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Abstract. We define a family of differential operators indexed with fixed point free partitions. When these
differential operators act on normalized power sum symmetric functions qλ(x), the coefficients in the decomposition
of this action in the basis qλ(x) are precisely those of the decomposition of products of corresponding conjugacy
classes of the symmetric group Sn . The existence of such operators provides a rigorous definition of Katriel’s
elementary operator representation of conjugacy classes and allows to prove the conjectures he made on their
properties.
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Notational conventions

In the whole text, λ, µ, ν stand for partitions, with �i , mi , ni denoting the multiplicities of
their parts. Permutations are denoted ρ, σ , τ . Finally recall that c(ρ) is the cycle type of a
permutation ρ and that π (λ) is the canonical permutation of cycle type λ.

1. Introduction

Let λ = (λ1, λ2, . . . , λk) be a partition of weight n and length �(λ) = k, i.e. a finite non
increasing sequence of k positive integers λ1 ≥ λ2 ≥ · · · ≥ λk summing up to n. We write
λ � n or |λ| = n, and λ = 1�1 2�2 . . . n�n when �i parts of λ are equal to i (i = 1 . . . n). Given
a permutation σ ∈ Sn we denote by c(σ ) its cycle type, that is the partition giving the length
of its cycles. Conversely, given a partition λ = (λ1, . . . , λk), the canonical permutation π (λ)
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of cycle type λ is the permutation with cycles (λ1 + · · · + λi−1 + 1, . . . , λ1 + · · · + λi ) for
1 ≤ i ≤ k. Classically, to a partition λ, one associates the conjugacy class Cλ, that is the set
of permutations of cycle type λ, and following [15] we write zλ = 1�1�1!2�2�2! . . . n�n �n!,
so that |Cλ| = n!/zλ.

Let Q[Sn] be the group algebra of the symmetric group over the field Q of rational
numbers and let Zn be the center of this group algebra. The formal sum Kλ = ∑

σ∈Cλ
σ of

the permutations in a conjugacy class Cλ belongs to Zn , and the set {Kλ}λ�n of these formal
sums forms a linear basis for the center Zn .

Here we consider Kλ or Cλ as an operator acting on Zn by multiplication. The multiplica-
tive structure of Zn has been extensively studied in terms of connexion coefficients [5, and
ref. therein], also called structure constants [7, 17, and ref. therein]. These coefficients are
defined for all triples of partitions (λ, µ, ν) of n by

Kλ · Kµ =
∑

ν

cν
λµKν . (1)

In a set of conjectures presented at the conference FPSAC’98 [13] and derived from
previous weaker conjectures [10, 12, and ref. therein], Katriel looks for expressions of
the conjugacy classes as sums of some loosely defined elementary operators. Many ex-
amples of explicit expressions of conjugacy classes indexed by small partitions in terms
of these elementary operators are given in [13] and conjectures are made on the form of
the coefficients. In particular, Katriel requires his expressions to depend only on the re-
duced cycle type: the reduced partition of a partition λ = 1�1 2�2 . . . k�k is the partition
λ̄ = 2�2 . . . k�k , and the reduced cycle type of a permutation is defined accordingly. A par-
tition is reduced if it is equal to its reduced partition, that is, if it contains no part equal
to 1.

In order to define rigorously Katriel’s elementary operators we use a representation of
the action of conjugacy classes on Zn by an action of differential operators on the space of
symmetric functions. Once stated in this form (Definitions 3 and 4) the various observations
of Katriel on this representation are relatively easy to prove: our main result (Theorem 1)
completely settles the conjectures of [10, 12, 13]. Our approach is reminiscent of Goulden
and Jackson’s use of differential operators in slightly different context (see [5] and ref.
therein). Since these results were presented at the 12th International conference on Formal
Power Series and Algebraic Combinatorics [8], Lascoux and Thibon have shown that the
differential operators that we introduce in an elementary way can also be constructed at
a more algebraic level using Gaussian integrals of complex square matrices and vertex
operators [14].

Apart from considering the operators themselves, as we do here, Katriel also formulated
conjectures about their eigenvalues, that is the central characters of the symmetric group
[9, 11]. Remarkably, this approach also leads to a representation of the structure constants
cν
λµ but this time as linearization constants for a new basis of non homogeneous symmetric

functions [2]. Finally it should be mentioned that similar ideas can also be applied to
the calculus of inner tensor, or Kronecker product, of irreducible representations of the
symmetric group, with interesting combinatorial consequences ([6] and [4]).
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2. Symmetric functions

Let x = {x1, x2, . . .} be a set of indeterminates and let � = �Q[x] be the ring of symmetric
functions in x1, x2, . . . over the field Q of rational numbers. The power sums symmetric
functions pλ(x) are defined by

pr (x) = xr
1 + xr

2 + · · · ,
pλ(x) = pλ1 (x) pλ2 (x) . . . pλk (x).

The ordinary scalar product < , > on � is defined on the linear basis {pλ}λ by:

∀ λ, µ < pλ, pµ >= zλδλ,µ.

where δλ,µ is the Kronecker delta. We need the differential operators pλ
⊥ known in the

literature as Hammond’s operators (see [15] or [16]) obtained from the following definition:

Definition 1 For any symmetric function f ∈ �, let f ⊥ be the adjoint operator to the
multiplication by f in λ with respect to the scalar product < , >:

∀ g, h ∈ � < f g, h > = <g, f ⊥h > .

In particular the operator pλ
⊥ is conveniently described as a differential operator on �:

pλ
⊥ = λ1λ2 . . . λk

∂k

∂pλ1∂pλ2 . . . ∂pλk

.

The use of such operators in relation with connexion coefficients is not new and can be
found for instance in [5]. We are interested in representing the multiplication by a conjugacy
class as an action of an operator on the space of symmetric functions. More precisely, we
consider the normalized power sums functions qλ = pλ/zλ with the property that q = {qλ}λ
is an orthogonal basis of �, dual to {pλ}λ. Given a partition λ, we look for an operator Gλ

acting on the basis q and satisfying the condition

∀µ, ν � |λ|, Gλ · qµ [qν] = (Kλ · Kµ) [Kν] .

where f [g] means the coefficient of g in f . Here is a trivial way to do this:

Definition 2 Let λ = (λ1, λ2, . . . , λk) be a partition of n. For any fixed permutation
ρ ∈ Cλ, define the operator Gλ : � → � by

Gλ = 1

zλ

∑

σ∈Sn

pc(ρσ ) pc(σ )
⊥ =

∑

µ,ν�n

cν
λµ

zµ

pν pµ
⊥. (2)
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From this definition and the orthogonality relation p⊥
λ · pµ = zλδλ,µ for partitions of the

same weight, it is immediate that for any partitions µ, λ of n

Gλ · qµ =
∑

ν�n

cν
λµqν .

The operators Gλ are not very interesting because their definition uses the structure
constants cν

λµ which they are meant to produce; however they provide an easy introduction
to what we mean by representing the multiplication in Zn by the action of an operator on
symmetric functions.

Our aim is to define a more interesting family H = {Hλ̄}λ̄ of operators, indexed with
reduced partitions λ̄ and satisfying

∀λ, ∀µ, ν � |λ|, Hλ̄ · qµ [qν] = (Kλ · Kµ) [Kν] .

3. Restricted and extended permutations

In order to define our operators Hλ̄, we need some elementary results on restricted permuta-
tions. For a subset S of [n] = {1, . . . , n}, and a permutation σ ∈ Sn , let σ|S be the restriction
to S obtained by removing all the elements of [n]\S from the disjoint-cycles presentation
of σ . More formally σ|S is such that, for all i ∈ S, σ|S(i) = σ ki (i) where ki is the least
positive integer such that σ ki (i) ∈ S.

For the definition of the operators Hλ̄ we shall need the following observation: If ρ, σ

are two permutations of Sn and S ∈ [n] is such that [n] \ S contains only fixed points of ρ,
we have (ρσ )|S = ρ|Sσ|S . Moreover ρσ can be recovered from (ρσ )|S and σ by inserting
in (ρσ )|S after each i ∈ S the block that separates i and ρ|S(i) in the presentation of σ as a
product of disjoint cycles.

Example If ρ = (1 2 3) and σ = (1 aaa 2 bbb) (3 ccc), then σ|[3] = (1 2) (3), (ρσ )|[3] =
(1 3) (2) and ρσ = (1 aaa 3 ccc) (2 bbb).

Conversely, given a permutation σ0 of Sp, we shall use two ways to extend σ0 to a
permutation of Sn . First, given a composition i = (i1, . . . , i p) with i j ≥ 1, we are interested
in permutations obtained from σ0 by inserting a block of size i j −1 after each point j ∈ [p]
to obtain a permutation of size n = |i |. Let σ

↑i
0 denote one of these permutations.

Second, For p ≤ n, any permutation σ0 of Sp can be extended naturally to a permutation
σ ∈ Sn by adding fixed points to σ0: σ (i) = i for i > p. We call σ the natural extension of
σ0 in Sn . In this way, σ0 ∈ Sp acts by left multiplication on Sn through its natural extension
σ . Observe that for any partition λ, the canonical permutation π (λ) is the natural extension
of the canonical permutation π (λ̄).

4. The operator Hλ̄ and Katriel’s notations

We give two equivalent definitions of the operators Hλ̄.
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Definition 3 Let λ̄ be a reduced partition of weight p, and recall that π (λ̄) denotes the
canonical permutation of cycle type λ̄. Then the operator Hλ̄ : � → � is defined by:

Hλ̄ = 1

zλ̄

∑

σ0∈Sp

∑

i1,...,i p≥1

pc(ρσ ) p⊥
c(σ ), where

{
σ = σ

↑i
0 ,

ρ = π (λ̄1|i |−p).
(3)

The fact that the cycle type of ρσ depends only on the composition i = (i1, . . . , i p), and
not on the elements inserted in σ0 to give σ , is a consequence of the previous discussion on
restricted permutations.

The operator Hλ̄ is closely related to Katriel’s bracket operators (which are not defined
with complete rigor in his papers). A simple variation on his notation is:

〈〈i1 + i2; i3 | i1; i2 + i3〉〉 stands for
∑

i1,i2,i3≥1

p[i1+i2,i3] p⊥
[i1,i2+i3],

where the brackets [ , ] denote multisets of integers (i.e. partitions up to reordering). A
further simplification of this notation (even closer to Katriel’s) is to replace each variable
by its index and write sums as cycles:

〈〈(1, 2)(3) | (1)(2, 3)〉〉 stands for 〈〈i1 + i2; i3 | i1; i2 + i3〉〉

Let us rewrite Definition 3 with this notation:

Definition 4 Let λ̄ be a reduced partition of weight p, and recall that π (λ̄) is the canonical
partition of cycle type λ̄. Then

Hλ̄ = 1

zλ̄

∑

σ0∈Sp

〈〈π (λ̄)σ0 | σ0〉〉. (4)

Finally, Katriel conjectured a symmetry in the coefficients, which allows the introduction
of a last notation:

〈P | Q〉 stands for 〈〈P | Q〉〉 + 〈〈Q | P〉〉

Examples We keep the intermediate notation which we find more descriptive.

H1 = 〈〈i1; i1〉〉 =
∑

i1≥1

pi1 p⊥
i1

H2 = 1

2
〈〈i1; i2 | i1 + i2〉〉 + 1

2
〈〈i1 + i2 | i1; i2〉〉 = 1

2
〈i1 + i2 | i1; i2〉

= 1

2

(
∑

i1,i2≥1

pi1,i2 p⊥
i1+i2

+
∑

i1,i2≥1

pi1+i2 p⊥
i1,i2

)

= 1

2
p2 p⊥

11 + 1

2
p11 p⊥

2 + p3 p⊥
21 + p21 p⊥

3 + p4 p⊥
31

1

2
p4 p⊥

22 + 1

2
p22 p⊥

4 + · · ·
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H3 = 1

3
〈〈i1+i2+i3|i1,i2,i3〉〉 + 1

3
〈〈i1,i2,i3|i1+i2+i3〉〉 + 1

3
〈〈i1+i2+i3|i1+i2+i3〉〉

+ 1

3
〈〈i1+i2,i3|i1,i2+i3〉〉 + 1

3
〈〈i1+i3,i2|i2,i1+i3〉〉 + 1

3
〈〈i2+i3,i1|i3,i1+i2〉〉

= 〈〈i1+i2,i3|i1,i2+i3〉〉 + 1

3
〈i1+i2+i3|i1,i2,i3〉 + 1

3
〈〈i1+i2+i3|i1+i2+i3〉〉

= 1

3

∑

(i1,i2,i3)≥1
n=i1+i2+i3

(
pn p⊥

(i1,i2,i3) + p(i1,i2,i3) p⊥
n + pn p⊥

n + 3p(i1+i3,i2) p⊥
(i1+i2,i3)

)

H22 = 1

8
〈i1;i2;i3;i4|i1+i2;i3+i4〉 + 1

4
〈〈i1+i2;i3;i4|i1;i2;i3+i4〉〉 + 1

4
〈〈i1+i2;i3+i4|i1+i3;i2+i4〉〉

+ 〈〈i1+i2+i3;i4|i1;i2+i3+i4〉〉 + 1

2
〈i1+i2+i3+i4|i1+i2;i3;i4〉 + 1

4
〈〈i1+i2+i3+i4|i1+i2+i3+i4〉〉

Katriel’s global conjecture in [13] is that Kλ “=” Hλ̄. More formally, we shall prove the
following theorem.

Theorem 1 (Global Conjecture) Let λ, µ and ν be partitions of n, then

Hλ̄ · qµ [qν] = (Kλ · Kµ)[Kν].

Observe that applying a permutation of indices in an elementary bracket operator does not
change it. Collecting terms that are equivalent under relabelling of indices, one can form a
sum over “distinct” elementary operators (see examples). The coefficient of each elementary
operator is thus given an immediate interpretation, in accordance with the central conjecture
of Katriel in [13].

Finally an immediate consequence of Definition 4 is that the expansions Hλ̄=
∑

µ,ν aν
µ,λ×

pν p⊥
µ , are symmetric in µ and ν. In terms of Katriel’s notation, this proves that each non

symmetric elementary operator 〈〈P | Q〉〉 appears with the same coefficient as its mirror
image 〈〈Q | P〉〉, so that, as conjectured again by Katriel, the notation 〈P | Q〉 can be
systematically used.

Proof (of Theorem 1): Let p = |λ̄| be the weight of λ̄, ρ0 = π (λ̄) the associated
canonical permutation, and ρ its natural extension in Sn , so that ρ = π (λ̄1n−p). On the one
hand,

Kλ · Kµ[Kν] = |Cλ|
|Cν | Kµ · Kν[Kλ] = zν

zλ

Card{(σ, τ ) ∈ Cµ × Cν | ρσ = τ }

= zν

zλ

Card{σ ∈ Cµ | ρσ ∈ Cν}

= zν

zλ

∑

σ0∈Sp

Card{σ ∈ Cµ | σ|p = σ0, ρσ ∈ Cν} (5)
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Since the support of ρ, i.e. the set of elements moved by ρ, is included in [p], the discussion
of Section 3 applies: Assume that σ is of the form σ ′σ ′′ where σ ′ is a permutation obtained
from σ0 by inserting a block of size i j − 1 after each point j ∈ [p] in the cycles of σ0,
and σ ′ and σ ′′ have disjoint support. Then ρσ = τ ′σ ′′ where τ ′ is obtained by inserting the
same blocks after the same points as before but in the permutation τ0 = ρ0σ0. In particular
the cycle types µ′, ν ′ and µ′′ of σ ′, τ ′ and σ ′′ must satisfy µ = µ′ + µ′′ and ν = ν ′ + µ′′

(where + denotes the disjoint union of parts). In particular, µ′′ is imposed by the choice of
µ′ or ν ′.

Observe now that given a composition i = (i1, . . . , i p), the exact composition of the
blocks that are inserted in σ0 to produce σ ′ has no influence on the resulting cycle types µ′

and ν ′. This allows to define the set C(λ; µ, ν) of compositions such that the corresponding
pair (µ′, ν ′) satisfies µ = µ′ +µ′′ and ν = ν ′ +µ′′ for some µ′′ that depends on (i1, . . . , i p).
Given the composition i , the number of ways to fill in the blocks is ( n−p

n−|i | )·(|i |− p)! (choose
the |i | − p elements inserted and use a permutation to distribute them in the p blocks of
size i1, . . . , i p), and the number of ways to choose σ ′′ is |Cµ′′ | = (n − |i |)!/zµ′′ . Finally we
have:

Card{σ ∈ Cµ | σ|p = σ0, ρσ ∈ Cν}
=

∑

i=(i1,...,i p)∈C(λ;µ,ν)

(
n − p

n − |i |
)

· (|i | − p)! · (n − |i |)!
zµ′′

, (6)

where µ′′ depends on i = (i1, . . . , i p) as before with |i | = |µ′| = |ν ′|. Observing that
zλ = zλ̄(n − p)!, and simplifying we obtain from (5) and (6)

Kλ · Kµ [Kν] = zν

zλ̄

∑

σ0∈Sp

∑

(i1,...,i p)∈C(λ;µ,ν)

1

zµ′′
.

On the other hand, from Definition 3 we have

Hλ̄ · qµ = 1

zλ̄

∑

σ0∈Sp

∑

i1,...,i p≥1

pc(ρσ ′)
p⊥

c(σ ′) pµ

zµ

where

{
σ ′ = σ

↑i
0 ,

ρ = π (λ̄1|i |−p).

Taking µ′ = c(σ ′) we observe that

∂pµ

∂pµ′
=






0 if µ′ ⊂ µ,
�1! . . . �n!

(�1 − �′
1)! . . . (�n − �′

n)!
pµ−µ′ otherwise.

Therefore, with C(µ) denoting the set of compositions i = (i1, . . . , i p) such that µ′ =
c(σ ↑i

0 ) ⊂ µ, we have

Hλ̄ · qµ = 1

zλ̄

∑

σ0∈Sp

∑

(i1,...i p)∈C(µ)

pc(ρσ ′)+µ−c(σ ′)

zµ−c(σ ′)
, where

{
σ ′ = σ

↑i
0 ,

ρ = π (λ̄1|i |−p).
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Finally, taking the coefficient of qν in the above identity, we obtain

Hλ̄ · qµ [qν] = zν

zλ̄

∑

σ0∈Sp

∑

(i1,...i p)∈C(λ;µ,ν)

1

zµ−c(σ ′)
= (Kλ · Kµ)[Kν].

5. Families of connexion coefficients

For a reduced partition λ̄, let Kλ̄(n) be the sum in Zn of all permutations with reduced cycle
type λ̄ if n ≥ |λ̄|, and 0 otherwise.

Let λ̄, µ̄ be reduced partitions and define the coefficients cν̄
λ̄µ̄

(n) by

Kλ̄(n) · Kµ̄(n) =
∑

ν̄

cν̄
λ̄µ̄

(n)K ν̄(n). (7)

In [3] Farahat and Higman prove that these coefficients are polynomials in n. This also
follows from Theorem 1: let k (resp. h) be the largest part of µ̄ (resp. ν̄), and apply the
elementary operator Hλ̄ to qµ̄1n−|µ̄| ; the non-zero contributions are of the form

pα p⊥
β qµ̄1n−|µ̄| [qν̄1n−|ν̄| ]

where α and β are partitions of length |λ̄| having parts of size at most k and h respectively.
There are finitely many such partitions and the contribution of this term is a polynomial in
n of degree a1, the number of 1’s in α.

Theorem 1 is a generalization of this result in the sense that it proves that other families
of coefficients are polynomials in n. For instance, for any reduced partition λ̄ with even
weight, the coefficient

�λ̄(n) = Kλ̄(2n) · K2n (2n) [K2n (2n)]

is a polynomial in n. The expression of H22 presented before gives

�22 (n) = 1

4
p22 p⊥

22 q2n [q2n ] = n(n − 1).

It should be observed that, while Theorem 1 yields a general proof that the coefficients �λ̄(n)
are polynomials, the actual computation of these polynomials is often easier by elementary
techniques. For instance we claim the following.

Proposition 1 For positive integers k and n such that k is even and k ≤ n/2 we have

�22k (n) = H22k q2n [q2n ] =
(

1

22k(2k)!

)
(2k)!

k!
p22k p⊥

22k q2n [q2n ]

= K22k (2n) · K2n (2n)[K2n ] =
(

n

2k

)
(2k)!

k!
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Proof: The proof is obtained with elementary counting techniques. The binomial coeffi-
cient ( n

2k ) comes from choosing 2k transpositions from a set of n transpositions. Then we
have to show that K22k · K22k [K22k ] = (2k)!

k! . In the simple case k = 1 the two products that
give the permutation (1, 2)(3, 4) are

(1, 2)(3, 4) = [(1, 4)(2, 3)][(1, 3)(2, 4)] (8)

= [(1, 3)(2, 4)][(1, 4)(2, 3)]

For a larger k, to obtain the involution (1, 2)(3, 4) . . . (4k − 1, 4k) as a product of two fixed
point free involutions, we have to partition the set of 2k transpositions {(1, 2), (3, 4), . . . ,
(4k − 1, 4k)} in k parts of two transpositions each. There are (2k)!

2k k! such partitions. For each
set {(i1, i2), (i3, i4)} of two transpositions in one partition, there exists 2 decompositions
similar to the decompositions (8) so that for each partition we have 2k decompositions.
Since there is no other possible decomposition, the count is complete.

Observe that in Eq. (8) the products are commutative so that the set of involutions {id, [(1, 2)
(3, 4)], [(1, 4)(2, 3)], [(1, 3)(2, 4)]} involved in the decompositions forms a commutative
subgroup isomorphic to the Klein group K4. So the set of all transpositions involved in each
decomposition of (1, 2)(3, 4) . . . (4k − 1, 4k) as a product of fixed point free involutions
may be arranged in pairs to obtain the direct product of k disjoint copies of K4.

As a last example, let us present an explicit expression for the coefficients H�[p(1 f ,r )

p⊥
(1 j ,m)]. From this, we recover a result of Boccara [1, Coroll. 6.15 and Th. 7.2], that gives

coefficients K(1i ,�) K(1 j ,m)[K(1 f ,r )]. Again, although Katriel’s approach immediately yields
the fact that these coefficients are polynomials in i, j, f for fixed �, m, r , their actual
computation amounts to reproducing Boccara analysis (which we thus omit here).

Proposition 2 For positive integers �, r, m, f, j such that � ≤ f + r = j + m, � − 1 ≡
f + j mod 2 we have:

H�

[
p(1 f ,r ) p⊥

(1 j ,m)

] =
{ (�− f −1

j )(�− j−1
f )(r− j−1)! f !

(�− f − j+1
2 )(m+ j−�)!

if � − 1 ≥ f + j

0 otherwise

Corollary 1 For positive integers �, m, r such that �+m ≥ r +1 and �+m ≡ r +1 mod 2
we have:

K(1i ,�) · K(1 j ,m)
[
K(1 f ,r )

] = r
min{i, j, f }∑

k=max{0,
j+ f −�+1

2 }
f k H�

[
p(1 f −k ,r ) p⊥

(1 j−k ,m)

] = r
min{i, j, f }∑

k=max{0,
j+ f −�+1

2 }

×
(

f

k

)(
�− f +k−1

j−k

)(
�− j+k−1

f −k

)
(r − j + k − 1)!( f − k)!

(
�− f − j+2k+1

2

)
(i − k)!

where i, j, f satisfy i + � = j + m = f + r .
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