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Abstract. In his 1996 work developing the theory of association schemes as a ‘generalized’ group theory,
Zieschang introduced the concept of the semidirect product as a possible product operation of certain association
schemes. In this paper we extend the semidirect product operation into the entire set of association schemes. We
then derive a way to decompose certain association schemes into smaller association schemes. We also investigate
to what extent this product helps us to understand and characterize the structure of association schemes. We give
some examples to show that the semidirect product produces many schemes that cannot be described as neither
the direct product nor the wreath product of smaller schemes.
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1. Introduction

There are many ways to construct new association schemes from old ones. Association
schemes can be built up from ‘smaller’ ones; two important constructive methods are the
direct product and wreath product. Another way to construct new association schemes from
old is by fusion and fission processes—the processes in which a new association scheme is
obtained by combining or splitting relations of the old scheme in a certain way (cf. [8]). In
this paper, the semidirect product operation is introduced as yet another way to construct
new association schemes from smaller ones.

In 1996, Zieschang introduced a new product operation of an association scheme with
a group acting on the scheme: the semidirect product. By ‘a group acting on a scheme’
we mean that there is a (group) homomorphism from the group to the (combinatorial)
automorphism group of the association scheme (cf. [10], Section 2.7). In 2000, Muzychuck
generalized the product operation by using ‘a group acting on the set of association relations’;
i.e., employing a homomorphism from the group to the ‘algebraic automorphism group’ of
the association scheme (cf. [6]). By using the Muzychuk’s operation, we can produce some
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other association schemes in addition to those that can be obtained from the Zieschang’s
operation. However, both operations are restricted to taking the product of an association
scheme with a ‘thin’ association scheme. They are not defined to operate for a pair of
arbitrary association schemes; one of the factors of the product is required to be a thin
association scheme. The ‘semidirect product’ which will be defined in Section 3 extends
Muzychuk’s operation so that it can operate on the entire set of association schemes as a
natural extension of both Zieschang and Muzychuk’s operations.

The semidirect product produces many imprimitive association schemes. The class of
primitive schemes in the theory of association schemes plays a role like that of simple groups
in group theory (cf. [2, 3, 10]). As far as the classification problem of association schemes
is concerned, imprimitive schemes are as important as primitive schemes. There are two
practical reasons for this. First, imprimitive schemes arise in many parts of combinatorics
such as graph theory and design theory. Second, many primitive schemes can be obtained
as fusion schemes of imprimitive schemes. Our aim is to see to what extent the semidirect
product, together with fusion and fission processes, can produce new imprimitive schemes
and distinguish them from other known association schemes.

In recent years, there was a successful attempt to obtain the complete list of isomorphism
classes of all association schemes of given order n, for n up to 32 (See, [4, 8], for example).
However, for the class of association schemes with larger orders, the search to find all the
association schemes becomes increasingly complicated. Therefore, we have been searching
for more tools to construct and describe association schemes from a relatively small set of
association schemes. The current paper is expected to make some contribution to the research
in this direction.

This paper is organized as follows. In Section 2, we set up the notation and terminology,
and recall some basic facts about association schemes. In Section 3, we construct the external
and internal semidirect products of association schemes; so, we have a decomposition
theorem of certain association schemes into factors. We give some examples of association
schemes characterized as semidirect products of certain association schemes. In Section 4,
we show an application of the product in the classification problem and structure theory of
association schemes. In particular, we give a characterization of a few association schemes
that are not decomposed by direct or wreath products. The section closes with a few remarks
in regard to the product operations and the classification of association schemes.

2. Preliminary facts and notation

We begin this section by recalling the definition of an association scheme following the
notation of [10]. Let X be a finite set of points. We denote the diagonal relation {(x, x) | x ∈
X} on X by 1X (or by 1 when there is no risk of confusion). For an arbitrary relation
a ⊂ X × X and a point z ∈ X , we let

a∗ := {(x, y) | (y, x) ∈ a} and za := {x ∈ X | (z, x) ∈ a}

for the transpose of a and the set of points being in relation a with z, respectively.
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Definition 2.1 Let H be a partition of X × X with non-empty relations on X . We call
(X, H ) an association scheme (or simply, a scheme) if it satisfies the following conditions:

(i) 1 ∈ H ;
(ii) a∗ ∈ H , for each a ∈ H ;

(iii) For any a, b, c ∈ H , the number |xa ∩ yb∗| is constant for every (x, y) ∈ c. i.e., it
depends only on a, b, c.

The cardinality |xa ∩ yb∗| of the set xa ∩ yb∗ for (x, y) ∈ c is denoted by pc
ab, and is

called an intersection number of (X, H ). For each relation a ∈ H , the intersection number
p1

aa∗ = |xa| is called the valency of a. If the valency of a relation a ∈ H is one, then the
relation is called a thin relation. If all relations of a scheme are thin, then the scheme is
called thin. For each pair of points (x, y) ∈ X × X , the unique relation of H which contains
(x, y) is denoted by r (x, y).

Definition 2.2 Let (X, H ) and (Y, K ) be two schemes. We say that (X, H ) is isomorphic
to (Y, K ), denoted by (X, H ) � (Y, K ), if there exists a bijection

θ : X ∪ H → Y ∪ K

such that

θ (X ) = Y, θ (H ) = K , and θ (r (x, y)) = r (θ (x), θ (y))

for all x , y ∈ X . The set of all isomorphisms from (X, H ) to itself is denoted by Aut(X, H )
and is called the (weak combinatorial) automorphism group of the scheme.

We also recall the ‘algebraic automorphism group’ which will be used throughout. For
given a set H , let Sym(H ) denote the symmetric group on H . We write permutations on
the shoulder, that is, the image of a under the permutation σ is aσ . We compose from left
to right so that (aσ )π = aσπ . We may suppose that H = {0, 1, . . . , n − 1} if |H | = n, and
that we are dealing with elements of the symmetric group Sn instead of those of Sym(H )
at times. The identity permutation will be denoted by ι throughout.

Definition 2.3 Let (X, H ) be an association scheme, and set

Aut(H ) := {
σ ∈ Sym(H )

∣∣ pc
ab = pcσ

aσ bσ , for all a, b, c ∈ H
}
.

Then, Aut(H ) is a subgroup of Sym(H ). Aut(H ) is called the algebraic automorphism group
of (X, H ).

We note that each element σ of Aut(H ) satisfies that

1σ = 1 and (a∗)σ = (aσ )∗ for each a ∈ H . (1)

The terms ‘combinatorial’ and ‘algebraic’ automorphism groups are due to [7].
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For each subset E ⊆ H , we let E∗ := {a∗ | a ∈ E}. Given x ∈ X , x E denotes the union
of sets xa over all a ∈ E . Following [10], we define the ‘complex product’ as a binary
operation on the power set of the relation set H .

Definition 2.4 Let (X, H ) be an association scheme. The complex product of two subsets
E , F of H is defined by

E F :=
⋃

z∈X

{r (x, y) | x ∈ zE∗ and y ∈ zF} =
{

h ∈ H

∣∣∣∣∣

∑

e∈E, f ∈F

ph
e f 	= 0

}

.

Given {e}, { f }, F ⊆ H , for the notational simplicity, we denote the complex product
{e}F by eF , and that of {e} and { f } by e f . So, we have

e f = {
h ∈ H

∣∣ ph
ef 	= 0

}
. (2)

From the definition of the complex product, it is clear that: for every e, f, g ∈ H ,

(i) e ∈ f g if and only if f ∈ eg∗.
(ii) 1 ∈ e∗ f if and only if e = f .

It is also clear that (X, H ) is thin if and only if hh∗ = {1} for each h ∈ H .

Definition 2.5 A nonempty subset F ⊆ H is called closed if

F F∗ ⊆ F,

or equivalently, if
⋃

b∈F b is an equivalence relation on X .

It follows from the definition that {1} and H are trivial and improper closed subsets of
H , respectively. Since 1 belongs to hh∗ for any h ∈ H , 1 belongs to every closed subset of
F . This, in turn, implies that F∗ = F , and thus F F∗ = F F = F∗F ⊆ F for any closed
subset F of H . Furthermore, given closed subsets E, F of H , we can see that

E F is closed if and only if E F = F E .

Thin schemes can be treated like groups in many instances. In [10, p. 39], the ‘thin
residue’ of a closed set F is introduced in the process of constructing factor schemes that
are thin. The semidirect product will be constructed via factor schemes of thin residues.
Throughout, the notation E ≤ F will be used if E ⊆ F and both E , F are closed subsets
of H . For E ⊆ H , the smallest closed subset of H containing E will be denoted by 〈E〉.
We now define the thin residue of F as follows.
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Definition 2.6 Let (X, H ) be an association scheme, F ≤ H , and let

Oϑ (F) :=
〈

⋃

f ∈F

f f ∗
〉

.

The closed subset Oϑ (F) of F is called the thin residue of F .

This definition is equivalent to the one given as the intersection of the ‘strongly normal’
closed subsets of F (cf. [10, Theorem 2.3.1]). The thin residue Oϑ (H ) of H , which will be
used a lot in what follows, is the uniquely determined smallest closed subset of H the factor
scheme of which is thin. First, we recall the definitions of subschemes and factor schemes.

Definition 2.7 Let (X, H ) be an association scheme. Given a closed subset F ⊆ H and
a point x ∈ X , set S = x F and let

(X, H )S := (S, { fS} f ∈F ), where fS := f ∩ (S × S).

Then (X, H )S = (X, H )x F is an association scheme, which is called the subscheme of
(X, H ) with respect to x and F .

Definition 2.8 Let (X, H ) be an association scheme. Let

X/F := {x F | x ∈ X} and H//F := {aF | a ∈ H}

where aF := {(yF, zF) | z ∈ y(FaF)}. Then (X/F, H//F) is an association scheme, which
is called the factor scheme of (X, H ) over F [10, Section 1.5].

By the definition of the thin residue, for any nontrivial scheme (X, H ), (X/Oϑ (H ), H//

Oϑ (H )) is thin. It is clear that if a factor scheme of (X, H ) over F is thin, then Oϑ (H ) ⊆ F .
We may suppose that for any closed subset F of H , F//Oϑ (F) (in particular, H//Oϑ (H ))
is a group with respect to the complex product as its group operation (cf. [10, p. 39, p. 41,
p. 177]).

3. Semidirect product

Let (X, H ) and (Y, K ) be two schemes. Let φ : H → H//Oϑ (H ) be the natural projection
map; i.e., φ(h) = hOϑ (H ) for each h ∈ H . Let π : H//Oϑ (H ) → Aut(K ) be a group
homomorphism. Then the composite map π̃ := π ◦ φ satisfies

π̃ (ab) = π̃ (a)π̃ (b) for all a, b ∈ H . (3)

Let x0 ∈ X be a fixed point, and let Z := {xy | x ∈ X, y ∈ Y }. (Notice that we use xy
instead of (x, y) to denote the points of Z = X ×Y .) Let H�π,xo K := {h ·k |h ∈ H, k ∈ K }
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where relations h · k ⊂ Z × Z are defined by the rule:

(x1 y1, x2 y2) ∈ h · k if and only if (x1, x2) ∈ h and (y1, y2) ∈ kπ̃ (r (x2,x0))

for x1 y1, x2 y2 ∈ Z . Then the following lemma guarantees that the pair (Z , H�π,x0 K )
satisfies all requirements in Definition 2.1 to be a scheme.

Lemma 3.1 With the above notation, we have:
(i) H�π,x0 K is a partition of Z × Z ;

(ii) 1X · 1Y is the diagonal relation on Z ;
(iii) For each h · k ∈ H�π,x0 K we have (h · k)∗ = h∗ · (k∗)π̃ (h∗);
(iv) (Z , H�π,x0 K ) satisfies Definition 2.1 (iii).

Proof: (i) Suppose the pair (x1 y1, x2 y2) belongs to two relations h · k and h′ · k ′. Then
(x1, x2) ∈ h ∩ h′ and (y1, y2) ∈ kπ̃ (r (x2,x0)) ∩ (k ′)π̃ (r (x2,x0)). Since H and K are partitions of
X × X and Y × Y , respectively, we must have h = h′ and k = k ′. So, each pair belongs to
one relation.

Now, for each (x1 y1, x2 y2) ∈ Z × Z , we know that there exist h := r (x1, x2) ∈ H
and k := r (y1, y2)π̃ (r (x0,x2)) ∈ K such that (x1 y1, x2 y2) ∈ h · k. That is, (x1, x2) ∈ h and
(y1, y2) ∈ r (y1, y2) = kπ̃ (r (x2,x0)) since π̃ (hh∗) = idAut(K ) for each h ∈ H by the Eq. (3)
above. Therefore, H�π,x0 K must be a partition of Z × Z .

(ii) Suppose (x1 y1, x2 y2) ∈ 1X · 1Y . That is (x1, x2) ∈ 1X and (y1, y2) ∈ 1Y
π̃ (r (x2,x0)).

Since π̃ (r (x2, x0)) ∈ Aut(K ), it follows from the Eq. 1 in Section 2 that 1Y
π̃ (r (x2,x0)) = 1Y ,

and thus, x1 = x2, y1 = y2. Hence we conclude that 1X · 1Y = 1Z .
(iii) If a point (x1 y1, x2 y2) belongs to h·k, then clearly we have (x2, x1) ∈ h∗ and(y2, y1) ∈

(kπ̃ (r (x2,x0)))∗. By the Eqs. (1) and (3), we have

(kπ̃ (r (x2,x0)))∗ = (k∗)π̃ (r (x2,x0)) = (k∗)π̃ (r (x2,x1))π̃ (r (x1,x0)) = (k∗)π̃ (h∗)π̃ (r (x1,x0)).

So, we obtain (x2 y2, x1 y1) ∈ h∗ · (k∗)π̃ (h∗) as desired.
(iv) Let h, h′ ∈ H , k, k ′ ∈ K and (x1 y1, x2 y2) ∈ Z × Z , and let

W := {x3 y3 ∈ Z | (x1 y1, x3 y3) ∈ h · k, (x3 y3, x2 y2) ∈ h′ · k ′}.

Then, for each x3 y3 ∈ W, we have

(x1, x3) ∈ h and (y1, y3) ∈ kπ̃ (r (x3,x0)), and

(x3, x2) ∈ h′ and (y3, y2) ∈ (k ′)π̃ (r (x2,x0))
.

Therefore, (iv) follows from the fact that the cardinality of

U := {
y3 | (y1, y3) ∈ kπ̃ (r (x3,x0)), (y3, y2) ∈ (k ′)π̃ (r (x2,x0))}
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depends only on h, h′, k, k ′, r (x1, x2) and r (y1, y2). Since

π̃ (r (x2, x0)) = π̃ (r (x2, x3))π̃ (r (x3, x0)),

we have

|U | = p(k ′′)π̃ ((h′ )∗ )

k(k ′)π̃ ((h′ )∗ )

where

k ′′ = r (y1, y2)π̃ (r (x0,x2)).

Hence, we have

|W | = ph′′
hh′ p

(k ′′)π̃ ((h′ )∗ )

k(k ′)π̃ ((h′ )∗ )

where h′′ = r (x1, x2). Since (k ′′)π̃ (r (x2,x0)) = r (y1, y2) and h′′ = r (x1, x2), r (x1 y1, x2 y2) =
h′′ · k ′′ holds. Therefore we have

ph′′ ·k ′′
h·kh′ ·k ′ = ph′′

hh′ p
(k ′′)π̃ ((h′ )∗ )

k (k ′)π̃ ((h′ )∗ ) .

This completes the proof.

The following lemma asserts that two schemes based on two different fixed points x0 and
x0

′ are essentially the same.

Lemma 3.2 Let (Z , H�π,x0
′ K ) be the scheme obtained as above by using x0

′ ∈ X instead
of x0. Then (Z , H�π,x0

′ K ) is isomorphic to (Z , H�π,x0 K ).

Proof: Since π̃ (r (x0, x0
′)) ∈ Aut(K ), the map θ defined by

θ : K → K

g �→ gπ̃ (r (x0,x0
′))

gives an automorphism of the scheme (Y, K ) together with the identity map on the point
set Y . Suppose we define a map � between H�π,x0 K and H�π,x0

′ K as follows:

θ : H�π,x0 K → H�π,x0
′ K

h ·x0 k �→ h ·x0
′ k

where

h ·x0 k = {
(x1 y1, x2 y2) ∈ Z × Z

∣∣ r (x1, x2) = h, r (y1, y2) = kπ̃ (r (x2,x0))
}
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and

h ·x0
′ k = {

(x1 y1, x2 y2) ∈ Z × Z
∣∣ r (x1, x2) = h, r (y1, y2) = θ

(
kπ̃ (r (x2,x0

′)))}

Then, the pair of maps, θ defined on H�π,x0 K and the identity map on Z , yields an
isomorphism from (Z , H�π,x0 K ) to (Z , H�π,x0

′ K ) as we have

θ
(
kπ̃ (r (x2,x0))

) = kπ̃ (r (x2,x0))π̃ (r (x0,x0
′)) = kπ̃ (r (x2,x0

′)).

This completes the proof.

Definition 3.1 The association scheme (Z , H�π,x0 K ), or (X, H )�π,x0 (Y, K ), is called
the (external) semidirect product of (Y, K ) by (X, H ) relative to π and x0.

Due to the preceding lemma, we will simply write (X × Y, H�π K ), or (X, H )�π (Y, K ),
for the semidirect product unless it is necessary to specify the base point. We note that
two different homomorphisms π and π ′ may produce two non-isomorphic schemes (X ×
Y, H�π K ) and (X × Y, H�π ′ K ) from the same factors (Y, K ) and (X, H ) as we will see
an example later in this section.

The adjacency matrices of the semidirect product can be described in terms of those of
factors.

Proposition 3.3 Let (Z , H�π K ) be the semidirect product of (Y, K ) by (X, H ) relative
to π and x0. Let {Ak | k ∈ K } be the set of adjacency matrices of (Y, K ). Then the set of
adjacency matrices for (Z , H�π K ) is {Ah·k | h · k ∈ H�π K }, where Ah·k is a |X | × |X |
block matrix in which the (xi , x j )-block is given by a |Y | × |Y | zero-one matrix:

(Ah·k)(xi ,x j ) =
{

OY if (xi , x j ) /∈ h

Akπ̃ (r (x j ,x0)) if (xi , x j ) ∈ h
for any h · k ∈ H�π K .

(Here, OY is the |Y | × |Y | zero matrix.)

Proof: It follows from the fact that the entry of Ah·k is determined by

(Ah·k)(xi y,x j y′) = δr (xi y,x j y′), h·k = δr (xi ,x j ), h δr (y,y′), kπ̃ (r (x j ,x0))

where

δα, β :=
{

1 if α = β

0 otherwise
.

We now investigate when schemes can be decomposed by their subschemes as semidi-
rect factors; i.e, define an internal semidirect product of schemes. This may be viewed as
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an analog of the decomposition theory over the direct (tensor) product discussed in [10,
Theorem 2.6.2] and [1, Theorem 3.2].

First, from the definition of the semidirect product (Z , H�π K ), it is easy to see that
H · 1Y := {h · 1Y | h ∈ H} and 1X · K := {1X · k | k ∈ K } are closed subsets of H�π K
such that

(H · 1Y ) ∩ (1X · K ) = {1Z }

and

(H · 1Y )(1X · K ) = H�π K .

Moreover, for each h ∈ H and k ∈ K ,

|(h · 1Y )(1X · k)| = |(h · 1Y ) ∗ (1X · k)(h · 1Y ) ∩ (1X · K )| = 1.

These properties expressing how the closed subsets sit inside H�π K characterize the struc-
ture called an internal semidirect product. To explore this product, we prove the following
proposition. The proof of the proposition will follow by a series of lemmas.

Proposition 3.4 Let (X, G) be a scheme. Suppose that there exist H, K ≤ G such that

(i) H ∩ K = {1X };
(ii) H K = G;

(iii) For each h ∈ H and k ∈ K , |hk| = |h∗kh ∩ K | = 1.

Then, for each x ∈ X, (X, G) is isomorphic to the semidirect product of (X, G)x K by
(X, G)x H relative to π where π is uniquely determined by the intersection numbers of
(X, G).

Throughout, let (X, G) be a scheme, and let H , K ≤ G be two closed subsets satisfying
the three conditions given in the hypothesis of Proposition 3.4. We reserve the symbol ι for
the identity element of Aut(K ).

Lemma 3.5 For each h ∈ H , the map σh : K → K defined by

kσh := the unique element of the singleton set h∗kh ∩ K

for each k ∈ K , belongs to Aut(K ).

Proof: Since the condition (iii) of Proposition 3.4 holds, for each k ∈ K and h ∈ H ,
k ∈ kσh∗σh ∩ kσhσh∗ , and σh∗σh = σhσh∗ = ι, for each h ∈ H . Hence σh is well-defined and
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bijective. Moreover, the hypothesis of Proposition 3.4 guarantees that there is a one-to-one
correspondence between the sets

{z ∈ X | (x, z) ∈ a, (z, y) ∈ b}

and

{z′ ∈ X | (x ′, z′) ∈ aσh , (z′, y′) ∈ bσh }

where (x, y) ∈ c, (x ′, y′) ∈ cσh with r (x, x ′) = r (y, y′) = h. It is because, for each
element z of the first set, there exists a unique element z′ such that z′ ∈ zh ∩ x ′K due to
Proposition 3.4(i)–(ii) and the fact that H and K are closed. Furthermore, (x ′, z′) ∈ aσh

and (z′, y′) ∈ bσh by Proposition 3.4(iii). Therefore, it is clear that the map z �→ z′ is
indeed a bijection. Now the one-to-one correspondence between the two sets implies that
pc

ab = pcσh

aσh bσh for all a, b, c ∈ K as desired.

Lemma 3.6 For each t ∈ Oϑ (H ), σt = ι, the identity permutation of K .

Proof: Since σh∗σh = ι, it follows from Proposition 3.4(iii) that k is the unique element
of (hh∗)∗k(hh∗) ∩ K . This implies that, for each h ∈ H and a ∈ hh∗, σa = ι. Similarly, we
get σb = ι for each h1, h2 ∈ H and b ∈ (h1h∗

1)(h2h∗
2). Thus, the conclusion follows from

the definition of Oϑ (H ) [10, Theorem 2.3.1].

Lemma 3.7 For h, h′ ∈ H and k, k ′ ∈ K , if k ′ ∈ hkh′, then h′ = h∗.

Proof: We have k ′ ∈ hkh′ ∩ K ⊆ kσh∗ hh′ ∩ K , and thus, (kσh∗ )∗k ′ ∩ hh′ 	= ∅. So it
follows from Proposition 3.4(i) that 1X ∈ h′h, or equivalently, h′ = h∗.

Lemma 3.8 The map σ : H → Aut(K ) (h �→ σh) induces the group homomorphism
π : H//Oϑ (H ) → Aut(K ) such that π (hOϑ (H )) := σh for each h ∈ H.

Proof: Let a, b ∈ H with aOϑ (H ) = bOϑ (H ). Then ab∗ ⊆ Oϑ (H ). We first claim that
{k} = (ab∗)∗k(ab∗) ∩ K for each k ∈ K . Suppose k ′ ∈ (ab∗)∗k(ab∗) ∩ K . Then there
exist c ∈ (ab∗)∗ and c′ ∈ ab∗ such that k ′ ∈ ckc′. By Lemma 3.7, c′ = c∗, which implies
that k ′ = kσc∗ . On the other hand, by Lemma 3.6, kσc∗ = k, so k ′ = k, proving the claim.
Therefore, we must have σa = σb, and thus, π is well-defined by Lemma 3.5. Now let
c ∈ ab. For each k ∈ K , kσc is the unique element of c∗kc ∩ K . Notice that

c∗kc ∩ K ⊆ (ab)∗k(ab) ∩ K ⊆ b∗(a∗ka)b ∩ K ⊆ kσaσb b∗a∗ab ∩ K .

With the closed subset K and Proposition 3.4(i), kσaσb b∗a∗ab ∩ K = {kσaσb}. This implies
that σc = σaσb. Hence, π is a group homomorphism.
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Lemma 3.9 For any two points x, z ∈ X, there exists a unique pair (z1, z2) such that
z1 ∈ x H ∩ zK and z2 ∈ x K ∩ zH.

Proof: Since G = H K = K H , there exists a (z1, z2) such that r (x, z1) ∈ H , r (z1, z) ∈ K ,
r (x, z2) ∈ K and r (z2, z) ∈ H . The uniqueness follows from Proposition 3.4(i) and from
the fact that H and K are closed.

Proof of Proposition 3.4: Let π be the group homomorphism defined as in Lemma 3.8.
Consider the semidirect product of (X, G)x K by (X, G)x H relative to π and x , and the map

� : X ∪ G → (x H × x K ) ∪ (Hx H �π Kx K )

defined by

z ∈ X �→ (z1, z2) ∈ x H × x K

and

hk ∈ G �→ h · k,

where (z1, z2) is the unique pair, z1 ∈ x H ∩ zK and z2 ∈ x K ∩ zH , as seen in Lemma 3.9.
Then the uniqueness of (z1, z2) and the equalities |X | = |x H ||x K | and |G| = |H ||K |
guarantee that � is well-defined and bijective. Therefore, in order to prove that � is an
isomorphism, it suffices to show that r (z1z2, w1w2) = h · k if r (z, w) = hk. For given
z and w, we have a unique element u ∈ zH ∩ wK by Lemma 3.9. Also, r (z, w) = hk
implies u ∈ zh ∩ wk∗. Moreover, since r (z1, z) ∈ r (z1, w1)r (w1, u)r (u, z) with r (z1, w1),
r (u, z) ∈ H and r (z1, z), r (w1, u) ∈ K , Lemma 3.7 asserts that r (z1, w1) = h. Similarly,
we see that r (z2, u) = r (w2, w) = r (x, w1) (cf. figure 1 below). So we have

r (z2, w2) ∈ r (z2, u)r (u, w)r (w, w2) ∩ K = {
kσr (w1 ,x)

} = {
kπ̃ (r (w1,x))

}
,

and conclude that (z1z2, w1w2) ∈ h · k. �

For the remainder of the section, we give a structural characterization of the regular
group scheme of dihedral group D2n of order 2n. Then we construct another scheme that
is non-isomorphic to the regular group scheme of D2n but is obtained as the semidirect
product of the same factors via a different homomorphism.

Figure 1. Relations between the elements involved.
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Every finite group G is associated with a regular group scheme X (G) = (G, G̃). That
is, for given G, and g ∈ G, if we define

g̃ := {(e, f ) ∈ G × G | f −1e = g}

and let G̃ := {g̃ | g ∈ G}, then X (G) = (G, G̃) is a thin scheme. (cf. for example, [2, 3 or
9].) It follows from the definition of the complex product described in the Eq. (2) that G̃ is a
group with respect to the complex product as the group operation, with 1̃ as identity element.
(This operation in the Eq. (2) for thin schemes is often called the complex multiplication.)
Moreover, if we consider the relations as group elements and the complex multiplication
as a binary operation on the relation set, then the semidirect product of two regular group
schemes of X (H ) and X (K ) is isomorphic to the regular group scheme of the semidirect
product of two groups H and K . We will use relation matrices to describe some schemes
below. Recall that the relation matrix of a scheme is a ‘colored combination’

∑
i i Ai , of

the adjacency matrices Ai of the scheme.

Example 3.1 Let D2n = 〈a, b | an = b2 = 1, ba = a−1b〉 be the dihedral group of order
2n. Suppose we denote X (D2n) = (D2n, D̃2n) such that its relation set D̃2n = {g̃i | i =
0, 1, . . . , 2n − 1} is defined by, for x, y ∈ D2n

(x, y) ∈ g̃i if and only if y−1x =
{

ai if 0 ≤ i ≤ n − 1

ai−nb if n ≤ i ≤ 2n − 1.

The relation matrix of X (D2n) may be described as follows:

(
C[0, (n − 1), (n − 2), . . . , 1] C[n, (n + 1), (n + 2), . . . , (2n − 1)]

C[n, (2n − 1), (2n − 2), . . . , (n + 1)] C[0, 1, 2, . . . , (n − 2), (n − 1)]

)

where C[c1 c2 . . . cn] denotes the n × n circulant matrix with Ci j = c j−i+1 for all i, j with
j − i + 1 being reduced modulo n to a number in {1, 2, . . . , n}.

Now, let us keep Zn � 〈a〉 and Z2 � 〈b〉 in mind, and consider the regular group
schemes X (Zn) = (Zn, K ) and X (Z2) = (Z2, H ) with K = Z̃n and H = Z̃2 = {0̃, 1̃}.
Here (x, y) ∈ k̃ ∈ K if and only if x − y = k ∈ Zn . Then with the group homomorphism
π : H → Aut(K ) defined by π (1̃) = (0̃)(1̃ ˜n − 1)(2̃ ˜n − 2) · · · (�̃ n

2 � ˜n − � n
2 �), we see that

X (D2n) � X (Z2)�πX (Zn) relative to π and a base point b due to Propositions 3.3 and 3.4.

So, we have seen that:
The regular group scheme of dihedral group of order 2n is isomorphic to the semidirect

product of the regular group scheme of cyclic group of order n by that of cyclic group of
order 2 relative to π . It resembles the situation of groups where the dihedral group of order
2n is the semidirect product of cyclic group of order n by that of order 2.

As we mentioned earlier, we now illustrate the fact that a different homomorphism may
produce a different semidirect product.
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Example 3.2 Suppose we use a trivial homomorphism π ′ instead of π used in the previous
example. Then the relation matrix of X (Z2)�π ′X (Zn) is

(
C[0, 1, 2, . . . , (n − 2), (n − 1)] C[n, (n + 1), (n + 2), . . . , (2n − 1)]

C[n, (n + 1), (n + 2), . . . , (2n − 1)] C[0, 1, 2, . . . , (n − 2), (n − 1)]

)

Therefore, by comparing this matrix with the relation matrix of X (D2n), it can be verified
that the scheme X (Z2)�π ′X (Zn) is not isomorphic to X (D2n) � X (Z2)�πX (Zn). It is
shown that X (Z2)�π ′X (Zn) is isomorphic to the direct product of X (Z2) and X (Zn).

4. Application to the classification

In this section we give a few sporadic examples in order to illustrate the use of the semidirect
product in connection with the characterization and classification of association schemes.
We shall describe three schemes of order 12, labelled X1, X4 and X6 in [8, (7.12)] in terms
of the semidirect product of their subschemes. (These schemes are also found in [4 and 5].)

Example 4.1 The relation matrix of X1 of order 12 given in [8, p. 259] is similar to the
matrix R(X1) below by the permutation (2 6 5 3)(8 11) of the corresponding rows and
columns:

R(X1) =






0 2 4 3 5 1 6 7 8 6 7 8

4 0 2 1 3 5 8 6 7 8 6 7

2 4 0 5 1 3 7 8 6 7 8 6

3 5 1 0 2 4 6 7 8 6 7 8

1 3 5 4 0 2 8 6 7 8 6 7

5 1 3 2 4 0 7 8 6 7 8 6

6 8 7 6 8 7 0 4 2 3 1 5

7 6 8 7 6 8 2 0 4 5 3 1

8 7 6 8 7 6 4 2 0 1 5 3

6 8 7 6 8 7 3 1 5 0 4 2

7 6 8 7 6 8 5 3 1 2 0 4

8 7 6 8 7 6 1 5 3 4 2 0






.

Let us denote X1 by (X, G) where X = {xi | 1 ≤ i ≤ 12} and G = {gi | i = 0, 1, . . . , 8}
with gk := {(xi , x j ) | (R(X1))(i, j) = k}. Then, X1 is shown to be a semidirect product
of two subschemes taken as follows. Take two closed subsets H = {g0, g3, g6} and K =
{g0, g2, g4}. Then it is straightforward to check that H and K satisfy all conditions in
Proposition 3.4. So, using the above notation, we have Oϑ (H ) = {g0, g3}, H//Oϑ (H ) =
{gOϑ (H )

0 = gOϑ (H )
3 , gOϑ (H )

6 }, and Aut(K ) = {ι, σ } where σ = (g2 g4). Moreover, X1 �
(X1)x H �π (X1)x K where π : H//Oϑ (H ) → Aut(K ) is the homomorphism uniquely
determined by π (gOϑ (H )

0 ) = π (gOϑ (H )
3 ) = ι and π (gOϑ (H )

6 ) = σ .



36 BANG, HIRASAKA AND SONG

It is easy to see that (X1)x H � X (Z2) � X (Z2) and (X1)x K � X (Z3) for any point
x ∈ X . (For more information on the wreath product ‘�’ we refer to [1 or 7].) Thus,
X1 � (X (Z2) � X (Z2))�πX (Z3), an external semidirect product.

Example 4.2 The relation matrix ofX4 given in [8, p. 260] is similar to the matrixR(X4) :

R(X4) =






0 1 4 4 6 6 2 3 5 5 7 7

1 0 4 4 6 6 3 2 5 5 7 7

6 6 0 1 4 4 7 7 2 3 5 5

6 6 1 0 4 4 7 7 3 2 5 5

4 4 6 6 0 1 5 5 7 7 2 3

4 4 6 6 1 0 5 5 7 7 3 2

2 3 7 7 5 5 0 1 6 6 4 4

3 2 7 7 5 5 1 0 6 6 4 4

5 5 2 3 7 7 4 4 0 1 6 6

5 5 3 2 7 7 4 4 1 0 6 6

7 7 5 5 2 3 6 6 4 4 0 1

7 7 5 5 3 2 6 6 4 4 1 0






.

Let us denote X4 = (X, G) where X = {xi | 1 ≤ i ≤ 12} and G = {gi | 0 ≤ i ≤ 7}
with each gi := {(x j , xk) | (R(X4))( j, k) = i} and consider two closed subsets H =
{g0, g2} and K = {g0, g1, g4, g6} of G. Then, we have Oϑ (H ) = {g0} and H//Oϑ (H ) =
{gOϑ (H )

0 , gOϑ (H )
2 }. We note that (X4)x H � X (Z2) and (X4)x K � X (Z2) �X (Z3). By Proposi-

tion 3.4, we have X4 � X (Z2)�π (X (Z2) �X (Z3)) where π : H//Oϑ (H ) → Aut(K ) is the
homomorphism uniquely determined as π (gOϑ (H )

0 ) = ι and π (gOϑ (H )
2 ) = (g0)(g1)(g4 g6).

Example 4.3 The relation matrix of X6 given in [8, p. 261] is similar to R(X6):

R(X6) =






0 1 2 6 6 6 3 5 4 7 7 7

2 0 1 6 6 6 4 3 5 7 7 7

1 2 0 6 6 6 5 4 3 7 7 7

6 6 6 0 1 2 7 7 7 3 5 4

6 6 6 2 0 1 7 7 7 4 3 5

6 6 6 1 2 0 7 7 7 5 4 3

3 4 5 7 7 7 0 2 1 6 6 6

5 3 4 7 7 7 1 0 2 6 6 6

4 5 3 7 7 7 2 1 0 6 6 6

7 7 7 3 4 5 6 6 6 0 2 1

7 7 7 5 3 4 6 6 6 1 0 2

7 7 7 4 5 3 6 6 6 2 1 0






.



SEMIDIRECT PRODUCTS OF ASSOCIATION SCHEMES 37

By denoting the relation set ofX6 by G = {gi |0 ≤ i ≤ 7} as before, and taking H = {g0, g3}
and K = {g0, g1, g2, g6}, we have (X6)x H � X (Z2) and (X6)x K � X (Z3) � X (Z2) for any
point x ∈ X . By Proposition 3.4, we see that X6 � X (Z2)�π (X (Z3) � X (Z2)) where the
homomorphism π : H//Oϑ (H ) → Aut(K ) is uniquely determined as π (gOϑ (H )

0 ) = ι and

π (gOϑ (H )
3 ) = (g0)(g6)(g1 g2).

Finally, we close the section with some remarks.

Remark 4.4 (i) Another definitions of semidirect products were given in [6 and 10] as
we mentioned in Introduction.

The Zieschang’s semidirect product may be described as follows. Let (Y, K ) be an asso-
ciation scheme and H be an arbitrary group. We say that ‘H acts on (Y, K )’ if there exists
a homomorphism θ : H → Aut(Y, K ). We shall write yh instead of yθ(h). The semidirect
product defined in [10] has H × Y as the set of points. The relations are parameterized by
pairs (h, k) ∈ H × K , and the relation ˜(h, k) corresponding to a pair (h, k) is defined by
{(h1 y1, h2 y2) | (yh1

1 , y2) ∈ k, h−1
1 h2 = h}. Then it is shown that { ˜(h, k) | (h, k) ∈ H × K }

forms an association scheme.
The Muzychuk’s semidirect product of (Y, K ) by H given in [6] may be described as

follows. We say that ‘H acts on K ’ if there exists a homomorphism π : H → Aut(K ). We
shall again write kh instead of kπ (h). For each pair (h, k) ∈ H × K , a relation h�k on the set
H ×Y is defined in the following way: h�k := {(h1 y1, h2 y2) | (y1, y2) ∈ kh−1

2 , h−1
1 h2 = h}.

In [6], Muzychuk has shown that the Zieschang’s definition is a particular case of his; i.e.,
given the group homomorphism θ : H → Aut(Y, K ), if the action of H on K is defined by
the rule: kh = h−1kh, then two association schemes given by {h�k | (h, k) ∈ H × K } and
{ ˜(h, k) | (h, k) ∈ H × K } are isomorphic.

(ii) We now see that Muzychuk’s product is, in turn, a particular case of the one defined
in this paper. For a given thin factor (X, H ), in order to obtain the Muzychuk’s product, we
only need to take the base point x0 as the point corresponding to the identity element of
the associated group to the thin scheme (X, H ) (cf. [10, p. 177 Theorem A(iii)]). Thus the
semidirect product defined in this paper is a natural extension of the semidirect products
defined in [6 and 10].

We also note that the semidirect product X (Z2)�X (P5), where X (P5) is the scheme
whose first relation graph is the pentagon, is the scheme of the smallest order that can not
be constructed by the semidirect product defined in [6 and 10]. Among the three schemes
of order 12 which are illustrated above, the scheme X1 in Example 4.1 is not obtained by
Muzychuk’s construction either.

(iii) We have seen that X (D2n) can be described as the semidirect product of X (Zn)
by X (Z2). However, it is not possible to describe X (D2n) by the direct product or wreath
product of any proper subschemes (See [1, p. 7] and [1, Theorem 3.2]).

The direct product and wreath product operation can produce one or two schemes from
a given pair. However, the semidirect product may produce many schemes from a pair of
schemes; in fact, the number is depending on the number of nontrivial homomorphisms π

available.
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(vi) This work is a continuation of our efforts to characterize schemes in terms of ‘smaller’
and more ‘basic’ schemes via some sorts of product operations and/or fusion and fission
processes. Propositions 3.3 and 3.4 are perhaps useful in classification as well as the devel-
opment of the theory. However, there are still many schemes that we do not have such an
interpretation (characterization) in terms of known product operations including the semidi-
rect product. For example, there are still nine schemes of order 12 that we do not know
whether they are decomposable by any products. The nine schemes are labelled with Xi ,
i ∈ {2, 3, 5, 7, 8, 9, 10, 11} and Y in [8, 7.12]. We have more and more of such schemes as
the order of schemes gets larger.

Acknowledgment

The authors are indebted to Dr. M. Muzychuck and Dr. P.-H. Zieschang for part of the result
reported in this paper. This work has grown out from a conversation of the second author
with them on a possible generalization of the concept of the semidirect product introduced
in Section 2.7 of [10]. We thank the referees for valuable suggestions and remarks. The
third author also thanks the Mathematics Department at POSTECH for the warm hospitality
during his visit at which this research was carried out.

References

1. S. Bang and S.Y. Song, “Characterization of maximal rational circulant association schemes,” in Codes and
Designs, K.T. Arasu and A. Seress (Eds.), Ohio State Univ. Math. Inst. Publ. 10, Walter de Gruyter, Berlin,
2002, pp. 37–48.

2. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menlo Park,
CA, 1984.

3. P.J. Cameron, Permutation Groups, Cambridge University Press, Cambridge, UK, 1999.
4. A. Hanaki and I. Miyamoto, “Classification of primitive association schemes of order up to 22,” Kyushu J.

Math. 54(1) (2000), 81–86. (cf. http://kissme.shinshu-u.ac.jp/as/)
5. M. Hirasaka, “The classification of association schemes with 11 or 12 vertices,” Kyushu J. Math. 51 (1997),

413–428.
6. M. Muzychuk, Semidirect product, a short note, March 22, 2000.
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