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Abstract. In a recent paper, E. Steingrı́msson associated to each simple graph G a simplicial complex �G ,
referred to as the coloring complex of G. Certain nonfaces of �G correspond in a natural manner to proper
colorings of G. Indeed, the h-vector is an affine transformation of the chromatic polynomial χG of G, and
the reduced Euler characteristic is, up to sign, equal to |χG (−1)| − 1. We show that �G is constructible and
hence Cohen-Macaulay. Moreover, we introduce two subcomplexes of the coloring complex, referred to as polar
coloring complexes. The h-vectors of these complexes are again affine transformations of χG , and their Euler
characteristics coincide with χ ′

G (0) and −χ ′
G (1), respectively. We show for a large class of graphs—including all

connected graphs—that polar coloring complexes are constructible. Finally, the coloring complex and its polar
subcomplexes being Cohen-Macaulay allows for topological interpretations of certain positivity results about the
chromatic polynomial due to N. Linial and I. M. Gessel.
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Introduction

The primary goal of this paper is to analyze the topology of a certain simplicial complex
�G defined in terms of a (simple) graph G = (V, E); see Section 0.1 for basic concepts
and Section 1 for a formal definition of �G . The complex �G is the coloring complex of
G and was introduced by Steingrı́msson [17]. The faces in �G can be interpreted as chains
φ �= X1 � X2 � . . . � Xk �= V of vertex sets with the property that the component Xi\Xi−1

contains an edge from G for at least one i ∈ {1, . . . , k + 1} (X0 = φ and Xk+1 = V ).
For example, figure 1 illustrates the coloring complex �C4 of the square graph C4.

�C4 contains the 1-cell {1, 134}, because the component 134\1 = 34 is an edge in C4.
However, �C4 does not contain the 1-cell {1, 124}, as the components 1, 124\1 = 24, and
1234\124 = 3 contain no edges from C4.

Consider the Stanley-Reisner ideal of the double cone (with apices φ and V ) over the
coloring complex �G . We obtain the coloring ideal KG of G from this ideal by dividing out
all monomials xS xT such that S �⊆ T and T �⊆ S. For each positive integer r , Steingrı́msson
[17] demonstrated that there is a bijective correspondence between proper colorings of
G with r + 1 colors and monomials in KG of degree r . As a consequence, the Hilbert
polynomial of KG is, up to a shift by one, the chromatic polynomial of G. This implies
that the h-vector (h0, . . . , hdim �G+1) of �G is an affine transformation of the chromatic
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Figure 1. The coloring complex of the square graph C4.

polynomial. Specifically,

∑
i hi t i

(1 − t)n
=

∑

r≥0

((r + 1)n − χG(r + 1))tr , (1)

where χG is the chromatic polynomial of G and n is the number of vertices in G. An
interesting consequence is that the reduced Euler characteristic of �G is, up to sign, equal
to |χG(−1)| − 1. By a theorem of Stanley [14], |χG(−1)| equals the number of acyclic
orientations of G.

• The first main result of this paper is that �G is constructible and hence Cohen-Macaulay;
see Section 1. This implies that all coefficients in the h-vector of �G are nonnegative;
see Stanley [16].

Greene and Zaslavsky [6] proved two theorems related to Stanley’s theorem about acyclic
orientations with a unique source and/or a unique sink: For every vertex v, the number of
acyclic orientations of G with the only source v is equal to |χ ′

G(0)|. Moreover, assume
that G contains no isolated vertices and let v and w be any adjacent vertices. Then the
number of acyclic orientations of G with the only source v and the only sink w is equal to
|χ ′

G(1)|. In Section 2, we introduce two subcomplexes �G(v) and �G(v, w) of �G , referred
to as unipolar and bipolar coloring complexes, respectively. These complexes have the
property that the reduced Euler characteristics are, up to sign, equal to |χ ′

G(0)| and |χ ′
G(1)|,

respectively—exactly the quantities in the Greene-Zaslavsky theorems.

• The second main result of this paper is that �G(v) and �G(v, w) are constructible and
hence Cohen-Macaulay whenever the Greene-Zaslavsky theorems apply.

The unipolar and bipolar complexes being Cohen-Macaulay implies that their h-vectors have
only nonnegative coefficients; these h-vectors are affine transformations of χ (r +1)/(r +1)
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and χ (r + 1)/(r (r + 1)) similar to (1). Our positivity results are summarized in Section 3,
where we also interpret analogous results by Linial [10] and Gessel [4] about the coefficients
in the polynomials (1−t)n+1 ·∑r≥0 χG(r +1)tr and (1−t)n−1 ·∑r≥1 χG(r +1)/(r (r +1))·tr .

0.1. Basic concepts

Let G = (V, E) be a simple graph; V is the set of vertices and E ⊆ ( V
2 ) is the set of edges

in G. The edge between a and b is denoted as ab. (More generally, a set {a1, a2, . . . , ad}
is sometimes denoted as a1a2 . . . ad .) Two vertices a and b are adjacent in G if ab is an
edge in G. An isolated vertex is a vertex not adjacent to any other vertex in G. Whenever
the underlying vertex set V is fixed, we identify G with its edge set E ; e ∈ G means
that e ∈ E . G is empty if E = φ and nonempty otherwise. Let G − e = (V, E\{e}) and
G + e = (V, E ∪ {e}). For W ⊂ V , let G(W ) = (W, E ∩ ( W

2 )); G(W ) is the induced
subgraph of G on the vertex set W .

For a graph G and an edge e = xy, G/e = (V/e, E/e) is the contraction along the edge
e. Here, V/e = V \{y} and E/e = (E ∪ {ax : a �= x and ay ∈ E}) ∩ ( V \{y}

2 ). We refer to y
as the removed vertex.

For r ≥ 1, [r ] denotes the set {1, . . . , r}. An r-coloring of G is a function γ : V → [r ].
A coloring γ is proper if γ (v) �= γ (w) whenever vw ∈ E . The chromatic polynomial of G
is the function χG : N → N with the property that χG(r ) is equal to the number of proper
r -colorings for each r ∈ N. χG is indeed a polynomial; use (7) below. In particular, we may
extend χG in a natural manner to the entire complex plane.

For a partially ordered set P , let min P be the set of minimal elements (sinks) in P .
Analogously, let max P be the set of maximal elements (sources) in P .

A simplicial complex on a finite set V is a nonempty family of subsets of V closed under
deletion of elements. We refer to members of a simplicial complex as faces. The dimension
of a face σ is defined as |σ | − 1. The dimension of a complex � is the maximal dimension
of any face in �. A complex is pure if all maximal faces have the same dimension. For
d ≥ −1, the d-simplex is the simplicial complex of all subsets of a set V of size d + 1. We
obtain the boundary of the d-simplex by removing the maximal face V . Note that the (−1)-
simplex is the complex containing only the empty set. Whenever we discuss the homology
of a simplicial complex, we are referring to the reduced Z-homology.

1. The coloring complex

For a given nonempty graph G on a vertex set V of size n, Steingrı́msson [17] defines the
coloring complex �G as follows. Let FV be the family of all nonempty and proper subsets
of V (thus φ and V are not contained in FV ). A set S is stable in G if no edge in G is
contained in S. A (not necessarily nonempty) family

{X1, X2, . . . , Xk} = X1 X2 . . . Xk
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of sets from FV , ordered from the smallest to the largest, is contained in �G if and only if

φ = X0 � X1 � X2 � . . . � Xk � Xk+1 = V (2)

and at least one of the sets Yi = Xi\Xi−1 (1 ≤ i ≤ k + 1) is not a stable set in G. We
refer to X1 X2 . . . Xk as a chain and to the sets Y1, . . . , Yk+1 as the components of the chain
X1 X2 . . . Xk . Note that the set of 0-cells (vertices) in �G is a proper subset of FV if G is
bipartite. For example, the complex in Fig. 1 does not contain the 0-cells 13 and 24. The
coloring complex of the graph with the single edge e will be denoted as �e. While this
notation is ambiguous, the underlying vertex set will always be clear from the context.

One may interpret a chain X1 X2 . . . Xk satisfying (2) as a coloring in which the vertices
in the i th component Yi are given color i for 1 ≤ i ≤ k + 1. We refer to this coloring
as the coloring induced by X1 X2 . . . Xk . If X1 X2 . . . Xk ∈ �G , then some component is
non-stable, which is equivalent to saying that the induced coloring is not proper.

�G is easily seen to be pure of dimension n − 3. Indeed, one may describe the maximal
faces of �G as follows. A labeling of V is a bijection from V to [n] = {1, . . . , n}. For a
labeling ω, define Xω,i = ω−1([i]) and

Xω = Xω,1 Xω,2 . . . Xω,n−1.

A chain X is a maximal face if and only if there is a labeling ω and an integer i ∈ [n − 1]
such that X = Xω,i , where

Xω,i = Xω\Xω,i = Xω,1 . . . X̂ω,i . . . Xω,n−1 (3)

(the hat denotes deletion), and such that the vertices ω−1(i) and ω−1(i + 1) are adjacent in
G. Namely, such a chain induces a coloring of G with the property that the two adjacent
vertices ω−1(i) and ω−1(i + 1) are given the same color.

There is a natural ring-theoretic interpretation of the above concepts; see Steingrı́msson
[17] for a more detailed discussion. Let F be a field and define A = AV = F[xS : S ⊆ V ],
I = IV = {xS xT : S �⊆ T, T �⊆ S}, and R = RV = A/I . For a graph G, consider the set
of all monomials xe1

X1
xe2

X2
· · · xek

Xk
such that X1 X2 . . . Xk satisfies (2) except possibly at the

endpoints; thus we allow X1 to be equal to φ and Xk to be equal to V . Let KG be generated
by exactly those monomials xe1

X1
xe2

X2
· · · xek

Xk
(ei > 0) with the property that all components

of X1 X2 . . . Xk are stable in G. Then R/KG is the Stanley-Reisner ring of the double cone
over �G , where the two added apices correspond to the sets φ and V .

Each monomial of degree d in R = RV corresponds to a (d +1)-coloring of the vertex set
V . Namely, let xe1

X1
xe2

X2
· · · xek

Xk
be a monomial in R and let Y1, . . . , Yk+1 be the components

of the chain X1 . . . Xk . We obtain a coloring by giving all vertices in the set Yi the color∑
j<i e j + 1. In fact, Steingrı́msson [17] showed that this gives a bijection between mono-

mials of R and colorings of V . Moreover, for each graph G, there is a bijection between
monomials of KG and proper colorings of G.
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1.1. The homotopy type of the coloring complex

As �G is a pure complex, a natural question to ask is whether �G is Cohen-Macaulay. The
object of this section is to verify that this is indeed the case.

Definition 1.1 The class of constructible simplicial complexes is defined recursively as
follows.

1. Every simplex (including the (−1)-simplex {φ}) is constructible.
2. If �1 and �2 are constructible complexes of dimension d and �1 ∩�2 is a constructible

complex of dimension d − 1, then �1 ∪ �2 is constructible.

The concept of constructible complexes was introduced by Hochster [8]. Every shellable
complex is constructible, but the converse is not always true; see Björner [1].

Definition 1.2 A simplicial complex � is homotopy-Cohen-Macaulay (abbreviated
homotopy-C M) if every link of � (including � itself) is homotopy equivalent to a wedge
of spheres in top dimension. This means that link�(σ ) is (dim link�(σ ) − 1)-connected
for each σ ∈ �; see Björner [1]. For a ring R, � is Cohen-Macaulay over R (denoted as
C M/R) if H̃i (link�(σ ); R) = 0 whenever i < dim link�(σ ) for each σ ∈ � (including
σ = φ).

See Reisner [13] for the ring-theoretic motivation of Definition 1.2. Any constructible
complex is also homotopy-C M and any homotopy-C M complex is also C M/Z (and C M/k
for any field k), but the converses do not hold in general; see Björner [1] for more information.

Lemma 1.3 If G is a graph with at least two edges, then �G−e ∩ �e and �G/e are
isomorphic for any edge e in G.

Proof: Let e = xy and let y be the removed vertex in G/e. For a chain X ∈ �e with
components Y1, . . . , Yk+1, let Yi be the component containing x and y; they must be in the
same component. Define ϕ(X ) to be the chain with components Y1, . . . , Yi\{y}, . . . , Yk+1;
all components but Yi remain unchanged. This clearly gives an isomorphism from �e to
the complex �V \{y} of all possible chains of the form (2) on the vertex set V \{y}. Namely,
we may easily reconstruct a chain X = ϕ−1(X ′) ∈ �e from a chain X ′ ∈ �V \{y} by adding
y to the component containing x . As a consequence, we need only prove for each X ∈ �e

that X ∈ �G−e if and only if ϕ(X ) ∈ �G/e.
Let X ∈ �e and let Yi be the component containing x and y. Clearly, each of the other

components is stable in G − e if and only if it is stable in G/e. Moreover, the same is true
for Yi . Namely, for each z ∈ Yi\{x, y}, xz is an edge in G/e if and only if at least one of xz
and yz is an edge in G − e. It follows that X ∈ �G−e if and only if ϕ(X ) ∈ �G/e.

Theorem 1.4 For any nonempty graph G on n vertices, �G is constructible. As a
consequence, �G is homotopy-C M. In particular, �G is homotopy equivalent to a wedge
of spheres of dimension n − 3.
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Remark. The homotopy type of �G has been determined earlier by Herzog et al. [7]; see
the remark after Corollary 1.8.

Proof: We use induction on the number of vertices and the number of edges in G. First,
suppose G has only one edge e. Then �G = �e is isomorphic to the first barycentric
subdivision of the boundary of an (n − 2)-simplex; see the proof of Lemma 1.3. This
complex is shellable (see Björner and Wachs [2]), which implies that �e is constructible.

Now, consider a graph G with at least two edges. By induction, we may assume that we
have already proved that all coloring complexes of nonempty graphs with fewer edges than
G are constructible. Let e be an arbitrary edge in G. It is clear that

�G = �G−e ∪ �e. (4)

Note that each of �G−e and �e is pure of dimension n − 3. By the induction hypothesis,
both complexes are constructible.

It remains to prove that �G−e ∩�e is constructible of dimension n −4. Now, Lemma 1.3
implies that �G−e ∩�e is isomorphic to �G/e. Since the number of vertices in G/e is n −1
and the number of edges is at least one, we are done by induction.

Theorem 1.5 If G is a graph with at least two edges and e is an edge in G, then the
reduced Euler characteristic χ̃ (�G) of �G satisfies

χ̃ (�G) = χ̃ (�G−e) − χ̃ (�G/e) + χ̃ (�e). (5)

In particular, any graph G satisfies

χ̃ (�G) = −χG(−1) + (−1)n, (6)

where χG is the chromatic polynomial of G. Thus �G is homotopy equivalent to a wedge
of |χG(−1)| − 1 spheres of dimension n − 3.

Remark (6) was first proved by Steingrı́msson [17].

Proof: The identity (5) is an immediate consequence of the identity

�G = (�G−e\(�G−e ∩ �e)) ∪ �e

and Lemma 1.3; the union is clearly disjoint. Combining this identity with the well-known
recursive property

χG(t) = χG−e(t) − χG/e(t) (7)

of chromatic polynomials, we obtain via induction that

χ̃ (�G) = −χG−e(−1) + (−1)n + χG/e(−1) − (−1)n−1 − χe(−1) + (−1)n

= −χG(−1) + 3 · (−1)n − χe(−1) = −χG(−1) + (−1)n.
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The base case is that G consists of a single edge e. Yet, we already know that �e is the first
barycentric subdivision of the boundary of an (n − 2)-simplex and hence homeomorphic to
a sphere of dimension (n − 3); thus

χ̃ (�e) = (−1)n−3 = −(−1)n = −χe(−1) + (−1)n.

For the last statement in the theorem, note that the sign of χG(−1) is always (−1)n .

For a simplicial complex � of dimension d − 1, define fi as the number of faces of
dimension i in �; ( f0, . . . , fd−1) is the f -vector of �. Define the h-vector (h0, . . . , hd ) of
� by the formula

d∑

i=0

fi−1t i (1 − t)d−i =
d∑

i=0

hi t
i ;

f−1 = 1. Let h(�, t) = ∑d
i=0 hi t i and f (�, u) = ∑d

i=0 fi−1ui . With u = t/(1 − t), it is
clear that

h(�, t)

(1 − t)d
= f (�, u) .

As Steingrı́msson [17] showed, (6) is a consequence of the following result.

Theorem 1.6 (Steingrı́msson [17]) Let u = t/(1 − t). For any nonempty graph G,

h(�G, t)

(1 − t)n
= f (�G, u) · (1 + u)2 =

∑

r≥0

TG(r + 1)tr , (8)

where n is the number of vertices in G and TG(r ) = rn − χG(r ).

Remark To be precise, Steingrı́msson proved Theorem 1.6 for the double cone over the
complex �G , meaning that chains are allowed to contain the empty set φ and the full set
V . Note that the polynomial f (�G, u) · (1 + u)2 in (8) corresponds to the f -vector of this
double cone.

We obtain an orientation of G by directing each edge ab in G, either from a to b or from
b to a. One may view this as an asymmetric relation ≺ on the pairs of adjacent vertices a
and b in G; exactly one of a ≺ b and b ≺ a holds. The orientation is acyclic if the transitive
closure of ≺ gives a partial order P on V . We will identify the acyclic orientation with this
partial order. (This is slightly unconventional; most authors identify the acyclic orientation
with the underlying directed graph.) Let PG denote the set of acyclic orientations of G and
let AG = |PG | denote the number of acyclic orientations of G.

Theorem 1.7 (Stanley [14]) For any graph G, AG = (−1)n · χG(−1), where n is the
number of vertices in G.
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As Steingrı́msson [17] observed, Theorem 1.7, combined with (6), implies that

χ̃ (�G) = (−1)n−1 · (AG − 1).

Summarizing, we obtain the following corollary:

Corollary 1.8 �G is homotopy equivalent to a wedge of AG − 1 spheres of dimension
n − 3.

Remark Herzog, Reiner, and Welker [7] were the first to establish Corollary 1.8; in their
paper, combine Lemmas 3.2 and 6.3 as described in the proof of Theorem 4.2. They denoted
the coloring complex as �m,J , where m and J correspond to the vertex set and the edge set,
respectively, of G. Their proof was based on the “graphic” hyperplane arrangements used
by Greene and Zaslavsky in an alternative proof [6] of Theorem 1.7.

Before proceeding, let us state some well-known facts about barycentric subdivisions.
The nth Eulerian polynomial En(t) is defined by

En(t)

(1 − t)n+1
=

∑

r≥1

rntr . (9)

Proposition 1.9 (Folklore) The (cone over the) first barycentric subdivision of the
(boundary of the) n-simplex has h-vector En+1(t)/t .

Note that the first barycentric subdivision of the n-simplex coincides with the cone over the
first barycentric subdivision of the boundary of the n-simplex.

2. Polar coloring complexes

Greene and Zaslavsky [6] proved the following results analogous to Stanley’s Theorem 1.7;
see the work of Gebhard and Sagan [5] for alternative proofs.

Theorem 2.1 (Greene-Zaslavsky [6]) Let G be a graph and let v be a vertex in G. The
number of acyclic orientations P of G such that max P = {v} is equal to (−1)n−1 · χ ′

G(0);
this is the absolute value of the linear coefficient in χG.

Theorem 2.2 (Greene-Zaslavsky [6]) Let G be a graph, let S be the set of isolated vertices
in G, and let v and w be adjacent vertices in G. The number of acyclic orientations P of
G(V \S) with max P = {v} and min P = {w} is equal to (−1)n−|S| · χ ′

G(1).

Let G be a graph. For a vertex v in G, let �G(v) be the induced subcomplex of �G obtained
by removing all 0-cells X containing v. We refer to �G(v) as the unipolar coloring complex
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Figure 2. Unipolar and bipolar subcomplexes of �C4 ; compare to Fig. 1.

of G (with source v). For any two vertices v and w in G, let �G(v, w) be the induced subcom-
plex of �G(v) obtained by removing all 0-cells X not containing w. We refer to this complex
as the bipolar coloring complex of G (with source v and sink w – one may view these vertices
as “poles”). See figure 2 for examples. Note that �G+vw(v, w) and �G−vw(v, w) coincide
except when G − vw is empty. We refer to unipolar and bipolar complexes jointly as polar
complexes. A bipolar orientation is an acyclic orientation with a unique source and a unique
sink.

Lemma 2.3 For any nonempty graph G and any edge e ∈ G,

�G(v) = �G−e(v) ∪ �e(v); (10)

�G(v, w) = �G−e(v, w) ∪ �{e,vw}(v, w); (11)

�{e,vw}(v, w) is the bipolar coloring complex of the graph (V, {e, vw}).

Proof: This is immediate from the fact that these complexes are induced subcomplexes
of �G , �G−e, and �e (�{e,vw}(v, w) = �e(v, w)); compare to (4).

A simple induction argument yields that �G(v) and �G(v, w) are pure of dimension
n − 3; we consider the base steps G = (V, e) and G = (V, {e, vw}) in the proofs of
Theorems 2.5 and 2.6 below.

Lemma 2.4 For any nonempty graph G and any edge e ∈ G,

�G/e(v) ∼= �G−e(v) ∩ �e(v); (12)

�G/e(v, w) ∼= �G−e(v, w) ∩ �{e,vw}(v, w) (13)

(∼= denotes isomorphism); e �= vw in (13).

Remark If e = vx in (12) or if e = vx or e = wx in (13), then x is the removed vertex
in G/e.

Proof: (12) follows immediately from the proof of Lemma 1.3; the transformation ϕ

preserves the index i of the component Yi containing v. The same is true for (13). Namely,
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�{e,vw}(v, w) = �e(v, w), and ϕ preserves the index j of the component Y j containing
w.

Before analyzing the topology of �G(v) and �G(v, w), we will prove the following
results corresponding to Theorem 1.6; an alternative ring-theoretic approach to proving
these results is given at the end of this section.

Theorem 2.5 Let u = t/(1 − t). For any nonempty graph G and any vertex v in G, the
unipolar coloring complex �G(v) satisfies

h(�G(v), t)

(1 − t)n−1
= f (�G(v), u) · (1 + u) =

∑

r≥0

TG(r + 1)

r + 1
· tr , (14)

where n is the number of vertices in G and TG(r ) = rn − χG(r ). Moreover, the reduced
Euler characteristic of �G(v) is χ ′

G(0).

Proof: If G is a graph on n vertices with one edge, then �G(v) is the first barycentric
subdivision of an (n − 3)-simplex, which by Proposition 1.9 has h-polynomial En−2(t)/t .
Since TG(r )/r = rn−2, (14) follows.

Now, assume that G is a graph with at least two edges. Let e be any edge in G. By
induction, we may assume that

f (�H (v), u) · (1 + u) =
∑

r≥0

TH (r + 1)

r + 1
· tr

for H ∈ {G − e, e, G/e}. (10) and (12) yield that f (�G(v), u) · (1 + u) is equal to

(
f (�G−e(v), u) + f (�e(v), u) − f (�G/e(v), u)

) · (1 + u)

=
∑

r≥0

TG−e(r + 1)

r + 1
· tr +

∑

r≥0

Te(r + 1)

r + 1
· tr −

∑

r≥0

TG/e(r + 1)

r + 1
· tr

=
∑

r≥0

TG(r + 1)

r + 1
· tr .

The last equality is a consequence of (7) and the fact that χe(r ) = rn − rn−1. The reduced
Euler characteristic is determined in the same manner.

Theorem 2.6 Let u = t/(1− t). For any graph G with at least two edges and any adjacent
vertices v and w, the bipolar coloring complex �G(v, w) satisfies

h(�G(v, w), t)

(1 − t)n−2
= f (�G(v, w), u) =

∑

r≥1

UG(r + 1)

r (r + 1)
· tr + 1, (15)

where UG(r ) = TG(r ) − rn−1 = rn − rn−1 − χG(r ). Moreover, the reduced Euler charac-
teristic of �G(v, w) is −χ ′

G(1).
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Proof: If G is a graph on n vertices with two edges (one of them being vw), then �G(v, w)
is a cone over the first barycentric subdivision of an (n − 4)-simplex, which means that
�G(v, w) has h-polynomial En−3(t)/t ; see Proposition 1.9. Since χG(r ) = (r − 1)2rn−2, it
is clear that UG(r + 1)/(r (r + 1)) = (r + 1)n−3. It follows that

h(�G(v, w), t)

(1 − t)n−2
= En−3(t)/t

(1 − t)n−2
=

∑

r≥0

(r + 1)n−3tr =
∑

r≥1

(r + 1)n−3tr + 1,

which implies (15).
If G is a triangle graph on n vertices containing the three edges vw, vx , and wx for some

x and no other edge, then �G(v, w) = �{vw,vx} ∪ �{vw,wx}; note that we just determined
the h-vector of the complexes in the right-hand side. Since �{vw,vx} ∩ �{vw,wx} is the (−1)-
simplex, the h-polynomial of �G satisfies

h(�G(v, w), t)

(1 − t)n−2
= 2En−3(t)/t

(1 − t)n−2
− 1 =

∑

r≥0

2(r + 1)n−3tr − 1

=
∑

r≥1

2(r + 1)n−3tr + 1;

again (15) follows, because UG(r + 1)/(r (r + 1)) = 2(r + 1)n−3.
Now, assume that G is a graph with at least three edges and G is not the triangle graph.

Let e be any edge in G − vw. Since G is not the triangle graph, G/e contains at least two
edges. By induction, we may hence assume that

f (�H (v), u) =
∑

r≥1

UH (r + 1)

r (r + 1)
· tr + 1

for H ∈ {G − e, {vw, e}, G/e}. (11) and (13) yield that f (�G(v), u) is equal to

f (�G−e(v, w), u) + f
(
�{e,vw}(v, w), u

) − f (�G/e(v, w), u)

=
∑

r≥1

UG−e(r + 1)

r (r + 1)
· tr +

∑

r≥1

U{e,vw}(r + 1)

r (r + 1)
· tr −

∑

r≥1

UG/e(r + 1)

r (r + 1)
· tr + 1

=
∑

r≥1

UG(r + 1)

r (r + 1)
· tr + 1.

The last equality is a consequence of (7) and the fact that χ{e,vw}(r ) = (rn −rn−1)− (rn−1 −
rn−2). The reduced Euler characteristic is determined in the same manner.

Remark An alternative approach to proving Theorems 2.5 and 2.6 would be to use ring
theory; recall notation from Section 1. Let J (v) = {xI : v ∈ I } and define R(v) = R/J (v)
and KG(v) = KG/J (v); KG(v) is an ideal in R(v). It is easy to see that R(v)/KG(v)
coincides with the Stanley-Reisner ring of the cone over �G(v) with apex φ. Namely, we
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divide out exactly those monomials in R/KG that contain a factor xI such that v ∈ I . Such
sets I are precisely the ones that we removed from �G to obtain �G(v).

It is clear that the Hilbert polynomial of R(v) is (r + 1)n−1, the ring being the Stanley-
Reisner ring of a cone over the first barycentric subdivision of an (n−2)-simplex. Moreover,
by the discussion at the end of Section 1, the monomials of degree d in KG(v) correspond
precisely to proper (d +1)-colorings of G such that v is given color d +1. As a consequence,
the Hilbert polynomial of KG(v) is χG(r + 1)/(r + 1). (14) now follows quite easily (note
that we have left out some technical details).

Similar interpretations exist for �G(v, w); J (v, w) is the set of monomials xI such that
either v ∈ I or w /∈ I . This time, R(v, w) = R/J (v, w) is the Stanley-Reisner ring
of the first barycentric subdivision of an (n − 3)-simplex, which means that the Hilbert
polynomial is (r+1)n−2. Moreover, KG(v, w) = KG/J (v, w) contains d-degree monomials
corresponding to (d + 1)-colorings in which w is given color 1 and v is given color d + 1;
hence the Hilbert polynomial is χG(r + 1)/(r (r + 1)).

2.1. The homotopy type of polar coloring complexes

We now proceed with the analogues of Theorem 1.4; we use the same proof techniques as
in Section 1.1. It is conceivable that one may apply hyperplane arrangements as in the proof
by Herzog et al. [7] of Corollary 1.8; compare to Greene and Zaslavsky [6]. We do not
know whether such an approach would give any information about Cohen-Macaulayness.

Using our approach, it turns out that the situation is substantially more complicated for
the smaller bipolar complex �G(v, w) than for the larger unipolar complex �G(v).

Theorem 2.7 For any nonempty graph G on n vertices and any vertex v in G, the unipolar
coloring complex �G(v) is a constructible complex. As a consequence, �G(v) is homotopy-
C M. In particular, �G(v) is homotopy equivalent to a wedge of spheres of dimension n −3
with one sphere for each acyclic orientation P of G such that max P = {v}.

Proof: We use induction on the number of vertices and edges in G. We have already
concluded that �e(v) is the first barycentric subdivision of the (n − 3)-simplex and hence
shellable. If G has at least two edges and e ∈ G, then by induction we may assume that
�G−e(v), �e(v), and �G/e(v) are constructible. Lemmas 2.3 and 2.4 immediately imply
that �G(v) is constructible. The last statement in the Theorem is a consequence of the
Greene-Zaslavsky Theorem 2.1.

The bipolar coloring complex �G(v, w) is not always constructible. For example, if G is a
disconnected graph with only three edges forming a triangle, then �G(v, w) is disconnected.
To describe the property needed for a bipolar coloring complex to be constructible, some
notation is needed. A graph G is 2-connected if, for any vertex v in G, the induced subgraph
G(V \{v}) is connected. A vertex x such that G(V \{x}) is disconnected is a cutpoint in G.
For the purposes of this paper, the graph with two vertices and one edge is 2-connected,
whereas the singleton graph on one vertex is not. This convention might be nonstandard
but aligns quite well with the following well-known result.
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Theorem 2.8 (Lempel et al. [9]) Let G be a graph and let v and w be adjacent vertices
in G. Then G admits a bipolar acyclic orientation P with max P = {v} and min P = {w}
if and only if G is 2-connected.

Let G = (V, E) be a graph and let S be the set of isolated vertices in G. It is well-known
(see Lovász [11]) that each edge e in G is contained in a unique maximal set Be with the
property that the induced subgraph G(Be) is 2-connected. We refer to Be as a 2-connected
component. Note that the 2-connected components of G induce a partition of the edge set
E .

Say that G is pleasant if at least one of the following two properties holds.

1. G is connected.
2. G has at least two 2-connected components.

Accordingly, a graph is unpleasant if it contains isolated vertices and if the graph obtained
by removing all isolated vertices is 2-connected. (In a wider context, there is of course
nothing unpleasant about such graphs; the terminology is intended only for the purposes of
this paper.) The following two theorems demonstrate that a graph is pleasant if and only if
the bipolar coloring complex �G(v, w) is constructible; the choice of v and w is immaterial
as long as they are adjacent.

Theorem 2.9 Let G be a pleasant graph with n vertices and let v and w be adjacent
vertices in G. Then the bipolar coloring complex �G(v, w) is a constructible complex. As a
consequence, �G(v, w) is homotopy-C M. In particular, �G(v, w) is homotopy equivalent
to a wedge of spheres of dimension n − 3 with one sphere for each acyclic orientation P of
G such that max P = {v} and min P = {w}.

Proof: We use induction on the number of vertices and edges in G. The first base case is
a graph with two edges vw and e (this graph clearly has two 2-connected components). We
have already concluded that �{e,vw}(v, w) is a cone over the first barycentric subdivision of
the (n − 4)-simplex and hence shellable. The second base case is the complete graph Kn

for n = 2 and n = 3; it is clear that �Kn (v, w) is a sphere of dimension n − 3 as desired.
Assume that G is a pleasant graph with at least four vertices and three edges. Let X be

the 2-connected component in G containing {v, w}.
First, suppose that X = {v, w}. The graph obtained by removing the edge vw has the

property that v and w belong to different connected (i.e., 1-connected) components. Namely,
otherwise we would have a path from v to w in G − vw; the set U of vertices in this path
would have the property that G(U ) is 2-connected, being Hamiltonian.

Let e be any edge in G − vw. We claim that G − e and G/e consist of at least two 2-
connected components. This is obvious for G −e; this graph contains at least one additional
edge besides vw, and this edge is not contained in the 2-connected component containing
v and w, which is still X . Also, in G/e, the 2-connected component containing v and w

remains equal to X ; v and w still belong to different connected components in (G/e) −
vw = (G − vw)/e. Finally, G/e must contain at least two edges. Namely, by assumption,
there is a third edge f �= e, vw in G, and this edge is identified with vw in G/e if and
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only if {e, f, vw} forms a triangle {vx, wx, vw}. This would imply that G({v, x, w}) is
2-connected, a contradiction to the maximality of X .

As a consequence, each of G−e and G/e is a pleasant graph. We may hence use induction,
Lemmas 2.3, and 2.4 to conclude that �G(v, w) is constructible.

Next, suppose that X � {v, w}. This means that G(X ) contains some edge e �= vw. We
claim that G − e and G/e are pleasant.

First, consider G/e. If G is connected, then obviously G/e is connected. Suppose that
G has at least two 2-connected components and let S be the set of isolated vertices in G.
By assumption, H = G(V \S) is not 2-connected. It is clear that H/e does not contain
any isolated vertices. Namely, at least one of the vertices in e is adjacent to other ver-
tices; they are both contained in X , which contains at least three elements. In particular,
it suffices to show that there is a cutpoint in H/e. Let x be a cutpoint in H . If x /∈ e,
then (H/e)(V \{x}) = (H (V \{x}))/e, which immediately implies that x remains a cutpoint
in H/e. If x ∈ e = xy, then H (V \{x, y}) is disconnected; H (V \{x}) is disconnected
with y part of a connected component containing X\{x}, which has size at least 2. Yet,
H (V \{x, y}) = (H/e)((V \{y})\{x}), which implies that x remains a cutpoint in H/e.

Next, consider G − e. It is clear that G − e has at least as many 2-connected components
as G. Namely, no 2-connected component in G except X contains e, which means that
all 2-connected components except X remain the same in G − e. Also, some subset of
X (containing at least v and w) is a 2-connected component in G. In particular, G − e
contains at least two 2-connected components if G does. Also, G − e is connected if G is
connected; otherwise, G(X\{x}) would be disconnected for at least one endpoint x of e. As
a consequence, G − e is pleasant if G is pleasant.

Since each of G − e and G/e is a pleasant graph, �G(v, w) is constructible by induction,
Lemmas 2.3, and 2.4.

For graphs without isolated vertices, the last statement in the Theorem is a consequence of
the Greene-Zaslavsky Theorems 2.2 and 2.6. Other pleasant graphs are those with isolated
vertices and at least two 2-connected components. By Theorem 2.8, such graphs (with or
without isolated vertices) do not admit acyclic orientations with a unique source and a
unique sink, which by Theorem 2.2 implies that χ ′

G(1) = 0. Theorem 2.6 yields the desired
result.

The following result indicates that unpleasant graphs may not be so bad after all; �G(v, w)
turns out to be collapsible to a constructible subcomplex.

Theorem 2.10 Let G be a nonempty graph and let S be the set of isolated vertices in
G. Let v and w be adjacent vertices in G. Then the bipolar coloring complex �G(v, w) is
collapsible to �G(V \S)(v, w). In particular, if G is unpleasant, then �G(v, w) is homotopy
equivalent to a nonempty wedge of spheres of dimension n − |S| − 3 with one sphere for
each acyclic orientation P of G(V \S) such that max P = {v} and min P = {w}.

Proof: If S is empty, then there is nothing to prove; note that S is always nonempty
whenever G is unpleasant. Let s ∈ S. We want to find a collapse from �G(v, w) to �0 =
�G(V \{s})(v, w). Proceed in steps as follows.
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For a face X in �G(v, w)\�0, let T (X ) be the smallest set in X containing s. Let
(T1, T2, . . . , Tr ) be a list containing all sets T such that T = T (X ) for some face X ∈
�G(v, w)\�0. Assume that the list is arranged such that i ≤ j whenever Ti ⊇ Tj . For
1 ≤ j ≤ r , let � j be the simplicial complex containing �0 and all faces X such that
T (X ) = Ti for some i ≤ j . Since T (X ) ⊇ T (X ′) whenever X ⊆ X ′, � j is indeed a
simplicial complex. Note that �r = �G(v, w).

For 1 ≤ j ≤ r , we collapse � j to � j−1 as follows. X being a member of � j\� j−1

means that Tj is the smallest set in X containing s. Since s is an isolated vertex, one
may add or delete the set Tj\{s} without creating an element outside � j\� j−1. Namely,
X ∪ {Tj\{s}} remains a chain, as the largest set in X smaller than Tj is a subset of Tj\{s}.
As a consequence, we can collapse � j down to � j−1 using Tj\{s} as the “apex”. In terms
of discrete Morse theory [3], we may form a perfect matching on � j\� j−1 by pairing
X \{Tj\{s}} with X ∪ {Tj\{s}}.

The last statement in the Theorem is a consequence of Theorem 2.9; the wedge of spheres
is nonempty by Theorem 2.8.

3. Some positivity results

In this section, we present some positivity results related to coloring complexes. We also
give a topological interpretation of analogous positivity results by Linial [10] and Gessel
[4].

For positive integers l and i , it is well-known that there is a unique expansion l =∑i
r= j (

nr

r ) such that 1 ≤ j ≤ n j < · · · < ni−1 < ni . Define

l〈i〉 =
i∑

r= j

(
nr + 1

r + 1

)

(0〈i〉 = 0). A sequence (h0, . . . , hd ) is an M-vector if h0 = 1 and 0 ≤ hi+1 ≤ h〈i〉
i for

1 ≤ i ≤ d − 1; see Stanley [16, Section 2.2]. We say that the corresponding polynomial∑
i hi t i forms an M-vector.
Let R be a field or Z. Let � and � be simplicial complexes such that � ⊆ �. The relative

complex �/� is C M/R if the reduced relative homology group H̃i (link�(σ ), link�(σ ); R)
is zero whenever σ ∈ � and i < dim link�(σ ). Note that link�(σ ) is void whenever σ /∈ �;
in this case, H̃i (link�(σ ), link�(σ ); R) coincides with the ordinary reduced homology group
H̃i (link�(σ ); R). Define

h(�/�, t) = h(�, t) − (1 − t)dim �−dim � · h(�, t).

The following two classical theorems are indispensable for this section; for proofs, see
Stanley [16].

Theorem 3.1 If the simplicial complex � is C M/R, then the polynomial h(�, t) forms
an M-vector. In particular, all coefficients in h(�, t) are nonnegative.
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Theorem 3.2 If � ⊆ � are simplicial complexes such that �/� is C M/R, then all
coefficients in the polynomial h(�/�, t) are nonnegative.

A crucial observation in the proofs is that the Stanley-Reisner ring over R of a C M/R
complex and the “face module” of a relative C M/R complex are Cohen-Macaulay in the
algebraic sense; see Reisner [13] and Stanley [15].

Lemma 3.3 (Stanley [16]) If � ⊂ � are C M/R complexes and dim � − dim � ≤ 1,

then �/� is C M/R.

Proof: Let σ be a face in �. If σ /∈ �, then H̃i (link�(σ ), link�(σ )) = H̃i (link�(σ )),
which is zero whenever i < dim link�(σ ); � is C M/R. If σ ∈ � and dim � − dim � = 1,
then, by the C M/R property of � and �, the long exact sequence for (link�(σ ), link�(σ ))
(see Munkres [12]) vanishes except for the portion

0 → H̃d (link�(σ )) → H̃d (link�(σ ), link�(σ )) → H̃d−1(link�(σ )) → 0;

d = dim link�(σ ) = dim link�(σ ) + 1. If dim � = dim �, then the long exact sequence
vanishes except for the portion

0 → H̃d (link�(σ )) → H̃d (link�(σ )) → H̃d (link�(σ ), link�(σ )) → 0.

In both cases, the consequence is that �/� is C M/R.

For the remainder of this section, let G be a fixed nonempty graph and let v and w be
fixed vertices in G. By Theorem 3.1, the following result is a consequence of the fact that
the complexes �G , �G(v), and �G(v, w) are C M/Z; see Theorems 1.4, 2.7, and 2.9.

Corollary 3.4 Let G be a nonempty graph and let v be a vertex in G. Then the polynomials
h(�G, t) and h(�G(v), t) form M-vectors. If, in addition, G is pleasant and w is adjacent
to v in G, then the polynomial h(�G(v, w), t) forms an M-vector. In particular, the given
polynomials have nonnegative coefficients.

For a nonempty graph G, write

A0(G, t) = (1 − t)n+1 ·
∑

r≥0

χG(r + 1)tr ;

A1(G, t) = (1 − t)n ·
∑

r≥0

χG(r + 1)

r + 1
· tr ;

A2(G, t) = (1 − t)n−1 ·
∑

r≥1

χG(r + 1)

r (r + 1)
· tr .
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Write �0
G = �G , �1

G = �G(v), and �2
G = �G(v, w). When examining �2

G , we will
assume that vw ∈ G. By Theorems 1.6, 2.5, and 2.6, it is clear that

Ai (G, t) = En−i (t)

t
− (1 − t)h

(
�i

G, t
)

(16)

for 0 ≤ i ≤ 2 (for i = 2, we assume that G contains the edge vw); Ek(t) is defined in
(9). By Proposition 1.9, En(t)/t , En−1(t)/t , and En−2(t)/t are the h-vectors of �0

n = �V ,
�1

n = �V (v), and �2
n = �V (v, w), respectively. By (16), this implies that

Ai (G, t) = h
(
�i

n

/
�i

G, t
)
. (17)

Namely, dim �i
n = dim �i

G + 1. This has the following interesting consequence.

Theorem 3.5 (Linial [10], Gessel [4]) For any graph G, all coefficients in A0(G, t) and
A1(G, t) are nonnegative. In addition, if G is pleasant, then all coefficients in A2(G, t) are
nonnegative.

Remark Linial [10] was the first to prove the statement about A0(G, t), whereas the
statement about A2(G, t) is due to Gessel [4]. Several authors have rediscovered Linial’s
result; see Gessel [4] and Steingrı́msson [17] for references.

Proof: By Theorem 3.2 and (17), it suffices to prove that �i
n/�

i
G is a relative C M/Z

complex. Note that �i
n and �i

G are C M/Z complexes in the usual sense; use Theorems 1.4,
2.7, and 2.9. Hence we are done by Lemma 3.3.

The following consequence of Theorem 3.5 and (16) puts a bound on how fast the
sequence of coefficients in h(�i

G, t) can increase.

Corollary 3.6 With assumptions for each i as in Theorem 3.5,

(1 − t)h
(
�i

G, t
) ≤ En−i (t)

t
;

the inequality holds coefficient-wise.

Finally, we show that h(�i
G, t) is monotonely increasing in terms of G.

Proposition 3.7 Let G be a graph and let H be a proper subgraph of G. Then h(�i
H , t) ≤

h(�i
G, t) for 0 ≤ i ≤ 2 (for i = 2, we assume that G and H are pleasant graphs containing

the edge vw); the inequality holds coefficient-wise with strict inequality for at least one
coefficient.
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Proof: For H = G − e, observe that

h
(
�i

G, t
) − h

(
�i

G−e, t
) = −Ai (G, t) + Ai (G − e, t)

1 − t
= Ai (G/e, t)(1 − t)

1 − t
= Ai (G/e, t);

use (17) and (7). Indeed, it is easy to see that �i
G/�i

G−e and �i
n−1/�

i
G/e are isomorphic.

Since Ai (G/e, t) is a (nonzero) polynomial with nonnegative coefficients by Theorem 3.5,
induction on |G\H | yields the desired result. An alternative approach would be to apply
Theorems 3.2 and Lemma 3.3 to the relative complex �i

G/�i
H .

4. Concluding remarks

While we have been able to prove that the coloring complex and its polar subcomplexes are
constructible, the problem of finding a shelling remains unsolved. We do believe that the
complexes are shellable, but many “natural” candidates for shelling orders (e.g., different
kinds of lexicographic order) turn out to fail in general.

We have considered three kinds of coloring complexes corresponding to the three poly-
nomials A0(G, t), A1(G, t), and A2(G, t) in Section 3. Is it by any chance possible to define
yet another coloring complex corresponding to a polynomial A3(G, t) defined in some nat-
ural manner? The most natural candidate for A3(G, t) is probably the polynomial obtained
by replacing χG (r+1)

r (r+1) with χG (r+2)
r (r+1)(r+2) in the definition of A2(G, t) (this makes sense as soon

as G is not 3-colorable). Gessel [4] observed that there exists a connected graph G such
that some coefficients in A3(G, t) are negative.
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