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Abstract. We shall consider higher power residue codes over the ring Z4. We will briefly introduce these codes
over Z4 and then we will find a new construction for the Leech lattice. A similar construction is used to construct
some of the other lattices of rank 24.
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1. Introduction

Let p, l be prime numbers. Let Fl be a finite field of order l and Fl2 be a finite extension of
degree 2 over the finite field Fl . Chapman introduced higher power residue codes W over
the Galois field Fl2 [3]. These are codes over Fl2 but linear only over Fl , not Fl2 , and they
satisfy W ⊗Fl Fl2 = (Fl2 )p+1. They depend on characters χ : F∗

p → F∗
l2 where for a given

field F, F∗ = F − {0}.
Here we begin the task of generalizing this construction to Galois rings. We confine

ourselves here to the Galois ring Z4[ω] where ω2 + ω + 1 = 0. The characters we consider
here have orders 3 or 6, so we call the corresponding codes cubic or sextic residue codes.

When p ≡ 7 (mod 24) we can combine sextic residue codes over Z4[ω] with quadratic
residue codes to form self-dual codes of length 3(p + 1) over Z4. These yield unimodular
lattices. The first case is p = 7 which we deal with in detail.

2. Higher power residue codes over Z4

Let Z4[ω] = {a + bω : a, b ∈ Z4} where ω is a primitive cube root of unity. So ω satisfies
ω2 + ω + 1 = 0. We define the following automorphism on Z4[ω].

¯ : Z4[ω] −→ Z4[ω]

a + bω �−→ a + bω2

This is an automorphism of order two.
Let p be a prime number with p ≡ 1 (mod 6). Now consider

� = {(α, β) : α, β ∈ Zp} − {(0, 0)}
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Define Z4[ω]∗ = Z4[ω]−{0, 2, 2ω, 2ω2} the group of units of Z4[ω]. Let χ : Z∗
p → Z4[ω]∗

be a character of order 3 or 6 such that χ (α) ∈ {±ω j } where j ∈ {0, 1, 2}, α ∈ Zp and
χ (α)−1 = χ (α). We define the Z4[ω]-module M with generators ev where v ∈ � and
relations eαv = χ (α)ev . Let

� = {e∞, e0, e1, . . . , ep−1} (1)

where e∞ = e(1,0) and eα = e(α,1) for α ∈ Zp. We suppose that there is no non-trivial linear
relation among the elements of �. So the Z4[ω]-module M can be generated as a finitely
generated module of rank p + 1 by linear combinations of the elements of �.

We denote the general linear group of degree 2 over Zp by GL(2, p). Define the action
of GL(2, p) on the projective line P1(Zp) over Zp as

v ·
(

α β

γ δ

)
= vα + γ

vβ + δ

and

∞ ·
(

α β

γ δ

)
= α

β
.

Therefore if A = (α β
γ δ), we have

ev A = χ (vβ + δ)ev·A

for v �= ∞ and

e∞ A = χ (β)e∞·A.

One can easily verify that

eαv A = eαvA = χ (α)evA = χ (α)ev A. (2)

Definition 2.1 Let f : M1 → M2 be a map between Z4[ω]-modules M1 and M2. We say
f is semi-linear if f (λm) = λ̄ f (m) for all λ ∈ Z4[ω], m ∈ M .

We aim to find a Z4-submodule W of M with the property that the natural map W ⊗Z4

Z4[ω] → M is an isomorphism. This is equivalent to M = W ⊕ ωW .

Lemma 2.1 Let W be a Z4-submodule of M with M = W ⊕ ωW . Then

τ : M → M
r + ωs �→ r + ω̄s

where r, s ∈ W , is a semi-linear involution.
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Proof: Let r, s ∈ W and λ ∈ Z4[ω]. Thus λ = a + bω for some a, b ∈ Z4. Then

τ (λ(r + ωs)) = τ (ar + brω + asω + bs(−1 − ω))

= ar − bs + (br + as − bs)ω̄

= λ̄(r + ω̄s)

= λ̄(τ (r + ωs)).

Hence τ is semi-linear. Finally

τ 2(r + ωs) = τ (r + ω̄s) = r + ωs.

The converse of Lemma 2.1 is also true. �

Lemma 2.2 Let τ : M → M be a semi-linear involution and W = {m ∈ M : τ (m) = m}.
Then W is a Z4-submodule and M = W ⊕ ωW .

Proof: Suppose that τ : M → M is a semi-linear involution. Since ā = a for all a ∈ Z4,
the set W is a Z4-submodule of M . Since ω �= ω2, λ = ω − ω̄ ∈ Z4[ω]∗.

It is clear that λ̄ = −λ. We shall show that for all m ∈ M there exist r, s ∈ W such that
m = r + ωs. For this set

r = 1

λ
(ωτ (m) − ω̄m)

s = 1

λ
(m − τ (m)).

Therefore

τ (r ) = ω̄

λ̄
m − 1

λ̄
ωτ (m) = −1

λ
(ω̄m − ωτ (m)) = r

and

τ (s) = s.

So we have proved that M = W +ωW . Now suppose r̂ ∈ W ∩ωW . Since r̂ ∈ W , we have
τ (r̂ ) = r̂ . On the other hand, r̂ ∈ ωW so r̂ = ωŝ for some ŝ ∈ W . Hence ŝ = ω−1r̂ and

τ (r̂ ) = τ (ωŝ) = ω̄ŝ = ω̄ω−1r̂ = ω2ω−1r̂ = ωr̂ .

Since 1 − ω ∈ Z4[ω]∗, we have r̂ = 0. Hence

M = W ⊕ ωW. �
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Denote by SL(2, p) the set of all 2×2 matrices A with entries in Zp such that det A = 1.
Then SL(2, p) is called the 2-dimensional special linear group over Zp. We aim to find such
a W invariant under the action of SL(2, p).

Lemma 2.3 Let τ : M → M be a semi-linear involution, and W = {m ∈ M : m = τ (m)}.
Then W is invariant under the action of SL(2, p) if and only if τ (m A) = τ (m)A for all
A ∈ SL(2, p) and m ∈ M.

Proof: Suppose W is invariant under SL(2, p) and r, s ∈ W . Then

τ ((r + ωs)A) = τ (r A + ωs A) = τ (r A) + τ (ωs A)

= r A + ω̄s A = (r + ω̄s)A

= τ (r + ωs)A.

Conversely if τ (m A) = τ (m)A for all m ∈ M and A ∈ SL(2, p), then for m ∈ W

τ (m A) = τ (m)A = m A.

Hence W is invariant under SL(2, p). �

Quaternary quadratic residue codes are invariant under the corresponding action of SL(2, p)
defined from the quadratic character χ (a) = ( a

p ) (see [2]).

Definition 2.2 We consider such a submodule W which is invariant under the action of
SL(2, p) according to Lemma 2.3. We call W a higher power residue code. In particular
when χ is a character of order 3 we call W a cubic residue code and when χ has order 6
we call W a sextic residue code.

Now we are going to define a hermitian structure on M .

Definition 2.3 A Z4- bilinear form � : M × M → Z4[ω] satisfying

(1) �(λ1m1 + λ2m2, m̂1) = λ̄1�(m1, m̂1) + λ̄2�(m2, m̂1)
(2) �(m1, λ1m̂1 + λ2m̂2) = λ1�(m1, m̂1) + λ2�(m1, m̂2)

for all m1, m2, m̂1, m̂2 ∈ M, λ1, λ2 ∈ Z4[ω] is called a sesquilinear form on M.

Lemma 2.4 Define a sesquilinear form � on M by

�(eα, eβ) =
{

1 α = β

0 α �= β
(3)

for α, β ∈ P1(Zp). Then � has the following properties:
(i) �(ev, ew) = �(ew, ev) for all v, w ∈ �

(ii) �(ev A, ew A) = �(ev, ew) for all v, w ∈ �
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Proof:

(i) First of all suppose v and w are linearly independent. In this case both sides of (i) are
zero. Now suppose w = αv. Therefore:

�(ew, ev) = χ (α). (4)

On the other hand v = α−1w and

�(ew, ev) = χ (α−1). (5)

The result follows from (4), (5) and the fact that χ (α−1) = χ (α).
(ii) One can achieve the result by using the same process as (i) and definition of ev A and

applying (2). �

Corollary 2.1 Let � be as in Lemma 2.4. Then for all m1, m2 ∈ M and A ∈ SL(2, p)
we have

(i) �(m2, m1) = �(m1, m2)
(ii) �(m1 A, m2 A) = �(m1, m2).

Proof:

(i) is clear by sesquilinearity of �.
(ii) follows from (ii) of Lemma 2.4 and the linearity of �.

Recall � = (Zp × Zp) − {(0, 0)}. �

Lemma 2.5 Let τ be a semi-linear involution τ : M → M such that τ (m A) = τ (m)A
for all A ∈ SL(2, p) and m ∈ M, and χ : Z∗

p → Z4[ω]∗ be a character of order s > 2.
Define � : �×� → Z4[ω]∗ by �(v, w) = �(τ (ev), (ew)). Then � satisfies the following.

(i) �(αv, βw) = χ (αβ)�(v, w) for α, β ∈ Zp

(ii) �(vA, wA) = �(v, w)
(iii) �(v, w) = 0 whenever v and w are linearly dependent.

Proof:

(i)

�(αv, βw) = �(τ (eαv), eβw) = �(τ (χ(α)ev), χ (β)ew)

= �(χ (α)τ (ev), χ (β)ew) = χ (α)χ (β)�(τ (ev), ew)

= χ (αβ)�(v, w). (6)
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(ii)

�(vA, wA) = �(τ (evA), ewA) = �(τ (ev A), ew A)

= �(τ (ev)A, ew A)

= �(τ (ev), ew)

= �(v, w). (7)

(iii) Suppose α is an element of Z∗
p such that χ (α) �= ±1. Such an element exists, since

otherwise, the order of χ does not exceed two. Now we can find a matrix A ∈ SL(2, p)
such that vA = αv, and then also wA = αw. Therefore, �(v, w) = �(vA, wA) =
�(αv, αw) = χ (α)2�(v, w). Hence, �(v, w) = 0. �

Lemma 2.6 Let � be as in Lemma 2.5 and v = (α, β), w = (γ, δ) be linearly independent

elements of �, A = (α β
γ δ) and x̂ = det A.

(i) There exists some ζ ∈ Z4[ω] such that �(v, w) = ζχ (x̂)
(ii) �(w, v) = χ (−1)�(v, w).

Proof:

(i) Let v0 = (1, 0), w0 = (0, 1). Hence v = v0 A′, w = x̂w0 A′ where

A′ = ( α β
x̂−1γ x̂−1δ) ∈ SL(2, p).

Then
�(v, w) = �(v0 A′, x̂w0 A′) = χ (x̂)�(v0, w0). (8)

Taking ζ as �(v0, w0), completes the proof.
(ii) �(w, v) = ζχ (−x̂) = ζχ (−1)χ (x̂) = χ (−1)�(v, w).

�

Proposition 2.1 Let ζ be an element of Z4[ω] satisfying the conditions of Lemma 2.6
and τ : M → M be a semi-linear involution which satisfies τ (m A) = τ (m)A, for all
A ∈ SL(2, p) and m ∈ M. Then

τ (ev) =
∑

w∈P1(Zp)

ζUvwew (9)

where

Uαβ =




χ (α − β) if β �= ∞, α �= ∞
χ (−1) if β = ∞, α �= ∞
1 if α = ∞, β �= ∞
0 if α = ∞, β = ∞

(10)
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and ζ satisfies the equation

pχ (−1)ζ ζ̄ = 1. (11)

Proof: Using Lemmas 2.5 and 2.6 shows that

τ (ev) =
∑

w∈P1(Zp)

�(ew, τ (ev))ew =
∑

w∈P1(Zp)

�(τ (ev), ew)ew

=
∑

w∈P1(Zp)

�(v, w)ew =
∑

w∈P1(Zp)

ζUvwew,

where U is the matrix defined by (10). Therefore,

τ (e∞) = ζ

p−1∑
i=0

ei ,

and so

1 = �(e∞, e∞) = �(τ (e∞)2, e∞)

= �(τ (τ (e∞)), e∞) = �

(
τ

(
ζ̄

p−1∑
i=0

ei

)
, e∞

)

= �

(
p−1∑
i=0

ζ τ (ei ), e∞

)
= ζ̄

(
p−1∑
i=0

�(τ (ei ), e∞

)

= ζ̄ ζ pχ (−1).

Therefore

pχ (−1)ζ ζ̄ = 1. (12)
�

Remark 2.1 If ζ satisfies (12) and τ is defined by (9) then by Lemma 2.4,

�(eα, eβ) = �(τ 2(eα), eβ). (13)

Therefore, τ 2(m) = m for all m ∈ M . This shows that τ is a semi-linear involution.
Moreover,

�(τ (ev A), w) = �(τ (evA), w) = �(vA, w) = �(v, wA−1)

= �(τ (ev), wA−1) = �(τ (ev)A, w). (14)

Hence τ (m A) = τ (m)A, for all m ∈ M . So by Lemma 2.3, W = {m ∈ M : τ (m) = m} is
invariant under the action of SL(2, p).
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Remark 2.1 shows the existence of a semi-linear involution τ such that W is invariant
under the action of SL(2, p). In fact any semi-linear involution τ on M gives a Higher
power residue code W and semi-linear involutions are correspond to the solutions of (12)
via (9).

One of the prominent questions is : how many different higher power residue codes are
there in each case. We need to prove the following lemma

Lemma 2.7 Let W be a higher power residue code over Z4[ω] then λW for λ ∈ Z4[ω]∗

is a higher power residue code.

Proof: What we shall do is to find a semi-linear involution τ́ such that τ́ (λW ) = λW . Let
τ́ = ετ . So we have

τ́ (λm) = ετ (λm) = ελ̄τ (m) = ελ̄m

for m ∈ W . So it suffices to choose ε = λ/λ̄. Obviously εε̄ = 1 and this proves that τ́ is a
semi-linear involution. �

Proposition 2.2 The higher power residue code is unique up to multiplication by an
element of Z4[ω]∗.

Proof: Let W and Ẃ be higher power residue codes. Then they are respectively the fixed
sets of semi-linear involutions τ and τ́ , and they are invariant under the action of SL(2, p).
By (9) and (12) τ́ = ετ where εε = 1. Such an ε has the form λ/λ and so Ẃ = λW by the
argument of Lemma 2.7. �

Proposition 2.3 Let τ be the unique semi-linear involution τ : M → M which is defined
by (9) and S be the set of η ∈ Z4[ω]∗ such that η + η̄ ∈ Z4[ω]∗. Define

h : M → M

m �→ ηm + η̄τ (m)

for some η ∈ S. Then W is the image of h.

Proof: If m ∈ W and η ∈ S then ηm +τ (ηm) = (η+ η̄)m. Set n = (η+ η̄)−1m. Therefore
h(n) = m. �

Definition 2.4 Define a Z4-bilinear map

[ , ] : M × M → Z4

(m1, m2) �−→ �(m1, m2) + �(m1, m2).
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We denote the dual space of W by

W ′ = {m2 ∈ M : [m1, m2] = 0 for all m1 ∈ W }. (15)

Proposition 2.4 Suppose χ (−1) = −1. Then W is self dual under [ , ].

Proof: By Lemma 2.6

�(τ (m1), m2) = −�(τ (m2), m1), (16)

for all m1, m2 ∈ M . So for all m1, m2 ∈ W we have

�(m1, m2) = �(τ (m1), m2) = −�(τ (m2), m1) = −�(m2, m1) = −�(m1, m2).

(17)

We know that |M | = |W | × |W ′| and |W | = √|M |, so W = W ′. This completes the
proof. �

Suppose p = 7 and in Proposition 2.1 define χ : Z∗
7 −→ Z4[ω]∗ such that χ (5) = −ω

and choose ζ = 1 which is one of the solutions of (12). In this case by calculation, the
space which is spanned by the rows of the following matrix over Z4 has rank 8 over Z4.
Therefore W is spanned over Z4 by the rows of this matrix.




ω ω2 ω2 ω2 ω2 ω2 ω2 ω2

−ω2 ω −ω2 −ω 1 −1 ω ω2

−ω2 ω2 ω −ω2 −ω 1 −1 ω

−ω2 1 ω2 ω −ω2 −ω 1 −1

−ω2 −1 1 ω2 ω −ω2 −ω 1

−ω2 1 −1 1 ω2 ω −ω2 −1

−ω2 −ω 1 −1 1 ω2 ω −ω2

−ω2 −ω2 −ω 1 −1 1 ω2 ω




(18)

This W is a sextic residue code. This construction generalizes that of Chapman[3].
The symmetrized weight enumerator of a code W over Z4[ω] is defined as follows.
Consider a specific codeword r ∈ W . Now, let n0(r ) be the number of zeroes in the

codeword, n1(r ) be the number of elements of Z4[ω]∗, n2(r ) be the number of elements of
2Z4[ω] − {0} in the codeword. The symmetrized weight enumerator of W is

sweW (x, y, z) =
∑
r∈W

xn0(r ) yn1(r )zn2(r ). (19)
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The symmetrized weight enumerator of W , the sextic residue code of length 8 is as follows.

sweW (x, y, z) = x8 + 42 x4z4 + 672 x3 y4z + 2688 x2 y6 + 2016 x2 y4z2

+ 168 x2z6 + 16128 xy6z + 4704 xy4z3 + 11520 y8

+ 24192 y6z2 + 3360 y4z4 + 45 z8.

3. The Leech lattice

Now we are going to construct the Leech lattice and one of the Niemeier lattices by using
a higher power residue code of length 8 over Z4[ω].

We are going to use the same action of SL(2, 7) on the code. Under this action for each
A = (α β

γ δ) ∈ SL(2, 7)

ev A = ϑ(A, v)ew (20)

where w = αv+γ

βv+δ
and ϑ(A, v) = σ (A, v)ω j(A,v), where σ (A, v) is either 1 or −1 and j(A, v)

is 0, 1 or −1. We regard j(A, v) are lying in the integers modulo 3. It is also apparent that
for each A ∈ SL(2, 7) there exists an invertible 8 × 8 matrix Â such that

ev A = ev Â. (21)

Lemma 3.1 Let ϑ(A, v) be defined by (20). Then

ϑ(AB, v) = ϑ(A, v)ϑ(B, v · A)

Proof:

(ev A)B = ϑ(A, v)ev·A B

= ϑ(A, v)ϑ(B, v · A)e(v·A)·B .

On the other hand,

ev(AB) = ϑ(AB, v)ev·AB .

Since the left hand sides are equal, the proof is complete. �

Let W be the sextic residue code of length 8 over Z4[ω] with character χ where χ (−1) = −1
and χ (5) = −ω. Each ζ ∈ Z4[ω] can be written uniquely as ζ = a0 + a1ω + a2ω

2, ai ∈ Z4

where a0 + a1 + a2 = 0.
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Let M̂ be a free Z4-module generated by { fα, j : α ∈ P1(Z7), 0 ≤ j ≤ 2}. So we define

φ̂ : M → M̂
ζeα �→ a0 fα,0 + a1 fα,1 + a2 fα,2

The map (22) can be easily extended to the map φ : W → M̂ which takes r ∈ W to

(a∞,0, a∞,1, a∞,2, a0,0, a0,1, a0,2, . . . , a6,0, a6,1, a6,2)

where

aα,0 + aα,1 + aα,2 ≡ 0 (mod 4) for α ∈ P1(Z7).

We denote the code φ(W ) by T .
We consider the matrix (18) and we replace each array by its three coordinates as above.

So we have a generator matrix for the code T over Z4 as follows.




1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

3 3 2 1 2 1 3 3 2 3 2 3 2 1 1 2 3 3 1 2 1 1 1 2

3 3 2 1 1 2 1 2 1 3 3 2 3 2 3 2 1 1 2 3 3 1 2 1

3 3 2 1 2 1 1 1 2 1 2 1 3 3 2 3 2 3 2 1 1 2 3 3

3 3 2 2 3 3 1 2 1 1 1 2 1 2 1 3 3 2 3 2 3 2 1 1

3 3 2 2 1 1 2 3 3 1 2 1 1 1 2 1 2 1 3 3 2 3 2 3

3 3 2 3 2 3 2 1 1 2 3 3 1 2 1 1 1 2 1 2 1 3 3 2

3 3 2 3 3 2 3 2 3 2 1 1 2 3 3 1 2 1 1 1 2 1 2 1




We consider the inner product on M̂ with respect to the inner product with the fα,i orthonor-
mal and we set the weight of 0, 1, 2, 3 in Z4 as 0, 1, 4, 1 respectively. So the Euclidean weight
of a codeword r is the sum of the weights of its coordinates. It can be easily seen that the
Euclidean weight of each codeword in T is divisible by 8. This shows that the code T is
self-orthogonal.

We shall define an action of SL(2, 7) on M̂ . Define,

fv,i A = σ (A, v) fv·A,i+ j(A,v)

where the suffix i + j(A, v) read modulo 3. We can show that this action is
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well-defined.

( fv,i A)B = σ (A, v) fv·A,i+ j(A,v) B = σ (A, v)σ (B, v · A) f(v·A)·B,i+ j(A,v)+ j(B,v·A)

On the other hand,

fv,i AB = σ (AB, v) fv·AB,i+ j(AB,v)

and by Lemma 3.1 σ (A, v)σ (B, v · A) = σ (AB, v) and j(A, v) + j(B, v · A) = j(AB, v)
which completes the proof. �

Now it is easy to see that φ is Z4-linear and φ(r A) = φ(r )A for all r ∈ W and A ∈
SL(2, 7).

Proposition 3.1 Suppose W̄ is a code of length 8 over Z4[ω] with generator matrix Ḡ
and Â is the matrix which is defined by (21). If Ḡ Â = ÂḠ then W̄ is invariant under the
action of SL(2, 7).

Proof: Let ζ̄ ∈ W̄ . Therefore, there exists ā ∈ Z8
4 such that ζ̄ = āḠ, hence

ζ̄ Â = āḠ Â = ζ̄ ÂḠ = η̄Ḡ ∈ W̄ ,

for some η̄ ∈ Z8
4. This completes the proof. �

Now consider the construction of the extended quaternary quadratic residue codes. Let H
be the matrix defined by (10) with χ (α) = ( α

7 ). Set G̃ = 5I8×8 −Y . The matrix H is a skew
symmetric matrix and ÂG̃ = G̃ Â, so by Proposition 3.1, G̃ generates a code over Z4 which
is invariant under the action of SL(2, 7). Suppose row(G, i) is the i th row of the matrix G.
Now set

� =
{

1

2
(±row(G̃, i) ± row(G̃, j)) : 1 ≤ i, j ≤ 8

}
.

The code Q4 which is generated by � is the extended quadratic residue code over Z4

obtained by Hensel lifting (see [4]). The code Q4 is invariant under the action of SL(2, 7)
(see [2]). The number of linearly independent vectors in this set is at most 8. So suffices it
to consider 8 vectors as follows. Set the matrix Ĝ as a matrix where

row(Ĝ, i) = (row(G̃, 1) + row(G̃, i))/2.
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That is

Ĝ =




1 −1 −1 −1 −1 −1 −1 −1

−1 2 0 0 −1 0 −1 −1

−1 −1 2 0 0 −1 0 −1

−1 −1 −1 2 0 0 −1 0

−1 0 −1 −1 2 0 0 −1

−1 −1 0 −1 −1 2 0 0

−1 0 −1 0 −1 −1 2 0

−1 0 0 −1 0 −1 −1 2




. (22)

The code over Z4 which is spanned by the rows of the matrix Ĝ is the same as the code
generated by

G =




−1 1 2 1 −1 0 0 0

−1 0 1 2 1 −1 0 0

−1 0 0 1 2 1 −1 0

−1 0 0 0 1 2 1 −1


 .

which is the extended quadratic residue code over Z4 obtained by Hensel lifting [10, Chapter
11].

Define

ψ : Z8
4 → Z24

4∑
α

aαeα �→
∑

α

2∑
j=0

aα fα, j . (23)

Since Q4 is a self-dual code then Q(4) = ψ(Q4) is self-orthogonal. One can easily see that
Q(4) is orthogonal to T . Moreover, Q(4) ∩ T = 0. So the code Q(4) + T is a self-orthogonal
of dimension 12. So it is self-dual. We denote the code Q(4) + T by �. A code over Z4

which is self-dual and the Euclidean weight of each codeword is divisible by 8 is called a
code of type II. Computer calculation shows that the symmetric weight enumerator of � is

swe� = x24 + 759 x16z8 + 12144 x14 y8z2 + 170016 x12 y8z4 + 2576 x12z12

+ 61824 x11 y12z + 765072 x10 y8z6 + 1133440 x9 y12z3 + 24288 x8 y16

+ 1214400 x8 y8z8 + 759 x8z16 + 4080384 x7 y12z5 + 680064 x6 y16z2

+ 765072 x6 y8z10 + 4080384 x5 y12z7 + 1700160 x4 y16z4

+ 170016 x4 y8z12 + 1133440 x3 y12z9 + 680064 x2 y16z6

+ 12144 x2 y8z14 + 61824 xy12z11 + 4096 y24 + 24288 y16z8 + z24.
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Now we consider the lattice in R24 associated with � which is

L� =
{

1

2
(g + 4z) : g ∈ �, z ∈ Z24

}
, (24)

where g is regarded as n-tuples with integers 0, 1, 2, 3 as components. This construction
is called construction A4. Since the code � is of type II then the lattice L� is an even
unimodular lattice. As we see the number of the vectors of norm 2 is zero, L� is isomorphic
to the Leech lattice ([6] chapter 18).

Bonnecaze et al. [2] have constructed the Leech lattice by using a different code over Z4,
but they have found the same symmetrized weight enumerator. We show that these codes
are not isomorphic.

Let Q be the code described in [2]. We show that 7 � |Aut(Q̄)|. Since we have shown
that the automorphism group of � contains SL(2, 7), the conclusion would be apparent.

Theorem 3.1 The code � is inequivalent to the code Q̄.

Proof: The code is actually a lifting of the binary Golay code. Define

ρ : Aut(Q̄) → Aut(G)

where G is the Golay code and the image of an element is the element modulo 2. The
image of ρ is a group of automorphisms of the Golay code and Aut(Q̄) ⊇ SL(2, 23)
but ρ(SL(2, 23)) = PSL(2, 23), so PSL(2, 23) ⊆ Im ρ. We know that M24 is the full
automorphism group of the Golay code G24. So we have

PSL(2, 23) ⊆ Im ρ ⊆ M24.

But PSL(2, 23) is maximal in M24 [7], hence either Im ρ = PSL(2, 23) or Im ρ = M24.
We show that Im ρ �= M24. Suppose Im ρ = M24. Now consider a word � of shape
((±1)8 22 014) in Q̄. Let O be an 8 element set (octad) formed by the positions of the
±1s in the word � . The stabilizer of an octad is one of the maximal subgroups of M24

and it acts 2-transitively on the remaining points. That means for i, j, k, l which are not
in the O and i �= j, k �= l, we can find g in the stabilizer of O such that g(i, j) = (k, l).
There are 759 octads and by acting on ±� by the octad stabilizer we get at least 2( 16

2 )
words of shape ((±1)822014) in Q̄ with ±1s forming the octad O . So in total there are at
least 2 × 759 × ( 16

2 ) = 759 × 16 × 15 elements of shape ((±1)822014) in Q̄. But it is not
possible due to swe� . Therefore, PSL(2, 23) = Imρ.

Any element of kerρ is a diagonal matrix with ±1s on diagonal, so has order 1 or 2.
Since kerρ is a 2-group then 7 does not divide the |Aut(Q̄)|. This completes the proof. (I
am indebted to Robin Chapman for this argument). �

Now suppose λ is a unit of Z4[ω]. We know that W is a Z4-linear code but not a Z4[ω]-
linear code. Moreover, τ (λr ) = λ̄τ (r ) for each r ∈ W and λ̄τ (r ) = λr if and only if
λ = λ̄. Therefore if λ ∈ Z4[ω]∗ and λλ̄ �= 1, Ŵ = λW is a different code from W but
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sweW = sweŴ . Replacing W by λW in the above construction of � gives a type II code
�̂. By applying the same process which is described in Section 3 we will find a different
lattice. In fact, computer calculation shows that swe�̂ is as follows

swe�̂ = x24 + 48 x16 y8 + 759 x16z8 + 11760 x14 y8z2 + 171360 x12 y8z4

+ 2576 x12z12 + 61824 x11 y12z + 762384 x10 y8z6 + 1133440 x9 y12z3

+ 24288 x8 y16 + 1217760 x8 y8z8 + 759 x8z16 + 4080384 x7 y12z5

+ 680064 x6 y16z2 + 762384 x6 y8z10 + 4080384 x5 y12z7

+ 1700160 x4 y16z4 + 171360 x4 y8z12 + 1133440 x3 y12z9

+ 680064 x2 y16z6 + 11760 x2 y8z14 + 61824 xy12z11 + 4096 y24

+ 24288 y16z8 + 48 y8z16 + z24.

As we see the number of the words with minimum weight is 48. If L ⊂ Rn is a root lattice
and R is its set of roots then the number h = |R|

n is called the Coxeter number. Therefore
the Coxeter number in this case is 2 and this lattice is equivalent to the Niemeier lattice A24

1 .
See [6, Chapter 16] for the classification of Niemeier lattices.
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