Higher Power Residue Codes and the Leech Lattice

MEHRDAD AHMADZADEH RAJI

m.raji@ex.ac.uk

Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QE, UK Received August 30, 2001; Revised January 5, 2004; Accepted January 27, 2004

Abstract. We shall consider higher power residue codes over the ring \mathbb{Z}_4 . We will briefly introduce these codes over \mathbb{Z}_4 and then we will find a new construction for the Leech lattice. A similar construction is used to construct some of the other lattices of rank 24.

Keywords: self-dual code, even unimodular lattice, Hensel lifting

1. Introduction

Let p, l be prime numbers. Let \mathbf{F}_l be a finite field of order l and \mathbf{F}_{l^2} be a finite extension of degree 2 over the finite field \mathbf{F}_l . Chapman introduced higher power residue codes W over the Galois field \mathbf{F}_{l^2} [3]. These are codes over \mathbf{F}_{l^2} but linear only over \mathbf{F}_l , not \mathbf{F}_{l^2} , and they satisfy $W \otimes_{\mathbf{F}_l} \mathbf{F}_{l^2} = (\mathbf{F}_{l^2})^{p+1}$. They depend on characters $\chi : \mathbf{F}_p^* \to \mathbf{F}_{l^2}^*$ where for a given field $\mathbf{F}, \mathbf{F}^* = \mathbf{F} - \{0\}$.

Here we begin the task of generalizing this construction to Galois rings. We confine ourselves here to the Galois ring $\mathbf{Z}_4[\omega]$ where $\omega^2 + \omega + 1 = 0$. The characters we consider here have orders 3 or 6, so we call the corresponding codes cubic or sextic residue codes.

When $p \equiv 7 \pmod{24}$ we can combine sextic residue codes over $\mathbb{Z}_4[\omega]$ with quadratic residue codes to form self-dual codes of length 3(p + 1) over \mathbb{Z}_4 . These yield unimodular lattices. The first case is p = 7 which we deal with in detail.

2. Higher power residue codes over Z₄

Let $\mathbb{Z}_4[\omega] = \{a + b\omega : a, b \in \mathbb{Z}_4\}$ where ω is a primitive cube root of unity. So ω satisfies $\omega^2 + \omega + 1 = 0$. We define the following automorphism on $\mathbb{Z}_4[\omega]$.

$$T: \mathbf{Z}_4[\omega] \longrightarrow \mathbf{Z}_4[\omega]$$
$$a + b\omega \longmapsto a + b\omega^2$$

This is an automorphism of order two.

Let p be a prime number with $p \equiv 1 \pmod{6}$. Now consider

$$\Omega = \{(\alpha, \beta) : \alpha, \beta \in \mathbf{Z}_p\} - \{(0, 0)\}$$

Define $\mathbf{Z}_4[\omega]^* = \mathbf{Z}_4[\omega] - \{0, 2, 2\omega, 2\omega^2\}$ the group of units of $\mathbf{Z}_4[\omega]$. Let $\chi : \mathbf{Z}_p^* \to \mathbf{Z}_4[\omega]^*$ be a character of order 3 or 6 such that $\chi(\alpha) \in \{\pm \omega^j\}$ where $j \in \{0, 1, 2\}, \alpha \in \mathbf{Z}_p$ and $\chi(\alpha)^{-1} = \overline{\chi(\alpha)}$. We define the $\mathbf{Z}_4[\omega]$ -module *M* with generators e_v where $v \in \Omega$ and relations $e_{\alpha v} = \chi(\alpha)e_v$. Let

$$\Delta = \{e_{\infty}, e_0, e_1, \dots, e_{p-1}\}$$
(1)

where $e_{\infty} = e_{(1,0)}$ and $e_{\alpha} = e_{(\alpha,1)}$ for $\alpha \in \mathbb{Z}_p$. We suppose that there is no non-trivial linear relation among the elements of Δ . So the $\mathbb{Z}_4[\omega]$ -module M can be generated as a finitely generated module of rank p + 1 by linear combinations of the elements of Δ .

We denote the general linear group of degree 2 over \mathbb{Z}_p by $\mathbb{GL}(2, p)$. Define the action of $\mathbb{GL}(2, p)$ on the projective line $\mathbb{P}^1(\mathbb{Z}_p)$ over \mathbb{Z}_p as

$$v \cdot \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \frac{v\alpha + \gamma}{v\beta + \delta}$$

and

$$\infty \cdot \begin{pmatrix} lpha & eta \\ \gamma & \delta \end{pmatrix} = rac{lpha}{eta}.$$

Therefore if $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, we have

$$e_v A = \chi (v\beta + \delta) e_{v \cdot A}$$

for $v \neq \infty$ and

$$e_{\infty}A = \chi(\beta)e_{\infty \cdot A}.$$

One can easily verify that

$$e_{\alpha v}A = e_{\alpha vA} = \chi(\alpha)e_{vA} = \chi(\alpha)e_{v}A.$$
(2)

Definition 2.1 Let $f : M_1 \to M_2$ be a map between $\mathbb{Z}_4[\omega]$ -modules M_1 and M_2 . We say f is semi-linear if $f(\lambda m) = \overline{\lambda} f(m)$ for all $\lambda \in \mathbb{Z}_4[\omega], m \in M$.

We aim to find a \mathbb{Z}_4 -submodule W of M with the property that the natural map $W \otimes_{\mathbb{Z}_4} \mathbb{Z}_4[\omega] \to M$ is an isomorphism. This is equivalent to $M = W \oplus \omega W$.

Lemma 2.1 Let W be a \mathbb{Z}_4 -submodule of M with $M = W \oplus \omega W$. Then

$$\tau: M \to M$$
$$r + \omega s \mapsto r + \bar{\omega} s$$

where $r, s \in W$, is a semi-linear involution.

Proof: Let $r, s \in W$ and $\lambda \in \mathbb{Z}_4[\omega]$. Thus $\lambda = a + b\omega$ for some $a, b \in \mathbb{Z}_4$. Then

$$\tau(\lambda(r+\omega s)) = \tau(ar + br\omega + as\omega + bs(-1-\omega))$$
$$= ar - bs + (br + as - bs)\bar{\omega}$$
$$= \bar{\lambda}(r + \bar{\omega}s)$$
$$= \bar{\lambda}(\tau(r+\omega s)).$$

Hence τ is semi-linear. Finally

$$\tau^2(r+\omega s) = \tau(r+\bar{\omega}s) = r+\omega s$$

The converse of Lemma 2.1 is also true.

Lemma 2.2 Let $\tau : M \to M$ be a semi-linear involution and $W = \{m \in M : \tau(m) = m\}$. Then W is a \mathbb{Z}_4 -submodule and $M = W \oplus \omega W$.

Proof: Suppose that $\tau : M \to M$ is a semi-linear involution. Since $\bar{a} = a$ for all $a \in \mathbb{Z}_4$, the set W is a \mathbb{Z}_4 -submodule of M. Since $\omega \neq \omega^2$, $\lambda = \omega - \bar{\omega} \in \mathbb{Z}_4[\omega]^*$.

It is clear that $\overline{\lambda} = -\lambda$. We shall show that for all $m \in M$ there exist $r, s \in W$ such that $m = r + \omega s$. For this set

$$r = \frac{1}{\lambda} (\omega \tau(m) - \bar{\omega}m)$$

$$s = \frac{1}{\lambda} (m - \tau(m)).$$

Therefore

$$\tau(r) = \frac{\bar{\omega}}{\bar{\lambda}}m - \frac{1}{\bar{\lambda}}\omega\tau(m) = \frac{-1}{\lambda}(\bar{\omega}m - \omega\tau(m)) = r$$

and

 $\tau(s) = s.$

So we have proved that $M = W + \omega W$. Now suppose $\hat{r} \in W \cap \omega W$. Since $\hat{r} \in W$, we have $\tau(\hat{r}) = \hat{r}$. On the other hand, $\hat{r} \in \omega W$ so $\hat{r} = \omega \hat{s}$ for some $\hat{s} \in W$. Hence $\hat{s} = \omega^{-1}\hat{r}$ and

$$\tau(\hat{r}) = \tau(\omega\hat{s}) = \bar{\omega}\hat{s} = \bar{\omega}\omega^{-1}\hat{r} = \omega^2\omega^{-1}\hat{r} = \omega\hat{r}.$$

Since $1 - \omega \in \mathbb{Z}_4[\omega]^*$, we have $\hat{r} = 0$. Hence

$$M = W \oplus \omega W.$$

Denote by SL(2, p) the set of all 2×2 matrices A with entries in \mathbb{Z}_p such that det A = 1. Then SL(2, p) is called the 2-dimensional special linear group over \mathbb{Z}_p . We aim to find such a W invariant under the action of SL(2, p).

Lemma 2.3 Let $\tau : M \to M$ be a semi-linear involution, and $W = \{m \in M : m = \tau(m)\}$. Then W is invariant under the action of **SL**(2, p) if and only if $\tau(mA) = \tau(m)A$ for all $A \in$ **SL**(2, p) and $m \in M$.

Proof: Suppose *W* is invariant under SL(2, p) and $r, s \in W$. Then

$$\tau((r + \omega s)A) = \tau(rA + \omega sA) = \tau(rA) + \tau(\omega sA)$$

= $rA + \bar{\omega}sA = (r + \bar{\omega}s)A$
= $\tau(r + \omega s)A$.
Conversely if $\tau(mA) = \tau(m)A$ for all $m \in M$ and $A \in SL(2, p)$, then for $m \in W$

 $\tau(mA) = \tau(m)A = mA.$

Hence W is invariant under SL(2, p).

Quaternary quadratic residue codes are invariant under the corresponding action of **SL**(2, *p*) defined from the quadratic character $\chi(a) = (\frac{a}{p})$ (see [2]).

Definition 2.2 We consider such a submodule *W* which is invariant under the action of SL(2, *p*) according to Lemma 2.3. We call *W* a higher power residue code. In particular when χ is a character of order 3 we call *W* a cubic residue code and when χ has order 6 we call *W* a sextic residue code.

Now we are going to define a hermitian structure on M.

Definition 2.3 A \mathbb{Z}_4 - bilinear form $\Phi: M \times M \to \mathbb{Z}_4[\omega]$ satisfying

(1) $\Phi(\lambda_1 m_1 + \lambda_2 m_2, \hat{m}_1) = \bar{\lambda}_1 \Phi(m_1, \hat{m}_1) + \bar{\lambda}_2 \Phi(m_2, \hat{m}_1)$ (2) $\Phi(m_1, \lambda_1 \hat{m}_1 + \lambda_2 \hat{m}_2) = \lambda_1 \Phi(m_1, \hat{m}_1) + \lambda_2 \Phi(m_1, \hat{m}_2)$

for all $m_1, m_2, \hat{m}_1, \hat{m}_2 \in M, \lambda_1, \lambda_2 \in \mathbb{Z}_4[\omega]$ is called a sesquilinear form on M.

Lemma 2.4 Define a sesquilinear form Φ on M by

$$\Phi(e_{\alpha}, e_{\beta}) = \begin{cases} 1 & \alpha = \beta \\ 0 & \alpha \neq \beta \end{cases}$$
(3)

for α , $\beta \in \mathbf{P}^1(\mathbf{Z}_p)$. Then Φ has the following properties: (i) $\Phi(e_v, e_w) = \overline{\Phi(e_w, e_v)}$ for all $v, w \in \Omega$ (ii) $\Phi(e_vA, e_wA) = \Phi(e_v, e_w)$ for all $v, w \in \Omega$

Proof:

(i) First of all suppose v and w are linearly independent. In this case both sides of (i) are zero. Now suppose $w = \alpha v$. Therefore:

$$\overline{\Phi(e_w, e_v)} = \overline{\chi(\alpha)}.$$
(4)

On the other hand $v = \alpha^{-1} w$ and

$$\Phi(e_w, e_v) = \chi(\alpha^{-1}). \tag{5}$$

The result follows from (4), (5) and the fact that $\chi(\alpha^{-1}) = \overline{\chi(\alpha)}$.

(ii) One can achieve the result by using the same process as (i) and definition of $e_v A$ and applying (2).

Corollary 2.1 Let Φ be as in Lemma 2.4. Then for all $m_1, m_2 \in M$ and $A \in SL(2, p)$ we have

- (i) $\Phi(m_2, m_1) = \overline{\Phi(m_1, m_2)}$
- (ii) $\Phi(m_1A, m_2A) = \Phi(m_1, m_2).$

Proof:

- (i) is clear by sesquilinearity of Φ .
- (ii) follows from (ii) of Lemma 2.4 and the linearity of Φ .

Recall $\Omega = (\mathbf{Z}_p \times \mathbf{Z}_p) - \{(0, 0)\}.$

Lemma 2.5 Let τ be a semi-linear involution $\tau : M \to M$ such that $\tau(mA) = \tau(m)A$ for all $A \in \mathbf{SL}(2, p)$ and $m \in M$, and $\chi : \mathbf{Z}_p^* \to \mathbf{Z}_4[\omega]^*$ be a character of order s > 2. Define $\Psi : \Omega \times \Omega \to \mathbf{Z}_4[\omega]^*$ by $\Psi(v, w) = \Phi(\tau(e_v), (e_w))$. Then Ψ satisfies the following.

- (i) $\Psi(\alpha v, \beta w) = \chi(\alpha \beta) \Psi(v, w)$ for $\alpha, \beta \in \mathbb{Z}_p$
- (ii) $\Psi(vA, wA) = \Psi(v, w)$
- (iii) $\Psi(v, w) = 0$ whenever v and w are linearly dependent.

Proof:

(i)

$$\Psi(\alpha v, \beta w) = \Phi(\tau(e_{\alpha v}), e_{\beta w}) = \Phi(\tau(\chi(\alpha)e_v), \chi(\beta)e_w)$$

= $\Phi(\overline{\chi(\alpha)}\tau(e_v), \chi(\beta)e_w) = \chi(\alpha)\chi(\beta)\Phi(\tau(e_v), e_w)$
= $\chi(\alpha\beta)\Psi(v, w).$ (6)

(ii)

$$\Psi(vA, wA) = \Phi(\tau(e_{vA}), e_{wA}) = \Phi(\tau(e_vA), e_wA)$$

= $\Phi(\tau(e_v)A, e_wA)$
= $\Phi(\tau(e_v), e_w)$
= $\Psi(v, w).$ (7)

(iii) Suppose α is an element of \mathbb{Z}_p^* such that $\chi(\alpha) \neq \pm 1$. Such an element exists, since otherwise, the order of χ does not exceed two. Now we can find a matrix $A \in \mathbf{SL}(2, p)$ such that $vA = \alpha v$, and then also $wA = \alpha w$. Therefore, $\Psi(v, w) = \Psi(vA, wA) = \Psi(\alpha v, \alpha w) = \chi(\alpha)^2 \Psi(v, w)$. Hence, $\Psi(v, w) = 0$.

Lemma 2.6 Let Ψ be as in Lemma 2.5 and $v = (\alpha, \beta)$, $w = (\gamma, \delta)$ be linearly independent elements of Ω , $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ and $\hat{x} = \det A$.

- (i) There exists some $\zeta \in \mathbb{Z}_4[\omega]$ such that $\Psi(v, w) = \zeta \chi(\hat{x})$
- (ii) $\Psi(w, v) = \chi(-1)\Psi(v, w)$.

Proof:

(i) Let $v_0 = (1, 0), w_0 = (0, 1)$. Hence $v = v_0 A', w = \hat{x} w_0 A'$ where

$$A' = (\underset{\hat{x}^{-1}\gamma}{\alpha} \underset{\hat{x}^{-1}\delta}{\beta}) \in \mathbf{SL}(2, p).$$

Then

$$\Psi(v, w) = \Psi(v_0 A', \hat{x} w_0 A') = \chi(\hat{x}) \Psi(v_0, w_0).$$
(8)
Taking ζ as $\Psi(v_0, w_0)$, completes the proof.

(ii) $\Psi(w, v) = \zeta \chi(-\hat{x}) = \zeta \chi(-1)\chi(\hat{x}) = \chi(-1)\Psi(v, w).$

Proposition 2.1 Let ζ be an element of $\mathbb{Z}_4[\omega]$ satisfying the conditions of Lemma 2.6 and $\tau : M \to M$ be a semi-linear involution which satisfies $\tau(mA) = \tau(m)A$, for all $A \in \mathbf{SL}(2, p)$ and $m \in M$. Then

$$\tau(e_v) = \sum_{w \in \mathbf{P}^1(\mathbf{Z}_p)} \overline{\zeta U_{vw}} e_w \tag{9}$$

where

$$U_{\alpha\beta} = \begin{cases} \chi(\alpha - \beta) & \text{if } \beta \neq \infty, \, \alpha \neq \infty \\ \chi(-1) & \text{if } \beta = \infty, \, \alpha \neq \infty \\ 1 & \text{if } \alpha = \infty, \, \beta \neq \infty \\ 0 & \text{if } \alpha = \infty, \, \beta = \infty \end{cases}$$
(10)

and ζ satisfies the equation

$$p\chi(-1)\zeta\bar{\zeta} = 1. \tag{11}$$

Proof: Using Lemmas 2.5 and 2.6 shows that

$$\begin{aligned} \tau(e_v) &= \sum_{w \in \mathbf{P}^1(\mathbf{Z}_p)} \Phi(e_w, \tau(e_v)) e_w = \sum_{w \in \mathbf{P}^1(\mathbf{Z}_p)} \overline{\Phi(\tau(e_v), e_w)} e_w \\ &= \sum_{w \in \mathbf{P}^1(\mathbf{Z}_p)} \overline{\Psi(v, w)} e_w = \sum_{w \in \mathbf{P}^1(\mathbf{Z}_p)} \overline{\zeta U_{vw}} e_w, \end{aligned}$$

where U is the matrix defined by (10). Therefore,

$$\tau(e_{\infty}) = \overline{\zeta} \sum_{i=0}^{p-1} e_i,$$

and so

$$1 = \Phi(e_{\infty}, e_{\infty}) = \Phi(\tau(e_{\infty})^{2}, e_{\infty})$$

= $\Phi(\tau(\tau(e_{\infty})), e_{\infty}) = \Phi\left(\tau\left(\bar{\zeta}\sum_{i=0}^{p-1} e_{i}\right), e_{\infty}\right)$
= $\Phi\left(\sum_{i=0}^{p-1} \zeta\tau(e_{i}), e_{\infty}\right) = \bar{\zeta}\left(\sum_{i=0}^{p-1} \Phi(\tau(e_{i}), e_{\infty}\right)$
= $\bar{\zeta}\zeta p\chi(-1).$

Therefore

$$p\chi(-1)\zeta\bar{\zeta} = 1. \tag{12}$$

Remark 2.1 If ζ satisfies (12) and τ is defined by (9) then by Lemma 2.4,

$$\Phi(e_{\alpha}, e_{\beta}) = \Phi(\tau^2(e_{\alpha}), e_{\beta}).$$
(13)

Therefore, $\tau^2(m) = m$ for all $m \in M$. This shows that τ is a semi-linear involution. Moreover,

$$\Phi(\tau(e_v A), w) = \Phi(\tau(e_{vA}), w) = \Psi(vA, w) = \Psi(v, wA^{-1})$$

= $\Phi(\tau(e_v), wA^{-1}) = \Phi(\tau(e_v)A, w).$ (14)

Hence $\tau(mA) = \tau(m)A$, for all $m \in M$. So by Lemma 2.3, $W = \{m \in M : \tau(m) = m\}$ is invariant under the action of **SL**(2, *p*).

Remark 2.1 shows the existence of a semi-linear involution τ such that W is invariant under the action of **SL**(2, p). In fact any semi-linear involution τ on M gives a Higher power residue code W and semi-linear involutions are correspond to the solutions of (12) via (9).

One of the prominent questions is : how many different higher power residue codes are there in each case. We need to prove the following lemma

Lemma 2.7 Let W be a higher power residue code over $\mathbb{Z}_4[\omega]$ then λW for $\lambda \in \mathbb{Z}_4[\omega]^*$ is a higher power residue code.

Proof: What we shall do is to find a semi-linear involution $\dot{\tau}$ such that $\dot{\tau}(\lambda W) = \lambda W$. Let $\dot{\tau} = \varepsilon \tau$. So we have

$$\dot{\tau}(\lambda m) = \varepsilon \tau(\lambda m) = \varepsilon \bar{\lambda} \tau(m) = \varepsilon \bar{\lambda} m$$

for $m \in W$. So it suffices to choose $\varepsilon = \lambda/\overline{\lambda}$. Obviously $\varepsilon\overline{\varepsilon} = 1$ and this proves that $\dot{\tau}$ is a semi-linear involution.

Proposition 2.2 The higher power residue code is unique up to multiplication by an element of $\mathbf{Z}_{4}[\omega]^{*}$.

Proof: Let *W* and \hat{W} be higher power residue codes. Then they are respectively the fixed sets of semi-linear involutions τ and $\hat{\tau}$, and they are invariant under the action of **SL**(2, *p*). By (9) and (12) $\hat{\tau} = \epsilon \tau$ where $\epsilon \overline{\epsilon} = 1$. Such an ϵ has the form $\lambda/\overline{\lambda}$ and so $\hat{W} = \lambda W$ by the argument of Lemma 2.7.

Proposition 2.3 Let τ be the unique semi-linear involution $\tau : M \to M$ which is defined by (9) and S be the set of $\eta \in \mathbb{Z}_4[\omega]^*$ such that $\eta + \bar{\eta} \in \mathbb{Z}_4[\omega]^*$. Define

$$h: M \to M$$
$$m \mapsto \eta m + \bar{\eta} \tau(m)$$

for some $\eta \in S$. Then W is the image of h.

Proof: If $m \in W$ and $\eta \in S$ then $\eta m + \tau(\eta m) = (\eta + \overline{\eta})m$. Set $n = (\eta + \overline{\eta})^{-1}m$. Therefore h(n) = m.

Definition 2.4 Define a Z_4 -bilinear map

 $[,]: M \times M \to \mathbb{Z}_4$ $(m_1, m_2) \longmapsto \Phi(m_1, m_2) + \overline{\Phi(m_1, m_2)}.$

We denote the dual space of W by

$$W' = \{m_2 \in M : [m_1, m_2] = 0 \quad \text{for all } m_1 \in W\}.$$
(15)

Proposition 2.4 Suppose $\chi(-1) = -1$. Then W is self dual under [,].

Proof: By Lemma 2.6

$$\Phi(\tau(m_1), m_2) = -\Phi(\tau(m_2), m_1), \tag{16}$$

for all $m_1, m_2 \in M$. So for all $m_1, m_2 \in W$ we have

$$\Phi(m_1, m_2) = \Phi(\tau(m_1), m_2) = -\Phi(\tau(m_2), m_1) = -\Phi(m_2, m_1) = -\overline{\Phi(m_1, m_2)}.$$
(17)

We know that $|M| = |W| \times |W'|$ and $|W| = \sqrt{|M|}$, so W = W'. This completes the proof.

Suppose p = 7 and in Proposition 2.1 define $\chi : \mathbb{Z}_7^* \longrightarrow \mathbb{Z}_4[\omega]^*$ such that $\chi(5) = -\omega$ and choose $\zeta = 1$ which is one of the solutions of (12). In this case by calculation, the space which is spanned by the rows of the following matrix over \mathbb{Z}_4 has rank 8 over \mathbb{Z}_4 . Therefore *W* is spanned over \mathbb{Z}_4 by the rows of this matrix.

Γω	ω^2	ω^2	ω^2	ω^2	ω^2	ω^2	ω^2 -
$\left -\omega\right $	ω^2	$-\omega^2$	$-\omega$	1	-1	ω	ω^2
$ -\omega $	$\omega^2 \omega^2$	ω	$-\omega^2$	$-\omega$	1	-1	ω
$ -\omega $	² 1	ω^2	ω	$-\omega^2$	$-\omega$	1	-1
$ -\omega $	2 -1	1	ω^2	ω	$-\omega^2$	$-\omega$	1
$ -\omega $	² 1	-1	1	ω^2	ω	$-\omega^2$	-1
$ -\omega $	$^2 -\omega$	1	-1	1	ω^2	ω	$-\omega^2$
$\lfloor -\omega \rfloor$	$^{2} -\omega^{2}$	$-\omega$	1	-1	1	ω^2	ω

This W is a sextic residue code. This construction generalizes that of Chapman[3].

The symmetrized weight enumerator of a code W over $\mathbb{Z}_4[\omega]$ is defined as follows.

Consider a specific codeword $r \in W$. Now, let $n_0(r)$ be the number of zeroes in the codeword, $n_1(r)$ be the number of elements of $\mathbb{Z}_4[\omega]^*$, $n_2(r)$ be the number of elements of $2\mathbb{Z}_4[\omega] - \{0\}$ in the codeword. The symmetrized weight enumerator of W is

$$swe_W(x, y, z) = \sum_{r \in W} x^{n_0(r)} y^{n_1(r)} z^{n_2(r)}.$$
(19)

The symmetrized weight enumerator of W, the sextic residue code of length 8 is as follows.

$$swe_W(x, y, z) = x^8 + 42 x^4 z^4 + 672 x^3 y^4 z + 2688 x^2 y^6 + 2016 x^2 y^4 z^2 + 168 x^2 z^6 + 16128 x y^6 z + 4704 x y^4 z^3 + 11520 y^8 + 24192 y^6 z^2 + 3360 y^4 z^4 + 45 z^8.$$

3. The Leech lattice

Now we are going to construct the Leech lattice and one of the Niemeier lattices by using a higher power residue code of length 8 over $\mathbb{Z}_4[\omega]$.

We are going to use the same action of **SL**(2, 7) on the code. Under this action for each $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathbf{SL}(2, 7)$

$$e_v A = \vartheta(A, v) e_w \tag{20}$$

where $w = \frac{\alpha v + \gamma}{\beta v + \delta}$ and $\vartheta(A, v) = \sigma(A, v)\omega^{j(A,v)}$, where $\sigma(A, v)$ is either 1 or -1 and j(A, v) is 0, 1 or -1. We regard j(A, v) are lying in the integers modulo 3. It is also apparent that for each $A \in \mathbf{SL}(2, 7)$ there exists an invertible 8×8 matrix \hat{A} such that

$$e_v A = e_v \hat{A}.\tag{21}$$

Lemma 3.1 Let $\vartheta(A, v)$ be defined by (20). Then

$$\vartheta(AB, v) = \vartheta(A, v)\vartheta(B, v \cdot A)$$

Proof:

$$(e_{v}A)B = \vartheta(A, v)e_{v \cdot A}B$$

= $\vartheta(A, v)\vartheta(B, v \cdot A)e_{(v \cdot A) \cdot B}.$

On the other hand,

$$e_v(AB) = \vartheta(AB, v)e_{v \cdot AB}.$$

Since the left hand sides are equal, the proof is complete.

Let *W* be the sextic residue code of length 8 over $\mathbb{Z}_4[\omega]$ with character χ where $\chi(-1) = -1$ and $\chi(5) = -\omega$. Each $\zeta \in \mathbb{Z}_4[\omega]$ can be written uniquely as $\zeta = a_0 + a_1\omega + a_2\omega^2$, $a_i \in \mathbb{Z}_4$ where $a_0 + a_1 + a_2 = 0$. Let \hat{M} be a free \mathbb{Z}_4 -module generated by $\{f_{\alpha,j} : \alpha \in \mathbb{P}^1(\mathbb{Z}_7), 0 \le j \le 2\}$. So we define

$$\hat{\phi}: M \to \hat{M}$$
$$\zeta e_{\alpha} \mapsto a_0 f_{\alpha,0} + a_1 f_{\alpha,1} + a_2 f_{\alpha,2}$$

The map (22) can be easily extended to the map $\phi: W \to \hat{M}$ which takes $r \in W$ to

 $(a_{\infty,0}, a_{\infty,1}, a_{\infty,2}, a_{0,0}, a_{0,1}, a_{0,2}, \dots, a_{6,0}, a_{6,1}, a_{6,2})$

where

 $a_{\alpha,0} + a_{\alpha,1} + a_{\alpha,2} \equiv 0 \pmod{4} \quad \text{for } \alpha \in \mathbf{P}^1(\mathbf{Z}_7).$

We denote the code $\phi(W)$ by T.

We consider the matrix (18) and we replace each array by its three coordinates as above. So we have a generator matrix for the code T over \mathbb{Z}_4 as follows.

Γ1	2	1	1	1	2	1	1	2	1	1	2	1	1	2	1	1	2	1	1	2	1	1	27
3	3	2	1	2	1	3	3	2	3	2	3	2	1	1	2	3	3	1	2	1	1	1	2
3	3	2	1	1	2	1	2	1	3	3	2	3	2	3	2	1	1	2	3	3	1	2	1
3	3	2	1	2	1	1	1	2	1	2	1	3	3	2	3	2	3	2	1	1	2	3	3
3	3	2	2	3	3	1	2	1	1	1	2	1	2	1	3	3	2	3	2	3	2	1	1
3	3	2	2	1	1	2	3	3	1	2	1	1	1	2	1	2	1	3	3	2	3	2	3
3	3	2	3	2	3	2	1	1	2	3	3	1	2	1	1	1	2	1	2	1	3	3	2
3	3	2	3	3	2	3	2	3	2	1	1	2	3	3	1	2	1	1	1	2	1	2	1

We consider the inner product on \hat{M} with respect to the inner product with the $f_{\alpha,i}$ orthonormal and we set the *weight* of 0, 1, 2, 3 in \mathbb{Z}_4 as 0, 1, 4, 1 respectively. So the *Euclidean weight* of a codeword r is the sum of the weights of its coordinates. It can be easily seen that the Euclidean weight of each codeword in T is divisible by 8. This shows that the code T is self-orthogonal.

We shall define an action of SL(2, 7) on \hat{M} . Define,

 $f_{v,i}A = \sigma(A, v)f_{v \cdot A, i+j(A,v)}$

where the suffix i + j(A, v) read modulo 3. We can show that this action is

well-defined.

50

$$(f_{v,i}A)B = \sigma(A, v)f_{v \cdot A, i+j(A,v)}B = \sigma(A, v)\sigma(B, v \cdot A)f_{(v \cdot A) \cdot B, i+j(A,v)+j(B, v \cdot A)}$$

On the other hand,

$$f_{v,i}AB = \sigma(AB, v)f_{v \cdot AB, i+j(AB, v)}$$

and by Lemma 3.1 $\sigma(A, v)\sigma(B, v \cdot A) = \sigma(AB, v)$ and $j(A, v) + j(B, v \cdot A) = j(AB, v)$ which completes the proof.

Now it is easy to see that ϕ is \mathbb{Z}_4 -linear and $\phi(rA) = \phi(r)A$ for all $r \in W$ and $A \in SL(2, 7)$.

Proposition 3.1 Suppose \overline{W} is a code of length 8 over $\mathbb{Z}_4[\omega]$ with generator matrix \overline{G} and \widehat{A} is the matrix which is defined by (21). If $\overline{G}\widehat{A} = \widehat{A}\overline{G}$ then \overline{W} is invariant under the action of SL(2, 7).

Proof: Let $\bar{\zeta} \in \bar{W}$. Therefore, there exists $\bar{a} \in \mathbb{Z}_4^8$ such that $\bar{\zeta} = \bar{a}\bar{G}$, hence

$$\bar{\zeta}\hat{A} = \bar{a}\bar{G}\hat{A} = \bar{\zeta}\hat{A}\bar{G} = \bar{\eta}\bar{G} \in \bar{W},$$

for some $\bar{\eta} \in \mathbb{Z}_4^8$. This completes the proof.

Now consider the construction of the extended quaternary quadratic residue codes. Let H be the matrix defined by (10) with $\chi(\alpha) = (\frac{\alpha}{7})$. Set $\tilde{G} = 5I_{8\times 8} - Y$. The matrix H is a skew symmetric matrix and $\hat{A}\tilde{G} = \tilde{G}\hat{A}$, so by Proposition 3.1, \tilde{G} generates a code over \mathbb{Z}_4 which is invariant under the action of SL(2, 7). Suppose row(G, i) is the *i*th row of the matrix G. Now set

$$\Theta = \left\{ \frac{1}{2} (\pm \operatorname{row}(\widetilde{G}, i) \pm \operatorname{row}(\widetilde{G}, j)) : 1 \le i, j \le 8 \right\}.$$

The code Q_4 which is generated by Θ is the extended quadratic residue code over \mathbb{Z}_4 obtained by Hensel lifting (see [4]). The code Q_4 is invariant under the action of SL(2, 7) (see [2]). The number of linearly independent vectors in this set is at most 8. So suffices it to consider 8 vectors as follows. Set the matrix \hat{G} as a matrix where

$$row(\hat{G}, i) = (row(\widetilde{G}, 1) + row(\widetilde{G}, i))/2.$$

That is

The code over \mathbb{Z}_4 which is spanned by the rows of the matrix \hat{G} is the same as the code generated by

$$G = \begin{bmatrix} -1 & 1 & 2 & 1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 2 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 2 & 1 & -1 & 0 \\ -1 & 0 & 0 & 0 & 1 & 2 & 1 & -1 \end{bmatrix}.$$

which is the extended quadratic residue code over \mathbb{Z}_4 obtained by Hensel lifting [10, Chapter 11].

Define

$$\psi : \mathbf{Z}_{4}^{8} \to \mathbf{Z}_{4}^{24}$$
$$\sum_{\alpha} a_{\alpha} e_{\alpha} \mapsto \sum_{\alpha} \sum_{j=0}^{2} a_{\alpha} f_{\alpha,j}.$$
(23)

Since Q_4 is a self-dual code then $Q^{(4)} = \psi(Q_4)$ is self-orthogonal. One can easily see that $Q^{(4)}$ is orthogonal to T. Moreover, $Q^{(4)} \cap T = 0$. So the code $Q^{(4)} + T$ is a self-orthogonal of dimension 12. So it is self-dual. We denote the code $Q^{(4)} + T$ by Γ . A code over \mathbb{Z}_4 which is self-dual and the Euclidean weight of each codeword is divisible by 8 is called a code of type II. Computer calculation shows that the symmetric weight enumerator of Γ is

$$\begin{split} swe_{\Gamma} &= x^{24} + 759\,x^{16}z^8 + 12144\,x^{14}y^8z^2 + 170016\,x^{12}y^8z^4 + 2576\,x^{12}z^{12} \\ &+ 61824\,x^{11}y^{12}z + 765072\,x^{10}y^8z^6 + 1133440\,x^9y^{12}z^3 + 24288\,x^8y^{16} \\ &+ 1214400\,x^8y^8z^8 + 759\,x^8z^{16} + 4080384\,x^7y^{12}z^5 + 680064\,x^6y^{16}z^2 \\ &+ 765072\,x^6y^8z^{10} + 4080384\,x^5y^{12}z^7 + 1700160\,x^4y^{16}z^4 \\ &+ 170016\,x^4y^8z^{12} + 1133440\,x^3y^{12}z^9 + 680064\,x^2y^{16}z^6 \\ &+ 12144\,x^2y^8z^{14} + 61824\,xy^{12}z^{11} + 4096\,y^{24} + 24288\,y^{16}z^8 + z^{24}. \end{split}$$

Now we consider the lattice in \mathbf{R}^{24} associated with Γ which is

$$L_{\Gamma} = \left\{ \frac{1}{2} (g+4z) : g \in \Gamma, z \in \mathbf{Z}^{24} \right\},\tag{24}$$

where g is regarded as *n*-tuples with integers 0, 1, 2, 3 as components. This construction is called construction A_4 . Since the code Γ is of type II then the lattice L_{Γ} is an even unimodular lattice. As we see the number of the vectors of norm 2 is zero, L_{Γ} is isomorphic to the Leech lattice ([6] chapter 18).

Bonnecaze et al. [2] have constructed the Leech lattice by using a different code over \mathbb{Z}_4 , but they have found the same symmetrized weight enumerator. We show that these codes are not isomorphic.

Let \overline{Q} be the code described in [2]. We show that $7 \nmid |Aut(\overline{Q})|$. Since we have shown that the automorphism group of Γ contains **SL**(2, 7), the conclusion would be apparent.

Theorem 3.1 The code Γ is inequivalent to the code \overline{Q} .

Proof: The code is actually a lifting of the binary Golay code. Define

 $\rho: Aut(\bar{Q}) \to Aut(\mathcal{G})$

where \mathcal{G} is the Golay code and the image of an element is the element modulo 2. The image of ρ is a group of automorphisms of the Golay code and $Aut(\bar{Q}) \supseteq SL(2, 23)$ but $\rho(SL(2, 23)) = PSL(2, 23)$, so $PSL(2, 23) \subseteq Im \rho$. We know that M_{24} is the full automorphism group of the Golay code \mathcal{G}_{24} . So we have

PSL $(2, 23) \subseteq \text{Im } \rho \subseteq M_{24}.$

But **PSL**(2, 23) is maximal in M_{24} [7], hence either Im $\rho =$ **PSL**(2, 23) or Im $\rho = M_{24}$. We show that Im $\rho \neq M_{24}$. Suppose Im $\rho = M_{24}$. Now consider a word ϖ of shape $((\pm 1)^8 \ 2^2 \ 0^{14})$ in \overline{Q} . Let *O* be an 8 element set (octad) formed by the positions of the ± 1 s in the word ϖ . The stabilizer of an octad is one of the maximal subgroups of M_{24} and it acts 2-transitively on the remaining points. That means for *i*, *j*, *k*, *l* which are not in the *O* and $i \neq j, k \neq l$, we can find *g* in the stabilizer of *O* such that g(i, j) = (k, l). There are 759 octads and by acting on $\pm \varpi$ by the octad stabilizer we get at least $2(\frac{16}{2})$ words of shape $((\pm 1)^8 2^2 0^{14})$ in \overline{Q} with ± 1 s forming the octad *O*. So in total there are at least $2 \times 759 \times (\frac{16}{2}) = 759 \times 16 \times 15$ elements of shape $((\pm 1)^8 2^2 0^{14})$ in \overline{Q} . But it is not possible due to swe_{Γ} . Therefore, **PSL**(2, 23) = Im ρ .

Any element of ker ρ is a diagonal matrix with ± 1 s on diagonal, so has order 1 or 2. Since ker ρ is a 2-group then 7 does not divide the $|Aut(\bar{Q})|$. This completes the proof. (I am indebted to Robin Chapman for this argument).

Now suppose λ is a unit of $\mathbb{Z}_4[\omega]$. We know that W is a \mathbb{Z}_4 -linear code but not a $\mathbb{Z}_4[\omega]$ linear code. Moreover, $\tau(\lambda r) = \overline{\lambda}\tau(r)$ for each $r \in W$ and $\overline{\lambda}\tau(r) = \lambda r$ if and only if $\lambda = \overline{\lambda}$. Therefore if $\lambda \in \mathbb{Z}_4[\omega]^*$ and $\lambda\overline{\lambda} \neq 1$, $\hat{W} = \lambda W$ is a different code from W but

 $swe_W = swe_{\hat{W}}$. Replacing W by λW in the above construction of Γ gives a type II code $\hat{\Gamma}$. By applying the same process which is described in Section 3 we will find a different lattice. In fact, computer calculation shows that $swe_{\hat{\Gamma}}$ is as follows

$$\begin{split} swe_{\hat{\Gamma}} &= x^{24} + 48\,x^{16}y^8 + 759\,x^{16}z^8 + 11760\,x^{14}y^8z^2 + 171360\,x^{12}y^8z^4 \\ &\quad + 2576\,x^{12}z^{12} + 61824\,x^{11}y^{12}z + 762384\,x^{10}y^8z^6 + 1133440\,x^9y^{12}z^3 \\ &\quad + 24288\,x^8y^{16} + 1217760\,x^8y^8z^8 + 759\,x^8z^{16} + 4080384\,x^7y^{12}z^5 \\ &\quad + 680064\,x^6y^{16}z^2 + 762384\,x^6y^8z^{10} + 4080384\,x^5y^{12}z^7 \\ &\quad + 1700160\,x^4y^{16}z^4 + 171360\,x^4y^8z^{12} + 1133440\,x^3y^{12}z^9 \\ &\quad + 680064\,x^2y^{16}z^6 + 11760\,x^2y^8z^{14} + 61824\,xy^{12}z^{11} + 4096\,y^{24} \\ &\quad + 24288\,y^{16}z^8 + 48\,y^8z^{16} + z^{24}. \end{split}$$

As we see the number of the words with minimum weight is 48. If $L \subset \mathbb{R}^n$ is a root lattice and *R* is its set of roots then the number $h = \frac{|R|}{n}$ is called the Coxeter number. Therefore the Coxeter number in this case is 2 and this lattice is equivalent to the Niemeier lattice A_1^{24} . See [6, Chapter 16] for the classification of Niemeier lattices.

References

- 1. W. A. Adkins and S.H. Weintraub, Algebra, Springer Verlag, New York, 1992.
- A. Bonnecaze, P. Solé, and A.R. Calderbank, "Quaternary quadratic residue codes and unimodular lattices," *IEEE Trans. Inform. theory* 41(2) (1995).
- 3. R. Chapman, "Higher power residue codes," Finite Fields Appl. 3 (1997), 353-369.
- 4. R. Chapman, "Conference matrices and unimodular lattices," European J. Combin. 22 (2001), 1033–1045.
- 5. R. Chapman, Personal communication.
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 1st edn., Springer Verlag, New York, 1988.
- 7. R. T. Curtis, "The maximal subgroups of M24," Math. Proc. Cambridge Philos. Soc. 81 (1977), 185–192.
- F. J. MacWilliams and N. J. A. Sloane, *The Theory of Error-Correcting Codes*, Elsevier Science Publishers, Amsterdam, 1991.
- 9. J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, New York, 1992.
- 10. Zhe-Xian Wan, Quaternary Codes, World Scientific Publishing, London, 1997.