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Abstract. We establish a Morris type recurrence formula for the root system Cn . Next we introduce cyclage
graphs for the corresponding Kashiwara-Nakashima’s tableaux and use them to define a charge statistic. Finally
we conjecture that this charge may be used to compute the Kostka-Foulkes polynomials for type Cn .

Keywords: crystal graphs, cyclage graphs, Kostka-Foulkes polynomials

1. Introduction

The multiplicity Kλ,µ of the weight µ in the irreducible finite dimensional representation
V (λ) of the simple Lie algebra g can be written in terms of the ordinary Kostant’s partition
function P defined from the equality:

∏

α positive root

1

(1 − xα)
=

∑

β

P(β)xβ

where β runs on the set of nonnegative integral combinations of positive roots of g. Thus
P(β) is the number of ways the weight β can be expressed as a sum of positive roots. Then
we have

Kλ,µ =
∑

σ∈W

(−1)l(σ )P(σ (λ + ρ) − (µ + ρ))

where W is the Weyl group of g.

There exists a q-analogue Kλ,µ(q) of Kλ,µ obtained by substituting the ordinary Kostant’s
partition function P by its q-analogue Pq satisfying

∏

α positive root

1

(1 − qxα)
=

∑

β

Pq (β)xβ.

So we have

Kλ,µ(q) =
∑

σ∈W

(−1)l(σ )Pq (σ (λ + ρ) − (µ + ρ)).
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As shown by Lusztig [17] Kλ,µ(q) is a polynomial in q with non negative integer coefficients.
These polynomials naturally appear in the classical theory of Hall-Littlewood polynomials.
They coincide with the Kostka-Foulkes polynomials that is, with the entries of the transition
matrix between the basis of Hall-Littelwood polynomials and the basis of Schur functions
[18]. Many interpretations of the Kostka-Foulkes polynomials exist. For example, they
appear in the filtrations of weight spaces by the kernels of powers of a regular nilpotent
element, and degree in harmonic polynomials [1, 2, 6]. We recover them in the expansion
of the Hall Littlewood polynomials in terms of the affine Hecke algebra (see [19]).

For type An−1 the positivity of the Kostka-Foulkes Polynomials can also be proved by a
purely combinatorial method. Recall that for any partitions λ and µ with n parts the number
of semi-standard tableaux of shape λ and weight µ is equal to the multiplicity of the weight
µ in the finite dimensional irreducible module of Uq (sln) with highest weight λ. In [14]
Lascoux and Schützenberger have introduced a beautiful statistic chA on standard tableaux
called the charge and, by using Morris recurrence formula, have proved the equality

Kλ,µ(q) =
∑

T ∈ST (µ)λ

qchA(T ) (1)

where ST (µ)λ is the set of semi-standard tableaux of shape λ and weight µ. Set An =
{1 < · · · < n}. The charge may be defined by endowing ST (µ) the set of semi-standard
tableaux of weight µ with a structure of graph defined from Lascoux-Schützenberger’s
plactic monoid. Recall that the plactic monoid is the quotient set of A∗

n the free monoid on
An by the Knuth relations

abx ≡
{

bax if a < x ≤ b
axb if x ≤ a < b

.

For any tableau T we denote by w(T ) the column reading of T that is, the word obtained
by reading the columns of T from right to left and from top to bottom. The cyclage graph
structure on ST (µ) can be defined as follows. We draw an arrow T → T ′ between the two
tableaux T and T ′ of ST (µ), if and only if there exists u in A∗

n and x �= 1 ∈ An such that
w(T ) ≡ xu and w(T ′) ≡ ux . Then we say that T ′ is a cocyclage of T . The essential tool
to define this graph structure is the insertion algorithm for the semi-standard tableaux. The
cyclage graph ST (µ) contains a unique row tableau Lµ which can not be obtained as the
cocyclage of another tableau of ST (µ). Let Tµ be the unique semi-standard tableau of shape
µ belonging to ST (µ). Then there is no cocyclage of Tµ. For any T ∈ ST (µ) all the paths
joining Lµ to T have the same length. This length is called the cocharge of T and denoted
cochA(T ). Similarly, all the paths joining T to Tµ have the same length called the charge
of T . The maximal value of chA is ‖µ‖ = chA(Lλ) = ∑

i (i − 1)µi . Moreover the charge
and the cocharge satisfy the equality chA(T ) = ‖µ‖ − cochA(T ) for any T ∈ ST (µ).

The initial cocyclage of the tableau T of reading w(T ) = xu with x �= 1 is obtained by
inserting x in the sub-tableau of T of reading u. Every tableau T ∈ ST (µ) can be related
to Tµ by a sequence of initial cocyclages. So it is enough to consider initial cocyclages to
define chA.
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The charge of T can also be defined directly from w(T ) when µ is a dominant weight.
Moreover it can be characterized in terms of the geometry of the crystal graph B(λ) asso-
ciated to V (λ) [12].

In this article we restrict ourselves to the root system Cn. Our aim is two folds. First we
establish Morris type recurrence formula for type Cn and use it to give explicit formulae
for Kostka-Foulkes polynomials when λ is a row partition or a column partition of height
2. Next we introduce a cyclage graph structure and a notion of charge for type Cn. For any
dominant weight λ, let V (λ) be the finite dimensional irreducible Uq (sp2n)-module with
highest weight λ. In Kashiwara and Nakashima [11] have given a combinatorial description
of B(λ) the crystal graph of V (λ) in terms of symplectic tableaux analogous to the semi-
standard tableaux for type Cn . From the plactic monoid and the insertion algorithm described
in [15] it is natural to try to obtain cyclage graphs for symplectic tableaux. Nevertheless the
situation is more complex than for type An−1. First we have to restrict the possible cocyclage
operations to the initial cocyclage to avoid loops in our cyclage graphs. Moreover if we use
the complete insertion algorithm for type Cn, the number of boxes of the cocyclage of a
tableau T may be strictly less than that of T due to the contraction relation in the plactic
monoid. The cyclage graphs obtained by this mean seem to be not relevant to define a charge
related to the Kostka-Foulkes polynomials. To overcome this problem we will execute
the insertion algorithm without this contraction relation and consider that the symplectic
tableaux are filled by letters of the totally ordered alphabet

Cn = {n̄ < · · · < 1̄ < 1 < · · · < n}

which can be naturally embedded in the infinite alphabet

C∞ = {· · · < n̄ < · · · < 1̄ < 1 < · · · < n < · · ·}.

Our convention for the alphabet Cn is not identical to that of [11] to dispose of a natural
infinite extension of Cn . Denote by ST(n) the set of symplectic tableaux defined on Cn. If
T ∈ ST(n) the initial cocyclage (without contraction) of T does not belong to ST(n) in
general but belongs to ST(n + 1). So it is natural to consider the cyclage graph structure of
ST = ∪

n≥1
ST(n).

Let µ be a dominant weight for the root system Cn . With our convention µ may be
identified with the partition (µn̄, . . . , µ1̄). We are going to endow ST(µ) the subset of ST
containing the symplectic tableaux T such that for any m ≥ 1, the number of letters k̄ in
T minus the number of letters k is µk̄ if k ≤ n, 0 otherwise with a structure of cyclage
graph. This structure is more complex than for type An. In particular ST(µ) decomposes
into connected components. These components can be isomorphic and do not necessarily
contain a row tableau. We define on ST(µ) a charge statistic chn . Many computations allows
us to conjecture that an analogue to (1) exists for type Cn with the charge chn . However it
seems to be impossible to derive it from our Morris type recurrence formula.

In Section 1 we recall the Background on Kostka-Foulkes polynomials and crystal basis
theory that we need in the sequel. We also summarize the basic properties of the insertion
algorithm introduced in [15]. Section 2 is devoted to the Morris type recurrence formula for
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type Cn and its applications. In Section 3 we define the cyclage graph structure on ST(µ)
and give some of its properties. Finally we introduced chn in Section 4 and conjecture that
it permits to compute the Kostka-Foulkes polynomials for type Cn.

2. Background

2.1. Kostka-Foulkes polynomials for type Cn

We choose to label the Dynkin diagram of sp2n by

0◦ ⇒ 1◦ − 2◦ − 3◦ − 4◦ − · · · n−1◦ . (2)

The weight lattice Pn of Cn can be identified with Z
n equipped with the orthonormal basis

εī , i = 1, . . . , n. We take for the simple roots

α0 = 2ε1̄ and αi = εi+1 − εī , i = 1, . . . , n − 1.

Then the set of positive roots of sp2n is

R+
n = {εī − ε j̄ , εī + ε j̄ with 1 ≤ j < i ≤ n} ∪ {2εī with 1 ≤ i ≤ n}.

Denote by P+
n the set of dominant weights of sp2n. Write �0, . . . , �n−1 for the fundamentals

weights. Then we have �i = εn̄ + · · · + εi+1, 0 ≤ i ≤ n − 1. Consider λ ∈ P+
n and set

λ = ∑n−1
i=0 λ̂i�i with λ̂i ∈ N. The dominant weight λ is characterized by the partition

(λn̄, . . . , λ1̄) where λī = λ̂0 + · · · + λ̂i−1, i = 1, . . . , n. In the sequel we will identify λ

and (λn̄, . . . , λ1̄) by setting λ = (λn̄, . . . , λ1̄). Then λ = λ1̄ε1̄ + · · · + λn̄εn̄ that is, the λi ’s
are the coordinates of λ on the basis (εn̄, . . . , ε1̄). Let ρ be the half sum of positive roots.
We have ρ = (n, n − 1, . . . , 1). For any λ ∈ P+

n , set |λ| = λn̄ + · · · + λ1̄.

The Weyl group Wn of sp2n can be regarded as the sub group of the permutation group
of Cn = {n̄, . . . , 2̄, 1̄, 1, 2, . . . , n} generated by si = (i, i + 1)(ī, i + 1), i = 1, . . . , n − 1
and s0 = (1, 1̄) where for a, b ∈ Cn with a �= b, (a, b) is the simple transposition which
switches a and b. Note that any σ ∈ Wn verifies σ (ī) = σ (i) for i ∈ {1, . . . , n}. We denote
by l the length function corresponding to the set of generators si , i = 0, . . . n − 1.

The action of σ ∈ Wn on β = (βn̄, . . . , β1̄) ∈ Pn is given by

σ · (βn̄, . . . , β1̄) = (
βσ

n̄ , . . . , βσ
1̄

)

where βσ
ī = βσ (ī) if σ (ī) ∈ {1̄, . . . , n̄} and βσ

ī = −βσ (i) otherwise.
Let Q+

n be the set of nonnegative integral linear combinations of positive roots. For any
β = (βn̄, . . . , β1̄) ∈ Pn we set xβ = xβn̄

n · · · xβ1̄
1 where x1, . . . , xn are fixed indeterminates.

The q-analogue Pq of the Kostant function partition is defined by

∏

α∈R+
n

1

1 − qxα
=

∑

β∈Q+
n

Pq (β)xβ and Pq (β) = 0 if β /∈ Q+
n .
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Definition 2.1.1 Let λ, µ ∈ P+
n . The Kostka-Foulkes polynomial Kλ,µ(q) is defined by

Kλ,µ(q) =
∑

σ∈Wn

(−1)l(σ )Pq (σ (λ + ρ) − (µ + ρ)).

Let β ∈ Pn. We set

aβ =
∑

σ∈Wn

(−1)l(σ )(σ · xβ)

where σ · xµ = xσ (µ). The Schur function sβ is defined by

sβ = aβ+ρ

aρ

.

When λ ∈ P+
n , sλ is the Weyl character of V (λ) the finite dimensional irreducible Uq (sp2n)-

module with highest weight λ. For any σ ∈ Wn, the dot action of σ on β ∈ Pn is defined by
σ ◦ β = σ · (β + ρ) − ρ. We have the following straightening law for the Schur functions.
For any β ∈ Pn , sβ = 0 or there exists a unique λ ∈ P+

n such that sβ = (−1)l(σ )sλ with
σ ∈ Wn and λ = σ ◦ β. Set K = Z[q, q−1] and write K[Pn] for the K module generated
by the xβ , β ∈ Pn. Set K[Pn]Wn = { f ∈ K[Pn], σ · f = f for any σ ∈ Wn}. Then {sλ} is
a basis of K[Pn]Wn .

To each positive root α, we associate the raising operator Rα : Pn → Pn defined by

Rα(β) = α + β.

Given α1, . . . , αp positive roots and β ∈ Pn, we set (Rα1 . . . Rαp )sβ = sRα1 ...Rαp (β). Com-
posing the action of raising operators on Schur function should be avoided in general. For
example (Rα1 Rα2 )(sβ) is not necessarily equal to (Rα1 )(Rα2 sβ) (see example p 360 in [19]).
For all β ∈ Pn, we define the Hall-Littelwood polynomial Qβ by

Qβ =



∏

α∈R+
n

1

1 − q Rα



 sβ

where 1
1−q Rα

= ∑+∞
k=0 qk Rk

α.

Theorem 2.1.2 [19] For any λ, µ ∈ P+
n , Kλ,µ(q) is the coefficient of sλ in Qµ that is,

Qµ =
∑

λ∈P+
n

Kλ,µ(q)sλ.

When n = 1, the root system C1 can be regarded as the root system A1 and the Kostka-
Foulkes polynomial Kλ,µ(q) where λ and µ are partitions of length 1 satisfies

Kλ,µ(q) = q (|λ|−|µ|)/2. (3)
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Lemma 2.1.3 Consider λ, µ ∈ P+
n such that λn̄ = µn̄ and write λ′ = (λn−1, . . . , λ1̄),

µ′ = (µn−1, . . . , µ1̄). Then Kλ,µ(q) = Kλ′,µ′ (q).

Proof: Kλ,µ(q) is the coefficient of sλ in

∏

α∈R+
n

(
1

1 − q Rα

)
sµ

=
(

∏

1≤ j≤n

1

1 − q R2ε j̄

∏

1≤ j<i≤n

1

1 − q Rεī −ε j̄

∏

1≤ j<i≤n

1

1 − q Rεī +ε j̄

)
sµ

but since λn̄ = µn̄ none of the raising operators involving εn̄ contribue to Kλ,µ(q). Thus
Kλ,µ(q) = Kλ′,µ′ (q), the coefficient of sλ′ in

∏

1≤ j≤n−1

(
1

1 − q R2ε j̄

∏

1≤ j<i≤n−1

1

1 − q Rεī −ε j̄

∏

1≤ j<i≤n−1

1

1 − q Rεī +ε j̄

)
sµ′ .

2.2. Crystal Graphs for Type Cn

Recall that crystal graphs for the Uq (sp2n)-modules are oriented colored graphs with colors
i ∈ {0, . . . , n−1}. An arrow a

i→ b means that f̃ i (a) = b and ẽi (b) = a where ẽi and f̃ i are
the crystal graph operators (for a review of crystal bases and crystal graphs see [10]). A vertex
v0 ∈ B satisfying ẽi (v0) = 0 for any i ∈ {0, . . . , n−1} is called a highest weight vertex. The
decomposition of V into its irreducible components is reflected into the decomposition of B
into its connected components (see (6) below). Each connected component of B contains a
unique highest weight vertex. The crystals graphs of two isomorphic irreducible components
are isomorphic as oriented colored graphs. The action of ẽi and f̃ i on B ⊗ B ′ = {b ⊗ b′;
b ∈ B, b′ ∈ B ′} is given by:

f̃i (u ⊗ v) =
{

f̃ i (u) ⊗ v if ϕi (u) > εi (v)

u ⊗ f̃ i (v) if ϕi (u) ≤ εi (v)
(4)

and

ẽi (u ⊗ v) =
{

u ⊗ ẽi (v) if ϕi (u) < εi (v)

ẽi (u) ⊗ v if ϕi (u) ≥ εi (v)
(5)
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where εi (u) = max{k; ẽk
i (u) �= 0} and ϕi (u) = max{k; f̃ k

i (u) �= 0}. The weight of the
vertex u is defined by wt(u) = ∑n−1

i = 0(ϕi (u) − εi (u))�i .

3̄
2→ 2̄

1→ 1̄
0→ 1

1→ 2
2→ 3

3̄ 3̄3̄
2→ 2̄3̄

1→ 1̄3̄
0→ 13̄

1→ 23̄
2→ 33̄

2↓ 2↓ 2↓ 2↓ 2↓

2̄ 3̄2̄ 2̄2̄
1→ 1̄2̄

0→ 12̄
1→ 22̄ 32̄

1↓ 1↓ 1↓ 1↓ 1↓
1̄ 3̄1̄

2→ 2̄1̄ 1̄1̄
0→ 11̄ 21̄

2→ 31̄
0 ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓
1 3̄1

2→ 2̄1
1→ 1̄1 11

1→ 21
2→ 31

1↓ 1↓ 1↓ 1↓ 1↓
2 3̄2

2→ 2̄2 1̄2
0→ 12 22

2→ 32
2↓ 2↓ 2↓ 2↓ 2↓

3 3̄3 2̄3
1→ 1̄3

0→ 13
1→ 23 33

(6)

The 3 connected components of B(�2)⊗2 for n = 3.

The following lemma is a straightforward consequence of (4) and (5).

Lemma 2.2.1 Let u ⊗ v ∈ B ⊗ B ′u ⊗ v is a highest weight vertex of B ⊗ B ′ if and only
if for any i ∈ {0, . . . , n − 1}ẽi (u) = 0 (i.e. u is of highest weight) and εi (v) ≤ ϕi (u).

The Weyl group Wn acts on B by:

si (u) = ( f̃i )
ϕi (u)−εi (u)(u) if ϕi (u) − εi (u) ≥ 0,

si (u) = (ẽi )
εi (u)−ϕi (u)(u) if ϕi (u) − εi (u) < 0. (7)

We have the equality wt(σ (u)) = σ (wt(u)) for any σ ∈ Wn and u ∈ B. For any λ ∈ P+
n ,

we denote by B(λ) the crystal graph of V (λ).
According to (2) we have

B(�n−1) : n̄
n−1→ n − 1

n−2→ · · · · → 2̄
1→ 1̄

0→ 1
1→ 2 · · · · n−2→ n − 1

n−1→ n.

Kashiwara-Nakashima’s combinatorial description of the crystal graphs B(λ) is based on
the notion of symplectic tableaux analogous for type Cn to semi-standard tableaux.

We defined a total order on Cn by setting

Cn = {n̄ < · · · < 1̄ < 1 < · · · < n}.

For any letter x ∈ Cn we set ¯̄x = x . Note that our convention for labelling the crystal graph
of the vector representation are not those used by Kashiwara and Nakashima. To obtain the
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original description of B(λ) from that used in the sequel it suffices to change each letter
k ∈ {1, . . . , n} of Cn into n − k + 1 and each letter k̄ ∈ {1̄, . . . , n̄} into n − k + 1. The
interest of this change of convention will appear in Sections 4 and 5.

We identify the vertices of the crystal graph Gn = ⊕l B(�n−1)⊗l with the words on Cn .
For any w ∈ Gn we have wt(w) = dn̄εn̄ + dn−1εn−1 · · · + d1̄ε1̄ where for any i = 1, . . . , n
dī is the number of letters ī of w minus the number of its letters i. Using Formulas (4)
and (5) we obtain a simple rule to compute the action of ẽi , f̃ i or si i ∈ {0, . . . , n − 1}
on w ∈ Gn that we will use in Section 4. Consider the subword wi of w containing only
the letters i + 1, ī, i, i + 1 if i �= 0 and the letters 1̄, 1 otherwise. Then encode in wi each
letter i + 1 or i by the symbol + and each letter ī or i + 1 by the symbol −. Because
ẽi (±) = f̃ i (±) = 0 in B(�n−1) ⊗ B(�n−1) the factors of type ± may be ignored in wi .

So we obtain a subword w
(1)
i in which we can ignore all the factors ± to construct a new

subword w
(2)
i etc . . . Finally we obtain a subword ρ(w) of w of type

ρ(w) = −r +s .

Then we have the

Note 2.2.2

• When r > 0, ẽi (w) is obtained by changing the rightmost symbol − of ρ(w) into its
corresponding symbol + (i.e. i + 1 into i and ī into i + 1 if i �= 0, 1 into 1̄ otherwise) the
others letters of w being unchanged. When r = 0, ẽi (w) = 0.

• When s > 0, f̃ i (w) is obtained by changing the leftmost symbol + of ρ(w) into their
corresponding symbols − (i.e. i into i + 1 and i + 1 into ī if i �= 0, 1̄ into 1 otherwise)
the others letters of w being unchanged. When s = 0, f̃ i (w) = 0.

• When r ≥ s, si (w) is obtained by changing the r − s rightmost symbols − of ρ(w)
into its corresponding symbol +. When r < s, si (w) is obtained by changing the s − r
leftmost symbols + of ρ(w) into their corresponding symbols −.

In the sequel we will need the following definitions and notation:

A column on Cn is a Young diagram C of column shape filled from top to bottom by
increasing letters of Cn .

The height h(C) of a column C is the number of its letters.
C(n, h) is the set of columns of height h on Cn i.e. with letters in Cn .
The reading of C ∈ C(n, h) is the word w(C) of C∗

n obtained by reading its letters from top
to bottom.

The column C contains the pair (z, z̄) when C contains the unbarred letter z ≥ 1 and the
barred letter z̄ ≤ 1̄.

Let C1 and C2 be two columns. We will write C1 ≤ C2 when h(C1) ≥ h(C2) and the rows
of the tableau C1C2 weakly increase.
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Definition 2.2.3 Let C be a column on Cn and IC = {z1 < · · · < zr } the set of unbarred
letters z such that the pair (z, z̄) occurs in C . The column C is n-admissible when there
exists a set of unbarred letters JC = {t1 < · · · < tr } ⊂ Cn such that:

• t1 is the lowest letter of Cn satisfying: t1 > z1, t1 /∈ C and t1 /∈ C,

• for i = 2, . . . , r , ti is the lowest letter of Cn satisfying: ti > max(ti−1,zi ), ti /∈ C and
ti /∈ C.

In this case we write:

• rC for the column obtained from C by changing zi into ti for each letter zi ∈ IC ,

• lC for the column obtained from C by changing z̄i into t̄i for each letter zi ∈ IC .

Consider C =
3̄

2̄

2

3

. Then C is not 4-admissible but is 5-admissible with rC =
3̄

2̄

4

5

and lC =
4̄

3̄

2

3

.

As usually, we associate to each partition λ = (λn̄, . . . , λ1̄) the Young diagram Y (λ)
whose i-th row has length λn−i+1. By definition, a n-symplectic tableau T of shape λ is a
filling of Y (λ) by letters of Cn satisfying the following conditions:

• the columns Ci of T = C1 · · · Cs are n-admissible,
• for i = 1, . . . , s − 1 : rCi ≤ lCi+1.

The set of n-symplectic tableaux will be denoted ST(n).
If T = C1C2 · · · Cr ∈ ST(n), the reading of T is the word w(T ) = w(Cr ) · · · w(C2)w(C1).

From [11] we deduce the

Theorem 2.2.4

(i) The vertices of B(�p) p = 0, . . . , n − 1 are in one-to-one correspondence with the
readings of n-admissible columns of height n − p.

(ii) The vertices of B(λ) are in one-to-one correspondence with the readings of the n-
symplectic tableaux of shape λ.

More precisely Kashiwara and Nakashima realize B(λ) into a tensor power B(�n−1)
⊗

l .
Given p = 0, . . . , n −1, B(�p) can then be identified with the connected component of Gn

whose highest weight vertex is bp̄ = n̄(n − 1) · · · p + 1. In this identification, the vertices
of B(�p) are the readings of the admissible columns of height n − p. If λ = ∑n−1

p=0 λ̂p�p,

B(λ) is identified with the connected component whose highest weight vertex is bλ =
b⊗λ̂n

n̄ · · · ⊗ b⊗λ̂1

1̄ b⊗λ̂0
0 .

By identifying Uq (sp2(n−1)) with the sub-algebra of Uq (sp2n) generated by the Chevalley’s
generators ei , fi and ti , i = 0, . . . , n − 1, we endow B(λ) with a structure of crystal graph
for type Cn−1. The decomposition of B(λ) into its Uq (sp2(n−1))-connected components is
obtained by erasing all the arrows of color n − 1.
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2.3. Insertion scheme for symplectic tableaux

In [15] we have introduced an insertion scheme for symplectic tableaux analogous for type
Cn to the bumping algorithm on Young tableaux. Now we are going to summarize the
properties of this scheme that we shall need in Section 4.

Consider first a letter x and a column C. The insertion of the letter x in the n-admissible
column C is denoted x → C . If x is strictly greater than the greatest letter of C then x → C
is the column obtained by adding a box containing x on bottom of C, that is, x → C = C

x
.

Now suppose that x is less than the greatest letter of C . Then x → C is a symplectic tableau
of two columns defined recursively as follows:

if C = contains only one column then x → a = x a

if C = a
b

contains two letters,

1. x → a
b

= a b
x

if a < x ≤ b and b �= ā,

2. x → a
b

= x a
b

if x ≤ a < b and b �= x̄,

3. x → b̄

b
= b + 1 b + 1

x
if a = b̄ and b̄ ≤ x ≤ b,

4. b̄ → a
b

= b − 1 a
b − 1

if x = b̄ and b̄ < a < b.

Consider a n-admissible column C of height k ≥ 3 and suppose we have defined our
insertion for the n-admissible columns of height < k. If w(C) = a1, dots, ak−1ak and
x → ak−1

ak
= δk−1 y

dk
, then we have y > ak−2 and the column C ′ of reading a1 · · · ak−2 y is

n-admissible. Write

δk−1 → C ′ =
d1 z
·
·

dk−1

and set

x → C =

d1 z
·
·

dk−1

dk

.
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This can be pictured by

x →

a1

·
ak−2

ak−1

ak

=

a1

·
ak−2

ak−1

x ak

=

a1

·
ak−2

δk−1 y
dk

= · · · =

d1 z
·
·

dk−1

dk

.

During each step we apply one of the transformations 1 to 4 above. We have proved in [15]
that x → C is then a n-symplectic tableau with two columns respectively of height h(C)
and 1.

Example 2.3.1 Suppose n = 5.

• 5 →
4̄

2̄

2

3

4

=

4̄

2̄

2

3

4

5

.

• 4̄ →
4̄

2̄

2

3

4

=
4̄

2̄

2

3

4̄ 4̄

=
4̄

2̄

2̄

3̄ 3̄

3̄

=
4̄

2̄

2̄ 2̄

2̄

3̄

=
4̄

3̄ 3̄

2̄

2̄

3̄

=
4̄ 3̄

3̄

2̄

2̄

3̄

.

Remarks

(i) If C is n-admissible and x → C is a column, then this column is (n + 1)-admissible
but not necessarily n-admissible.

(ii) From transformations 1 to 4 we obtain the plactic relations

abx =
{

bax if a < x ≤ b and b �= ā

axb if x ≤ a < b and b �= x̄
and

{
b̄bx = (b + 1)(b + 1)x if b̄ ≤ x ≤ b

abb̄ = a(b − 1)(b − 1) if b̄ < a < b
(8)

introduced in [15]. These relations are not sufficient to define a plactic monoid for type
Cn . We need a contraction relation which permits to obtain a n-admissible column from
a non n-admissible one. Let C ′ = C

x
be a non n-admissible column on Cn such that C is

n-admissible and x a letter. In this case we can prove that there exists an unbarred letter z



214 LECOUVEY

maximal such that the pair (z, z̄) occurs in C ′ and

card{t ∈ Cn, |t | ≥ z} > n − z + 1.

Write D for the column obtained by erasing the pair (z, z̄) in C ′. Then D is n-admissible
and the contraction relation is defined by

w(C ′) ≡n w(D) (9)

In fact this last relation is not needed to define the cocyclage in Section 4.

Definition 2.3.2 The congruence obtained by identifying the words of C∗
n which are equal

up to relations (8) is denoted ≡ .

(iii): When x → C = C ′ y is a tableau of two columns we have

h(C) = h(C ′) and C ′ ≤ C. (10)

Now we can define the insertion x → T of the letter x in the n-symplectic tableau T .
Write T = C1 · · · Cr where Ci , i = 1, . . . , r are the n-admissible columns of T . If x is
strictly greater to the greatest letter of C1 then x → T is the tableau obtained by adding a box
containing x on bottom of C1. Then x → T belongs to ST(n + 1) but not to ST(n) in general
since its first column may be non n-admissible. Otherwise write x → C = C ′

1 y where C ′
1

is an admissible column of height h(C1) and y a letter. Then x → T = C ′
1(y → C2 · · · Cr )

that is, x → T is the juxtaposition of C ′
1 with the tableau obtained by inserting y in the

tableau C2 · · · Cr . In this case x → T is a n-symplectic tableau [15].

Example 2.3.3 Suppose n = 3. Then

2 →


1 →
1̄ 1 2
1 2
3



 =
2̄ 1 2 2
1 2
2 3

.

Remarks

(i) The insertion scheme described above do not suffice to define a complete insertion
algorithm (that is such that x → T ∈ ST(n) if T ∈ ST(n) and x ∈ Cn) for the n-
symplectic tableaux since the first column C ′ of x → T may be not n-admissible when
x is greater than the greatest letter of C1. To obtain a complete insertion algorithm we
have to apply relation (9) to C ′. This give a column D of reading x1 · · · x p. Finally we
compute successively the insertions x p(→ x p−1 · · · (x1 → C2 · · · Cr )). In the sequel
we only use insertion algorithm without the contraction relation (9).

(ii) To each w = x1 · · · xr ∈ C∗
n of length r we can associate recursively a symplectic

tableau P(w) by setting P(w) = x1 if r = 1 and P(w) = xr → P(x1 · · · xr−1)
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otherwise. If P(w) belongs to ST(m) with m ≥ n, results of [15] implies that P(w) ≡m

w. Moreover P(w) is the unique m-symplectic tableau with this property. Denote by
∼m the equivalence relation defined on the vertices of Gm by w1 ∼m w2 if and only if
w1 and w2 belong to the same connected component of Gm . Given two words w1 and
w2 such that P(w1) and P(w2) belong ST(m) we have the equivalences

w1 ≡m w2 ⇔ P(w1) = P(w2) ⇔ P(w1) ∼m P(w2). (11)

Moreover we have for any σ ∈ Wm

P(σ (w)) = σ (P(w)). (12)

(iii) The insertion algorithm is reversible in the sense that if we know the tableau T ′ such
that x → T = T ′ and the shape of T we can recover the tableau T and the letter x . This
follows from the fact that the transformations 1 to 4 are reversible. More precisely, T ′

has one box more than T . Let y be the letter belonging to that box. Then if we apply
transformations 1 to 4 from right to left starting from y, we recover T and x .

(iv) In Section 4, we will need to find for a fixed tableau T ′ all the pairs (x, T ) where T is
a symplectic tableau and x a letter such that x → T = T ′. The outside corners of the
tableau T ′ are the boxes c of T ′ such that there is no box down and to the right of c in
T ′. By (iii) the pairs (x, T ) are obtained by applying the reverse insertion algorithm to
the outside corners of T ′.

Example 2.3.4 Suppose n = 3 and T ′ =
2̄ 1 2

1 2

3

. Then by applying reverse insertion

algorithm to each outside corners of T ′ we obtain the pairs (3, 2̄ 1 2

1 2
), (1,

1̄ 1 2

1

3

) and

(1,
1̄ 1

1 2

3

).

3. Morris type recurrence formula

In this section we introduce a recurrence formula for computing Kostka polynomials analo-
gous for type Cn to Morris recurrence formula. It allows to explain the Kostka polynomials
for type Cn as combinations of Kostka polynomials for type Cn−1. We embed type Cn−1

in type Cn by identifying Uq (sp2(n−1)) with the sub-algebra of Uq (sp2n) generated by the
Chevalley operators ei , fi and ti , i = 0, . . . n − 2. The weight lattice Pn−1 of Uq (sp2n)
is the Z-lattice generated by the εī , i = 1, . . . , n − 1 and P+

n−1 = P+
n ∩ Pn−1 is the set

of dominant weights. The Weyl group Wn−1 is the sub-group of Wn generated by the si ,
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i = 0, . . . n − 2 and we have R+
n−1 = Rn ∩ Pn−1. Given any positive integer r, write (r )n

for the row partition (p, 0, . . . 0) of length n. To obtain our recurrence formula we need
to describe the decomposition B(γ ) ⊗ B((r )n) with γ ∈ P+

n and r > 0 an integer into its
irreducible components. This is analogous for type Cn to Pieri rule.

3.1. Pieri rule for type Cn

Let γ = (γn̄, . . . , γ1̄) ∈ P+
n . By Theorem 2.2.4, the vertices of B((r )n) are the words

L = (n)kn · · · (2)k2 (1)k1 (1̄)k1̄ (2̄)k2̄ · · · (n̄)kn̄

where kī , ki are positive integers, (x)k means that the letter x is repeated k times in L and
k1̄ + · · · + kn̄ + k1 + · · · + kn = r. Let bγ be the highest weight vertex of B(γ ).

Lemma 3.1.1 bγ ⊗ L is a highest weight vertex of B(γ ) ⊗ B((r )n) if and only if the
following conditions holds:

(i) γī − ki ≥ γi−1 for i = 2, . . . , n and γ1̄ − k1 ≥ 0,

(ii) γī − ki + kī ≤ γi+1 − ki+1 for i = 1, . . . , n − 1.

Proof: By Lemma 2.2.1, bγ ⊗ L is a highest weight vertex if and only if for any m =
1, . . . r, each vertex bγ ⊗ Lm (where Lm is the word obtained by reading the m leftmost
letters of L) is a highest weight vertex. It means that (γn̄ − kn, .., γs̄ − ks, γs−1, . . . , γ1̄) and
(γn̄ − kn, . . . , γt+1 − kt+1, γt̄ − kt + kt̄ , . . . , γ1̄ + k1 − k1̄) are partitions respectively for
s = n, . . . , 1 and t = 1, . . . , n − 1. This is equivalent to the conditions

{
γs̄ − ks ≥ γs−1 for s = n, . . . , 2 and γ1̄ − k1 ≥ 0

γt̄ − kt + kt̄ ≤ γt+1 − kt+1 for t = 1, . . . , n − 1
.

Corollary 3.1.2 B(γ )⊗B((r )n) = ⊕ λ ∈ P+
n B(λ)⊕cλ

γ,r where cλ
γ,r is the number of vertices

L ∈ B((r )n) such that

(i) kī − ki = λī − γī for i = 1, . . . ., n,

(ii) λī ≤ λi+1 − ki+1 for i = 1, . . . , n − 1,

(iii) λī − kī ≥ λi−1 + ki−1 − ki−1 for i = 2, . . . , n and λ1̄ − k1̄ ≥ 0.

Proof: The multiplicity cλ
γ,r is equal to the number of highest weight vertices bγ ⊗ L ∈

B(γ ) ⊗ B((r )n) of weight λ. The condition wt(bγ ⊗ L) = λ is equivalent to

γī − ki + kī = λī for i = 1, . . . , n
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which gives (i). The assertions (ii) and (iii) are respectively obtained by replacing for any
i, γī by λī + ki − kī in assertions (ii) and (i) of the previous lemma.

Remarks

(i) In the above corollary, cλ
γ,r is the number of ways of starting with γ, removing a

horizontal strip to obtain a partition ν and then adding a horizontal strip to obtain λ.

(ii) B(γ ) ⊗ B((r )n) is not multiplicity free in general.

3.2. Recurrence formula

Consider γ ∈ P+
n and r a positive integer. We set

(γ ⊗ r )n = {
λ ∈ P+

n , cλ
γ,r �= 0

}

with cλ
γ,r defined as in Corollary 3.1.2.

Theorem 3.2.1 Let µ ∈ P+
n with n ≥ 2 and write µ = (µn̄, µ

′) where µn̄ is the first part
of µ and µ′ = (µn−1, . . . , µ1̄) ∈ P+

n−1. Then

Qµ =
∑

γ∈P+
n−1

+∞∑

r=0

+∞∑

m=0

qm+r
∑

λ∈(γ⊗r )n−1

cλ
γ,r Kλ,µ′ (q)s(µn̄+r+2m,γ ) (13)

Proof: We start from Qµ = (
∏

α∈R+
n

1
1−q Rα

)sµ. By Proposition 3.5 of [19] we can
write

Qµ =




∏

α /∈ R+
n

α /∈ R+
n−1

1

1 − q Rα












∏

R+
n−1

1

1 − q Rα



 sµ



 .

Then by applying Theorem 2.1.2, we obtain

Qµ =




∏

α /∈ R+
n

α /∈ R+
n−1

1

1 − q Rα








∑

λ∈P+
n−1

Kλ,µ′ (q)s(µn̄ ,λ)



 . (14)
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Set Rī = Rεn̄−εī
for i = 1, . . . , n − 1 and Ri = Rεn̄+εī

for i = 1, . . . , n. Recall that for any
β ∈ Pn−1, Rī (β) = β + εn̄ − εī and Ri (β) = β + εn̄ + εī . Then (14) implies

Qµ =
∑

λ∈P+
n−1

Kλ,µ′ (q)




+∞∑

r=0

+∞∑

m=0

∑

k1̄+···+kn−1+k1+···+kn−1=r

qm+r (Rn)m(R1)k1 (R1̄)k1̄

· · · (Rn−1)kn−1 (Rn−1)kn−1 s(µn̄ ,λ)

)
.

Qµ =
+∞∑

r=0

+∞∑

m=0

qm+r
∑

λ∈P+
n−1

Kλ,µ′ (q)
∑

k1̄+···+kn−1+k1+···+kn−1=r

s(µn̄+r+2m,λn−1+kn−1−kn−1,

· · · , λ1̄ + k1 − k1̄).

Fix λ, m and r and consider

S =
∑

k1̄+···+kn−1+k1+···+kn−1 = r

s(µn̄+r+2m,λn−1+kn−1−kn−1,···,λ1̄+k1−k1̄).

Set γ = (λn−1 + kn−1 − kn−1, . . . , λ1̄ + k1 − k1̄).

1. Suppose first that there exists i ∈ {1, . . . , n−2} such that λī > λi+1−ki+1. Set γ̃ = si ◦γ

that is

γ̃ = si (γn−1 + n − 1, . . . , γi+1 + n − i + 1, γī

+ n − i, . . . , γ1̄ + 1) − (n − 1, . . . , 1).

Then γs̄ = γ̃s̄ for s �= i + 1, i , γ̃i+1 = γī − 1 and γ̃ī =, γi+1 + 1 that is

{
γ̃i+1 = λī + ki − kī − 1

γ̃ī = λi+1 + ki+1 − ki+1 + 1
.

Write k̃i+1 = ki , k̃i = ki+1, k̃i+1 = λi+1 − λī + kī + 1 and k̃ī = λī − λi+1 + ki+1 − 1.

To make our notation homogeneous set k̃t = kt for any t �= i, i + 1, ī, i + 1. Then
λī > λi+1 − k̃i+1. We have k̃i+1 ≥ 0 and k̃ī = λī − λi+1 + ki+1 − 1 ≥ 0 since
λī > λi+1 − ki+1. Moreover k̃1̄ + · · · + k̃n−1 + k̃1 + · · · + k̃n−1 = r and for any
s ∈ {1, . . . , n − 2}

γ̃s̄ = λs̄ + k̃s − k̃s̄ .
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2. Suppose that λī ≤ λi+1 − ki+1 for all i = 1, . . . , n − 2 and λ1̄ − k1̄ < 0. Set γ̃ = s0 ◦ γ.

Then γs̄ = γ̃s̄ for s �= 1 and γ̃1̄ = −λ1̄ − k1 + k1̄ − 2. Write k̃i = ki , k̃ī = kī for any
i = 2, . . . , n − 1 and set k̃1 = k1̄ − λ1̄ − 1, k̃1̄ = k1 + λ1̄ + 1. We have k̃1 ≥ 0, λī ≤
λi+1 − k̃i+1 for any i = 1, . . . , n − 2 and λ1̄ − k̃1̄ < 0. Moreover k̃1̄ + · · · + k̃n̄−1 + k̃1 +
· · · + k̃n−1 = r.

3. Now suppose that λs̄ ≤ λs+1 − ks+1 for any s ∈ {1, . . . , n − 2}, λ1̄ − k1̄ ≥ 0 and there
exists i ∈ {1, . . . , n − 2} such that λi+1 − ki+1 < λī + ki − kī . Define γ̃ = si ◦ γ

as above. Set k̃i+1 = ki+1, k̃ī = kī , k̃i+1 = λī − λi+1 − kī + ki + ki+1 − 1 and
k̃i = (λi+1 − λī − ki+1) + ki+1 + kī + 1. Write k̃t = kt for any t �= i, i + 1, ī, i + 1. We
obtain k̃i ≥ 0 and k̃i+1 ≥ 0 since λī ≤ λi+1 − ki+1 and λi+1 − ki+1 < λī + ki − kī . Since
k̃s̄ = ks̄ for any s = 1, . . . , n − 1, we have λs̄ ≤ λs+1 − k̃s+1 for any s ∈ {1, . . . , n − 2}
and λ1̄ − k̃1̄ ≥ 0. Moreover the assertion λi+1 − k̃i+1 < λī + k̃i − k̃ī holds since it is
equivalent to 0 < ki+1 + 1. Finally k̃1̄ + · · · + k̃n−1 + k̃1 + · · · + k̃n−1 = r and for any
s ∈ {1, . . . , n − 2}

γ̃s̄ = λs̄ + k̃s − k̃s̄ .

Denote by E1 E2 and E3 the sets of multi-indices (k1̄, . . . , kn−1, k1, . . . , kn−1) such that
k1̄ + · · · + kn−1 + k1 + · · · + kn−1 = r and satisfying respectively the assertions 1, 2, 3. Let
χ be the map defined on E1 ∪ E2 ∪ E3 by

χ (γ ) = γ̃ .

Then by the above arguments χ is a bijection which verifies χ (Ei ) = Ei for i = 1, 2, 3.
Now the pairing γ ↔ γ̃ provides the cancellation of all the sγ with γ = (λn−1 + kn−1 −
kn−1, . . . , λ1̄ + k1 − k1̄) such that (k1̄, . . . , kn̄, k1, . . . , kn) ∈ E1 ∪ E2 ∪ E3 appearing in S.

Indeed s(µn̄+r+2m,γ ) = −s(µn̄+r+2m,γ̃ ). By Corollary 3.1.2 it means that

S =
∑

γ ∈ P+
n−1

γ ∈ (γ ⊕ r )n−1

cλ
γ,r s(µn̄+r+2m,γ )

and the theorem is proved.

Note that the theorem is also true for n = 2. In this case Rn−1 is the set of positive roots of
the root system A1.

Corollary 3.2.2 Let ν, µ ∈ P+
n such that µn̄ ≥ νn−1. Suppose νn̄ ≥ µn̄ (otherwise

Kν,µ(q) = 0) and set l = νn̄ − µn̄ , ν ′ = (νn−1, . . . , ν1̄). Then

Kν,µ(q) =
∑

r+2m=l

qr+m
∑

λ∈(ν ′⊗r )n−1

cλ
ν ′,r Kλ,µ′ (q).
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Proof: Let m, r be two integers such that (µn̄ + r + 2m, ν ′) = ν. Then l = r + 2m.

Consider s(µn̄+r∗+2m∗,γ ) and s(µn̄+r+2m,ν ′) appearing in (13). Suppose that there exists σ ∈ Wn

such that (µn̄ + r∗ + 2m∗, γ ) = σ ◦ (µn̄ + r + 2m, ν ′) = σ (µn̄ + r + 2m + n, νn−1 +
n − 1, . . . , ν1̄ + 1) − (n, . . . , 1). We can not have σ (p) = n̄ with p ∈ {1, . . . , n} otherwise
µn̄ + r∗ + 2m∗ < 0. Set σ ( p̄) = n̄ with p ∈ {1, . . . , n}. If p < n we must have

ν p̄ + p = µn̄ + r∗ + 2m∗ + n.

Thus ν p̄ = µn̄ +r∗+2m∗+n− p > µn̄ which contradicts the hypothesis µn̄ ≥ νn−1. Hence
σ (n̄) = n̄ and r∗+2m∗ = l that is σ ∈ Wn−1. Moreover we have γ = ν ′ since w◦ν ′ = γ and
ν, γ ∈ Pn−1. This proves that s(µn̄+r+2m,ν ′) can not be obtained by applying the straightening
law for Schur functions on s(µn̄+r∗+2m∗,γ ) with (µn̄ + r∗ + 2m∗, γ ) �= (µn̄ + r + 2m, ν ′).
Then the corollary directly follows from (13) and Theorem 2.1.2.

Now suppose that ν = (p)n = (p, 0, . . . , 0) ∈ P+
n . Then by Corollary 3.2.2 for any

µ ∈ Pn
+ we must have

K(p)n ,µ(q) =
∑

r+2m=l

qr+m K(r )n−1,µ′ (q) (15)

with l = p−µn̄ and µ′ defined as in statement of Theorem 3.2.1. This implies that K(p)n ,µ(q)
may be computed recursively. We are going to give an explicit formula for K(p)n ,µ(q). The
vertices of B((p)n)µ = {L ∈ B(p�n−1), wt(b) = µ)} are the words

L = (n)kn · · · (2)k2 (1)k1 (1̄)k1̄ (2̄)k2̄ · · · (n̄)kn̄

with µī = kī − ki for i = 1, . . . , n and k1̄ + · · · + kn̄ + k1 + · · · + kn = p.

Proposition 3.2.3 Let p ≥ 1 be an integer. For any µ ∈ P+
n we have

K(p)n ,µ(q) = q fn (µ)
∑

L∈B((p)n )µ

qθn (L)

where fn(µ) = ∑n
i=1(n − i)µī and θn(L) = ∑n

i=1(2(n − i) + 1)(kī − µī ).

Proof: We proceed by induction on n. Suppose n = 1 we have f1(µ) = 0. We can
write L = (1)p−k1̄ (1̄)k1̄ and µ1̄ = 2k1̄ − p. Thus θ1(L) = k1̄ − µ1̄ = (p − µ1̄)/2 and the
proposition is true by (3).

Now suppose the proposition true for n − 1. First note that fn(µ) = fn−1(µ′) +∑n−1
i=1 µī

where µ′ is defined as in statement of Theorem 3.2.1. The set of vertices obtained by erasing
the letters n and n̄ in B((p)n)µ is the disjoint union of the B((r )n−1)µ′ with r ∈ {0, . . . , l =
p − µn̄) since the number of letters n or n̄ belonging to a vertex L ∈ B((p)n)µ is a least
equal to µn̄. Its reflects the decomposition of B((p)n)µ into its Uq (sp2(n−1))-connected
components. Consider L ∈ B((p)n)µ and denote by L ′ the vertex obtained by erasing all
the letters n and n̄ in L . Let r be such that L ′ ∈ B((r )n−1)µ′ . Then r ∈ {0, . . . , l} and l − r
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is even since it is equal to the number of pairs (n, n̄) erased in L . We set l − r = 2m. Then
kn̄ = µn̄ + m.

We have

θn(L) = θn−1(L ′) + 2
n−1∑

i=1

(kī − µī ) + (kn̄ − µn̄).

From the equality r = ∑
1≤i≤n−1 µī + 2

∑
1≤i≤n−1(kī − µī ) we deduce

θn(L) = θn−1(L ′) + r −
n−1∑

i=1

µī + m.

Set

K =
∑

L∈B((p)n )µ

qθn (L)+ fn (µ).

Then by the above arguments

K =
∑

r+2m=l

∑

L ′∈B((r )n−1)µ′

qθn−1(L ′)+r−∑n−1
i=1 µī +m+ fn−1(µ′)+∑n−1

i=1 µī

=
∑

r+2m=l

qr+m ×
∑

L ′∈B((r )n−1)µ′

qθn−1(L ′)+ fn−1(µ′).

Thus we obtain by the induction hypothesis

K =
∑

r+2m=l

qr+m K(r )n−1,µ′ (q).

Finally K = K(p)n ,µ(q) by (15).

Corollary 3.2.4 Write (12)n for the partition of length n equal to (1, 1, 0, . . . , 0). Then

K(12)n ,0(q) =
n−1∑

i=1

q2i .

To prove this corollary we need the more general lemma above

Lemma 3.2.5 Write (1p)n for the partition of length n (1, . . . 1, 0, . . . , 0) with p ≥ 2
parts equal to 1. Then

K(1p)n ,0(q) = (q − 1)Kγ p,0(q) + q K(1p)n−1,0(q) + q K(1p−2)n−1,0(q)

where γ p = (2, 1, . . . , 1, 0, . . . , 0) ∈ P+
n−1 contains p − 2 parts equal to 1.
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Proof: With µ = 0 formula (13) becomes

Q0 =
∑

γ∈P+
n−1

+∞∑

r=0

+∞∑

m=0

qm+r
∑

λ∈(γ⊗r )n−1

cλ
γ,r Kλ,0(q)s(r+2m,γ ).

By using the straightening law for Schur functions and Theorem 2.1.2 we have to find all
the (r + 2m, γ ) such that there exists σ ∈ Wn−1 satisfying σ ◦ (r + 2m, γ ) = (1p)n that is

σ (r + 2m + n, γn−1 + n − 1, . . . , γ1̄ + 1) = (n + 1, . . . , n − p + 2, n − p, . . . , 1).

(16)

We have r + 2m + n ≥ n hence σ (n̄) ∈ {n̄, n − 1}.

(i) If σ (n̄) = n̄ then r = 1 and m = 0. For k /∈ {1, n}, γk̄ + k > 1 thus σ (1̄) = 1̄. By a
straightforward induction we obtain σ (k̄) = k̄ for k ∈ {1, . . . , n−p}. Moreover we have
γk̄ + k ≤ n for k < n. This implies that γn−1 ∈ {0, 1} since γn−1 + n − 1 ≥ n − 1. We
can not have γn−1 = 0 otherwise γk̄ = 0 for any k < n and the value n in the left hand
side of (16) is not attained. Hence γn−1 = 1 and σ (n − 1) = n − 1. By induction we
can prove that γn−1 = · · · = γn−p+1 = 1 and σ (k̄) = k̄ for k ∈ {n − 1, . . . , n − p + 1}.
It means that σ = id, r = 1, m = 0 and γ = (1p−1)n−1.

(ii) If σ (n̄) = n − 1 then R = m = 0. By using similar arguments than above we obtain
γn−1 = 2, γn−2 = · · · = γn−p+1 = 1 and γn−p = · · · γ1̄ = 0. It means that σ = sn and
γ = γ p. Note that s(0,γ p) = −s((1p)n since sn ◦ (0, γ p) = (1p)n and l(sn) = 1.

Finally by Theorem 2.1.2 we must have

K(1p)n ,0(q) = q ×
∑

λ∈((1p−1)n−1⊗1)n−1

cλ
(1p−1)n−1,1

Kλ,0(q) − Kγ p,0(q)

= (q − 1)Kγ p,0(q) + q K(1p)n−1,0 + q K(1p−2)n−1,0.

Proof: (of Corollary 3.2.4). We proceed by induction on n. For n = 2, K(12),0(q) = q2.
Suppose the corollary true for k < n. Then by applying Lemma 3.2.5 we obtain

K(12)n ,0(q) = (q − 1)K(2)n−1,0(q) + q K(12)n−1,0(q) + q.

It follows from Proposition 3.2.3 that

K(2)n−1,0(q) =
n−1∑

i=1

q2i−1.
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Thus

K(12)n ,0(q) = (q − 1)
n−1∑

i=1

q2i−1 + q
n−2∑

i=1

q2i + q =
n−1∑

i=1

q2i −
n−1∑

i=1

q2i−1

+
n−2∑

i=1

q2i+1 + q =
n−1∑

i=1

q2i .

Note that we can not deduce an explicit formula for K(1p)n ,0(q) with p > 2 from the
recurrence formula of Lemma 3.2.5 as we have done in Proposition 3.2.3 since we have
no explicit formula for Kγ p,0(q) as soon as p > 2. Nevertheless we will give a conjectural
general formula for K(1p)n ,0(q) in Section 5.

4. Cyclage graphs for symplectic tableaux

Given a symplectic tableau T ∈ ST(n), we can factorize w(T ) in a unique way by setting
w(T ) = xu where u is a word and x is a letter. It is easy to verify that u is also the reading
of a symplectic tableau, say T∗ ∈ ST(n). The initial cocyclage operation on T consists of
the insertion x → T∗. We are going to see that all the initial cocyclage operations are not
relevant for defining a charge.

It follows from Paragraph 2.3 that the tableau obtained by cocycling a tableau T ∈ ST(n)
does not belong to ST(n) in general but belongs to ST(n +1). To overcome this problem we
are going to define our cocyclage operation directly on the complete symplectic tableaux
set ST = ∪n≥1 ST(n).

4.1. Cocyclage operation

Set C∞ = ∪n≥1 Cn . Then C∞ is totally ordered by ≤ . Given any T ∈ ST there exists an
integer m ≥ 1 such that T ∈ ST(m). Recall that dī is the number of letters ī of T minus
the number of letters i . For any weight µ ∈ Pn, we will say that T ∈ ST is a tableau of
weight µ if T ∈ ST(m) with m ≥ n, dī = 0 for i > n and dk̄ = µk̄ for k = 1, . . . , n. For
any µ ∈ Pn, the set of tableaux of weight µ is denoted ST(µ). If T ∈ ST(µ), the number
of letters k with k > n which belong to T is equal to the number of letters k̄.

Let w ∈ C∗
∞ and write w = xu with x a letter and u ∈ C∗

∞. The cocyclage shift ξ is the
map defined on C∗

∞ by

ξ (w) = ux .

Lemma 4.1.1 For any n ≥ 1, σ ∈ Wn, and w ∈ C∗
∞, ξ (σ (w)) = σ (ξ (w)).

Proof: The proof is analogous to that of Proposition 5.6.1 of [16].
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Consider a symplectic tableau T = C1 · · · Cr ∈ ST(m) with r > 1. We will say that the
cocyclage operation is authorized for T if there is no letter y ∈ Cm such that y ∈ Ci for all
i = 1, . . . , r and ȳ /∈ T . Thus, since each column of T contains at most one letter ȳ, the
cocyclage operation is not authorized for T when there exists an integer p ∈ {1, . . . , m} such
that |dp̄| is equal to r. If the cocyclage operation is authorized for T,we writew(T ) = xw(T∗)
where T∗ ∈ ST(m) and x ∈ Cm . and we set

U (T ) = x → T∗.

Remarks

(i) U (T ) belongs to ST and wt(U (T )) = wt(T ). More precisely, if T ∈ ST(m) then
U (T ) ∈ ST(m) if the heights of the first columns of T and U (T ) are equal, and
otherwise U (T ) ∈ ST(m + 1).

(ii) If wt(T ) = 0 then the cocyclage operation is always authorized.
(iii) By convention there is no cocyclage operation on the columns.
(iv) Suppose that T contains r columns. Then the number of columns of T∗ is r or r − 1.

Thus U (T ) contains at most r + 1 columns since its shape is obtained by adding one
box to that of T∗. Moreover U (T ) contains r + 1 columns only if the height of its
rightmost column is equal to 1.

Example 4.1.2 Consider the tableaux T1 =
4̄ 3̄ 2̄

2̄ 2̄ 1̄

2

, T2 =
4̄ 3̄ 4

2̄ 2̄

2

and T3 =
4̄ 3̄ 2̄

2̄ 2̄ 1̄

3

. Then the

cocyclage operation is authorized for T1 and T2 but not in T3. For T1, we obtain

x1,∗ = 2̄, T1,∗ =
4̄ 3̄ 1̄

2̄ 2̄
2

and

U (T1) =
4̄ 3̄ 1̄

3̄ 2̄

2̄ 3

.

Similarly we have

x2,∗ = 4, T2,∗ =
4̄ 3̄

2̄ 2̄

2
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and

U (T2) =
4̄ 3̄

2̄ 2̄

2

4

.

Lemma 4.1.3 Suppose T ∈ ST(m) and consider σ ∈ Wm . Then the cocyclage operation
is authorized for T if and only if it is authorized for σ (T ). In this case we have U (σ (T )) =
σ (U (T )).

Proof: The first statement follows from wt(T ) = wt(U (T )) and the second statement
follows from Lemma 4.1.1 and (12).

4.2. Cyclage graphs

We endow the set ST with a structure of graph by drawing an array T → T ′ if and only if
the cocyclage operation is authorized on T and U (T ) = T ′. Write �(T ) for the connected
component containing T . Let t be the translation operation on letters of C∞ defined by
t(k) = k + 1 and t(k̄) = k + 1 for k ≥ 1. We write t(w) (resp. t(T )) for the word (resp.
the tableau) obtained by applying t to each letter of w ∈ C∗

∞ (resp. to each letter of T ∈
ST).

Lemma 4.2.1

(i) Suppose T ∈ ST(m). Then �(T ) and �(σ (T )) are isomorphic for any σ ∈ Wm.
(ii) The cyclage graphs �(T ) and �(t(T )) are isomorphic.

(iii) Suppose that T1 �= T2 ∈ �(T ) are such that U (T1) = U (T2) = T . Then T1 and T2

have different shapes.

Proof: Assertion (i) follows immediately from Lemma 4.1.3.
Let w1 and w2 be two words of Cm . Then w1 ≡m w2 if and only if t(w1) ≡m+1 t(w2).

This implies that P(t(w)) = t(P(w)) for any word w ∈ C∞. Hence t commutes with U .
Since t is a bijection, it is also an isomorphism between �(T ) and �(t(T )) which proves
(ii).

Suppose that T1, T2 ∈ ST(m) have the same shape X. Write w(T1) = xw(R) and w(T2) =
yw(S) with x, y two letters and R, S two symplectic tableaux. Then w(R)x ≡m+1 w(S)y
since P(w(R)x) = P(w(S)y) = T . Then R and S have the same shape Y obtained by
deleting one box in the rightmost column of X . The highest weight vertices of the connected
components of Gm+1 containing w(R)x and w(S)y may be respectively written w(Y0)x0 and
w(Y0)y0 where Y0 ∈ ST(m + 1) is the highest weight tableau of shape Y. The congruence
w(R)x ≡m+1 w(S)y implies the congruence w(Y0)x0 ≡m+1 w(Y0)y0. Thus we must have
wt(w(Y0)x0) = wt(w(Y0)x0). It means that x0 = y0. Hence w(R)x and w(S)y are congruent
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and belong to the same connected component. This implies that w(R)x = w(S)y, thus
xw(R) = yw(S) and T1 = T2. So (iii) is proved.

Assertion (i) of the above lemma permits to restrict to the cyclage graphs �(T ) with
T ∈ ST(µ) and µ ∈ P+

n . Suppose first that µ = 0. By remark (ii) above, the cocyclage
operation is always authorized on symplectic tableaux of weight 0 with at least two columns.
So we can define from T a sequence (Tn) of symplectic tableaux by setting T0 = T and
Tk+1 = U (Tk) while T is not a column.

Proposition 4.2.2 Let T0 ∈ ST(0) and let Tk+1 = U (Tk). Then the sequence (Tn)
is finite without repetition and there exists an integer e such that Te is a column of
weight 0.

To prove this proposition we need two technical lemmas. Given two words w1, w2 ∈ C∗
∞,

write w1�w2 if w1 and w2 can respectively be written w1 = u1x1v and w2 = u2x2v where
u1, u2, v ∈ C∗

∞ and x1, x2 ∈ C∞ satisfy x1 < x2. It means that � is the inverse lexicographic
order on words of C∗

∞. For any symplectic tableau T with r > 1 columns, we denote by
Nr (T ) the number of boxes belonging to the r − 1 rightmost columns of T .

Lemma 4.2.3 Consider µ ∈ P+
n and τ ∈ ST(µ) a tableau with r > 1 columns. Let T, T ′

two tableaux of �(τ ) such that T = U (i)(τ ) and T ′ = U (i+1)(τ ) with i ≥ 0 an integer. Then
the following assertions hold.

1. For any j, S = U ( j)(τ ) contains at most r +1 columns and if it contains r +1 columns,
the height of its rightmost column is equal to 1.

2. Suppose that T contains r or r + 1 columns and Nr (T ) = Nr (T ′). Then only one of
the following situations can happen:

(i) T and T ′ contain r columns and their r-th columns have the same height.
(ii) T contains r columns and T ′ contains r + 1 columns.

(iii) T and T ′ contains r + 1 columns.
(iv) T contains r +1 columns, T ′ contains r columns and the height of the last column

C ′
r of T ′ is equal to h(Cr ) + 1.

Moreover in each case we can write w(T ) = x∗w(T∗) and w(T ′) = x ′
∗w(T ′

∗) with
w(T ′

∗)�w(T∗).
3. Suppose that T containsr orr + 1 columns and Nr (T ) �= Nr (T ′). Then Nr (T ) > Nr (T ′).

Proof:

1. We proceed by induction on j starting from j = 0. If S = U ( j)(τ ) contains at most
r columns, then by Remark (iv) before Example 4.1.2 the assertion is true for U (S).
Now if S = U ( j)(τ ) contains r + 1 columns, then S∗ contains r columns and U (S)
contains either r columns either r + 1 columns with only one box in its rightmost
column.
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2. In case (i) the box which is added to T∗ during the insertion x∗ → T∗ appears on the
bottom of the last column Cr,∗ (eventually empty) of T∗. This insertion can be written
x∗ → T∗ = (x∗ → C1 · · · Cr−1)Cr,∗ = (C ′

1 · · · C ′
r−1)(y → Cr,∗) that is, x∗ is first

inserted in the sub-tableau composed of the r − 1 leftmost columns of T∗ which gives
a new tableau C ′

1 · · · C ′
r−1 and a letter y. This letter is then inserted on the bottom

of Cr,∗. Suppose that there exists an integer i ∈ {1, . . . , r − 1} such that C ′
i �= Ci .

Then if we choose i minimal we have w(C ′
i )�w(Ci ) by (10) and finally w(T ′

∗)�w(T∗).
Now if C ′

i = Ci for i = 1, . . . , r − 1 we have y = x∗ and x∗ ∈ Ci , x̄∗ /∈ Ci for
any i = 1, . . . , r − 1. So the letter x∗ belongs to all the columns of T . Then x∗ is a
barred letter since µ ∈ P+

n and r > 1. Moreover x̄∗ /∈ C∗
r for x∗ → C∗

r is a column.
Thus x̄∗ /∈ T . This contradicts the fact that the cocyclage operation is authorized for
T .

In case (ii) a new column of height 1 is added to the shape of T∗. The insertion
can be written x∗ → T∗ = (x∗ → C1 · · · Cr−1)Cr,∗ = (C ′

1 · · · C ′
r−1)(y → Cr,∗) =

C ′
1 · · · C ′

r−1C ′
r,∗ x ′

∗ that is, x∗ is inserted in the sub-tableau composed of the r − 1 left-
most columns of T∗ which gives a new tableau C ′

1 · · · C ′
r−1 and a letter y. This letter

is then inserted in Cr,∗ which gives the column C ′
r,∗ and the letter x ′

∗. If y �= x∗, we
terminate as in case (i). Otherwise we have C ′

i = Ci for any i = 1, . . . , r − 1. We can
not have x ′

∗ = x∗ since it would imply that x∗ ∈ Cr,∗ which is impossible since Cr

can not contain two letters x∗. Thus x ′
∗ > x∗, w(C ′

r,∗)�w(Cr,∗) and finally w(T ′
∗)�w

(T∗).
Case (iii) is similar to case (i) with h(Cr ) = 1.

In case (iv) Cr+1 contains only the letter x∗ and a new box appears on the bottom
of the column Cr of T∗ during the insertion x∗ → T∗. The insertion can be written
x∗ → T∗ = x∗ → (C1 · · · Cr ) = (C ′

1 · · · C ′
r−1)(y → Cr,∗) = C ′

1 · · · C ′
r−1C ′

r,∗, that is
x∗ is inserted in the sub-tableau composed of the r − 1 leftmost columns of T∗ which
gives the tableau (C ′

1 · · · C ′
r−1) and the letter y. This letter is then inserted on the bottom

of Cr,∗ which gives the column C ′
r,∗. Suppose that y = x∗. We must have x∗ ∈ Ci , and

x̄∗ /∈ Ci for any i = 1, . . . , r − 1. Then x∗ = q̄ with q ≥ 1 that is, is a barred letter
as in (i). Moreover x̄∗, x∗ /∈ Cr because x∗ → Cr is a column. Thus dq̄ (w(T )) = r.
Now T contains r + 1 columns, hence T �= τ . Let j minimal such that R = U (i− j)(τ )
contains r columns. Then dq̄ (w(R)) = dq̄ (w(T )) = r. Thus the cocyclage operation in
not authorized in R and we obtain a contradiction. It means that y �= x∗. So we can
terminate as in case (i).

3. It is clear from the definition of the cocyclage operation.

Lemma 4.2.4 Let T = C1 · · · C p ∈ ST(0) with r > 1 columns. Then there exists an
integer k such that Tk has at most r − 1 columns. Moreover if k is minimal the sequence
T0, . . . , Tk is without repetition.

Proof: Let m ≥ 1 be an integer such that T0, . . . , Tm have r or r + 1 columns and
Nr (Ti ) = Nr (T ) for any i = 1, . . . , m. Then by Lemma 4.2.3 we can write w(Ti ) =
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xi,∗w(Ti,∗), i = 0, . . . , m with

w(Tm,∗)� · · · �w(T1,∗)�w(T0,∗). (17)

This implies that the sequence T0, . . . , Tm is without repetition. Now suppose that T ∈
ST(n). Then, by Remark (i) after Lemma 4.1.1 and the fact that Nr (Ti ) = Nr (T ) the height
of the first column of any tableau Ti , i = 0, . . . , m is always equal to that of T0. Thus
Ti ∈ ST(n) for any i = 0, . . . , m. Denote by p the number of boxes in T0. Since the number
of symplectic tableaux with p boxes belonging to ST(n) is finite there exists an integer
s1 minimal such that Nr (Ts1 ) = Nr (T ) + 1 or Ts1 has at most r − 1 columns. Then the
sequence T0, . . . , Ts1 is without repetition. If Ts1 has at most r − 1 columns we take k = s1.

Otherwise Ts1 has r or r + 1 columns and we can obtain similarly starting from Ts1 an
integer s2 minimal such that Np(Ts2 ) = Np(Ts1 ) + 1 or Ts2 has at most r − 1 columns. The
sequence Ts1 , . . . , Ts2 is without repetition. Then the sequence T0, . . . , Ts2 is also without
repetition. Indeed a tableau Ti with i ∈ {0, . . . , s1 − 1} can not be equal to a tableau Tj

with j ∈ {s1, . . . , s2 − 1} since Nr (Ti ) �= Nr (Tj ). By induction we can construct Ts j+1

from Ts j while Ts j has r or r + 1 columns, such that Nr (Ts j+1 ) = Nr (Ts j ) + 1 and the
sequence T0, . . . , Ts j+1 is without repetition. The procedure terminates since the number of
boxes belonging to the columns r and r + 1 decreases by 1 to each step. So the lemma is
proved.

Proof: (of Proposition 4.2.2): Let r > 1 be the number of columns of T . By Lemma
4.2.4 , we can obtain from T = T0 a tableau Tk1 with at most r − 1 columns and such
that the sequence T0, . . . , Tk1 is without repetition. If r − 1 > 1 we can obtain a tableau
Tk2 from Tk1 with at most r − 2 columns and such that the sequence T0, . . . , Tk2 is without
repetition. We can define Tks+1 from Tks while r −s > 1 such that the sequence T0, . . . , Tks+1

is without repetition. It is clear that the procedure terminates when Tks = Te is a column of
weight 0.

It follows from Proposition 4.2.2 that wt(T1) = wt(T2) �⇒ �(T1) = �(T2) in general. For
example all the columns of weight 0 occur in different connected components.

We give below

�
(

1̄ 1̄ 1 1
)

, �
(

3̄ 3̄ 2̄ 1̄ 1
)

, �




3̄ 1

2̄ 2

1̄ 3





and

�

(
2̄ 1

1̄ 2

)
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3̄

1̄

1

3

↑
3̄ 3

1̄

1

↑ ↖
2̄ 1

1̄

2

3̄ 1

1̄ 3

↑ ↖

2̄ 1 2

1̄

2̄ 1̄

1

2

↑ ↑
2̄ 1̄

1 2

2̄ 1̄ 2

1

↑
1̄ 1̄ 1

1

↑
1̄ 1̄ 1 1
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3̄ 3̄

2̄ 1̄

1

↗ ↖
3̄ 3̄ 2̄

1̄

1

3̄ 3̄ 1

2̄ 1̄

↑ ↑
3̄ 3̄ 2̄ 1

1̄

3̄ 3̄ 2̄

1̄ 1

↑
3̄ 3̄ 2̄ 1̄

1

↑
3̄ 3̄ 2̄ 1̄ 1

3̄

2̄

1̄

1

2

3

↑
3̄ 3

2̄

1̄

1

2

↑
3̄ 2

2̄ 3

1̄

1

↑
3̄ 1

2̄ 2

1̄ 3

2̄

1̄

1

2

↑
2̄ 2

1̄

1

↑
2̄ 1

1̄ 2

(18)

Remarks

(i) Given T ′ ∈ ST, it is possible to find the tableaux T (if there is any) such that U (T ) =
T ′. To do this we find all the pairs (x, T∗) obtained by applying the reverse insertion
algorithm on the outside corners of T ′. By definition of U, the tableaux T are precisely
those which verify w(T ) = xw(T∗) for a pair (x, T∗). They are determined by the pairs

(x, T∗) for which xw(T∗) is the reading of a symplectic tableau. For example T ′ = 2̄ 1

1̄ 2

has only one outside corner which gives x = 1̄ and T∗ = 1̄ 1

1
. There is no tableau T

such that U (T ) = T ′ since 1̄(11̄1) is not the reading of a symplectic tableau.
(ii) In the definition of U (T ) we have restricted to the authorized cocyclages. For type A

the cyclage graphs take also into account non initial cyclages. When T is of dominant
evaluation that is wt(T ) is a dominant weight, they are obtained by considering all
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the factorizations w(T ) ≡ yw(Y ) in the plactic monoid with y �= 1 a letter and Y
a semi-standard tableau. The use of non initial cocyclages with symplectic tableaux
is problematic because it can make appear loops in the cyclage graphs. For example

consider Z =
3̄ 3

1̄

1

. Then w(Z ) = (33̄ 1̄)1 ≡3 2̄(21̄1) ≡3 2̄ 1̄21. Now if we compute

P(ξ (2̄ 1̄21)) we obtain Z ′ = P(1̄212̄) = 2̄ 1̄ 2

1
. So we have a loop since U (3)(Z ′) = Z

(see the cyclage graph �( 1̄ 1̄ 1 1 ) above).
(iii) For type A, every semi-standard tableau belongs to the cyclage graph containing a

row tableau. By considering �( 2̄ 1

1̄ 2
) we see that such a property is false with the

symplectic tableaux even if we consider non initial cyclages. This explains why we
have to consider the cocyclage operation and not the cyclage one.

4.3. Reduction operations

Consider T ∈ ST(µ) with µ ∈ P+
n . If the cocyclage operation is not authorized for T, then

T does not contain any letters n. Indeed there exists p ∈ {1, . . . n} such that µ p̄ is equal to
the number of columns of T . Thus µn̄ = µ p̄ since µn̄ ≥ µ p̄. So each column of T contains
a letter n̄ and no letter n. Let T$ be the tableau obtained first by erasing the letters n̄ in T next
by applying t to the letters x ∈ T such that n̄ < x < n. It is easy to verify that T$ ∈ ST(µ′)
with µ′ = (µn−1, . . . , µ1̄, 0) ∈ P+

n . Now if the cocyclage operation is not authorized on T$,
we can compute (T$)$ and so on to obtain a symplectic tableau T̂ which is either a column of
weight 0 (eventually empty) either a symplectic tableau for which the cocyclage operation
is authorized. We will say that T̂ is obtained by reduction operations from T . By conven-
tion we set T̂ = T if the cocyclage operation is already defined for the symplectic tableau T .

Remark When a reduction operation is done in T ∈ ST(µ) with µ ∈ P+
n , µn̄ is equal to

the first part of the shape of T . To define a charge statistic on symplectic tableaux related to
Kostka-Foulkes polynomials, it seems natural by Lemma 2.1.3 to impose that the charges
associated to T and T̂ should be equal as we will do in Section 5.

From T ∈ ST(µ) we can compute a sequence of symplectic tableaux by setting T0 = T
and

Tk+1 =
{

U (T̂k) if U (T̂k) is not a column

̂(U (T̂k)) otherwise
.

while T̂k is not a column.

Proposition 4.3.1 The sequence (Tn) is finite without repetition and the last symplectic
tableau obtained is a column of weight 0 (eventually empty).

Proof: Suppose first that there is a loop in the sequence (Tn) that is, there exists two
integers k and s such that Tk = Tk+s . Then Ti = T̂i for any i = k, . . . , k + s − 1. Choose
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p ∈ {k, .., k + s − 1} such that the number of columns of Tp is minimal among all the
tableaux Ti , i = k, . . . , k + s − 1. Denote by r the number of columns of Tp. Then by
assertion 1 of Lemma 4.2.3, Tk, . . . , Tk+s−1 contain r or r + 1 columns since every Ti ,

i = k, . . . , k + s − 1 can be obtained by cocyclage operations from Tp. We must have
Nr (Tk) ≤ · · · ≤ Nr (Tk+s). This implies that Nr (Tk) = · · · = Nr (Tk+s−1) for Tk+s = Tk .

Then by assertion 2 of Lemma 4.2.3 we can write w(Ti ) = xi,∗w(Ti,∗),i = k, . . . , k + s
with

w(Tk+s,∗)� · · · �w(Ts,∗).

We obtain a contradiction since w(Tk+s,∗) = w(Ts,∗). It means that there is no loop in the
sequence (Tn). Hence this sequence is without repetition.

Now suppose that this sequence is infinite. Then there exists an integer a such that the
sequence (Tn+a)n≥0 is infinite without reduction operation. In the proof of Lemma 4.2.4
the hypothesis µ = 0 is only used to assure that the sequence of the cocycled tableaux
is defined. It means that this lemma is still true for the sequence (Tn+a)n≥0. Thus we
can define by induction as in proof of Proposition 4.2.2 an infinite sequence of tableaux
(Tv j ) j≥0 such that Tj0 = Tn+a and for any j, Tv j+1 has one column less than Tv j . We derive a
contradiction since the number of columns of Ta is finite. It means that the sequence (Tn) is
finite.

Finally Tu the last tableau of this sequence is necessarily a column such that T̂u = Tu

that is, Tu is a column of weight 0.

Example 4.3.2 The cocyclage operation is not authorized for T =
3̄ 3̄

2̄ 1̄

1

. We have T̂ =

3̄ 2̄

2
. Then T1 = 3̄ 2

2̄
and T2 =

̂
(

3̄

2̄

2

) = 3̄

3
.

4.4. Embedding of cyclage graphs

Each connected component �(T ) contains a tableau Y which admits no cocyclage. This
tableau is necessarily unique. Suppose that Y ∈ ST(m) .Then �(T ) ⊂ ST(m) thus is finite.
Moreover for any Z ∈ �(T ) there exists an integer k such that U (k)(Z ) = T . This means
that �(T ) has a tree structure.

Proposition 4.4.1 Let µ ∈ Pn and consider Tµ ∈ ST(µ). Suppose that there exists
j ≤ i ≤ n such that µī > µ j̄ ≥ 0. Set ν ∈ Pn defined by νk̄ = µk̄ for k �= i, j,
νī = µī − 1 and ν j̄ = µ j̄ + 1. Then there exists a tableau Tν ∈ ST(ν) and a unique
embedding from �(Tµ) to �(Tν) which commutes with U and preserves the shape of the
tableaux.
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Proof: We have seen that �(Tµ) has a finite number of vertices. Write m ≥ n for the lowest
integer such that �(Tµ) is contained in ST(m). By abuse of notation we also denote µ and
ν the weights of Pm defined by µ = (0, . . . , 0, µn̄, . . . , µ1̄) and ν = (0, . . . , 0, νn̄, . . . , ν1̄).
Let σ ∈ Wm such that σ (ī) = m̄, σ ( j̄) = m − 1 and σ (k̄) = k̄ for k �= i, j. Set σ (µ) = µ′

and σ (v) = v′. Write Tµ′ = σ (Tµ). We have �(Tµ′ ) ⊂ ST(m). Then for any T ∈ �(Tµ′ ),
f̃ m−1(w(T )) �= 0. Indeed the crystal graph G(m−1)

m obtained by erasing in Gm all the
arrows of color i �= m − 1 and all the letters x /∈ {m̄, m − 1, m − 1, m} is a Uq (sl2)m−1-
crystal where Uq (sl2)m−1 is the sub-algebra of Uq (sp2m) isomorphic to Uq (sl2) generated
by em−1, fm−1 and tm−1. The vertex w(T )m−1 of G(m−1)

m obtained from w(T ) is of weight
(µ′

m̄, µ′
m−1

) �= 0. Since µī > µ j̄ ≥ 0 we have µ′
m̄ > µ′

m−1
≥ 0. Thus w(T )m−1 is a highest

weight vertex and there is an arrow of color m − 1 and length µ′
m̄ − µ′

m−1
which starts

from w(T ).
Now consider T ∈ �(Tµ′ ) such that U (T ) = T ′ is defined. Write w(T ) = x∗w(T∗). We

must have x∗ �= m̄ since the cocyclage operation is authorized for T . Moreover x∗ �= m.

Otherwise the first column of T ′ would contain the letters m and m̄ (because µ′
m̄ > 0) and

T ′ /∈ ST(m). We are going to prove that

f̃ m−1(x∗w(T∗)) = x∗ f̃ m−1(w(T∗)). (19)

It suffices to establish (19) for x∗ = m − 1. When x∗ = m − 1 there is no letter m − 1
in the second row of T since T ′ ∈ ST(m). Thus all the letters m − 1 of T belong to its
first row. Denote by T1 the sub tableau of T containing all the columns whose the lowest
letter is m̄. The tableau T can be regarded as the juxtaposition T1T2 of the tableaux T1

and T2 where T2 is the sub-tableau obtained by considering the columns of T which do
not occur in T1. Then T1 do not contain any letter m or m − 1 and T2 do not contain
any letter m̄. Suppose that f̃ m−1(x∗w(T∗)) = f̃ m−1(x∗)w(T∗). Then with the notation of
Note 2.2.2 we can write ρ(w(T2)) = (+)s since x∗ = m − 1 = + is not ignored during
the encoding procedure. The pairs (±) ignored are pairs (m − 1, m − 1) or (m − 1, m)
for m̄ do not belong to w(T2). Since ρ(w(T2)) contains only symbols +, all the letters
m − 1 can be paired with letters m − 1. Thus the number of letters m − 1 in w(T2) is
strictly greater than that of letters m − 1. It is also true for w(T ) because w(T1) does
not contain any letter m − 1. This contradicts the inequality µ′

m−1 ≥ 0. Thus (19) is
true.

Denote by V the symplectic tableau of reading f̃ m−1(w(Tµ′ )). We are going to prove
that � : �(Tµ′ ) → �(V ) defined by �(T ) = S if and only if w(S) = f̃ m−1(w(T ))
is an embedding which commutes with U and preserves the shape of the tableaux. We
have �(U (T )) = P( f̃ m−1(w(T∗)x∗)). Suppose that there exists p ∈ {1, . . . , m} such that
ν ′

p̄ is equal to r the number of columns of S. Then since U (T ) is defined and ν ′̄
k = µ′̄

k
for any k �= m, m − 1 we must have p ∈ {m, m − 1}. If ν ′

m̄ = r then we have µ′
m̄ =

r + 1 which is impossible for T contains only r columns. If ν ′
m−1

= r then we obtain
µ′

m̄ ≥ r since µ′
m−1

= r − 1and µ′
m̄ > µ′

m−1
. This contradicts the fact that the cocyclage

operation is authorized for T . Hence the cocyclage operation is authorized for S and we
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can write

U (S) = U (�(T )) = P(ξ ( f̃ m−1(x∗w(T∗))) = P(ξ (x∗( f̃ m−1(w(T∗))))

= P( f̃ m−1(w(T∗))x∗).

Thus we have to show that

f̃ m−1(w(T∗)x∗) = f̃ m−1(w(T∗))x∗.

By (4) it is equivalent to

ϕm−1(w(T∗)) > εm−1(x∗). (20)

We have seen that x∗ �= m and for x∗ �= m − 1 (20) is true since εm−1(x∗) = 0 and
ϕm−1(w(T∗)) ≥ 1. Suppose that x∗ = m − 1. Then the vertex of G(m−1)

m obtained from
w(T∗) as above is of weight (µm̄, µm−1 − 1). Thus ϕm−1(w(T∗)) ≥ µm̄ − µm−1 + 1 ≥ 2
for µm̄ > µm−1. So (20) is satisfied. It is clear that T and �(T ) have the same shape.
Moreover by (iii) of Lemma 4.2.1 � is the unique map from � �(Tµ′ ) to �(V ) which
commutes with U and preserves the shape of the tableaux. Finally, using σ−1 we obtain
from � a unique embedding �σ satisfying �σ (T ) = σ−1�σ (T ) from �(Tµ) to �(Tν) with
Tν = σ−1�σ (Tµ).

Note that Tν is not unique in general since �(ν) = {�(T ), T ∈ ST(µ)} may contain
fewer connected components isomorphic to �(Tν).

Corollary 4.4.2 Let µ ∈ P+
n and Tµ ∈ ST(µ). Write respectively m and p for the sum

of the non zero parts and the number of zero parts in µ. Define κ ∈ P+
m+p by κī = 1 for

p + 1 ≤ i ≤ m + p and κī = 0 otherwise. Then there exists a tableau Tκ ∈ ST(κ) and a
unique embedding of �(Tµ) into �(Tκ ) which commutes with U and preserves the shape of
the tableaux.

Proof: The corollary directly follows by composing embeddings obtained in the previous
Proposition.

Example 4.4.3 If n = 3 and µ = (2, 1, 0) then κ = (1, 1, 1, 0). The cyclage graph
�( 3̄ 3̄ 2̄ 1̄ 1 ) of (18) may be uniquely embedded in �( 4̄ 3̄ 2̄ 1̄ 1 ).
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4̄

3̄

2̄

1̄

1

↑
4̄ 1

3̄

2̄

1̄

↗ ↑

4̄ 1̄

3̄ 1

2̄

4̄ 1̄

3̄

2̄

1

↑ ↑ ↖

4̄ 2̄

3̄ 1̄

1

4̄ 1̄ 1

3̄

2̄

4̄ 2̄

3̄

1̄

1

↑ ↑ ↑ ↖

4̄ 2̄ 1

3̄ 1̄

4̄ 2̄

3̄ 1

1̄

4̄ 3̄

2̄

1̄

1

4̄ 2̄ 1

3̄

1̄

↗ ↑ ↑ ↑

4̄ 2̄ 1̄

3̄ 1

4̄ 2̄ 1̄

3̄

1

4̄ 3̄ 1

2̄

1̄

4̄ 3̄

2̄ 1

1̄

↗ ↑ ↑ ↖

4̄ 2̄ 1̄ 1

3̄

4̄ 3̄

2̄ 1̄

1

4̄ 3̄ 1̄

2̄

1

4̄ 3̄ 1̄

2̄ 1

↗ ↑ ↑
4̄ 3̄ 2̄

1̄

1

4̄ 3̄ 1

2̄ 1̄

4̄ 3̄ 1̄ 1

2̄

↑ ↑
4̄ 3̄ 2̄ 1

1̄

4̄ 3̄ 2̄

1̄ 1

↑
4̄ 3̄ 2̄ 1̄

1

↑
4̄ 3̄ 2̄ 1̄ 1



236 LECOUVEY

5. A charge for symplectic tableaux

5.1. Definition of chn

Definition 5.1.1 Let C be a column of weight 0. Write EC = {i ≥ 1, i ∈ C, i + 1 /∈ C}.
The charge chn(C) of the column C is

chn(C) = 2
∑

i∈EC

(n − i).

Note that for any column T of weight 0,

chn+1(C) = chn(C) + 2card(EC ) and chn+1(t(C)) = chn(C).

Moreover for any i ≥ 1, we have εi (w((C))) = {1 if i∈EC
0 otherwise (see (5)). Thus for any n-

admissible column C of weight 0

chn(C) = 2
n−1∑

i=1

(n − i)εi (w(C)). (21)

Now consider T ∈ ST(µ) with µ ∈ P+
n . Let {T0, . . . , Tp} with Tp = CT a column of

weight 0 be the sequence obtained from T as in Proposition 4.3.1).

Definition 5.1.2 The charge chn(T ) is

chn(T ) = chn(CT ) + p.

Remark

(i) For any tableau T we have by Lemma 4.2.1 (ii)

chn+1(t(T )) = chn(T ).

(ii) If the cocyclage operation is authorized in T, then chn(U (T )) = chn(T )−1. Otherwise
chn(T̂ ) = chn(T ).

5.2. Conjectures

Conjecture 5.2.1 Let �A
k and �A

n−k be respectively the k-th and (n − k)-th fundamental
weights of Uq (sln). Set λk = �A

k + �A
n−k . Then we have the equality:

K�2k ,0(q) = K A
λk ,0(q2)
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where K A
λk ,0

(q2) is the Kostka-Foulkes polynomial for the root system An−1 corresponding
to µ = 0 evaluated at q2.

Write B(2k)0 = {b ∈ B(�2k), wt(b) = 0}. By identifying Uq (sln) with the subalgebra of
Uq (sp2n) generated by the Chevalley’s generators ei , fi and ti , i = 1, . . . , n − 1, B(�2k)
has a structure of crystal graph for Uq (sln) obtained by erasing all the arrows of color 0 that
we denote B A(�2k). This graph decomposes into non isomorphic connected components
and in this decomposition B0(2k) is exactly the set of vertices of weight 0 of the connected
component isomorphic to B A(λk)

By Theorem 5.1 of [12] we can write

K A
λk ,0(q2) =

∑

w(C)∈B(2k)0

q2d′(w(C))

with d′(w(C)) = ∑n−1
i=1 (n − i)εi (w(C)). Then it follows from (21) that Conjecture 5.2.1 is

equivalent to the equality

K�2k ,0(q) =
∑

w(C)∈B(2k)0

qchn (C).

So by Corollary 3.2.4, this conjecture is true for k = 1.

More generally many computations suggest that chn is an analogue for the root system
Cn of Lascoux-Schützenberger’s charge on semi-standard tableaux.

Conjecture 5.2.2 Consider λ, µ ∈ P+
n . Then

Kλ,µ(q) =
∑

w(T )∈B(λ)µ

qchn (T )

where B(λ)µ = {T ∈ B(λ), wt(T ) = µ}.

Example 5.2.3

1. Suppose n = 4, λ(1) = (2, 1, 1, 1) and µ(1) = (1, 1, 1, 0). There are 4 tableaux in ST(4)
of shape λ(1) and weight µ(1). They appear in the cyclage graph of Example 4.4.3. Set

C =





4̄

3̄

2̄

1̄

1




.
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We have ch4(C) = 0 since Ĉ = 4̄

4
. Hence the charges of these 4 tableaux are 1, 2, 3 and

4. This gives the Kostka-Foulkes polynomial Kλ(1),µ(1) (q) = q + q2 + q3 + q4.

2. Suppose n = 3, λ(2) = (2, 2, 0) and µ(2) = (0, 0, 0). There are 6 tableaux in ST(3) of
shape λ(2) and weight µ(2):

T1 = 2̄ 1

1̄ 2
, T2 = 2̄ 1̄

1 2
, T3 = 3̄ 1

1̄ 3
, T4 = 3̄ 1̄

1 3
, T5 = 3̄ 2

2̄ 3
and T6 = 3̄ 2̄

2 3
.

Note that T2, T3 ∈ �( 1̄ 1̄ 1 1 ) and �(T1) is given in (18). We obtain

ch3 (T1) = 2 + ch3





2̄

1̄

1

2




= 4, ch3 (T2) = 4 + ch3





3̄

1̄

1

3




= 8

and ch3(T3) = 6. Moreover T5 = t(T1) and T6 = t(T2). Thus ch3(T5) = 4 − 2 = 2 and
ch3(T6) = 8 − 2 × 2 = 4. By an easy computation we obtain

U (4)(T4) =





4̄

1̄

1

4




.

Hence ch3(T4) = 4 + 2(2 − 1) = 6. This gives the Kostka-Foulkes polynomial Kλ(2),µ(2)

(q) = q2 + 2q4 + 2q6 + q8.

Remark

(i) Once chn defined on ST, it is possible to define chn for any words of C∗
∞ by setting

chn(w) = chn(P(w)).

Then given w1, w2 ∈ C∗
n , the congruence w1 ≡ w2 implies that chn(w1) = chn(w2),

that is chn is a plactic invariant. We recover a property of the Lascoux-Schützenberger’s
charge chA for type A [14] [20]. Nevertheless, it seems difficult to define chn directly
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on words as it is possible for chA. In [12], the statistic chA is characterized in terms
of the combinatorics of crystal graphs. We have not found such a characterization for
the symplectic charge chn .

(ii) It seems to be impossible to define a simple charge statistic on ST(n) by using a
cocyclage operation taking into account the contraction relation (9) and relevant for
computing Kostka-Foulkes polynomials. Consider for example T = 1̄ 1̄ 1 1 for n = 3.

If we apply cocyclages operations based on the complete insertion scheme (with the
contraction relations) we obtain the symplectic tableaux of ST(3),

1̄ 1̄ 1

1
,

2̄ 1̄

1 2
,

2̄ 1 2

1̄
,

2̄ 1

1̄

2

,

3̄ 3

1̄

1

and
1̄

1
(since

3̄

1̄

1

3

is not a 3-admissible column). We know by Proposition 3.2.3 that a charge for T must

necessarily be odd and by Corollary 3.2.4 a charge for 1̄

1
must be even. So we can not

deduce the charge of T from that of 1̄

1
by simply counting the number of cocyclage

operations.
(iii) Lascoux-Schützenberger’s proof of the equality

Kλ,µ(q) =
∑

w(T )∈B(λ)µ

qchA(T )

for type A is based on the Morris recurrence formula. We have seen that Theorem 3.2.1
can be regarded as an analogue of this formula for type Cn. It permits to decompose a
Kostka-Foulkes polynomial for type Cn in terms of Kostka-Foulkes polynomials for type
Cn−1. Unfortunately a charge statistic must take into account the contraction relations to
be compatible with the decomposition obtained in this way since the partitions λ such that
B(λ) appears in a decomposition of type B(γ )⊗ B((r )n−1) may be such that |λ| < |µ|. This
is a reason why we are not able to deduce Conjecture 5.2.2 from Theorem 3.2.1.
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