ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

On Combinatorics of Quiver Component Formulas

Alexander Yong
Department of Mathematics University of California Berkeley, 970 Evans Hall Berkeley CA 94702-3840 USA

DOI: 10.1007/s10801-005-6916-y

Abstract

Buch and Fulton [9] conjectured the nonnegativity of the quiver coefficients appearing in their formula for a quiver cycle. Knutson, Miller and Shimozono [24] proved this conjecture as an immediate consequence of their ldquocomponent formula rdquo. We present an alternative proof of the component formula by substituting combinatorics for Gröbner degeneration [23, 24]. We relate the component formula to the work of Buch, Kresch, Tamvakis and the author [10] where a ldquosplitting rdquo formula for Schubert polynomials in terms of quiver coefficients was obtained. We prove analogues of this latter result for the type BCD-Schubert polynomials of Billey and Haiman [4]. The form of these analogues indicate that it should be interesting to pursue a geometric context that explains them.

Pages: 351–371

Keywords: key words degeneracy loci; quiver polynomials; component formula; generalized Littlewood-Richardson coefficients

Full Text: PDF

References

1. S. Abeasis and A. Del Fra, “Degenerations for the representations of an equioriented quiver of type Am ,” Boll. Un. Mat. Ital. Suppl. 2 (1980), 157-171.
2. N. Bergeron and S. Billey, “RC-graphs and Schubert polynomials,” Experimental Math. 2(4) (1993), 257-269.
3. I.N. Berstein, I.M. Gelfand, and S.I. Gelfand, “Schubert cells and cohomology of the spaces G/P,” Russian Math. Surveys 28 (1973), 1-26.
4. S. Billey and M. Haiman, “Schubert polynomials for the classical groups,” J. Amer. Math. Soc. 8 (1995), 443-482.
5. A. Borel, “Sur la cohomologie des espaces fibrés principaux et des espaces homog`enes de groupes de Lie compacts,” Ann. of Math. 57 (1953), 115-207.
6. A.S. Buch, “Stanley symmetric functions and quiver varieties,” J. Algebra 235 (2001), 243-260.
7. A.S. Buch, “Grothendieck classes of quiver varieties,” Duke Math. J. 115(1) (2002), 75-103.
8. A.S. Buch, “Alternating signs of quiver coefficients” (preprint).
9. A.S. Buch and W. Fulton, “Chern class formulas for quiver varieties,” Invent. Math. 135 (1999), 665-687.
10. A.S. Buch, A. Kresch, H. Tamvakis, and A. Yong, “Schubert polynomials and quiver formulas,” Duke Math. J. 122(1) (2004), 125-143.
11. A.S. Buch, A. Kresch, H. Tamvakis, and A. Yong, “Grothendieck polynomials and quiver formulas,” Amer. J. Math. (to appear).
12. A.S. Buch, F. Sottile, and A. Yong, “Quiver coefficients are Schubert structure constants,” (preprint).
13. I. Ciocan-Fontanine, “On quantum cohomology rings of partial flag varieties,” Duke Math. J. 98(3) (1999), 485-524.
14. M. Edelman and C. Greene, “Balanced tableaux,” Adv. Math. 63 (1987), 42-99.
15. S. Fomin, S. Gelfand, and A. Postnikov, “Quantum Schubert polynomials,” J. Amer. Math. Soc. 10 (1997), 565-596.
16. S. Fomin and C. Greene, “Noncommutative Schur functions and their applications,” Discrete Math. 193(1-3) (1998), 179-200.
17. S. Fomin and A.N. Kirillov, “Combinatorial Bn-analogues of Schubert polynomials,” Trans. Amer. Math. Soc. 348(9) (1996), 3591-3620.
18. S. Fomin and A.N. Kirillov, “The Yang-Baxter equation, symmetric functions, and Schubert polynomials,” Discrete Math. 153(1-3) (1996), 123-143, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993).
19. W. Fulton, “Universal Schubert polynomials,” Duke Math. J. 96(3) (1999), 575-594.
20. W. Fulton and P. Pragacz, Schubert Varieties and Degeneracy Loci, Lecture Notes in Mathematics, Vol. 1689, Springer-Verlag, New York, 1998.
21. P. Hoffman and J. Humphreys, Projective Representations of the Symmetric Groups. Q-Functions and Shifted Tableaux, The Clarendon Press, Oxford University Press, New York, 1992.
22. J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
23. A. Knutson and E. Miller, “Gr\ddot obner geometry of Schubert polynomials,” Ann. of Math. (to appear).
24. A. Knutson, E. Miller, and M. Shimozono, “Four positive formulae for type A quiver polynomials,” (preprint).
25. V. Lakshmibai and P. Magyar, “Degeneracy schemes, quiver schemes, and Schubert varieties,” Internat. Math. Res. Notices 12 (1998), 627-640.
26. A. Lascoux, “Classes de Chern des variét`es de drapeaux,” C.R. Acad. Sci. Paris Sér. I Math. 295(5) (1982), 393-398.
27. A. Lascoux and M.-P. Sch\ddot utzenberger, “Polyn\hat omes de Schubert,” C.R. Acad. Sci. Paris Sér. I Math. 294 (1982), 447-450.
28. A. Lascoux and M.-P. Sch\ddot utzenberger, “Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux,” C.R. Acad. Sci. Paris Sér. I Math. 295 (1982), 629-633.
29. I.G. Macdonald, Notes on Schubert Polynomials, Publ. LACIM 6, Univ. de Québec `a Montréal, Montréal, 1991.
30. L. Manivel, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, American Mathematical So- ciety, Providence 2001.
31. E. Miller, “Alternating formulae for K -theoretic quiver polynomials,” Duke Math. J. (to appear).
32. A. Zelevinsky, “Two remarks on graded nilpotent classes,” Uspehi. Mat. Nauk. 40 (1985) vol. 1 (241), 199-200.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition