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Abstract. A normal (respectively, graded normal) vector configuration A defines the toric ideal IA of a normal
(respectively, projectively normal) toric variety. These ideals are Cohen-Macaulay, and when A is normal and
graded, IA is generated in degree at most the dimension of IA. Based on this, Sturmfels asked if these properties
extend to initial ideals—when A is normal, is there an initial ideal of IA that is Cohen-Macaulay, and when
A is normal and graded, does IA have a Gröbner basis generated in degree at most dim(IA) ? In this paper, we
answer both questions positively for �-normal configurations. These are normal configurations that admit a regular
triangulation � with the property that the subconfiguration in each cell of the triangulation is again normal. Such
configurations properly contain among them all vector configurations that admit a regular unimodular triangulation.
We construct non-trivial families of both �-normal and non-�-normal configurations.

Keywords: toric ideals, triangulations, Hilbert bases, Gröbner bases

1. Introduction

A finite vector configuration A = {ai : i = 1, . . . , n} ⊂ Z
d defines the toric ideal IA:=

〈xu − xv : u, v ∈ N
n,

∑n
i=1 ai ui = ∑n

i=1 aivi 〉 in the polynomial ring R := K[x1, . . . ,

xn] = K[x] where K is a field. Let cone(A), ZA and NA denote the cone, lattice and
semigroup spanned by the R≥0, Z and N-linear combinations ofAwhere N is the set of non-
negative integers. Let dim(A) be the Krull dimension of R/IA which equals the rank of ZA.
Assume dim(A) = d. The configuration A is normal if NA = cone(A)∩ZA and graded if
A spans an affine hyperplane in R

d . A finite set B ⊂ Z
d such that NB = cone(A) ∩ ZA is

called a Hilbert basis of the semigroup cone(A) ∩ ZA. If A is normal, the zero set of IA is
a normal toric variety in A

n
K

of dimension d , and when A is also graded, it is a projectively
normal toric variety in P

n−1
K

of dimension d − 1. See [17] for details on toric ideals. A
survey of recent results and open questions on normal configurations can be found in [2].

It is well known that initial ideals of a polynomial ideal inherit important invariants of the
ideal such as dimension, degree and Hilbert function. Thus it is natural to ask if certain initial
ideals inherit further properties of the ideal such as Cohen-Macaulayness, Betti numbers or
reducedness (of the corresponding scheme). A result of Hochster [9] shows that when A is
normal, IA is Cohen-Macaulay. If A is also graded, then IA is generated by homogeneous
binomials of degree at most d [17, Theorem 13.14]. Motivated by this, Sturmfels asked and
conjectured the following.
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Question 1.1 If A is normal (more generally, if IA is Cohen-Macaulay), is there a mono-
mial initial ideal inω(IA) of the toric ideal IA that is Cohen-Macaulay?

Conjecture 1.2 ( [18, Conjecture 2.8]) If A is a graded, normal configuration then IA
has a Gröbner basis whose elements have degree at most d = dim(A).

In this paper, we show that Question 1.1 has a positive answer and Conjecture 1.2 is true
when A is �-normal. These configurations were defined by Hoşten and Thomas in [11].
We recall the definition. Let � be a pure (d − 1)-dimensional simplicial complex with
vertex set [n] := {1, . . . , n}. We denote the set of facets (d-element faces) of � by max �.
For a set τ ⊆ [n], let Aτ := {ai ∈ A : i ∈ τ }. We say that � is a triangulation
of A if cone(A) = ⋃

σ∈max� cone(Aσ ) and cone(Aσi ) ∩ cone(Aσ j ) = cone(Aσi ∩σ j ) for
all σi , σ j ∈ max �. The Stanley-Reisner ideal of � is the squarefree monomial ideal
〈∏i∈τ xi : τ �∈ �〉 ⊆ R. A cornerstone in the combinatorics of toric initial ideals is the
result by Sturmfels that the radical of a monomial initial ideal inω(IA) of the toric ideal
IA is the Stanley-Reisner ideal of a triangulation �ω of A [17, Theorem. 8.3]. The ideal
inω(IA) is said to be supported on �ω. Triangulations supporting initial ideals of IA are the
regular triangulations of A. A triangulation � of A is unimodular if for each σ ∈ max �,
ZAσ = ZA.

Definition 1.3 If there exists a regular triangulation � of a configuration A such that for
each σ ∈ max �, A∩cone(Aσ ) is a Hilbert basis of cone(Aσ )∩ZA, we call A a �-normal
configuration.

Note that ZA is used in the semigroups of Definition 1.3. All �-normal configurations
are normal. In Sections 3 and 4, we prove our main results.

Theorem 3.1 Let A be a �-normal configuration. Then there exists a term order 	 such
that � = �	 and in	(IA) is Cohen-Macaulay.

Theorem 4.1 Let A be a graded �-normal configuration. Then there exists a term order
	 such that � = �	 and the Gröbner basis of IA with respect to 	 consists of binomials
of degree at most d = dim(A).

It was shown in [11] that if A is �-normal then IA has a monomial initial ideal that
is free of embedded primes. In Section 2 we recall the main features of this initial ideal.
Theorems 3.1 and 4.1 are proved by showing that this same initial ideal is Cohen-Macaulay
and, when A is graded, generated in degree at most d. Our proofs are combinatorial and
rely heavily on the structure of this initial ideal.

The set of �-normal configurations is a proper subset of the set of normal configurations.
They occur naturally in two ways. If A has a regular unimodular triangulation �, then A
is �-normal. If cone(A) is simplicial and we assume that its extreme rays are generated
by a1, . . . , ad , then A is �-normal with respect to the coarsest regular triangulation �

consisting of the unique facet σ = {1, . . . , d}. These were the only examples known so
far. Specific instances of normal configurations that are not �-normal for any � are also
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known [11]. In Section 5 we construct non-trivial families of both �-normal and non-�-
normal configurations.

Theorem 5.4 There are families of �-normal configurations {Ad ⊂ Z
d , d ≥ 5} where

cone(Ad ) is non-simplicial and Ad has no regular unimodular triangulations.

Theorem 5.7 There is a family of normal, graded configurations {Ad ⊂ Z
d , d ≥ 10},

that are not �-normal for any regular triangulation �.

2. Background: An initial ideal without embedded primes

We now recall from [11] the initial ideal of IA without embedded primes when A is �-
normal. The construction uses the standard pair decomposition of a monomial ideal M [19]
which carries detailed information about Ass(M), the set of associated primes of M . Recall
that every monomial prime ideal of R is of the form Pτ := 〈x j : j �∈ τ 〉 for some
τ ⊆ [n]. The monomials of R that do not lie in M are the standard monomials of M .
The support of a monomial xv is defined to be the support of its exponent vector v — i.e.,
supp(xv) = supp(v) := {i ∈ [n] : vi �= 0}.

Definition 2.1 ( [19]) Let M ⊆ R be a monomial ideal. For a standard monomial xu of M
and a set τ ⊆ [n], (xu, τ ) is a pair of M if all monomials in xu · K[x j : j ∈ τ ] are standard
monomials of M . We call (xu, τ ) a standard pair of M if:

1. (xu, τ ) is a pair of M ,
2. τ ∩ supp(xu) = ∅, and
3. the set of monomials in xu · K[x j : j ∈ τ ] is not properly contained in the set of

monomials in xv · K[x j : j ∈ τ ′] for any (xv, τ ′) satisfying (1) and (2).

The set of standard pairs of M is unique and is called the standard pair decomposition of
M since this set provides a decomposition of the standard monomials of M . The standard
pair decomposition of M is usually not a partition of the standard monomials of M . If xv is
a standard monomial of M then there is a standard pair (xu, τ ) of M such that xu divides xv

and supp(xv−u) ⊆ τ . In this case we say that xv is covered by (xu, τ ). We also use (xu, τ )
to denote the set of all standard monomials covered by it.

Theorem 2.2 (A) [19] Let M be a monomial ideal in R. Then,

(1) Pτ ∈ Ass(M) if and only if M has a standard pair of the form (∗, τ ).

(2) Pτ is a minimal prime of M if and only if (1, τ ) is a standard pair of M.
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(B) [17] Let M = inω(IA) be a monomial initial ideal of the toric ideal IA. Then,

(1) if Pτ ∈ Ass(M) then τ is a face of the regular triangulation �ω of A,

(2) Pσ is a minimal prime of M if and only if σ ∈ max �ω, and
(3) for σ ∈ max �ω, the number of standard pairs of M of the form (∗, σ ) is vol(σ ), the

normalized volume of σ in �ω.

We call xu and τ the root and face of the standard pair (xu, τ ). Let A (respectively, Aσ )
be the matrix whose set of columns is A (respectively, Aσ ). The normalized volume of
σ ∈ max �w is the absolute value of the determinant of Aσ divided by the g.c.d. of the
non-zero maximal minors of A.

Theorem 2.3 ( [11, Theorem. 5]) Let A be a �-normal configuration. Then there exists
a term order 	 such that � = �	 and in	(IA) is free of embedded primes.

The term order 	 needed in Theorem 2.3 is described in [11] and is not directly used
in this paper. The ideal in	(IA) is shown to be free of embedded primes via an explicit
description of its standard pairs. This structure is crucial for this paper and hence we
recall it now. Assume without loss of generality that ZA = Z

d . For σ ∈ max �	, let
FPσ := {∑i∈σ λi ai : 0 ≤ λi < 1 } be the half open fundamental parallelopiped of
cone(Aσ ). Then FPσ ∩ Z

d has vol(σ ) elements including the origin.

• For γ ∈ FPσ ∩Z
d , let xuγ be the cheapest monomial with respect to 	 among all xu ∈ R

with Au = γ . It was shown in [11] that supp(xuγ ) ⊆ σin := {i : ai ∈ cone(Aσ ), i /∈ σ }.
• The standard pairs of the initial ideal in	(IA) in Theorem 2.3 are precisely the pairs

(xuγ , σ ) as γ varies in FPσ ∩ Z
d for each σ in max �	. By Theorem 2.2, in	(IA) is thus

free of embedded primes.

For the remainder of this paper we will denote the term order of Theorem 2.3 by 	, the
toric initial ideal in	(IA) of Theorem 2.3 by J and its set of standard pairs by S(J ). Other
term orders will be denoted by ω.

Example 2.4 Let A be the vector configuration consisting of the 13 columns of

A =






1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0

0 0 0 0 1 1 1 1 2 2 2 2 3




 .

Then A is a graded supernormal configuration [10] which means that it is �-normal with
respect to every regular triangulation. Consider the regular triangulation

� = {{1, 4, 13}, {4, 11, 12}, {4, 11, 13}, {11, 12, 13}}.

The configuration A and its regular triangulation � are shown in figure 1. The toric ideal
IA lives in R = K[a, . . . , m]. In figure 1, we have labeled the points of A by the variables
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Figure 1. The graded supernormal configuration A of Example 2.4.

a, . . . , m corresponding to the columns of A, instead of by 1, . . . , 13. The term order
	 in Theorem 2.3 can be induced via the weight vector (7, 5, 3, 1, 5, 3, 1, 1, 3, 1, 0, 1, 1)
refined by the reverse lexicographic order with b > e > c > f > i > g > j >

h > a > d > m > l > k. The initial ideal (computed using Macaulay 2 [7]) is J =
〈 jl, gl, hm, h2, j2, g j, ik, f k, il, f l, jh, cl, gh, ih, ch, i j, f j, ig, ek, el, bl, f h, g2, ck,
bh, cg, ej, i2, f i, c2, ak, f 2, ci, eg, al, eh, f g, cj, bk, ha, c f, bg, ei, bi, e f, b f, ec, bc,
e2, be, b2, dml〉 ⊂ R. Its standard pairs, grouped by the facets of � are:

faces roots

{1, 4, 13} 1, b, c, e, f, g, i, j, bj

{ 4, 11, 13} 1,g,j

{11, 12, 13} 1

{4, 11, 12} 1, h

For σ = {1, 4, 13}, FPσ consists of nine lattice points—Au for each exponent vector u
of the roots 1, b, c, e, f, g, i, j, bj . The last of these is (2, 2, 2)t . The monomials xu of R
such that Au = (2, 2, 2)t in increasing order with respect to 	 are: bj, eg, ci, f 2, ak. Thus,
(bj, {1, 4, 13}) ∈ S(J ).

Remark 2.5 In general, the term order 	 is constructed as in Example 2.4. When presented
with a regular triangulation � for which A is �-normal then choose a weight vector that
induces the triangulation � such that no point is lifted higher than needs be to induce that
triangulation. Namely, every lifted point is in a lower facet of the convex hull of the lifted
configuration. Then break ties with any reverse lexicographic ordering with the vertices of
� being cheaper than any non vertex of �.

3. Cohen-Macaulayness

Theorem 3.1 Let A be a �-normal configuration. Then there exists a term order 	 such
that � = �	 and in	(IA) is Cohen-Macaulay.
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This is done by showing that J has a particular Stanley filtration [12] which implies
Cohen-Macaulayness [12, 15]. Stanley filtrations are special Stanley decompositions.

Definition 3.2 Let M ⊆ R be a monomial ideal. A Stanley decomposition of M is a set
of pairs of M , {(xu, τ )}, that partition the standard monomials of M .

Remark 3.3 Every monomial ideal M has the trivial Stanley decomposition {(xu, ∅) :
xu /∈ M}. There can be many Stanley decompositions of a monomial ideal.

We will show that the standard pair decomposition S(J ) of J can be modified first to a
Stanley decomposition and then to a Stanley filtration of the needed form. For τ ⊆ [n] let
πτ : R → Rτ := K[xi : i /∈ τ ] be the projection map where πτ (xi ) = xi if i /∈ τ and
πτ (xi ) = 1 if i ∈ τ .

Theorem 3.4 ( [17, Section 12.D]) If σ ∈ max �ω for a regular triangulation �ω of A,

then πσ (inω(IA)) is an artinian monomial ideal in Rσ with vol(σ )-many standard monomials
which are precisely the roots of the standard pairs (∗, σ ) of inω(IA).

Corollary 3.5 If (xu, σ ) is a standard pair in S(J ), then every divisor of xu is also the
root of a standard pair in S(J ).

Lemma 3.6 Let (xu, σ ) and (xv, τ ) be two standard pairs in S(J ). If xu �= xv then
(xu, σ ) ∩ (xv, τ ) = ∅.

Proof: Suppose xm ∈ (xu, σ ) ∩ (xv, τ ). Then xm = xuxmσ = xvxmτ with supp(xmσ ) ⊆ σ ,
supp(xmτ ) ⊆ τ and supp(xu), supp(xv) outside the vertices of �	 and thus in particular,
outside σ ∪ τ . Hence, xu = xv. �

Corollary 3.7 If A is normal, cone(A) is simplicial (generated without loss of generality
by a1, . . . , ad ), and J is the special initial ideal of Theorem 2.3 supported on �	 =
{{1, . . . , d}}, then S(J ) is a Stanley decomposition.

Proof: Here A is �	-normal. All standard pairs in S(J ) have face [d] and roots the
standard monomials of π[d](J ) and hence distinct and so, by Lemma 3.6, no two standard
pairs intersect. �

However, if |max �	| > 1, then it is precisely the standard pairs in S(J ) with a common
root that stop S(J ) from being a partition. Such pairs always exist when |max �	| > 1—for
instance, (1, σ ) is in S(J ) for all σ ∈ max �	. We will use the combinatorial notion of
shellings to create new pairs that partition the standard monomials covered by each set of
standard pairs with a common root. In Section 2 we defined σin := {i : ai ∈ cone(Aσ ), i /∈
σ }. The following lemma identifies the faces in all standard pairs that share a root.

Lemma 3.8 If xu is a root of a standard pair in S(J ), then {σ ∈ max�	 : (xu, σ ) ∈
S(J )} = {σ ∈ max �	 : supp(xu) ⊆ σin}.
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Proof: Recall from Section 2 that if (xu, σ ) ∈ S(J ), then supp(xu) ⊆ σin. Conversely,
suppose (xu, τ ) is a standard pair in S(J ) and supp(xu) ⊆ σin for some σ �= τ in max �	.
Then supp(xu) ⊆ τin ∩ σin = (τ ∩ σ )in. Then Au ∈ cone(Aσ∩τ ). Since Au ∈ FPτ ∩ Z

d ∩
cone(Aσ∩τ ), it is also in FPσ ∩ Z

d . Further, xu is the cheapest monomial with respect to 	
among all monomials xv in R with Au = Av. This implies that (xu, σ ) is also a standard
pair of J . �

Definition 3.9 ( [16, Chapter 3, Definition 2.1]) Let C be a pure simplicial complex. A
shelling of C is a linear ordering F1, . . . , Fs of the facets of C such that for each j , 1 < j ≤ s,
the collection of faces of C supported in (F1 ∪ · · · ∪ Fj )\(F1 ∪ · · · ∪ Fj−1) has a unique
minimal face. A simplicial complex C is shellable if it has a shelling.

Let F be a face of a simplicial complex C. Then star(F, C) := {G ∈ C : F ∪ G ∈ C} is
the simplicial complex generated by all G ∈ C containing F . We sometimes write star(F)
for star(F, C) when C is obvious. The following is a mild generalization of Lemma 8.7
in [20].

Lemma 3.10 Let C be a pure shellable simplicial complex with shelling order F1, . . . , Fs.
If F is any face of C then the restriction of the global shelling order to star(F, C) yields a
shelling of star(F, C).

Definition 3.11 For a root xu in S(J ), let δ(xu) := ⋂ {σ : (xu, σ ) ∈ S(J )}.

In the following arguments we fix a root xu of a standard pair in S(J ). By Lemma 3.8,
δ(xu) = ⋂ {σ ∈ max �	 : supp(xu) ⊆ σin} and

max star(δ(xu), �	) = {σ : (xu, σ ) ∈ S(J )} = {σ ∈ max �	 : supp(xu) ⊆ σin}.

If xv divides xu, then star(δ(xu)) ⊆ star(δ(xv)). The regular triangulation�	 is shellable [20].
In the rest of this section, we fix a shelling of �	. By Lemma 3.10, this induces a shelling
of star(δ(xu)). Let us assume without loss of generality that σ1, σ2, . . . , σt is the induced
shelling order of the facets of max star(δ(xu)). For σ j ∈ max star(δ(xu)), let Q

σ j
u be the

unique minimal face in star(δ(xu)) as described in Definition 3.9. It is known [20] that
Q

σ j
u = {v ∈ σ j : σ j\{v} ⊆ σl for some l < j}. For each Q

σ j
u define an interval I

σ j
u :=

{F : Q
σ j
u ⊆ F ⊆ σ j }.

Lemma 3.12 ( [20, pp. 247]) The simplicial complex star(δ(xu)) is the disjoint union of
the intervals I

σ j
u , j = 1, . . . , t .

Example 2.4 (continued) Consider the root g of S(J ) and the shelling order σ1 =
{4, 11, 12}, σ2 = {11, 12, 13}, σ3 = {4, 11, 13} and σ4 = {1, 4, 13} on �	. Then σ3, σ4 is
the induced shelling order of star(δ(g)). From this we attain the sets Qσ3

g = ∅ and Qσ4
g = {1}

and the intervals I σ3
g = {F : F ⊆ {4, 11, 13}} and I σ4

g = {F : {1} ⊆ F ⊆ {1, 4, 13}}.
Clearly, I σ3

g ∪ I σ4
g partitions star(δ(g)) which is the simplicial complex generated by all faces

of {4, 11, 13} and {1, 4, 13}.
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Remark 3.13 Note that by construction, the partial union I σ1
u ∪ I σ2

u ∪· · ·∪ I σl
u is a partition

of the subcomplex with maximal faces σ1, σ2, . . . , σl and that Q
σ j
u is not contained in this

partial union for any j > l.

Definition 3.14 For a root xu in S(J ) and a facet σ ∈ max �	 define the monomial

mσ
u :=






1 if σ ∈ star(δ(xu)), Qσ
u = ∅

∏
l∈Qσ

u
xl if σ ∈ star(δ(xu)), Qσ

u �= ∅
1 otherwise.

Recall that we have fixed a shelling of �	 and thus, by Lemma 3.10, a shelling of
star(δ(xu)) for each root xu in S(J ). Therefore, if σ ∈ max star(δ(xu)), Qσ

u is uniquely
defined. We return to the fixed root xu and the shelling σ1, . . . , σt of star(δ(xu)).

Lemma 3.15 The standard monomials of J in
⋃t

j=1 (xu, σ j ) are partitioned by the pairs

(xu · m
σ j
u , σ j ), j = 1, . . . , t .

Proof: By Lemma 3.12, I σ1
u ∪ I σ2

u ∪ · · · ∪ I σt
u is a partition of star(δ(xu)). Hence, if

xv ∈ ⋃t
j=1 (xu, σ j ) then supp(xv−u) ∈ I

σ j
u for a unique I

σ j
u . By construction, I

σ j
u =

{F : supp(m
σ j
u ) ⊆ F ⊆ σ j } and so xv = xu · xv−u ∈ (xu · m

σ j
u , σ j ). This implies that⋃t

j=1 (xu, σ j ) = ⋃t
j=1 (xu · m

σ j
u , σ j ) where the inclusion ⊆ follows from the previous line

and ⊇ from the fact that (xu · m
σ j
u , σ j ) ⊆ (xu, σ j ) for each j = 1, . . . , t . To see that⋃t

j=1 (xu · m
σ j
u , σ j ) is a partition, suppose xv ∈ (xu · mσi

u , σi ) ∩ (xu · m
σ j
u , σ j ) where i < j .

Then xv−u has support in I σi
u ∩ I

σ j
u = ∅ which implies that xv = xu. However, for j > 1,

m
σ j
u �= 1 as Q

σ j
u �= ∅ which means that xu lies only in (xu, σ1). �

Example 2.4 (continued) As before, the monomial g is a root of S(J ) with the shelling
order induced on star(δ(g)) as above. We attain the monomials mσ3

g = 1 and mσ4
g = a

which is clear from Qσ3
g = ∅ and Qσ4

g = {1}. Then (g, {4, 11, 13}) ∪ (g, {1, 4, 13}) =
(g, {4, 11, 13}) ∪ (g · a, {1, 4, 13}) with the latter union being disjoint.

Theorem 3.16 Let σ1, . . . , σs be the fixed shelling of �	. Then

s⋃

i=1

⋃

(xu,σi )∈S(J )

(
xu · mσi

u , σi
)

(1)

is a Stanley decomposition of J .

Proof: Lemma 3.15 showed how to make the union of the standard pairs of S(J ) with a
common root a disjoint union of pairs of J . By Lemma 3.6, the union (1) of these disjoint
unions is a Stanley decomposition of J . �

The above Stanley decomposition can be organized to have more structure.
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Definition 3.17 [12] Let M ⊆ R be a monomial ideal. A Stanley filtration of M is a
Stanley decomposition of M with an ordering of the pairs {(xvi , τi ) : 1 ≤ i ≤ r} such
that for all 1 ≤ j ≤ r the set {(xvi , τi ) : 1 ≤ i ≤ j} is a Stanley decomposition of
M j := M + 〈xv j+1 , xv j+2 , . . . , xvr 〉. Equivalently, the ordered set {(xvi , τi ) : 1 ≤ i ≤ r} is
a Stanley filtration provided the modules R/M j form a filtration K = R/M0 � R/M1 �

R/M2 � · · · � R/Mr = R/M with R/M j

R/M j−1

∼= K[xi : i ∈ τ j ].

Example 3.18 (from [12]) Let M = 〈x1x2x3〉 ⊂ K[x1, x2, x3]. Then

{(1, ∅), (x1, {1, 2}), (x2, {2, 3}), (x3, {1, 3})}
is a Stanley decomposition of M but no ordering of these pairs is a Stanley filtration of M .
Alternatively, the ordered pairs (1, {1, 3}), (x2, {2, 3}), (x1x2, {1, 2}) form a Stanley filtration
of M .

We now show that the pairs in (1) can be ordered to yield a Stanley filtration of J . The
significance of this for us comes from a result of Simon [15], interpreted as follows by
Maclagan and Smith [12].

Theorem 3.19 If M ⊆ R is a monomial ideal with a Stanley filtration such that for each
face τ of a pair in the filtration, the prime ideal Pτ is a minimal prime of M, then M is
Cohen-Macaulay.

The faces of pairs in the union (1) already index minimal primes of J . Thus to show
that J is Cohen-Macaulay all we need to do is to order the pairs in (1) so that the ordered
decomposition is a Stanley filtration. We do this using the following algorithm.

Algorithm 3.20 Input: The Stanley decomposition (1) of J .
Output: A Stanley filtration of J with the same faces as those in (1).

1: (Local Lists) For each σi , 1 ≤ i ≤ s, order the pairs in (1) with face σi in any way
such that if (xu · mσi

u , σi ) precedes (xv · mσi
v , σi ) then xv does not divide xu. Call this

list Li .
2: (Global List) The global list L is obtained by appending Li to the end of Li−1 for

i = 2, . . . , s.

Proof: Let ri := ∑i
l=1 vol(σl) for i = 1, . . . , s. Then r := rs is the total number of pairs

in (1). Write L as [(xul · mτl
ul
, τl) : 1 ≤ l ≤ r ] where τl = σi when ri−1 < l ≤ ri (r0 := 0)

and xul · mτl
ul

is the root of the (l − ri−1)-th pair in the local list Li constructed in Step 1 of
the algorithm. For 1 ≤ j ≤ r define the partial list L j := [(xul · mτl

ul
, τl) : 1 ≤ l ≤ j] and

the ideal M j := J +〈 xu j+1 · m
τ j+1
u j+1 , xu j+2 · m

τ j+2
u j+2 , . . . , xur · mτr

ur
〉. We need to prove that L j

is a Stanley decomposition of M j . Since L j is already a partition, it suffices to show that
the set of monomials in the pairs in L j is the set of standard monomials of M j .

(i) The standard monomials of M j are contained in the pairs in L j : A standard monomial
xu of M j is a standard monomial of J and hence is covered by a unique pair (xul ·mτl

ul
, τl)
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inL. Also, xu /∈ 〈xu j+1 ·mτ j+1
u j+1 , . . . , xur ·mτr

ur
〉 which implies that xu /∈ (xu j+k ·mτ j+k

u j+k , τ j+k)
for any k ≥ 1. Hence l ≤ j and xu ∈ (xul · mτl

ul
, τl) ∈ L j .

(ii) The monomials in the pairs in L j are standard monomials of M j : Suppose xu lies
in the (unique) pair (xul · mτl

ul
, τl) ∈ L j . Since xu /∈ J , it suffices to show that xu /∈

〈xu j+1 · m
τ j+1
u j+1 , . . . , xur · mτr

ur
〉.

Suppose xu ∈ 〈xu j+1 · m
τ j+1
u j+1 , . . . , xur · mτr

ur
〉. Then there exists p, j + 1 ≤ p ≤ r such that

xup · m
τp
up | xu = xul · mτl

ul
· x∗

τl
where x∗

τl
is a monomial with support in τl . Since supp(xup )

and supp(xul ) are both in [n]\(τp ∪ τl), it follows that xup |xul . Since l < p, by Step 1 of the
algorithm, τp �= τl . Recall that (xul , τl) and (xup , τp) are standard pairs of J . Since xup |xul ,
by Corollary 3.5, (xup , τl) is also in S(J ). This implies that τp and τl are two distinct facets
in star(δ(xup )). Since m

τp
up |xu, Q

τp
up (= supp(m

τp
up )) ⊆ supp(xu)∩⋃s

i=1 σi ⊆ τl . However, this
is a contradiction since τl precedes τp in the shelling order on �	 and hence Q

τp
up cannot

be in τl . Thus m
τp
up � |xu and xu /∈ 〈xu j+1 · m

τ j+1
u j+1 , . . . , xur · mτr

ur
〉 and thus not in M j . �

Example 2.4 (continued) As before, σ1 = {4, 11, 12}, σ2 = {11, 12, 13}, σ3 =
{4, 11, 13} and σ4 = {1, 4, 13} is a shelling order on �	. The (ordered) local lists in
the Stanley filtration produced by Algorithm 3.20 are:
L1 = [(1, {4, 11, 12}), (h, {4, 11, 12})],
L2 = [(1 · m, {11, 12, 13})],
L3 = [(1 · dm, {4, 11, 13}), (g, {4, 11, 13}), ( j, {4, 11, 13})],
L4 = [(1 · a, {1, 4, 13}), (b, {1, 4, 13}), (c, {1, 4, 13}), (e, {1, 4, 13}), ( f, {1, 4, 13}),
(g · a, {1, 4, 13}), (i, {1, 4, 13}), ( j · a, {1, 4, 13}), (bj, {1, 4, 13})].

Proof of Theorem 3.1: Algorithm 3.2 shows that the initial ideal J of Theorem 2.3 has
a Stanley filtration that satisfies the conditions of Theorem 3.19. This theorem guarantees
that J is Cohen-Macaulay. �

Remark 3.21 We remark that even when A is �-normal it is not true that all initial ideals
of IA without embedded primes are Cohen-Macaulay. Take A to be the columns of

A =








1 1 1 1 1 1 1 1

2 2 1 0 1 1 1 1

0 1 2 1 2 1 2 1

1 0 2 0 0 0 1 1








.

Then A admits a unimodular regular triangulation and is hence �-normal. The toric ideal
IA ⊂ K[a, . . . , h] has codimension four and has 46 initial ideals without embedded primes.
Among them, the following two have projective dimension five.

(1) 〈acd, adg, a f g, ae, ag2, ce, c f, eh, f 2, bc2d, f gh〉
(2) 〈acd, adg, a f g, ae, ag2, ce, c f, eh, f 2, f gh, g2h2〉
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The initial ideals of IA were computed using the software package CaTS [6] and then
checked for embedded primes and Cohen-Macaulayness using Macaulay 2. This example
was found by systematic computer search. The matrix presented above, suggested by the
referee, is a nicer row equivalent matrix to the matrix we found. We remark that the first
example of a monomial toric initial ideal without embedded primes that is not Cohen-
Macaulay was found by Laura Matusevich [13]. In that example, IA is not Cohen-Macaulay
and thus A is not normal.

4. Degree bounds

Theorem 4.1 If A is a graded �-normal configuration, then there exists a term order 	
such that � = �	 and the Gröbner basis of IA with respect to 	 consists of binomials of
degree at most d = dim(A).

Theorem 4.1 settles Conjecture 1.2 for the subset of normal configurations that are �-
normal. Since A is graded, IA is homogeneous with respect to the usual grading of R where
deg(xi ) = 1 for i = 1, . . . , n. Hence it suffices to show that IA has an initial ideal of degree
at most d . We will show that the initial ideal J from Theorem 2.3 satisfies this degree bound
when A is graded. This is done by classifying the generators of J into three types, each
of which have degree at most d . The classification arises naturally via the projection maps
{ πσ : σ ∈ max�	 } defined in Section 3.

Proposition 13.15 in [17] shows that Conjecture 1.2 is true whenever A admits a regular
unimodular triangulation. (See also Proposition 13.18 in [17].) Such configurations form a
proper subset of the set of �-normal configurations. For any configuration A and positive
scalar c we can define c · A as the configuration given by multiplying each point in A by
the scalar c. Then for every graded normal A there exists a positive integer cA such that the
configuration defined by all the lattice points in the convex hull of cA · A admits regular
unimodular triangulations and thus has a Gröbner basis of degree at most d. See [1] and [2]
for many such results.

Note that Conjecture 1.2 requires that A be both graded and normal.

Example 4.2 Graded, but not normal: When A = {(1, 0), (1, p), (1, q)} with 0 < p < q,
q > 2 and g.c.d(p, q) = 1, then IA = 〈xq−p

1 x p
3 − xq

2 〉. Its two initial ideals are therefore
generated in degree q > 2 = d .

Normal, but not graded: The normal configuration A = {(1, 0), (1, 1), (p, p +1)} where
p ≥ 2 has the toric ideal IA = 〈x1x3 − x p+1

2 〉. Hence x1x3 − x p+1
2 is the unique element in

both its reduced Gröbner bases.

Remark 4.3 ( [17], Chapter 13) The bound in Conjecture 1.2 is best possible. Consider
the graded �-normal configuration A = {de1, de2, . . . , ded , e1 + e2 + · · · + ed} where
d ∈ N. (Note that cone(A) is simplicial). Then IA = 〈x1x2 · · · xd − xd

d+1〉.

Consider the initial ideal J from Theorem 2.3 for a graded �	-normal A. Since A is
graded, we may assume without loss of generality that ai = (1, a′

i ) ∈ Z
d for i = 1, . . . , n.

We will show that J is generated in degree at most d .
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For a σ ∈ max �	, recall that σin := {i : ai ∈ cone(Aσ ), i /∈ σ }. Define σout :=
{i : ai /∈ cone(Aσ )}. Then σ ∪ σin ∪ σout is a partition of [n]. Let J σ := πσ (J ) be the
artinian ideal in Rσ = K[x j : j ∈ σin ∪ σout] from Theorem 3.4. Recall that the standard
monomials of J σ are the roots of standard pairs in S(J ) with face σ . Since the supports of
these roots lie in σin, J σ ∩ K[xi : i ∈ σin] is a monomial ideal N σ = 〈xv1 , xv2 , . . . , xvtσ 〉
with supp(xvi ) ⊆ σin, and

J σ = 〈x j : j ∈ σout〉 + N σ .

Lemma 4.4 Each minimal generator xvi of N σ is a minimal generator of J of degree at
most d.

Proof: A minimal generator xvi of N σ is the projection via πσ of a minimal generator
xvi xm

σ of J where supp(xm
σ ) ⊆ σ . Suppose supp(xm

σ ) �= ∅. Then xvi is a standard monomial
of J with supp(xvi ) ⊆ σin. Hence xvi is covered by a standard pair (xuγ , σ ) of J . This
implies that all monomials of the form xvi xp

σ as p varies are standard monomials of J which
contradicts that xvi xm

σ is in J . Thus supp(xm
σ ) = ∅ which implies that xvi is a minimal

generator of J .
Since ai = (1, a′

i ) ∈ Z
d for i ∈ [n], each lattice point in the half open fundamental

parallelopiped FPσ of cone(Aσ ) lies on one of the d hyperplanes x1 = 0, . . . , x1 = d − 1
in R

d . Therefore, if γ ∈ FPσ ∩Z
d , then the 1-norm of uγ which equals the first co-ordinate

of (Auγ ) which equals γ1 is at most d − 1. This implies that deg(xuγ ) ≤ d − 1. Thus all
standard monomials of the artinian ideal J σ have degree at most d − 1 which implies that
the minimal generators of J σ (and N σ ) have degree at most d . �

Example 2.4 (continued) For σ = {1, 4, 13}, J σ = 〈h, k, l〉+ (N σ = 〈 j2, g j, i j, f j, ig,

g2, cg, ej, i2, f i, c2, f 2, ci, eg, f g, cj, c f, bg, ei, bi, e f, b f, ec, bc, e2, be, b2〉). Note that
all minimal generators of N σ are minimal generators of J of degree at most three.

Theorem 4.5 If A is a graded normal configuration with cone(A) simplicial then IA has
a Gröbner basis consisting of binomials of degree at most d.

Proof: Assuming that cone(A) is generated by a1, . . . , ad , A is �	-normal where �	 is
the regular triangulation of A with the unique facet σ = [d]. Here σout = ∅.

We argue that all minimal generators of J have support in σin = {d +1, . . . , n}. Suppose
xα is a minimal generator of J with supp(xα) ∩ [d] = F �= ∅. Let G = supp(xα)\[d]. Then
G �= ∅ since otherwise xα would lie on the standard pair (1, [d]) of J which is a contradiction.
Write xα = xαF xαG where supp(αF ) ⊆ F and supp(αG) ⊆ G. Since G, F �= ∅, xαG is a
standard monomial of J which implies that xα is also a standard monomial of J as xαG lies
on some standard pair with face [d]. This is a contradiction and so F = ∅.

The above argument shows that J and N σ have the same minimal generators. The degree
bound then follows from the proof of Lemma 4.4. �
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Theorem 4.5 proves Theorem 4.1 in the case where cone(A) is simplicial. When cone(A)
is not simplicial, J may have minimal generators that are not pre-images under πσ of the
minimal generators of N σ (or even J σ ) as σ varies in max �	. Our next step is to show
that for a σ ∈ max �	, the minimal generators of J that project under πσ to the minimal
generators x j ∈ σout of J σ have degree at most d . We need a preliminary lemma.

Let Q be a (d − 1)-polytope in {x ∈ R
d : x1 = 1} and let C be the cone over Q. Then

there exists a matrix S ∈ R
f ×d such that C = {x ∈ R

d : Sx ≥ 0} where each row of S is
the normal to a facet of C . Hence Q = {x ∈ R

d : x1 = 1, Sx ≥ 0}. Let Qrev be the system
obtained by reversing all the inequalities in Q:

Qrev = {x ∈ R
d : x1 = 1, Sx ≤ 0}.

Lemma 4.6 The polyhedron defined by Qrev is the empty set.

Proof: We may assume that Q has been translated so that the unit vector e1 ∈ R
d lies

in the relative interior of Q. If x ∈ C then by our assumption, x1 ≥ 0 which implies that
e1 ·x(= x1) ≥ 0. This implies that e1 ∈ C∗ = {yS : y ≥ 0} where C∗ is the dual cone to C .
(Recall C∗ := {v ∈ R

d : v · x ≥ 0, for all x ∈ C}.) Thus there exists some y ≥ 0, y �= 0
such that yS = e1. Therefore, if we choose v ∈ R

2+ f such that v = (0, 1, y) then v ≥ 0,
v �= 0 and

v ·












1 0 · · · 0

−1 0 · · · 0

s11 s12 · · · s1d

...
...

...
...

s f 1 s f 2 · · · s f d












= 0.

Let z = (1, −1, 0, . . . , 0) be the right hand side vector in the description of Qrev by
inequalities. Then v · z = 1(−1) = −1 < 0 and by Farkas’ lemma [20, Proposition 1.7.],
Qrev = ∅. �

Lemma 4.7 Let σ be a facet of �	. Then for j ∈ σout, the minimal generators of J that are
preimages of the minimal generator x j of J σ under the map πσ are squarefree monomials
of degree at most d.

Proof: Let σ ∈ max �	, j ∈ σout and P := x j xm
σ be a minimal generator of J with

Y := supp(xm
σ ) ⊆ σ . All minimal generators of J that project to x j under πσ look like P .

If Y = ∅, then x j is the only minimal generator of J that projects to x j and we are done.
Therefore, we consider the case where Y �= ∅.

Suppose P is not squarefree. Then there exists an i ∈ σ such that mi > 1 where mi is the
i-th co-ordinate of m. Since P is a minimal generator of J , P/xi is a standard monomial
of J with supp(P/xi ) = supp(P) = { j} ∪ Y . Hence there exists τ ∈ max �	 such that a
standard pair with face τ covers P/xi . This implies that supp(P/xi ) = { j} ∪ Y ⊆ τin ∪ τ .
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Since Y ⊆ σ , Y ∩ τin = ∅ and thus, Y ⊆ τ ∩ σ . If j ∈ τ , then P is covered by the standard
pair (1, τ ) which contradicts that P is in J . If j ∈ τin, then a j lies in cone(Aτ ). Since A
lies on the hyperplane {x ∈ R

d : x1 = 1}, a j is in fact in the minimal Hilbert basis of both
cone(Aτ ) and cone(A) and hence x = e j is the unique vector in N

n that satisfies Ax = a j .
Consequently (x j , τ ) is a standard pair of J . But this implies that P lies on this standard
pair which is again a contradiction. Therefore, P is squarefree.

To argue that deg(P) ≤ d, it therefore suffices to prove that Y � σ . Suppose σ = [d],
x[d] := ∏

i∈σ xi and P = x j x[d]. Then for each i ∈ [d], P/xi is a standard monomial of J
and is therefore covered by a standard pair (∗, τ i ) of J . The face τ i does not contain i since
otherwise P would be a standard monomial of J . In particular, τ i �= [d] for any i ∈ [d].
Also, j ∈ τ i ∪ τ i

in for each i ∈ [d].
We now show that we may assume τ i ∩ [d] = [d]\{i} for all i ∈ [d]. Clearly, τ i ∩ [d] ⊆

[d]\{i} since i /∈ τ i . Suppose a monomial in P/xi · K[xl : l ∈ [d]\{i}] lies in J . Then
it is divisible by a minimal generator of J that projects to x j under πσ , all of which are
squarefree. Such a minimal generator would properly divide P which contradicts that P is
a minimal generator of J . Hence (P/xi , [d]\{i}) is a pair of J and therefore, contained in a
standard pair of J . We may assume that τ i is the face of this standard pair. Thus [d]\{i} ⊂ τ i

and τ i ∩ [d] = [d]\{i} as claimed.
Since A is graded, τ 1, . . . , τ d index (d − 1)-simplices in a regular triangulation of

conv(A), the convex hull of A. The simplex indexed by [d] is geometrically Q[d] = {x ∈
R

d : si · x ≥ 0, x1 = 1, i = 1, 2, . . . , d} where si · al = 0 for all l ∈ [d]\{i} and
si · ai > 0. Now j ∈ τ i ∪ τ i

in ∩ σout for each i ∈ [d] implies that a j ∈ Q[d]rev where
Q[d]rev = {x ∈ R

d : si ·x ≤ 0, x1 = 1, i = 1, 2, . . . , d}. But by Lemma 4.6, Q[d]rev = ∅
which creates a contradiction. Therefore, x j x[d] is not a minimal generator of J and all
preimages P of x j have degree at most d . �

Example 2.4 (continued) For σ = {1, 4, 13}, σout = {8, 11, 12} which index the variables
h, k, l. The minimal generators of J that map to these variables under πσ are hm, ak, al, ha,
dml.

Finally we consider the minimal generators of J that do not project under πσ to minimal
generators of J σ for any σ ∈ max �	. Such generators may exist.

Example 2.4 (continued) Consider the minimal generator gh of J . Then gh =
π{1,4,13}(gh) = π{4,11,13}(gh) = π{4,11,12}(gh) = π{11,12,13}(gh) is not a minimal generator
of J σ for any of the four facets σ of �	.

Lemma 4.8 Let xm be a minimal generator of J whose image under πσ is not a minimal
generator of J σ for any facet σ of �	. Then xm is a quadratic squarefree monomial.

Proof: Let τ and τ ′ be facets of �	 and let i ∈ τin, j ∈ τ ′
in with i, j /∈ τin ∩ τ ′

in. Then
xi x j is not covered by any standard pair of J and hence lies in J . Since A is graded, (xi , τ )
and (x j , τ

′) are standard pairs of J which implies that xi x j is a minimal generator of J .
Further, πσ (xi x j ) is not a minimal generator of J σ for any σ ∈ max �	. We will prove that
L := {xi x j : i ∈ τin, j ∈ τ ′

in and i, j /∈ τin ∩ τ ′
in} is precisely the set of minimal generators
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of J that do not project under πσ to a minimal generator of J σ for a σ ∈ max �	. This will
prove the lemma.

Suppose xm is a minimal generator of J such that πσ (xm) is not a minimal generator of
J σ for any σ ∈ max �	. Let Y := supp(xm).

Case (i) Y ⊆ σin for some σ ∈ max �	: Then xm ∈ N σ = J σ ∩K[x j : j ∈ σin]. Since xm is
not a minimal generator of J σ (and hence N σ ), some minimal generator of N σ properly
divides xm. By Lemma 4.4, every minimal generator of N σ is a minimal generator of J
which contradicts that xm is a minimal generator of J .

Case (ii) Y ⊆ σ for some σ ∈ max �	: Then xm is covered by the standard pair (1, σ )
which contradicts that xm ∈ J .

Case (iii) Y ⊆ σ ∪ σin for some σ ∈ max �	, with Y ∩ σ �= ∅ and Y ∩ σin �= ∅: Write
xm = xm′

xm′′
where ∅ �= supp(xm′

) ⊆ σ and ∅ �= supp(xm′′
) ⊆ σin. Then xm′′ ∈ N σ all

of whose minimal generators are minimal generators of J . This implies that a divisor
of xm′′

is a minimal generator of J . Therefore, xm is not a minimal generator of J , a
contradiction.
The above cases have shown that there is no single σ ∈ max �	 such that Y ⊆ σ ∪ σin.
Therefore, there exist two distinct σ, τ ∈ max �	 and two indices i, j ∈ Y such that
i ∈ σ ∪ σin ∩ τout and j ∈ τ ∪ τin ∩ σout.

Case (a) i ∈ σ : Since j ∈ σout, xi x j is not covered by any standard pair of J and so lies in J .
Since xi x j divides xm and xm is a minimal generator of J it must be that xm = xi x j . But
then πσ (xm) = x j , j ∈ σout is a minimal generator of J σ which contradicts our choice
of xm. Therefore this case cannot arise.

Case (b) j ∈ τ : By a symmetric argument to the previous, this cannot happen.

Therefore, the only possibility is that i ∈ σin and j ∈ τin. Since i ∈ τout and j ∈ σout,
i, j /∈ σin ∩ τin. By the argument in the beginning of the proof, xi x j is a minimal generator
of J and so xm = xi x j . Thus xm lies in the set L as claimed. �

Proof of Theorem 4.1: Lemmas 4.4, 4.7 and 4.8 account for all minimal generators of the
initial ideal J and show that they all have degree at most d. Since A is graded, the reduced
Gröbner basis of IA with initial ideal J consists of homogeneous binomials. Hence these
binomials have degree at most d . �

5. ∆-normal and non-∆-normal families

In this last section we construct non-trivial families of both �-normal and non-�-normal
configurations. Recall that any configuration A is always �-normal with respect to all its
regular unimodular triangulations �. Also, a configuration A = {a1, . . . , an} ⊂ Z

d for
which cone(A) is simplicial is �-normal with respect to its coarsest (regular) triangulation
� = {{1, . . . , d}} if we assume that cone(A) = cone({a1, . . . , ad}). Call A simplicial
if cone(A) is simplicial. We construct families of �-normal configurations that are not
simplicial and do not admit regular unimodular triangulations. By computer search, Firla
and Ziegler [4] found hundreds of normal simplicial configurations A in N

4 and N
5 (in the
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course of writing [5]) that admit no unimodular triangulations. Our first result in this section
is a construction that extends a Firla-Ziegler configuration to a family of non-simplicial �-
normal configurations—one in Z

d for each d ≥ 5—without unimodular triangulations. This
is based on successive suspensions of a certain triangulation of Firla-Ziegler configurations.
In the second part of this section we construct a family of normal configurations (anA ⊂ Z

d

for each d ≥ 10) that are not �-normal for any regular triangulation �. This is also done by
taking successive suspensions starting with a configuration discovered by Hibi and Ohsugi
in [8].

5.1. �-normal families from Firla-Ziegler configurations

Each Firla-Ziegler normal simplicial A ⊂ N
4 without unimodular triangulations is the

Hilbert basis of the cone generated by e1, e2, e3, the first three unit vectors in R
4, and a

vector v ∈ N
4 of the form v := (a, b, c, d)t with 0 < a < b < c < d. In this subsection we

let A denote such a Firla-Ziegler configuration and let Aext = {e1, e2, e3, v} be the extreme
rays of cone(A). By definition, A is the unique minimal generating set of the semigroup
cone(Aext ) ∩ Z

4, and cone(A) ⊂ R
4
≥0. We construct an infinite family of �-normal, non

simplicial configurations with no unimodular triangulations, starting with a Firla-ZieglerA.

Lemma 5.1 The vector 1 := (1, 1, 1, 1)t is contained in A.

Proof: Since 1 = 1
d v+ d−c

d e3+ d−b
d e2+ d−a

d e1 and a < b < c < d, 1 ∈ cone(Aext )∩Z
4 =

NA. For every p = (p1, p2, p3, p4) ∈ cone(Aext ) = cone(A) with p4 > 0, pi > 0 for
i = 1, . . . , 4 since the R≥0-linear combination of elements in Aext that expresses p as an
element of cone(Aext ) must involve a positive multiple of v. On the other hand, the N-linear
combination of elements in A that expresses 1 as an element of NA is the sum of distinct
vectors in A ∩ {0, 1}4. At least one of these 0 − 1 vectors — say w — has a positive last
co-ordinate which implies that w = 1. Therefore, 1 is in A, the minimal Hilbert basis of
cone(Aext ) ∩ Z

4. �

Example 5.2 The first Firla-Ziegler A in N
4 has v = (1, 2, 3, 5) and A consists of the

columns of the matrix

A =








1 0 0 1 1 1 1 1

0 1 0 2 1 1 2 2

0 0 1 3 1 2 2 3

0 0 0 5 1 2 3 4








.

The Hilbert basis of any rational polyhedral cone can be computed using the software
package Normaliz [3].

From a Firla-Ziegler A we will now recursively construct configurations Ad for each
d ≥ 5 such thatAd ⊂ N

d is �-normal, cone(Ad ) is not simplicial andAd has no unimodular
triangulations. For each d ≥ 5 let pd = e1 + · · · + e4 ∈ Z

d , p+
d = pd + ed ∈ Z

d
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and p−
d = pd − ed ∈ Z

d . Here ed is the d-th unit vector in R
d . Letting A4 := A (a

Firla-Ziegler configuration in N
4), recursively define Ad−1′

:= {(a, 0) : a ∈ Ad−1} and
Ad := Ad−1′ ∪ {p+

d , p−
d }. We assume that p+

d and p−
d are always the second last and last

elements of Ad . Let Ad have nd elements. We now construct a regular triangulation �d of
Ad as follows:

Suppose the first four columns of A4 are e1, e2, e3, v. Let �4 be the coarse regular
triangulation of A4 (and A4′

) consisting of the unique simplex σ = {1, 2, 3, 4}. It can be
induced with a weight vector w4 = (0, 0, 0, 0, M, M, . . . , M, M) ∈ Z

n4 where M is a large
positive integer. We want �5 to consist of the simplices σ1 := σ∪{n5−1} and σ2 := σ∪{n5}.
This triangulation can be induced by the weight vector w5 = (w4, 1, 1) ∈ Z

n5 . We repeat this
construction for d = 6 to get the regular triangulation �6 of A6 consisting of the simplices

σ1 ∪ {n6 − 1}, σ2 ∪ {n6 − 1}, σ1 ∪ {n6} and σ2 ∪ {n6}.

This can again be achieved by the weight vector w6 = (w5, 2, 2) ∈ Z
n6 provided M is still

big enough. In general we get the regular triangulation �d ofAd consisting of the simplices:

{σ1 = σ ∪ {nd − 1}, ∀ σ ∈ max�d−1} ∪ {σ2 = σ ∪ {nd}, ∀ σ ∈ max�d−1}.

Let K1 be a maximal subcone of cone(Ad ) of the form K1 = cone(Ad
σ1

) and similarly let
K2 be a maximal cone of the form K2 = cone(Ad

σ2
) induced by the regular triangulation

�d . For d = 5 we have precisely two cones, one of the form K1, the other K2 but for d ≥ 6
there are several cones of types K1 and K2.

Lemma 5.3 The configuration A5 has the following properties:

(1) Z(A5 ∩ K1) = Z(A5 ∩ K2) = Z
5,

(2) A5 is non-simplicial,
(3) A5 is �5-normal, and
(4) A5 admits no unimodular triangulations.

Proof:

(1) Since p5 = (1, 1, 1, 1, 0), p+
5 = (1, 1, 1, 1, 1) and the first three unit vectors of R

5

belong to A5 ∩ K1, it follows that all unit vectors of R
5 lie in Z(A5 ∩ K1) which gives

the result. Similarly, Z(A5 ∩ K2) = Z
5.

(2) Since p5 lies in the interior of cone(A5), the vectors p+
5 and p−

5 do not lie on a common
facet of the cone. Hence cone(A5) is a bipyramidal cone over cone(A4′

) with six extreme
rays and is hence non-simplicial.

(3) The triangulation �5 is a regular triangulation of A5. We first argue that A5 ∩ K1 is

a minimal generating set of the semigroup K1 ∩ Z(A5 ∩ K1)
(1)= K1 ∩ Z

5. Suppose
q = (q1, . . . , q5) ∈ K1 ∩ Z

5. Since p+
5 is the unique generator of K1 with a positive

fifth co-ordinate, q = q5p+
5 +q′ where q = (q1 −q5, q2 −q5, q3 −q5, q4 −q5, 0)t is the

unique expression of q as an R≥0-combination of p+
5 and the other extreme rays of K1.
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Since q ′
5 = 0, in fact, q′ ∈ cone(A4′

)∩Z
5 ∗= NA4′ ⊂ N(K1∩A5) where the equality (∗)

follows from the normality ofA4. This in turn implies that q = q5p+
5 +q′ ∈ N(K1∩A5).

(Note that q5 ∈ N.) Similarly, A5 ∩ K2 is its own Hilbert basis. Thus, A5 is �5-normal.
(4) Suppose T is a unimodular triangulation of A5 and τ is a facet of T . Then by (1),

|det(A5
τ )| = 1 and {n5 − 1, n5} ∩ τ �= ∅. If {n5 − 1, n5} ⊂ τ , then

A5
τ =











∗ ∗ ∗ 1 1

∗ ∗ ∗ 1 1

∗ ∗ ∗ 1 1

∗ ∗ ∗ 1 1

0 0 0 1 −1











which shows that |det(A5
τ )| ∈ 2Z, a contradiction. Hence each maximal simplex in T

contains exactly one of p+
5 or p−

5 and T induces a triangulation T ′ of A4′
. Since T is

unimodular, T ′ gives a unimodular triangulation of A4 which is a contradiction as A4

has no unimodular triangulations. Therefore, we conclude that A5 has no unimodular
triangulations. �

Theorem 5.4 For each d ≥ 5, the configuration Ad has the following properties:

(1) Z(Ad ∩ K1) = Z(Ad ∩ K2) = Z
d ,

(2) Ad is non-simplicial,

(3) Ad is �d -normal, and

(4) Ad admits no unimodular triangulations.

Proof: This theorem is proved by induction using Lemma 5.3 as the base step.

(1) Suppose the result is true for k = d − 1. Then it follows that ZAd−1′
contains the first

d − 1 unit vectors of Z
d which are therefore also in Z(Ad ∩ K1) and Z(Ad ∩ K2).

Since p+
d ∈ K1 ∩ Ad (and p−

d ∈ K2 ∩ Ad ), we also get that ed ∈ Z(Ad ∩ K1) (and
ed ∈ Z(Ad ∩ K2)). Hence Z(Ad ∩ K1) = Z(Ad ∩ K2) = Z

d .
(2) Assume by induction that Ad−1 is non-simplicial and that pd−1 lies in the interior of

cone(Ad−1). Then, pd lies in the interior of cone(Ad ) and hence p+
d and p−

d do not lie on
a common facet of cone(Ad ). This implies that cone(Ad ) ⊂ R

d has exactly two more
extreme rays than cone(Ad−1) ⊂ R

d−1 and hence is non-simplicial.
(3) As in Lemma 5.3, �d is a regular triangulation of Ad for each d ≥ 5. We assume by

induction that Ad−1 is �d−1-normal and hence normal. The arguments that Ad ∩ K1

and Ad ∩ K2 are minimal generating sets for K1 ∩ Z
d and K2 ∩ Z

d respectively follow
from a straight generalization of the arguments in Lemma 5.3.

(4) Again we assume by induction that Ad−1 admits no unimodular triangulations. The rest
of the argument is also a straight generalization of the arguments in Lemma 5.3 (4).

�
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We have thus produced non-simplicial �-normal configurations without unimodular
triangulations in every dimension beyond four, starting with a Firla-Ziegler A in N

4. The
construction applies to all such Firla-Ziegler configurations.

Every normal configuration A in dimension d ≤ 3 admits a unimodular triangulation
and thus the only remaining dimension in which there might be non-simplicial �-normal
configurations without unimodular triangulations is dimension four. Here is an example.

Example 5.2 (continued) Consider the matrix B below obtained by appending the column
(1, 1, 1, 2) to the matrix A from Example 5.2.

B =








1 0 0 1 1 1 1 1 1

0 1 0 2 1 1 2 2 1

0 0 1 3 1 2 2 3 1

0 0 0 5 1 2 3 4 2








.

The configuration B given by the columns of B generate a four dimensional, non-simplicial
cone with extreme rays generated by columns 1, 2, 3, 4, and 9. Columns 3 and 9 lie on oppo-
site sides of the linear span of columns 1, 2 and 4, and the determinant of the submatrix of B
consisting of columns 1, 2, 4, and 9 is one. The weight vector (0, 0, 0, 0, 10, 10, 10, 10, 1)
induces the regular triangulation � of B with maximal simplices {1, 2, 3, 4} and {1, 2, 4, 9}.
The configuration B is �-normal by construction. Further, this configuration has no regular
unimodular triangulations (confirmed using CaTS [6]).

5.2. Non �-normal configurations from an example of Hibi and Ohsugi

Consider the graph GHO shown in figure 2. In [8] Hibi and Ohsugi showed that the graded
normal configuration

AHO = {e1 + ei + e j : {i, j} ∈ E(GHO) , 1 /∈ {i, j}} ∪ {e1 + ei : {1, i} ∈ E(GHO)}
admits no regular unimodular triangulations, although it does have non-regular unimodular
triangulations. Further, the 15 points in AHO are all extreme points of the convex hull of

Figure 2. The graph GHO giving the Hibi-Ohsugi configuration.
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AHO, denoted as conv(AHO). Similar constructions of normal configurations arising from
graphs that have no regular unimodular triangulations are given in [14]. The (0, 1)-polytope
conv(AHO) ⊂ {x ∈ R

10 : x1 = 1} is empty which means that it has no lattice points other
than its vertices. Thus cone(AHO) which is the cone over conv(AHO) has 15 extreme rays
and is therefore non-simplicial.

Lemma 5.5 Let A ⊂ Z
d be a normal graded non-simplicial configuration in {x ∈ R

d :
x1 = 1} such that conv(A) is empty. If A does not have a regular unimodular triangulation
then A is not �-normal for any regular triangulation �.

Proof: Without loss of generality, we can assume that ZA = Z
d . By the hypothesis,

every regular triangulation � of A has a maximal face σ such that | det(Aσ ) | ≥ 2. Thus the
Hilbert basis of cone(Aσ ) contains at least one vector q ∈ Z

d not in Aσ . Since all vectors
in A are extreme rays of cone(A), none of them lie in cone(Aσ ) unless they are in Aσ . This
implies that Aσ = cone(Aσ ) ∩ A is not normal and hence A is not �-normal. �

Corollary 5.6 The Hibi-Ohsugi configuration AHO is not �-normal for any regular tri-
angulation �.

From AHO we now recursively construct configurations Ad for each d ≥ 11 such that Ad

is normal and graded but not �-normal for any regular triangulation �. For each d ≥ 11
let pd = e1 + ed ∈ Z

d . Letting A10 := A, recursively define

Ad−1′
:=

{(
a

0

)

: a ∈ Ad−1

}

and Ad := {pd} ∪ Ad−1′
.

Theorem 5.7 For each d ≥ 10, the configuration Ad is normal and graded but not
�-normal for any regular triangulation �.

Proof: It suffices to show that Ad satisfies the conditions of Lemma 5.5 for each d. For a
given d , Ad is graded since it lies in {x ∈ R

d : x1 = 1} and conv(Ad ) is a (0, 1)-polytope
and hence empty. Further, cone(Ad ) is non-simplicial as cone(Ad−1) is non-simplicial for
all d ≥ 11.

The configuration A11 is normal. To see this let q := (q1, · · · , q11)t ∈ cone(A11)∩ZA11.
Since the only extreme ray of cone(A11) with non-zero eleventh co-ordinate is p11, q11 ≤ q1.
Further, q = q11p11 + q′, where q′ = (q1 − q11, q2, · · · , q10, 0)t , is the unique expression
of q as an R≥0-combination of the extreme rays of cone(A11). The integral vector q′ lies
in NA10′

since A10 is normal and hence it lies in NA11. Thus q ∈ NA11. By induction, it
follows that Ad is normal for all d ≥ 11.

Suppose A11 had a regular unimodular triangulation. Then p11 would be a vertex in every
maximal face of this regular unimodular triangulation of conv(A). This in turn induces
a regular unimodular triangulation in A10′

and hence in A10, a contradiction. Again, a
straightforward inductive argument shows that Ad has no regular unimodular triangulation
for all d ≥ 11. �
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We have thus produced graded normal configurations that are not �-normal for any
regular triangulation � in every dimension d ≥ 10.

Remark 5.8 A second infinite family of normal, graded, non-simplicial configurations
without regular unimodular triangulations, based on GHO, can be found in [14]. The convex
hulls of these configurations are all empty since they are all 0, 1-configurations. Thus by
Lemma 5.5, they provide another infinite family of non-�-normal configurations.

Example 5.2 (continued) Non-�-normal configurations also exist in lower dimensions.
The columns of each of the following matrices are two such examples (confirmed using
CaTS [6]).











1 0 0 1 1 1 1 1 0

0 1 0 2 1 2 2 1 0

0 0 1 3 2 2 3 1 0

0 0 0 5 2 3 4 1 0

0 0 0 0 0 0 0 1 −1











,











1 1 1 1 1 1 1 1 1

0 1 0 0 1 1 1 1 1

0 0 1 0 2 1 1 2 2

0 0 0 1 3 1 2 2 3

0 0 0 0 5 1 2 3 4











.
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10. S. Hoşten, D. Maclagan, and B. Sturmfels, “Supernormal vector configurations,” to appear in J. Algebraic
Combin., math.CO/0105036.
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