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Abstract. A description is given of finite permutation groups containing a cyclic regular subgroup. It is then
applied to derive a classification of arc transitive circulants, completing the work dating from 1970’s. It is shown
that a connected arc transitive circulant I' of order n is one of the following: a complete graph K;,, a lexicographic
product 2 [Ky], a deleted lexicographic product $[K,] — bX, where ¥ is a smaller arc transitive circulant, or I is
anormal circulant, that is, Autl” has a normal cyclic regular subgroup. The description of this class of permutation
groups is also used to describe the class of rotary Cayley maps in subsequent work.
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1. Introduction

A finite permutation group which contains a cyclic regular subgroup is called a c-group, for
convenience. Characterizing c-groups is an old topic in permutation group theory, initiated
by Burnside (1900), and studied by Schur et al., see for example [17, Chapter 4], [5],
[7, Theorem 1.49] and [9]. The classical result of Schur tells us that a primitive c-group
is 2-transitive or has prime degree. Thus, based on the finite simple group classification,
primitive c-groups are essentially known in 1980’s, see [5, 7, 9]. A precise list of primitive
c-groups was recently given in [8, 13], independently.

Proposition 1.1 (see [13, Corollary 1.2]) A primitive permutation group X of degree n
contains a cyclic regular subgroup G if and only if one of the following holds:

(i) Z, =G < X < AGL(1, p), where p is a prime;

(i1) X = A, withn odd, or S,,, where n > 4,
(iii)) PGL(d, q) < X <PI'L{d, q), and G is a Singer subgroup of X, and n = qqd%]l;

(iv) X = PI'L(2,8), and G = (sa) = Zg, where (s) is a Singer subgroup of X and

o € X \ PSL(2, 8) such that o(c) = 3;
v) (X,n) = (PSL(2, 11), 11), (Myy, 11), or (Ma3, 23).

The main purpose of this paper is to give a description of general c-groups. To state the
description, we need more notation and definitions.
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For a transitive permutation group X on €2, an orbit A of X on Q2 x 2 is called an orbital,
and the digraph with vertex set 2 and arc set A is called an orbital graph of X. (An arc of
a digraph is an ordered pair of adjacent vertices.) An arc-disjoint union of orbital graphs is
called a generalised orbital graph of X.

As usual, denote by K,, the complete graph of order n. By K, we mean the complement
of K,,, that is, the graph with the same vertex as K, and contains no edges. For a digraph I"
with vertex set V and a digraph ¥ with vertex set W, the lexicographic product T'[X] of a
digraph X by a digraph I' is the digraph with vertex set V x W such that (v;, w) is adjacent
to (v2, wy) if and only if either v; is adjacent to v, in I', or v; = v, and w; is adjacent to
wy in 2.

Let I' be a digraph with vertex set €2 such that X < Autl is transitive on €2. For a normal
subgroup N < X which is intransitive on €2, denote by Q2 the set of N-orbits in 2. The
normal quotient Ty of the digraph I induced by N is the digraph with vertex set 2,y such
that for any B, C € Qy, B is adjacent to C if and only if there exist u € B and v € C such
that u is adjacent to v in I'.

A c-group X is called a normal c-group if it contains a normal regular cyclic group. Then
by Proposition 1.1, a primitive c-group is either 2-transitive, or normal. In particular, all
insoluble primitive c-groups are 2-transitive.

A description of c-groups is stated in the following theorem, which shows that either the
structure of X is known, or the structure of some orbital graphs of X is known.

Theorem 1.2 Let X be a permutation group on a set Q2 of degree n. Assume that X contains
a cyclic regular subgroup G. Then one of the following holds:
(1) X has a normal subgroup Y =Yy X Yy X -+ X Y, withr > 1 such that G <Y, and
further,
(1) eachY; is a 2-transitive c-group or a normal c-group of degree n;,
(i) n = niny...n,, and the n; are pairwise coprime.
(2) X has a normal subgroup N such that each connected generalised orbital graph of X
contains a subgraph T which is an orbital graph of X and is of the form T' = T'y[K;],
where b = [N N G|.

A digraph I' is called a Cayley graph if there exist a group G and a subset S C G such
that the vertex set of I' may be identified with G and u is adjacent to v if and only if
vu~! € S. This digraph I' is denoted by Cay(G, S). A Cayley graph I' = Cay(G, S) has an
automorphism group

A

G={2: x> xg forallx e G| g € G},

consisting all right multiplications of elements of G. Thus the subgroup G < Autl" acts
regularly on the vertex set of I'. In particular, I is vertex transitive. Let Aut(G, S) = {o €
Aut(G) | S° = S}. Then each element in Aut(G, §) induces an automorphism of the Cayley
graph I' = Cay(G, S). Moreover, it is easily shown that NAU[F(G) = G:Aut(G, S), see for
example [6]. A Cayley graph I' = Cay(G, S) is called normal if G is normal in AutT", that
is, Autl’ = G:Aut(G, ).
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Let G be a cyclic group, and let I' = Cay(G, S). Then this Cayley graph is called a
circulant. Since Autl” contains the cyclic regular subgroup G, Autl is a c-group. If I is a
normal Cayley graph, that is, G is normal in Autl", then I" is called a normal circulant. The
description of c-groups given in Theorem 1.2 can be used to study circulants. The second
result of this paper is to present a classification of arc transitive circulants. (Recall that a
graph I' is arc transitive if Autl is transitive on the arcs of I'.)

The problem of classifying arc transitive circulants has been investigated for a long time,
dating from 1970’s, and it has been solved for several special cases: A classification of 2-arc
transitive circulants was obtained in [1] for the undirected case and in [16] for the directed
case; while a classification of arc transitive circulants of special orders was given by a
collection of articles: prime order in [2, 3], square-free order in [15], and odd prime-power
order in [19].

For a positive integer b and a digraph I', denote by bI" the digraph consisting of b vertex-
disjoint copies of I'; the digraph I'[K,] — bT is called a deleted lexicographic product,
which is the digraph whose vertex set is the vertex set of I'[K,] and arc set equals the arc
set of I'[K},] minus the arc set of bT".

Theorem 1.3 Let T' be a connected arc transitive circulant of order n which is not a
complete graph. Then either

(1) T is a normal circulant, or

(2) there exists an arc transitive circulant ¥ of order m such that n = mb with b,m > 1
and

_ S[Kp], or
N { S[K,] — bT  with (b, m) = 1.

Remarks

(a) After the previous version of this paper had been submitted for publication, the author
was aware of that the classification of arc transitive circulants given in Theorems 1.3
was also obtained by I. Kovacs [10], independently. Also the referees of this paper
pointed out this to the author.

(b) It is easily shown that a digraph is a circulant if and only if its automorphism group
is a c-group. An arc transitive circulant is therefore exactly an orbital graph of a c-
group. Thus the proof of Theorem 1.3 easily follows from Theorem 1.2, and will not
be presented in this paper. A proof for this classification may be found in [10].

(c) If an arc transitive circulant I is of the form Z[K;] or [K,] — bX, namely I satisfies
part (2) of Theorem 1.3, then I' can be easily reconstructed from a smaller arc transitive
circulant ¥. As the automorphism group of a cyclic group is abelian, normal circulants
may be easily and explicitly constructed. Arc transitive circulants are therefore well-
characterized by Theorem 1.3.

(d) The circulants concerned in Theorem 1.3 are directed graphs. It is easily shown that an
undirected edge transitive circulant I' is arc transitive, and Theorem 1.3 may be easily
changed into a version for the undirected case.
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2. Proof of Theorem 1.2

This section is devoted to proving Theorem 1.2. The proof is based on a result of Evdokimov
and Ponomarenko [4] regarding the 2-closures of c-groups. We here first introduce some
simple properties for the 2-closures of transitive permutation groups.

Let G be a transitive permutation group on 2. The 2-closure of X is the largest subgroup
of Sym(2) which preserves each orbital of X; denoted by X®. We observe the following
properties:

(i) X is 2-transitive if and only if X® = Sym(Q);
(ii) X is primitive if and only if X® is primitive.

Assume that X is imprimitive, and let B be an imprimitive partition of €2, that is, B is a
non-trivial X-invariant partition of . For any block B € B, denote by X? the restriction
of X to B, thatis, X® = (x € X | B* = B) < Sym(B). It is easily shown that an orbital
of X containing an arc (u, v) with u, v € B is also an orbital of X @ 1t follows that B is an
imprimitive block for X®, and B is an imprimitive partition of £ for X®. Thus we have
the third observation:

(iii) X and X® have the same imprimitive partitions of 2.
For the action induced on a block, we further have the following conclusion.

Lemma 2.1 ([18, 5.25]) Let X be a transitive permutation group on 2 such that Q has a
non-trivial X-invariant partition 3. Then for B € BB, we have

(x®)" < (X",
For some c-groups, the 2-closures are known.

Example 2.2 If X is a primitive c-group of degree n, then either X® =S, orn = p is
aprime and X < X® = Z,:Z,, where [ is a proper divisor of p — 1.

A powerful method for studying c-groups comes from Schur ring theory, which was initi-
ated by I. Schur and developed by H. Wielandt, see [17, Chapter 4]. A complete description
of Schur rings over a cyclic group is given in [4, 11, 12]. From the description, the following
result regarding c-groups may be derived.

Theorem 2.3 ([4, 11, 12]) Let X be a c-group on 2, and let XD be the 2-closure of X.

Then one of the following statements holds:

(1) X® =X, x Xo x -+ x X,, where r > 1, each X; = S,,, or a normal c-group of
degree n;, such that (n;,nj) =landn =nn,...n,;

(i) X has a normal subgroup M such that each connected generalised orbital graph con-
tains a subgraph T which is an orbital graph of X and is of the form T' = T'y[K;],
where b = |M N G|.
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The author is grateful to a referee for pointing out and formulating this theorem.
The next lemma shows that if X contains an abelian regular subgroup, then each X-
invariant partition of €2 consists of orbits of a normal subgroup.

Lemma 2.4 ([13, Lemma 3.1]) Let X be a transitive permutation group on 2 which
contains an abelian regular subgroup G. Let B be an X-invariant partition of Q and
B € B, and let K be the kernel of X acting on B. Then B equals the set of K -orbits in <2,
and G N K is regular on B.

Now we are ready to prove Theorem 1.2. In the original version of this paper, a permutation
group theoretical proof of Theorem 1.2 was given, which was independent of Theorem 2.3.
The following proof was suggested by one of the referees. The author is grateful to him for
this suggestion.

Proof of Theorem 1.2: Let X be a c-group on €2 of degree n, and let G be a regular cyclic
subgroup of X. To complete the proof of Theorem 1.2, by Theorem 2.3, we may assume
that the 2-closure X® satisfies

X?P =X, x X, x---x X,,

where r > 1, either X; = §,,, or X; is a normal c-group of degree n;, such that (n;,n;) =1
andn =nny---n,.

Ifr =1and X; =8S,,, then X @=x = S,,, and hence X is a 2-transitive c-group. If
all X;’s are normal c-groups, then X @ is a normal c-group. Since now G < X < X @ it
follows that X is a normal c-group.

Thus we assume that» > 2, and that at least one of X; is a symmetric group, say X; = S,,,,
wheren; > 4. LetY; = XN X;,andletY = (Y1, Y>,...,Y,). Then Y; < X, and for j # i,
wehave Y;NY; = 1.ThusY =Y; x Y, x---xY,,and Y isnormalin X.Let G; = GN X;.
Then |G;| = n;, and for j # i, we have G; N G; = 1. Since (n;, n;) = 1, it follows that
G=G; xGyx---xG,.

Let B be an orbit of X; in ©, and let BB be the set of X;-orbits in 2. Then B is an X®-
invariant partition of . It is easily shown that X; equals the kernel of X® acting on B. It
follows that (X®)8 = X;. Now G; is cyclic and regular on B, and hence X; is a c-group
of degree n;.

LetY; = X N X;. Since G < X, we have that G; < X N X; = Y;. Hence Y; is a c-group
on B, and B is the set of ¥;-orbits in 2. It is easily shown that X B ~ y. If X; is a normal
c-group, then it follows that Y; is also a normal c-group.

Assume that X; = S,,. Then by Lemma 2.1, we have S,, = X; = (X?)8 < (x5)®,
and thus X8 is 2-transitive. So ¥; = X8 is a 2-transitive c-group of degree n;.

Therefore, each Y; is a 2-transitive c-group or a normal c-group, of degree n;, and
G<Y=Y xY,; x---xY,, completing the proof of Theorem 1.2. O
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