characteristic. In the present paper, we focus on this case. We describe
the algebra RG if G is a Hamming scheme (and R a field of positive characteristic). In particular, we show that,
in this case, RG is a factor algebra of a polynomial ring by a monomial ideal.
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1. Introduction

Let p be a prime number, and let Fp denote a field with p elements. Let n and q be positive
integers, and let H (n, q) denote the Hamming scheme the point set of which consists of
all n-tuples of elements of {0, 1, . . . , q − 1}. It follows from [2, III.Theorem 2.3] that the
Frame number of H (n, q) is qn(n+1). Therefore from [1, Theorem 1.1] or [5, Theorem 4.2],
we know that Fp H (n, q) is semisimple iff p does not divide q. Moreover, in Section 2.3 of
the present paper, we shall show that, if p divides q, Fp H (n, p) ∼= Fp H (n, q). Therefore,
we shall focus our attention to the investigation of Fp H (n, p).

From [4, Theorem 3.4, Corollary 3.5] we know that Fp is a splitting field for Fp H (n, p).
Therefore, if we determine the structure of Fp H (n, p), we know the structure over any field
of characteristic p.

We will describe Fp H (n, p) as a factor algebra of a polynomial ring by a monomial
ideal for the clarity of the structure. A monomial ideal is the ideal that is generated by only
monomials.

2. Preparation

For the definitions in this section, refer to [2].

2.1. Association schemes

Let X be a finite set of cardinality n. We define R0 := {(x, x) | x ∈ X}. Let Ri ⊆ X × X be
given. We set R∗

i := {(z, y) | (y, z) ∈ Ri }. Let G be a partition of X × X such that R0 ∈ G
and the empty set ∅ /∈ G, and assume that, R∗

i ∈ G for each Ri ∈ G. Then, the pair (X, G)
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will be called an association scheme if, for all Ri , R j , Rk ∈ G, there exists an integer pi jk

such that, for all y, z ∈ X

(y, z) ∈ Rk ⇒ �{x ∈ X | (y, x) ∈ Ri , (x, z) ∈ R j } = pi jk .

The elements of {pi jk} will be called the intersection numbers of (X, G).
For each Ri ∈ G, we define the n × n matrix Ai indexed by the elements of X ,

(Ai )xy =
{

1 if (x, y) ∈ Ri ,

0 otherwise,

and this matrix Ai will be called the adjacency matrix of Ri .
Let the cardinal number of G be d + 1 and let J be the n × n all 1 matrix. Then, by the

definition, it follows that
∑ d

i=0 Ai = J . It follows that for all Ai , A j ,

Ai A j =
d∑

k=0

pi jk Ak .

From this fact, we can define an algebra naturally. For the commutative ring R with 1,
we put R(X, G) = ⊕ d

i=0 R Ai as a matrix ring over R, and it will be called the adjacency
algebra of (X, G) over R.

For all i, j, k ∈ { 0, 1, . . . , d }, we define the matrix Bi by (Bi )jk = pi jk . This matrix Bi will
be called the i -th intersection matrix. It follows that for all Bi , B j , Bi B j = ∑ d

k=0 pi jk Bk .
Therefore we can define an algebra RB = ⊕ d

i=0 RBi for a commutative ring R with 1,
and it will be called the intersection algebra of (X, G) over R. Then the mapping from the
adjacency algebra to the intersection algebra of (X, G) over R, Ai �→ Bi , is an algebra
isomorphism.

2.2. P-polynomial schemes

A symmetric association scheme (X, {Ri }0≤i≤d ) is called a P-polynomial scheme with re-
spect to the ordering R0, R1, . . . , Rd , if there exist some complex coefficient polynomials
vi of degree i (0 ≤ i ≤ d) such that Ai = vi (A1), where Ai is the adjacency matrix of Ri .

We use the following notation: a tridiagonal matrix

B =




a0 c1 0

b0 a1
. . .

b1
. . .

. . .

. . .
. . . cd

0 bd−1 ad



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is denoted by




∗ c1 · · · cd−1 cd

a0 a1 · · · ad−1 ad

b0 b1 · · · bd−1 ∗


 .

Then the following (i) and (ii) are equivalent to each other (see [2, Proposition 1.1]).
(i) B1 is a tridiagonal matrix with non-zero off-diagonal entries:




∗ 1 c2 · · · cd−1 cd

0 a1 a2 · · · ad−1 ad

b0 b1 b2 · · · bd−1 ∗


 (bi 
= 0, ci 
= 0).

(ii) (X, {Ri }0≤i≤d ) is a P-polynomial scheme with respect to the ordering R0, R1, . . . , Rd ,
i.e.,

Ai = vi (A1) (i = 0, 1, . . . , d)

for some polynomials vi of degree i .

2.3. Hamming schemes

Let � be an alphabet of q symbols {0, 1, . . . , q − 1}. We define � to be the set �n of all
n-tuples of elements of �, and let ρ(x, y) be the number of coordinate places in which the
n-tuples x and y differ. Thus ρ(x, y) is the Hamming distance between x and y. we set

Ri = {(x, y) ∈ � × � | ρ(x, y) = i},

and then (�, {Ri }0≤i≤n) is an association scheme. This will be called the Hamming scheme,
and denoted by H (n, q).

We consider the intersection numbers p(n,q)
i jk of H(n, q). For the convenience of the argu-

ment, we extend the binomial coefficient as follows.

(
0
x

)
=

{
1 if x = 0,

0 otherwise,

and for each integer x and each negative integer y,

(
x
y

)
= 0,

(
y
x

)
= 0.
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We consider the following three elements in �,

(

k︷ ︸︸ ︷
0, 0, . . . , 0, 0, . . . , 0),

(α0, α1, α∗, β),

(1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0),

where α0, α1, α∗, and β means that there are α0 0’s, α1 1’s, and α∗ other symbols among
first k figures, and β non-zero symbols among remaining (n − k) figures.

Then if we assume that

((0, . . . , 0), (α0, α1, α∗, β)) ∈ Ri ,

((α0, α1, α∗, β), (1, . . . , 1, 0, . . . , 0)) ∈ R j ,

((0, . . . , 0), (1, . . . , 1, 0, . . . , 0)) ∈ Rk,

the system of equations must hold that




α1 + α∗ + β = i

α0 + α∗ + β = j

α0 + α1 + α∗ = k.

From the definition, since p(n,q)
i jk is the total of n-tuples that satisfy the above the system of

equations,

p(n,q)
i jk =

n−k∑
β=0

(
k

k − i + β

)(
i − β

k − j + β

)(
n − k

β

)
(q − 1)β(q − 2)i+ j−k−2β.

Therefore if p | q for some prime number p, p(n,q)
i jk ≡ p(n,p)

i jk (mod p). Since the intersec-
tion numbers are the structure constants of the adjacency algebra, Fp H (n, q) ∼= Fp H (n, p).

The Hamming scheme H (n, q) is a P-polynomial scheme (see [2]), and

B1 =




∗ 1 · · · i · · · n

0 q − 2 · · · i(q − 2) · · · n(q − 2)

n(q − 1) (n − 1)(q − 1) · · · (n − i)(q − 1) · · · ∗


 .

For the remainder of this paper, let p be a fixed prime number. Therefore we set
H (n) := H (n, p). And we denote the intersection numbers, the adjacency matrices, and
the intersection matrices of H (n) respectively by p(n)

i jk, A(n)
i , B(n)

i and so on.
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If we index the adjacency matrices by a suitable order, for example, the lexicographic
order on �n , then it follows that

A(n+1)
i = I ⊗ A(n)

i + K ⊗ A(n)
i−1 for ∀i ∈ {0, 1, . . . , n + 1},

where I is the p × p identity matrix, K is the p × p matrix such that the diagonal entries
are 0 and the others 1, A(n)

−1 = A(n)
n+1 = O ( the pn × pn zero matrix), and ⊗ is the Kronecker

product. The Kronecker product A ⊗ B of matrices A and B is defined as follows. Suppose
A = (ai j ). Then A⊗ B is obtained by replacing the entry ai j of A by the matrix ai j B, for all
i and j . The most important property of this product is that, provided the required products
exist,

(A ⊗ B)(X ⊗ Y ) = AX ⊗ BY.

3. H(pr − 1)

The intersection numbers are the structure constants of the adjacency algebra. Therefore,
if we consider the adjacency algebra over a field of characteristic p, we may consider the
intersection numbers modulo p.

The size of the adjacency matrix of H (n) is pn . Therefore, the adjacency algebra of H (n)
over a field of characteristic p is local. Moreover the unique irreducible representation is
Ai �→ pi i∗ 0 (see [4, Theorem 3.4, Corollary 3.5]). Therefore Fp is a splitting field for
Fp H (n). Thus, if we determine the structure of Fp H (n), we know the structure over any
field of characteristic p.

For the remainder of this paper, since we consider the adjacency algebras only over Fp,
we set An := Fp H (n).

By the definition,

B(pr −1)
1 =




B(p−1)
1

B(p−1)
1

. . .

B(p−1)
1


 ,

therefore if we set A(p−1)
i = vi (A(p−1)

1 ), it follows that for 0 ≤ α ≤ p − 1,

A(pr −1)
pi+α = vα

(
A(pr −1)

1

)
A(pr −1)

pi .

Then since any c(p−1)
i 
≡ 0 (mod p), we can define vα over Fp for 0 ≤ α ≤ p−1. For calc-

ulating B(pr −1)
pi+α , we prepare the following theorem and corollary.
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Theorem 1 (Lucas’ theorem [3, Theorem 3.4.1]) Let p be prime, and let

m = a0 + a1 p + · · · + ak pk,

n = b0 + b1 p + · · · + bk pk,

where 0 ≤ ai , bi < p for i = 0, 1, . . . , k − 1. Then

(
m

n

)
≡

k∏
i=0

(
ai

bi

)
(mod p).

Corollary 2 Let p, m, and n be as in Theorem 1. Then, for any two elements α and β in
{0,1, . . . ,p − 1}, we have

(
pm + α

pn + β

)
≡

(
m

n

)(
α

β

)
(mod p).

Now we want to culculate B(pr −1)
pi+α , that is the coefficients of A(pr −1)

pi+α A(pr −1)
pj+β . But it is

enough to investigate A(pr −1)
pi A(pr −1)

pj , i.e. p(pr −1)
pi pj k because we know vα(A(pr −1)

1 )vβ(A(pr −1)
1 ).

Here we recall from Section 2.3 that

p(pr −1)
pi pj k = p(pr −1,p)

pi pj k =
pr −1−k∑

s=0

(
k

k − pi + s

)(
pi − s

k − pj + s

)(
pr − 1 − k

s

)
× (p − 1)s(p − 2)pi+pj−k−2s .

We assume that k = k ′ + pk ′′ and s = s ′ + ps ′′ where 0 ≤ k ′, s ′ < p. Then by Corollary
2, it follows that

0 < s ′ < p − k ′ ⇒
(

k

k − pi + s

)
≡ 0 (mod p),

p − 1 − k ′ < s ′ < p ⇒
(

pr − 1 − k

s

)
≡ 0 (mod p),

and if s ′ = 0,

k ′ 
= 0 ⇒
(

pi − s

k − pj + s

)
≡ 0 (mod p).
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Therefore it follows that if k = pk ′′,

p(pr −1)
pi pj k =

pr −1−k∑
s=0

(
k

k − pi + s

)(
pi − s

k − pj + s

)(
pr − 1 − k

s

)
× (p − 1)s(p − 2)pi+pj−k−2s

≡
pr−1−1−k ′′∑

s ′′=0

(
pk ′′

pk ′′ − pi + ps ′′

)(
pi − ps ′′

pk ′′ − pj + ps ′′

)(
pr − 1 − pk ′′

ps ′′

)
× (p − 1)ps ′′

(p − 2)pi+pj−pk ′′−2ps ′′

≡
pr−1−1−k ′′∑

s ′′=0

(
k ′′

k ′′ − i + s ′′

)(
i − s ′′

k ′′ − j + s ′′

)(
pr−1 − 1 − k ′′

s ′′

)(
p − 1

0

)
× (p − 1)s ′′

(p − 2)i+ j−k ′′−2s ′′

≡ p(pr−1−1)
i jk ′′ (mod p),

and if p � k, p(pr −1)
pi pj k ≡ 0 (mod p).

Thus

A(pr −1)
pi+α A(pr −1)

pj+β = vα

(
A(pr −1)

1

)
vβ

(
A(pr −1)

1

)
A(pr −1)

pi A(pr −1)
pj

≡
pr−1−1∑

k=0

p−1∑
γ=0

p(pr−1−1)
i jk p(p−1)

αβγ A(pr −1)
pk+γ .

By the above argument, it follows that

B(pr −1)
pi+α = B(pr−1−1)

i ⊗ B(p−1)
α .

Repeating the same argument, we know that for each non-negative integer m such that
0 ≤ m ≤ pr − 1 and m = m0 p0 + m1 p1 + · · · + mr−1 pr−1,

B(pr −1)
m = B(p−1)

mr−1
⊗ B(p−1)

mr−2
⊗ · · · ⊗ B(p−1)

m0
.

From this fact, we obtain that

Apr −1
∼=

r︷ ︸︸ ︷
Ap−1 ⊗ Ap−1 ⊗ · · · ⊗ Ap−1 .

Theorem 3 Ap−1
∼= FpC p

∼= Fp[X ]/〈X p〉

Proof: Since B(p−1)
1 − B(p−1)

0 is nilpotent and its rank is p − 1, the theorem holds. �
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Therefore the following theorem holds.

Theorem 4 For each positive integer r , Apr −1 is isomorphic to the group algebra of the
elementary abelian group of order pr over Fp.

4. The structure of An

In the previous section, we considered the structure of Apr −1. To determine the structure of
An , in general, we construct an algebra homomorphism An+1 → An .

From Section 2.3, A(n+1)
i = I ⊗ A(n)

i + K ⊗ A(n)
i−1. This means that An+1 is a subalgebra

of A1 ⊗ An . The unique irreducible representation of A1 is A(1)
0 �→ 1, A(1)

1 �→ −1.
Therefore we can define naturally the mapping fn+1 for each positive integer n by

fn+1 : An+1 → An

A(n+1)
i = I ⊗ A(n)

i + K ⊗ A(n)
i−1 �→ A(n)

i − A(n)
i−1.

Proposition 5 For each positive integer n, fn+1 : An+1 → An above is an algebra
epimorphism.

By Theorem 4, Apr −1 is isomorphic to Fp( C p×C p×···×C p︸ ︷︷ ︸
r

) for each positive integer r . Let

x1, x2, . . . , xr be the generators of each C p starting from the right. Then the element of
Apr −1 corresponding to xi by the algebra homomorphism above, is A(pr −1)

pi−1 .
From the representation theory of the finite group, there exists the algebra isomorphism

g from the quotient ring Pr = Fp[X1, X2, . . . , Xr ]/〈X p
1 , · · · , X p

r 〉 of the polynomial ring
of r variables over Fp to Fp( C p×C p×···×C p︸ ︷︷ ︸

r

) by g(Xi ) = 1 − xi . Therefore we can define an

algebra isomorphism sr : Pr → Apr −1 by

sr (Xi ) = A(pr −1)
0 − A(pr −1)

pi−1 .

We define a weight function wt on the set of the monomials of Pr by

wt(Xi ) = pi−1, wt

( ∏
j

X
k j

j

)
=

∑
j

k j p j−1.

Proposition 6 For each positive integer m such that 1 ≤ m ≤ p − 1,

(
A(pr −1)

0 − A(pr −1)
pi

)m = m!
m∑

n=0

(
m

n

)
(−1)n A(pr −1)

npi .
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And if i 
= j, 0 ≤ α, β ≤ p − 1,

A(pr −1)
αpi A(pr −1)

βp j = A(pr −1)
αpi +βp j .

Proof: We obtain the first equation by the induction and the second equation by consid-
ering tensor expression of B(pr −1)

αpi (see Section 3). �

Let Yi = Xk0
i0

Xk1
i1

. . . Xks
is

be the monomial of Pr such that wt(Yi ) = i . Then by the above
two equations, the following Proposition holds.

Proposition 7

sr (Yi ) =
s∏

j=0

(
A(pr −1)

0 − A(pr −0)

pi j −1

)k j

=
(

s∏
j=0

k j !

)
pr −1∑
n=0

(
i

n

)
(−1)n A(pr −1)

n .

Proof: The first equation means that the expansion of (A(pr −1)
0 − A(pr −1)

pi )m is the formula

that one expands (X0 − X pi
)m and replaces Xn with A(pr −1)

n and multiplies it by m!. The
second equation means that we can apply the same way to

∏s
j=0(A(pr −1)

0 − A(pr −1)

pi j −1
)k j .

Namely,
∏s

j=0(A(pr −1)
0 − A(pr −1)

pi j −1
)k j is the formula that one expands

∏s
j=0(X0 − X pi j −1

)k j =
(X0 − X1)i and replaces Xn with A(pr −1)

n and multiplies it by
∏s

j=0 k j !. �

Then the following theorem, that is the main theorem in this paper, holds.

Theorem 8 We set P = Fp[X1, X2, . . .]/〈X p
1 , X p

2 . . .〉, and for each positive integer n,
we set

Wn = 〈x | x is the monomial of P such that wt(x) > n〉.

Then it holds that P/Wn
∼= An as algebras.

Proof: It is enough that we show that,

Pr/Wn
∼= An for n < pr .
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Furthermore it is enough that we show that for each positive integer n such that n ≤ pr −1,
Yn ∈ Ker fn fn+1 . . . f pr −1sr . Since

fn fn+1 . . . f pr −1sr (Yn)

=
(

s∏
j=0

k j !

)
fn fn+1 . . . f pr −1

(
pr −1∑
i=0

(
n

i

)
(−1)i A(pr −1)

i

)

=
(

s∏
j=0

k j !

)
fn fn+1 . . . f pr −2

(
pr −2∑
i=0

( (
n

i

)
(−1)i −

(
n

i + 1

)
(−1)i+1

)
A(pr −2)

i

)

=
(

s∏
j=0

k j !

)
(−1) fn fn+1 . . . f pr −2

(
pr −2∑
i=0

(
n + 1

i + 1

)
(−1)i+1 A(pr −2)

i

)

=
(

s∏
j=0

k j !

)
(−1)pr −n

n−1∑
i=0

(
pr

i + pr − n

)
(−1)i+pr −n A(n−1)

i

= 0,

the theorem holds. �

Remark 1 We set Gn,q = Sq wr Sn, Hn,q = Sq−1 wr Sn for positive integers n, q. Let K

be a field. Then KH(n, q) and the Hecke algebra EndKGn,q (1
Gn,q

Hn,q
) are isomorphic as algebras

(see [2, III.2]). Therefore we also could determine the structure of End K Gn,q (1
Gn,q

Hn,q
). In

particular, Theorem 4 means that for each positive integer r , if n = pr − 1, the Hecke
algebra EndFp Gn,p (1

Gn,p

Hn,p
) is isomorphic to the group algebra of the elementary abelian

group of order pr .
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