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Conditions for Singular Incidence Matrices
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Abstract. Suppose one looks for a square integral matrix N , for which N N� has a prescribed form. Then the
Hasse-Minkowski invariants and the determinant of N N� lead to necessary conditions for existence. The Bruck-
Ryser-Chowla theorem gives a famous example of such conditions in case N is the incidence matrix of a square
block design. This approach fails when N is singular. In this paper it is shown that in some cases conditions
can still be obtained if the kernels of N and N� are known, or known to be rationally equivalent. This leads for
example to non-existence conditions for self-dual generalised polygons, semi-regular square divisible designs and
distance-regular graphs.
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1. Introduction

Consider a square 2-(v, k, λ) design with incidence matrix N . (We prefer the name ‘square’
to ‘symmetric’, since N is not necessarily symmetric.) Then N N� = λJv + (k − λ)Iv ,
where Jv is the v × v all-ones matrix and Iv is the identity matrix of size v. The Bruck-
Ryser-Chowla theorem is based on two observations (see for example [7] p. 223). The first
one is that det N = det N� is an integer. Therefore det(λJv +(k −λ)Iv) is an integral square,
hence k − λ is a square if v is even. The other observation is that, since N is a non-singular
rational matrix, λJv + (k − λ)Iv is rationally congruent to Iv , and therefore these two
matrices have the same Hasse-Minkowski invariants. These invariants can be expressed
in terms of v, k and λ from which it follows that for odd v the Diophantine equation
(k −λ)X2 + (−1)(v−1)/2λY 2 = Z2 has an integral solution different from X = Y = Z = 0.
Similar approaches work for other square incidence structures for which the determinant or
the Hasse-Minkowski invariants of N N� are known. See for example [7], Chapter 12. It is
clear that this approach gives no conditions if N is singular. In the present paper we modify
the mentioned approach such that we still find conditions for singular N . The key lemma
is a simple trick that changes a singular N into a non-singular matrix M in such a way that
for some types of designs it is still possible to compute the Hasse-Minkowski invariants or
the (square free part of the) determinant of M M�.

Lemma 1 Suppose N is a real v × v matrix of rank v − m. Let Z be a real v × v matrix
of rank m, such that N�Z = N Z� = O. Define M = N + Z , then

(i) M M� = N N� + Z Z�,
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(ii) the eigenvalues of M M�are the positive eigenvalues of N N� together with the positive
eigenvalues of Z Z�,

(iii) M M� is non-singular.

Proof: Part (i) is staightforward. To prove (ii), first notice that N N�and Z Z�commute, so
they have a common orthogonal basis of eigenvectors. Suppose v is such an eigenvector that
corresponds to a positive eigenvalue of N N�. Then v is orthogonal to the kernel of N N�,
which is the span of the columns of Z . Hence Z�v = 0, so the corresponding eigenvalue of
Z Z� equals 0. Similarly, a positive eigenvalue of Z Z� corresponds to an eigenvalue 0 of
N N�. This proves (ii), since N N� has v − m positive eigenvalues, and Z Z� has m positive
eigenvalues. Statement iii follows because M M� has only positive eigenvalues.

For a given N , a matrix Z with the required properties always exists. One way to make
such a Z is the following. Take rational v × m matrices L and R, whose columns form a
basis for the left and the right kernel of N , respectively. Then rank L = rank R = m and
N�L = N R = O . Therefore Z = L R� has the desired properties.

In the coming sections we will consider two kinds of square designs for which something
new can be said: Self-dual designs and semi-regular square divisible designs.

2. Self-dual designs

Consider two m-dimensional subspaces V and W of the vectorspace lQv . Let L and R be
rational v × m matrices whose columns span V and W , respectively. We call the subspaces
V and W rationally equivalent if L�L and R�R are rationally congruent matrices, which
means that S�L�L S = R�R for some non-singular rational matrix S. Note that rational
equivalence of vectorspaces does not depend on the choice of L and R.

Lemma 2 Let N be a rational v × v matrix. If the left kernel and the right kernel of N
are rationally equivalent then the product of the non-zero eigenvalues of N N� is a rational
square.

Proof: Let L and R be rational v×m matrices whose columns form a basis for the left and
the right kernel of N , respectively. Put Z = L R�. Then Z Z� = L R�RL� = L S�L�L SL�

(with S as above). The non-zero eigenvalues of L(S�L�L SL�) coincide with the non-zero
eigenvalues of (S�L�L SL�)L . But det(S�L�L SL�L) = (det S)2(det L�L)2 which is a non-
zero rational square. Thus we have that the product of the non-zero eigenvalues of Z Z� is
a square, and Lemma 1 finishes the proof.

If N is the incidence matrix of a self-dual design (that is, N and N� are isomorphic),
then the left and right kernel of N are obviously rationally equivalent and Lemma 2 gives:

Theorem 1 If N is the incidence matrix of a self-dual design, then the product of the
positive eigenvalues of N N� is an integral square.
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For example if N is the incidence matrix of a self-dual partial geometry with parameters
s (= t) and α (see [5]), the non-zero eigenvalues of N N� are (s + 1)2 of multiplicity 1,
and 2s + 1 − α of multiplicity s2(s + 1)2/α(2s + 1 − α). So if the latter multiplicity is
odd, 2s + 1 − α is a square. In particular if α = 1, the partial geometry is a generalised
quadrangle of order s (denoted by G Q(s)) and we find:

Corollary 1 There exists no self-dual G Q(s) if s ≡ 2 (mod 4) and 2s is not a square.

For example no G Q(6) is self-dual. Similarly, if N is the incidence matrix of a generalised
hexagon of order s (denoted by G H (s)), the non-zero eigenvalues of N N� are (s + 1)2, s
and 3s of multiplicity 1, s(1 + s)2(1 − s + s2)/2 and s(1 + s)2(1 + s + s2)/6, respectively
(see for example [3] p. 203). Thus we find:

Corollary 2 There exists no self-dual G H (s) if s ≡ 2 (mod 4).

Stronger condition are known if the incidence matrix of a G Q(s) or G H (s) is symmetric
(see [9] p. 309). A symmetric incidence matrix clearly implies that the structure is self-
dual, but the converse is not true in general (see [2] for an easy counterexample). Weaker
conditions for the existence of self-dual generalised quadrangles were already found by
Payne and Thas [6].

3. Square divisible designs

Another case when Lemma 1 can be applied is when the left and right kernel of N are
determined by the design requirements. Note that the left kernel of N is the kernel of N N�,
and similarly, the right kernel of N is the kernel of N�N . So the lemma applies for square
incidence matrices N for which N N� and N�N are prescribed. For example, consider a
2-(v, k, λ) design with a v × b incidence matrix where b > v. Extend the v × b incidence
matrix with b − v zero rows. For the b × b matrix N thus obtained N N� is known, and
so is its left kernel. The right kernel of N is in general not known, but there are some
types of designs for which N�N is prescribed. These include strongly resolvable designs
and triangular designs. For these designs Bruck-Ryser-Chowla type conditions have been
worked out; see [4, 7, 8], so we will not do it again.

In this section we consider semi-regular square divisible designs. A divisible design (also
called group-divisible design) with parameters k, g, n, λ1 and λ2, is an incidence structure,
denoted by G D(k, g, n, λ1, λ2), for which the points can be ordered such that the incidence
matrix N satisfies

N N� = λ2 Jv + (λ1 − λ2)Kn,g + (r − λ1)Iv , and N�Jv = k Jv,

where Kn,g is the block diagonal matrix In ⊗ Jg , v = ng is the number of points and
r = ((n − 1)gλ2 + (g − 1)λ1)/(k − 1) is the replication number. The eigenvalues of N N�

are easily seen to be kr , r − λ1, and g(λ1 − λ2) + r − λ1 with multiplicities 1, n(g − 1) and
n − 1, respectively. Assume that N is a square matrix. Then r = k, and the eigenvalues of
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N N� become k2, k − λ1 and k2 − gnλ2. If N is non-singular, the divisible design is called
regular, and necessary conditions for existence have been known for a long time, see [1],
[7] p. 228, or [3] p. 23. If N is singular, either k = λ1 and N = N ′ ⊗ Jn , where N ′ is the
incidence matrix of a square block design (then the divisible design is called singular), or
k2 = ngλ2 and the divisible design is called semi-regular.

Theorem 2 Let D be a design with the property that both D and its dual are a semi-regular
G D(k, g, n, λ1, λ2). Then

(i) if g is even and n is odd, k − λ1 is an integral square,
(ii) if g is even and n ≡ 2 (mod 4) then k − λ1 is the sum of two integral squares,

(iii) if g and n are odd, the equation (k − λ1)X2 + (−1)(g−1)/2gY 2 = Z2 has an integral
solution different from X = Y = Z = 0.

Proof: Suppose N is the incidence matrix of D. We may assume that N N� = N�N ,
which implies that N� and N have the same kernel, so by Lemma 2 the product of the
non-zero eigenvalues of N N� is a square, which proves i . Define Z = (Jn − nIn) ⊗ Jg .
Then rank Z = n − 1, and N N�Z = N�N Z = O , so Z satisfies the requirement for
Lemma 1. Hence

M M� = N N� + Z Z� = (λ2 − gn)Jv + (λ1 − λ2 + gn2)Kn,g + (k − λ1)Iv .

has eigenvalues k2, ρ = k − λ1 and σ = g2n2 of multiplicity 1, n(g − 1) and n − 1
respectively. The Hasse-Minkowski invariant C p(M M�) with respect to the odd prime p
of a matrix M M� of the above form is known, see for example [1].

C p(M M�) = (ρ, −1)n(g−1)(n+g−1)/2
p (σ, −1)n(n−1)/2

p (σ, g)n
p(ρ, g)n

p(σ, λ2 − gn)p

= (ρ, −1)n(g−1)(n+g−1)/2
p (ρ, g)n

p,

where (a, b)p is the Hilbert norm residue symbol, defined by (a, b)p = 1 if for all t the
congruence aX2 + bY 2 ≡ 1 (mod pt ) has a rational solution, and (a, b)p = −1 otherwise.
Since M is a non-singular rational matrix, C p(M M�) = C p(Iv) = 1 for every odd prime
p, and the conditions (ii) and (iii) follow.

For example there exists no G D(18, 4, 9, 6, 9) for which the dual is also such a design.
Note that in case n = 1, D is a square block design and the conditions are those of Bruck,
Ryser and Chowla. The above theorem also has consequences for distance-regular graphs.
Some putative distance-regular graphs imply the existence of square divisible designs (see
[3] p. 22), and in case these divisible designs are semi-regular we obtain new conditions.

Corollary 3 Suppose there exists a distance-regular graph of diameter 4 with 2g2µ ver-
tices and intersection array {gµ, gµ − 1, (g − 1)µ, 1 ; 1, µ, gµ − 1, gµ}. Then

(i) If µ is odd and g ≡ 2 (mod 4) then gµ is the sum of two integral squares.
(ii) If µ and g are odd, then the equation µX2 + (−1)(g−1)/2Y 2 = gZ2 has an integral

solution different from X = Y = Z = 0.
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Proof: Such a distance-regular graph is the incidence graph of a G D(gµ, g, gµ, 0, µ)
for which the dual is also such a design.

For example a distance-regular graph with intersection array {15, 14, 12, 1 ; 1, 3, 14, 15}
does not exist. Note that a distance-regular graph with intersection array {gµ − 1, (g −
1)µ, 1 ; 1, µ, gµ − 1} also gives rise to a semi-regular square divisible design; see [3],
p. 24. But here we find no new restrictions.
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