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Abstract. We determine invariants like the Smith normal form and the determinant for certain integral matrices
which arise from the character tables of the symmetric groups Sn and their double covers. In particular, we give a
simple computation, based on the theory of Hall-Littlewood symmetric functions, of the determinant of the regular
character table XRC of Sn with respect to an integer r ≥ 2. This result had earlier been proved by Olsson in a
longer and more indirect manner. As a consequence, we obtain a new proof of the Mathas’ Conjecture on the
determinant of the Cartan matrix of the Iwahori-Hecke algebra. When r is prime we determine the Smith normal
form of XRC . Taking r large yields the Smith normal form of the full character table of Sn . Analogous results are
then given for spin characters.
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1. Introduction

In this paper we determine invariants like the Smith normal form or the determinant for
certain integral matrices which come from the character tables of the finite symmetric
groups Sn and their double covers Ŝn. The matrices in question are the so-called regular
and singular character tables of Sn and the reduced spin character table of Ŝn.

In Section 2 we calculate the determinants of the r -regular and r -singular character tables
of Sn for arbitrary integers r ≥ 2, using symmetric functions and some bijections involving
regular partitions. The knowledge of these determinants is equivalent to the knowledge of
the determinants of certain “generalized Cartan matrices” of Sn as considered in [9]. In
particular we obtain a new proof of a conjecture of Mathas about the Cartan matrix of
an Iwahori-Hecke algebra of Sn at a primitive r th root of unity which is simpler than the
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original proof given by Brundan and Kleshchev in [3]. In Section 3 we determine the Smith
normal form of the regular character table in the case where r is a prime. As a special case
the Smith normal form of the character table of Sn may be calculated. We also determine
the Smith normal form of the reduced spin character table for Ŝn. The paper also presents
some open questions.

2. The determinant of the regular part of the character table of Sn

We fix positive integers n, r , where r ≥ 2.

If µ = (µ1, µ2, . . .) is a partition of n we write µ ∈ P and denote by �(µ) the number of
(non-zero) parts of µ. We let zµ denote the order of the centralizer of an element of (con-
jugacy) type µ in Sn . Suppose µ = (1m1(µ), 2m2(µ), . . .), is written in exponential notation.
Then we may factor zµ = aµbµ, where

aµ =
∏

i≥1

imi (µ), bµ =
∏

i≥1

mi (µ)!

Whenever Q ⊆ P we define

aQ =
∏

µ∈Q
aµ, bQ =

∏

µ∈Q
bµ.

Let µ ∈ P. We write µ ∈ R and call µ regular if mi (µ) ≤ r − 1 for all i ≥ 1. We write
µ ∈ C and call µ class regular if mi (µ) = 0, whenever r | i.

We are particularly interested in the integers aC and bC . By [12, Theorem 4] there is a
connection between aC and bC given by

bC = rdC aC , (1)

where the class regular defect number dC is defined by

dC =
∑

µ∈C

d(µ), d(µ) =
∑

i,k≥1

⌊
mi (µ)

rk

⌋
.

Here �·� is the floor function, i.e., �x� denotes the integral part of x . Note that for r > n we
have R = C = P and then dP = 0 and thus aP = bP .

Let XRC denote the regular character table of Sn with respect to r . It is a submatrix of the
character table X of Sn. The subscript RC indicates that the rows of XRC are indexed by
the set R of regular partitions of n, and the columns by the set C of class regular partitions
of n. We want to present a proof of the following result:

Theorem 1 We have

| det(XRC )| = aC .
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This result was first proved in [12], but the proof relied on results of [9] for which the
work of Donkin [4] and Brundan and Kleshchev [3] was used in a crucial way. Our proof
of Theorem 1 does not use [4] or [3]; it is direct and thus much shorter.

In [9], an r -analogue of the modular representation theory for Sn was developed system-
atically, and in particular, an r -analogue of the Cartan matrix for the symmetric groups (and
the corresponding r -blocks) was introduced.

In [2] the explicit value of this latter determinant was conjectured to be rdC in the notation
above; this was proved in [9, Proposition 6.11] using [4] and [3]. This result is now a
consequence of our theorem:

Corollary 2 Let C be the r-analogue of the Cartan matrix of Sn as defined in [9]. Then
we have

det(C) = rdC .

Proof: As is shown in [12] there is a simple equation connecting the determinants of C
and XRC , namely

det(XRC )2 det(C) = aC bC .

Thus in view of Eq. (1) Theorem 1 implies the Corollary.

Mathas conjectured that the determinant of the Cartan matrix of an Iwahori-Hecke al-
gebra of Sn at a primitive r th root of unity should be a power of r ; via [4], the con-
jecture in [2] mentioned above predicted the explicit value of this determinant, thus pro-
viding a strengthening of Mathas’ conjecture. Mathas’ conjecture was proved by
Brundan and Kleshchev [3]; in fact, they also gave an explicit formula for this determi-
nant for blocks of the Hecke algebra. We can now provide an alternative proof of these
conjectures.

Corollary 3 The strengthened Mathas’ conjecture is true.

Proof: Donkin [4] has shown that the Cartan matrix for the Hecke algebra has the same
determinant as the Cartan matrix C considered in Corollary 2.

Based on this and the results on r -blocks in [9], the results in [2] then also give the
determinants of Cartan matrices of r -blocks of Sn explicitly, without the use of [3].

Let us finally mention that in [9, Section 6] there is an explicit conjecture about the Smith
normal form of C. In the case where r is a prime, this is known to be true by the general
theory of R. Brauer. One may also ask about the Smith normal form of XRC ; we answer
this question in this article in the prime case.

We now proceed to describe the proof of Theorem 1. It is obtained by combining The-
orems 4 and 5 below. Theorem 4 evaluates det (XRC )2 using symmetric functions as an
expression involving a primitive r th root of unity. Theorem 5 shows that this expression
equals aC

2. It is based on general bijections involving regular partitions.
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Define

zµ(t) = zµ

∏

j

(1 − tµ j )−1 = zµ

∏

i

(1 − t i )−mi (µ)

where the product ranges over all j for which µ j > 0, and

bλ(t) =
∏

i

(1 − t)(1 − t2) · · · (1 − tmi (λ)
)
.

Let ω = e2π i/r , a primitive r th root of unity.
We use notation from the theory of symmetric functions from [10] or [14]. In partic-

ular, mλ, sλ, and pλ denote the monomial, Schur, and power sum symmetric functions,
respectively, indexed by the partition λ.

Theorem 4 We have

det(XRC )2 =
∏

µ∈C

zµ(ω) ·
∏

λ∈R

bλ(ω).

Proof: Let Qλ(x ; t) denote a Hall-Littlewood symmetric function as in [10, p. 210]. It
is immediate from the definition of Qλ(x ; t) that Qλ(x ; ω) = 0 unless λ ∈ R. Moreover
(see [10, Exam. III.7.7, p. 249]) when Qλ(x ; ω) is expanded in terms of power sums pµ,
only class regular µ appear. Thus [10, (7.5), p. 247] for λ ∈ R we have

Qλ(x ; ω) =
∑

µ∈C

zµ(ω)−1 Xλ
µ(ω)pµ(x),

where Xλ
µ(t) is a Green’s polynomial.

Hence by [10, (7.4)] the matrix X (ω)RC = (Xλ
µ(ω)), where λ ∈ R and µ ∈ C , satisfies

det(X (ω)RC )2 =
∏

µ∈C

zµ(ω)
∏

λ∈R

bλ(ω). (2)

Now consider the symmetric function Sλ(x ; t) as defined in [10, (4.5), p. 224]. It follows
from the formula Sλ(x ; t) = sλ(ξ ) in [10, top of p. 225] that

Sλ(x ; t) = sλ(p j → (1 − t j )p j ),

i.e., expand sλ(x) as a polynomial in the p j ’s and substitute (1 − t j )p j for p j . Since

sλ =
∑

µ

z−1
µ χλ(µ)pµ,
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we have

Sλ(x ; ω) =
∑

µ∈C

zµ(ω)−1χλ(µ)pµ.

The Sλ(x ; ω)’s thus lie in the space A(r ) spanned over Q(ω) by the pµ’s where µ ∈ C .
Since the Qµ(x ; ω)’s for regular µ span A(r ) by [10, Exam. III.7.7, p. 249], the same is true
of the Sλ(s; ω)’s. Moreover, the transition matrix M(S, Q)R R between the Qλ(x ; t)’s and
Sλ(x ; t)’s is lower unitriangular by [10, top of p. 239] and [10, p. 241]. Hence

det M(S, Q)R R = 1. (3)

Let M(S, p)RC denote the transition matrix from the pµ’s to Sλ’s for µ ∈ C and λ ∈ R.
Let Z (t)CC denote the diagonal matrix with entries zλ(t), λ ∈ C . By the discussion above
we have

XRC = M(S, p)RC Z (ω)CC (by the relevant definitions)

= M(S, Q)R R M(Q, p)RC Z (ω)CC

= M(S, Q)R R X (ω)RC Z (ω)−1
CC Z (ω)CC

= M(S, Q)R R X (ω)RC .

Taking determinants and using (2) and (3) completes the proof.

Define

AC (ω) =
∏

µ∈C

∏

i

(1 − ωi )−mi (µ)

BR(ω) =
∏

λ∈R

bλ(ω)−1 =
∏

λ∈R

( ∏

i

(1 − ω)(1 − ω2) · · · (1 − ωmi (λ)
))−1

,

so that by Theorem 4

det (XRC )2 = aC bC AC (ω)BR(ω)−1.

In order to complete the proof of Theorem 1 we thus just need to show:

BR(ω)

AC (ω)
= bC

aC
.

As bC
aC

= rdC this is equivalent to showing

Theorem 5 We have

BR(ω)

AC (ω)
= rdC .
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Clearly the factors 1 − ω j occurring on the left hand side in Theorem 5 depend only on
the residue of j modulo r. Thus

AC (ω)−1 =
r−1∏

s=1

(1 − ωs)α
(s)
C , BR(ω)−1 =

r−1∏

s=1

(1 − ωs)β
(s)
R ,

where

α
(s)
C =

∑

µ∈C

∑

{i |i≡s(mod r )}
mi (µ)

β
(s)
R =

∑

ρ∈R

|{i |mi (ρ) ≥ s}|.

We use the bijections κ (s) defined in Proposition 9 below to show the following:

Proposition 6 For all s ∈ {1, . . . , r − 1} we have

α
(s)
C = β

(s)
R + dC .

This shows then that

BR(ω)

AC (ω)
=

(
r−1∏

s=1

(1 − ωs)

)dC

.

Then Theorem 5 follows from the fact that

r−1∏

s=1

(1 − ωs) = r.

(Simply substitute x = 1 in the identity 1 + x + · · · + xr−1 = ∏r−1
s=1(x − ωs).)

Let m ∈ N. We write m in its r -adic decomposition as m = ∑
j≥0 m jr j , i.e., with

m j ∈ {0, . . . , r − 1} for all j . For m 
= 0, we can write m = ∑
j≥k m jr j , with mk 
= 0.

In the power series convention, k(m) = k is the degree of m and �(m) = mk its leading
coefficient. We also set h(m) = ∑

j≥k+1 m jr j = rk+1q(m) for the higher terms of m. Thus

m = �(m)rk(m) + q(m)rk(m)+1.

For a given a, we define

ha(m) =
∑

j≥a

m jr
j = qa(m)ra, qa(m) =

⌊
m

ra

⌋
.
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We call e ∈ {1, . . . , m} a non-defect number for m, if h(e) = hk(e)+1(m), otherwise e is a
defect number for m (and then h(e) < hk(e)+1(m), and hence q(e) < qk(e)+1(m)). Thus the
non-defect numbers for m are of the form

e = eara + ha+1(m), ea ∈ {1, . . . , ma},

and thus there are
∑

j≥0 m j such numbers. The defect numbers for m are of the form

e = eara + qra+1, ea ∈ {1, . . . , r − 1}, q ∈ {0, . . . , qa+1(m) − 1}.

Their parameters (a, q) thus belong to the set

D(m) = {(a, q) | a ≥ 0, 0 ≤ q < qa+1(m)},

which is of cardinality

d(m) =
∑

a≥1

⌊ m

ra

⌋
,

called the defect of m. For each s ∈ {1, . . . , r − 1} there are exactly d(m) defect numbers
for m with leading coefficient s, namely e = sra + qra+1, where (a, q) ∈ D(m). Thus
clearly we have (r − 1)d(m) defect numbers for m and

m = (r − 1)d(m) +
∑

j≥0

m j .

For µ ∈ P , its defect (as defined at the beginning of this section) is then

d(µ) =
∑

i≥1

d(mi (µ)).

For s ∈ {1, . . . , r − 1} set

D(s)(µ) = {(i, a, q) | �(i) = s, (a, q) ∈ D(mi (µ))}

and

D(µ) =
r−1⋃

s=1

D(s)(µ) .

We have that

d (s)(µ) = |D(s)(µ)| =
∑

{i≥1,�(i)=s}
d(mi (µ))
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and

d(µ) =
r−1∑

s=1

d (s)(µ) = |D(µ)|.

Consider nonzero residues s, t modulo r , let µ = (imi (µ)) and define

T (st)(µ) = {(i, j) | 1 ≤ i, 1 ≤ j ≤ mi (µ), �(i) = s, �( j) = t}.

Glaisher [6] defined a bijection between the sets C and R of class regular and regular
partitions of n. Glaisher’s map G is defined as follows. Suppose that µ = (imi (µ)) ∈ C.

Consider the r -adic expansion of each multiplicity mi (µ):

mi (µ) =
∑

j≥0

mi j (µ)r j

where for all relevant i, j we have mi j (µ) ∈ {0, . . . , r − 1}. Then G(µ) = ρ where for all
i, j, r � i we have mir j (ρ) = mi j (µ).

We show

Proposition 7 If µ ∈ C then |T (st)(µ)| = |T (st)(G(µ))| + d (s)(µ).

Proof: We establish a bijection δ(st)(µ) between T (st)(µ) and the disjoint union T (st)

(G(µ)) ∪ D(s)(µ). If (i, j) ∈ T (st)(µ) and (k( j), q( j)) = (a, q), we have two possibilities

(i) j is a defect number for mi (µ). Then we map (i, j) onto (i, a, q) ∈ D(s)(µ).
(ii) We have j = tra + ha+1(mi (µ)) where 1 ≤ t ≤ mia(µ). Then we map (i, j) onto

(rai, t) ∈ T (st)(G(µ)).

This establishes the desired bijection.

Consider nonzero residues s, t modulo r , and define

T (st)
C = {

(µ, i, j)
∣∣µ ∈ C, (i, j) ∈ T (st)(µ)

}

T (st)
R = {

(ρ, i, j)
∣∣ρ ∈ R, (i, j) ∈ T (st)(ρ)

}

D(s) = {
(µ, i, a, q)|µ ∈ C, (i, a, q) ∈ D(s)(µ)

}
.

Clearly the bijections δ(st)(µ), µ ∈ C, above induce a bijection

δ(st) : T (st)
C ↔ T (st)

R ∪ D(s).

Putting the bijections δ(ts), t = 1, . . . , r − 1 together we obtain a bijection

δ(s) :
r−1⋃

t=1

T (ts)
C ↔

r−1⋃

t=1

T (ts)
R ∪ C,
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where

C =
r−1⋃

t=1

D(t).

In [12, proof of Theorem 4], an involution ι was defined on the set

TC = {(µ, i, j) | µ ∈ C, i, j ≥ 1, mi (µ) ≥ j}.

From the definition of ι it follows that it maps the subset T (st)
C of TC into T (ts)

C . Thus we
conclude

Lemma 8 For all s ∈ {1, . . . , r − 1} there is a bijection

ι(s) :
r−1⋃

t=1

T (st)
C ↔

r−1⋃

t=1

T (ts)
C .

Composing the bijections ι(s) and δ(s) we see

Proposition 8 For all s ∈ {1, . . . , r − 1} there is a bijection

κ (s) :
r−1⋃

t=1

T (st)
C ↔

r−1⋃

t=1

T (ts)
R ∪ C.

Proof of Proposition 6: Just consider the cardinalities of the sets occurring in Proposi-
tion 9.

∣∣∣∣∣

r−1⋃

t=1

T (st)
C

∣∣∣∣∣ =
∑

µ∈C

∑

{i |�(i)=s}
mi (µ) = α

(s)
C .

The latter equality holds because a class regular partition contains no parts divisible by r.
Thus if mi (µ) 
= 0 then �(i) = s if and only if i ≡ s(mod r ).

∣∣∣∣∣

r−1⋃

t=1

T (ts)
R

∣∣∣∣∣ =
∑

ρ∈R

|{i |mi (ρ) ≥ s}| = β
(s)
R .

This is because parts in regular partitions have multiplicities <r . Finally

|C| =
r−1∑

t=1

d (t) =
∑

µ∈C

d(µ) = dC .
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Remark There is of course also a singular character table for Sn, which we denote XR′C ′ .

It is also a submatrix of the character table X of Sn. The subscript R′C ′ indicates that the
rows of XR′C ′ are indexed by the set R′ of singular (i.e. nonregular) partitions of n, and the
columns by the set C ′ of class singular (i.e. non-class regular) partitions of n. For this we have

| det(XR′C ′ )| = bC ′ . (4)

There are different ways of proving this. In [12] there is a proof based on Theorem 1 and a
result in [9].

Another way of proving (4) is via an identity of Jacobi [5, p. 21]. Namely, suppose that
A is an invertible n × n matrix, and write A and A−1 in the block form

A =
[

B C

D E

]
, A−1 =

[
B ′ C ′

D′ E ′

]
,

where B and B ′ are k × k matrices. Then

det E ′ = det B

det A
.

By the orthogonality of characters we have

X−1 = X t

(
z−1
µ

)
,

where 
(z−1
µ ) is the diagonal matrix with the z−1

µ , µ ∈ P , on the diagonal. Equation (4)
follows immediately from this observation and Theorem 1.

Remark If we keep r fixed and let n vary, then the result of Proposition 6 may also be
proved by calculating the generating functions for α

(s)
C , β

(s)
R and dC . Indeed, if P(q) is the

generating function for the number of partitions of n, then Pr (q) = P(q)
P(qr ) is the generating

function for the number of regular partitions of n. We may then express the generating
functions for α

(s)
C , β

(s)
R and dC respectively by

A(s)(q) = Pr (q)
∑

i≥0

qir+s

1 − qir+s

B(s)(q) = Pr (q)
∑

j≥1

q js − q jr

1 − q jr

D(q) = Pr (q)
∑

j≥1

q jr

1 − q jr
.

We omit the details. From this Proposition 6 may be deduced easily.



PROPERTIES OF SOME CHARACTER TABLES 173

3. Smith normal forms of character tables related to Sn

For a partition λ of n, we denote by ξλ the permutation character of Sn obtained by inducing
the trivial character of the Young subgroup Sλ up to Sn . First we explicitly describe the
values of these permutation characters (this is included here as we have not been able to
find a reference for it).

Proposition 10 Let λ, µ ∈ P, k = �(λ), � = �(µ). Then the value ξλ(µ) of the permuta-
tion character ξλ on the conjugacy class of cycle type µ equals the number of ordered set
partitions (B1, . . . , Bk) of {1, . . . , �} such that

λ j =
∑

i∈B j

µi for j ∈ {1, . . . , k}.

Proof: Let σµ be a permutation of cycle type µ. Then (see [8]) ξλ(µ) is the number of
λ-tabloids fixed by σµ. Now clearly, a λ-tabloid is fixed by σµ if and only if its rows
are unions of complete cycles of σµ. Thus such a decomposition of rows corresponds to
an ordered set partition (B1, . . . , Bk) of the cycles of µ with the sum conditions in the
statement of the Proposition.

Remark One may also use a symmetric function argument for computing the values
Rλµ = ξµ(λ). The complete homogeneous symmetric function hλ is the (Frobenius) char-
acteristic of the character ξλ (see [14, Cor. 7.18.3]), so hλ = ∑

µ z−1
µ Rλµ pµ. As the hλ

and mµ are dual bases, as well as the pλ and z−1
µ pµ, it then follows that pλ = ∑

µ Rλµmµ.
Using [14, Prop. 7.7.1] then also gives the formula in Proposition 10.

Corollary 11 Let λ, µ ∈ P . Then we have
(i) ξλ(µ) = 0 unless λ ≥ µ (dominance order).

(ii) ξλ(λ) = bλ = ∏
i mi (λ)!.

(iii) ξλ(λ) | ξλ(µ).

Proof: Using the remark above, parts (i) and (ii) follow immediately by [14, Cor. 7.7.2]
(or one may also prove it directly using Proposition 10). For (iii), we use the combinatorial
description given in Proposition 10. With notation as before, let (B1, . . . , Bk) be an ordered
partition of the set {1, . . . , �} contributing to ξλ(µ), i.e., satisfying the sum conditions. Now
any permutation of {1, . . . , k} which interchanges only parts of λ of equal size leads to a
permutation of the entries of (B1, . . . , Bk) such that the corresponding ordered partition
still satisfies the sum conditions. Hence ξλ(µ) is divisible by

∏
i mi (λ)! = bλ and thus by

ξλ(λ).

We can now determine the Smith normal form for the regular character table of Sn in the
case where r = p is prime.

For an integer matrix A we denote by S(A) its Smith normal form. If p is a prime, we
write Ap′ for the matrix obtained by taking only the p′-parts of the entries. For a set of
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integers M = {r1, . . . , rm} we denote by S(M) or S(r1, . . . , rm) the Smith normal form of
the diagonal matrices with the entries r1, . . . , rm on the diagonal.

Theorem 12 Let p be a prime, and let XRC be the p-regular character table of Sn. Then
we have

S(XRC ) = S(bµ | µ ∈ C)p′ .

Proof: Let Y = YCC = (ξλ(µ))λ,µ∈C denote the part of the permutation character table
of Sn with rows and columns indexed by the class p-regular partitions of n. Set X = XRC .

As the characters χλ with λ in the set R of p-regular partitions of n form a basic set for
the characters on the p-regular conjugacy classes by [9], we have a decomposition matrix
D = DC R with integer entries such that

Y = D · X .

Now by Corollary 11 the permutation character tableY is (with respect to a suitable ordering)
a lower triangular matrix with the bµ, µ ∈ C , on the diagonal. Hence using [12, Theorem 4]
and Theorem 1 we obtain

det(Y)p′ = (bC )p′ = aC = | det(X )| .

Thus det(D) is a p-power, and hence det(D) and det(X ) are coprime. This implies by [11,
Theorem II.15]

S(Y) = S(D X ) = S(D)S(X ) .

Now using the divisibility property in Corollary 11 (iii) we can convert the triangular matrix
Y by unimodular transformations to a diagonal matrix with the same entries bµ, µ ∈ C , on
the diagonal, and hence S(Y) = S(bµ | µ ∈ C). As S(D) is a diagonal matrix with only
p-power entries on the diagonal, this yields the assertion in the Theorem.

Remark Choosing p > n in Theorem 12 shows in particular that the Smith normal form
of the whole character table X is the same as that of the diagonal matrix with diagonal
entries bµ = Rµµ, µ ∈ P . One may also use the language of symmetric functions to
prove this result. Here, one uses that the matrix X is the transition matrix from the Schur
functions to the power sums [14, Cor. 7.17.4]. Since the transition matrix from the monomial
symmetric functions to the Schur functions is an integer matrix of determinant 1 (in fact,
lower unitriangular with respect to a suitable ordering on partitions [14, Cor. 7.10.6]), the
transition matrix Rn = (Rλµ)λ,µ∈P between the mλ’s and pµ’s has the same Smith normal
form as X . Then we use the same arguments as before to deduce the Smith normal form of
Rn .

Remark We do not know at present how Theorem 12 should extend from the prime case
to the case of general r. Some obvious guesses for r -versions do not hold. The following
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weaker version might be true. Let π be the set of primes of r , and for a number m let mπ ′

denote its π ′-part (the largest divisor of m coprime to r ). Then

S(XRC )π ′ = S(bµ | µ ∈ C)π ′ .

Using Theorem 12 above for p = 2 also allows the determination of the Smith normal
form of the reduced spin character table of the double covers of the symmetric groups. For
the background on spin characters of Sn we refer to [7] and [13].

We denote by D the set of partitions of n into distinct parts and by O the set of partitions
of n into odd parts. Note that thus D is the set of 2-regular partitions of n and O is the set
of class 2-regular partitions of n. For each λ ∈ D we have a spin character 〈λ〉 of Sn . If
n − �(λ) is odd, then there is an associate spin character 〈λ〉′ = sgn · 〈λ〉 of Sn and λ is said
to be of negative type; the corresponding subset of D is denoted by D−. The spin characters
can have non-zero values only on the so-called doubling conjugacy classes of the double
cover S̃n of Sn; these are labelled by the partitions in O ∪ D−. More precisely, for any
such partition we have two conjugacy classes in S̃n; one of these is chosen in accordance
with [13], and we denote a corresponding representative by σµ. While the spin character
values on the D− classes are known explicitly (but they are in general not integers, and
mostly not even real), for the values on the O-classes we only have a recursion formula
(due to A. Morris) which is analogous to the Murnaghan-Nakayama formula, and which
shows that these are integers. We then define the reduced spin character table as the integral
square matrix

Zs = (〈λ〉(σµ)) λ∈D
µ∈O

For any integer m ≥ 0, let s(m) be the number of summands in the 2-adic decomposition
of m. For α = (1m1 , 3m3 , . . .) ∈ O we define

kα =
∑

i odd

(mi − s(mi )) .

Then we have

Theorem 13 The Smith normal form of the reduced spin character table Zs of S̃n is given
by

S(Zs) = S
(
2[kµ/2], µ ∈ O

) · S(bµ, µ ∈ O)2′ .

Proof: Let � denote the Brauer character table of S̃n at characteristic 2; this is equal to
the Brauer character table of Sn . Then Zs = Ds ·�, where Ds is a “reduced” decomposition
matrix at p = 2; the reduction corresponds to leaving out the associate spin characters 〈λ〉′
for λ ∈ D−. The matrix Ds is then an integral square matrix. In [1], the Smith normal form
of Ds was determined:

S(Ds) = S
(
2[kµ/2], µ ∈ O

)
.
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As this is a matrix of 2-power determinant and the determinant of the Brauer character table
is coprime to 2, we have

S(Zs) = S(Ds) · S(�) = S
(
2[kµ/2], µ ∈ O

) · S(�) .

Now the Brauer characters and the characters χλ, λ ∈ R = D, are both basic sets for the
characters of Sn on 2-regular classes, hence S(�) = S(XRC ). By Theorem 12 (for p = 2)
we thus obtain

S(�) = S(XRC ) = S(bµ | µ ∈ O)2′ .

This proves the claim.

Remark Let us finally mention some open questions. We have determined the Smith
normal form for the whole reduced spin character table. It is natural to ask whether also a
p-version (or even an r -version) of this holds, or at least, whether the determinant can be
computed similarly as in the ordinary Sn case.

More precisely, for a prime p define

Zs,p = (〈λ〉(σµ)) λ∈Dp
µ∈Op

where Dp and Op denote the sets of class p-regular partitions in D and O, respectively.
Some examples lead to the following conjecture:

S(Zs,p) = S
(
2[kµ/2], µ ∈ Op

) · S(bµ, µ ∈ Op)2′ .

Concerning the determinant, one may ask whether there is an analogue of Theorem 4 in
the spin case.

For Sn as well as its double cover one may also try to look for sectional versions or block
versions for the results on regular character tables.
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