Balanced Configurations of 2n + 1 Plane Vectors

N. RESSAYRE

ressayre@math.univ-montp2.fr Université Montpellier II, Département de Mathématiques, Case courrier 051-Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

Received October 13, 2003; Revised June 28, 2004; Accepted July 7, 2004

1. Introduction

A plane configuration $\{v_1, v_2, \dots, v_m\}$ (where *m* is a positive integer) of vectors of \mathbb{R}^2 is said to be *balanced* if for any index $i \in \{1, ..., m\}$ the multiset

 $\{\det(v_i, v_j) : j \neq i\}$

is symmetric around the origin. A plane configuration is said to be uniform if every pair of vectors is linearly independent.

E. Cattani, A. Dickenstein and B. Sturmfels introduced this notion in [1,2] for its relationship with multivariable hypergeometric functions in the sense of Gel'fand, Kapranov and Zelevinsky (see [3, 4]).

Balanced plane configurations with at most six vectors have been classified in [2]. With the help of computer calculation, E. Cattani, A. Dickenstein classified the balanced plane configurations of seven vectors in [2]. Moreover, they conjectured that any uniform balanced plane configuration is $GL_2(\mathbb{R})$ -equivalent to a regular (2n + 1)-gon (where n is a positive integer). In this note, we prove this conjecture.

2. Statement of the result

Let *m* be a positive integer.

Definition 1 A configuration $\{v_1, \ldots, v_m\}$ is said to be *balanced* if for all $i = 1, \ldots, m$ and for all x in \mathbb{R} the cardinality of the set $\{j \neq i : \det(v_i, v_j) = x\}$ equals that of the set $\{j \neq i : \det(v_i, v_j) = -x\}.$

Definition 2 A balanced configuration $\{v_1, \ldots, v_m\}$ is said to be *uniform* if for any pair $i \neq j$, the vectors v_i, v_j are linearly independent.

Remark Assume $\{v_1, \ldots, v_m\}$ is balanced and *m* even. Then, the multiset $\{\det(v_1, v_j) :$ $j = 2, \ldots, m$ is symmetric around 0 and of odd cardinality; so it contains 0. Then, $\{v_1, \ldots, v_m\}$ is not uniform. From, now on we are only interested in configurations with an odd number of vectors. So, we assume that m = 2n + 1 for an integer *n*.

Let us identify \mathbb{R}^2 with the field \mathbb{C} of complex numbers. To avoid any confusion with index-numbers, we denote by $\sqrt{-1}$ the complex number *i*. Denote by \mathbb{U}_m the set of *m* th-roots of 1.

Set $\omega = e^{\frac{2\sqrt{-1}\pi}{m}}$. Then, $\mathbb{U}_m = \{w^k : k = 0, \dots, 2n\}$. For all integers k and a, we have

$$\det(\omega^k, \omega^{k+a}) = -\det(\omega^k, \omega^{k-a}). \tag{1}$$

In particular, \mathbb{U}_m is a uniform balanced configuration.

One can note that the group $GL_2(\mathbb{R})$ acts naturally on the set of balanced (resp. uniform balanced) configurations of *m* vectors. Indeed, if $g \in GL_2(\mathbb{R})$ then $det(g.v_i, g.v_j) = det(g) det(v_i, v_j)$.

The aim of this note is to prove the

Theorem 1 For any odd integer m, $GL_2(\mathbb{R})$ acts transitively on the set of uniform balanced configurations of m vectors.

In other words, modulo $GL_2(\mathbb{R})$, \mathbb{U}_m is the only uniform balanced configuration of *m* vectors.

3. The proof

3.1. —

Let us fix some notation and convention. The set $\{0, \ldots, 2n\}$ is denoted by *I*.

Definition 3.1 Let us recall that we identify \mathbb{R}^2 with the field \mathbb{C} of complex numbers. Let $\{v_0, \ldots, v_{m-1}\}$ be a uniform configuration of *m* points in \mathbb{R}^2 . Each v_i has a unique polar form $v_i = \rho_i e^{\alpha_i}$ with ρ_i in $]0; +\infty[$ and α_i in $[0; 2\pi[$. The set $\{v_0, \ldots, v_{m-1}\}$ is said to be *labelled by increasing arguments* if

 $\alpha_0 < \alpha_1 < \cdots < \alpha_{m-1}.$

Convention 1 Let $i \in I$. For all k in \mathbb{Z} which equals i modulo m, we also denote by v_k the vector v_i .

The first step of the proof is to show that any uniform configuration satisfies equations similar to Eqs. (1). Precisely, we have:

Lemma 3.1 Let $C = \{v_0, \ldots, v_{2n}\}$ be a uniform balanced configuration labelled by increasing arguments. Then,

 $\det(v_k, v_{k+a}) = -\det(v_k, v_{k-a}) \quad \forall k, a \in \mathbb{Z}$

Proof: We denote by $\mathcal{P}_2(I)$ the set of pairs of elements of *I*. The fact that \mathcal{C} is uniform balanced can be formulated as follow. For all $i \in I$, there exists a part $\mathcal{P}_2^i(I)$ of $\mathcal{P}_2(I)$ such that:

- $I \{i\}$ is the disjoint union of the elements of $\mathcal{P}_2^i(I)$, and
- $\forall \{k, l\} \in \mathcal{P}_2^i(I)$ det $(v_i, v_k) = -\det(v_i, v_l) \neq 0$.

For any pair $\{k, l\} \in \mathcal{P}_2(I)$, the set of vectors $v \in \mathbb{R}^2$ such that $\det(v, v_k) = -\det(v, v_l)$ is the vectorial line generated by $v_k + v_l$ (let us recall that v_k, v_l are linearly independent). In particular, since C is uniform there exists at most one $i \in I$ such that $\det(v_i, v_k) = -\det(v_i, v_l)$. This means that for any $i \neq j$ the set $\mathcal{P}_2^i(I) \cap \mathcal{P}_2^j(I)$ is empty.

Moreover, the cardinality of $\mathcal{P}_2^i(I)$ equals *n* for all $i \in I$. Then, the cardinality of $\bigcup_{i \in I} \mathcal{P}_2^i(I)$ equals *nm*, that is the cardinality of $\mathcal{P}_2(I)$. It follows that $\bigcup_{i \in I} \mathcal{P}_2^i(I) = \mathcal{P}_2(I)$. In other words, there exists a map

$$\phi:\mathcal{P}_2(I)\longrightarrow I,$$

such that, for all $\{k, l\} \in \mathcal{P}_2(I)$, we have:

$$\det (v_{\phi(\{k,l\})}, v_k) = -\det (v_{\phi(\{k,l\})}, v_l).$$

It is sufficient to prove the lemma for a = -n, ..., -1, 1, ..., n; and by symmetry for a = 1, ..., n. We prove this by decreasing induction going from a = n to a = 1.

Assume a = n and fix k. Relabeling the vectors, we may assume that k = n + 1. Then, we have to prove that: $det(v_{n+1}, v_0) = -det(v_{n+1}, v_1)$, that is, $\phi(\{0, 1\}) = n + 1$.

Note that the set of $i \in I$ such that $det(v_0, v_i)$ is positive (that is, such that $\alpha_i - \alpha_0 < \pi$) is of cardinality *n*. Then, by Convention 1 $\alpha_n - \alpha_0 < \pi$.

For all t = 0, ..., n - 1, since $v_{\phi(\{t,t+1\})}$ belongs to $\mathbb{R}(v_t + v_{t+1})$, its argument $\alpha_{\phi(\{t,t+1\})}$ belongs to $]\pi + \alpha_t; \pi + \alpha_{t+1}[$. In particular, each one of the *n* intervals $]\pi + \alpha_t; \pi + \alpha_{t+1}[$ (for t = 0, ..., n - 1) contains one of the α_i for i = n + 1, ..., 2n. So, $\alpha_{\phi(\{0,1\})}$ is the only α_i in the interval $]\pi + \alpha_0; \pi + \alpha_1[$. It follows that $\phi(\{0,1\}) = n + 1$.

Suppose now the proposition proved for a = n, ..., n - u + 2 (with $n \ge u \ge 2$) and prove that it is true for a = n - u + 1. As before, it is sufficient to prove that:

$$\phi(\{0, u\}) = \frac{u}{2} \quad \text{if } u \text{ is even}$$
$$= \frac{u+m}{2} = \frac{u+1}{2} + n \quad \text{if } u \text{ is odd}$$

Since, $v_{\phi(\{0,u\})}$ belongs to $\mathbb{R}.(v_0 + v_u)$, we have:

$$\phi(\{0, u\}) \in \{1, \dots, u-1\} \cup \{n+1, \dots, n+u\}.$$

Let us assume that u = 2v is even. For w = 0, 1, ..., v - 1, we have $\phi(\{0, 2w + 1\}) = n + 1 + w$. But, two elements of \mathcal{P}_2^{n+1+w} are disjoint. So, $\phi(\{0, u\}) \notin \{n + 1, ..., n + v\}$.

In the same way, for w = 1, ..., v - 1, we have: $\phi(\{0, 2w\}) = w$. And so, $\phi(\{0, u\}) \notin \{1, ..., v - 1\}$. For w = 0, 1, ..., v - 1, we have $\phi(\{u, u - 2w - 1\}) = n + u - w$. Then, $\phi(\{0, u\}) \notin \{n + v + 1, ..., n + u\}$. For w = 1, ..., v - 1, we have $\phi(\{u, u - 2w\}) = u - w$. Then, $\phi(\{0, u\}) \notin \{v + 1, ..., u - 1\}$. Finally, the only possible value for $\phi(\{0, u\})$ is v.

The proof is analog if u = 2v + 1 is odd.

Lemma 3.1 has a very useful consequence:

Lemma 3.2 We keep notation of Lemma 3.1. We also use Convention 1. Then, for all k = 0, ..., 2n we have:

$$\det(v_k, v_{k+1}) = \det(v_0, v_1),$$

and

 $\det(v_k, v_{k+n}) = \det(v_0, v_n).$

Proof: Lemma 3.1 shows that for all integers k we have $det(v_k, v_{k+1}) = det(v_{k+1}, v_{k+2})$. The first assertion follows immediately.

For all k, we also have $det(v_k, v_{k+n}) = det(v_{k+n}, v_{k+2n})$. Since n is prime with m = 2n+1, this implies the second assertion.

3.2. —

Let $C = \{v_0, \ldots, v_{2m}\}$ be a uniform balanced configuration labelled by increasing arguments. We are going to prove

Claim 1 v_0 , v_n and v_{n+1} determine C.

Indeed, we are going to construct successively v_1 , v_{n+2} , v_2 , v_{n+3} , v_3 , v_{n+4} Set $A_1 := det(v_n, v_{n+1})$ and $A_n := det(v_0, v_n)$. Assume that we have constructed v_1 , v_{n+2} , ..., v_{i-1} , v_{n+i} (for $1 \le i \le n-1$). By Lemma 3.2, we have:

$$\det(v_{i-1}, v_i) = A_1$$
 and $\det(v_i, v_{n+i}) = A_n$. (2)

Then,

$$v_i = \frac{A_1}{\det(v_{i-1}, v_{n+i})} v_{n+i} + \frac{A_n}{\det(v_{i-1}, v_{n+i})} v_{i-1}.$$

But, since by Convention 1, $v_{n+i+n} = v_{i-1}$, we have: $det(v_{i-1}, v_{n+i}) = -A_n$. Finally, we obtain:

$$v_i = \frac{A_1}{A_n} v_{n+i} - v_{i-1}.$$

BALANCED CONFIGURATIONS

In the same way, using

$$\det(v_{n+i}, v_{n+i+1}) = A_1 \quad \text{and} \quad \det(v_{n+i+1}, v_i) = A_n;$$
(3)

we obtain:

$$v_{n+i+1} = -\frac{A_1}{A_n}v_i - v_{n+i}.$$

Claim 1 follows.

Inspired by the proof of Claim 1, we define two sequences of vectors of \mathbb{R}^2 (with a parameter $t \in \mathbb{R}$) as follows.

Start with

$$U = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad V = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad w_0(t) = \begin{pmatrix} t \\ -1 \end{pmatrix}.$$

Set $A = \det(V, w_0) = -t$ and note that $\det(U, V) = 1$. Then we define $w_i(t)$ and $u_i(t)$ by induction:

 $\begin{cases} w_0(t) & \text{is already defined} \\ u_0(t) = U \\ u_{i+1}(t) = -tw_i(t) - u_i(t) \\ w_{i+1}(t) = tu_i(t) - w_i(t) \end{cases}$

3.4. —

Let $C = \{v_0, \ldots, v_{2m}\}$ be a uniform balanced configuration labelled by increasing arguments. Then, there exits a unique $g_C \in GL_2(\mathbb{R})$ such that $g_C.v_0 = U$ and $g_C.v_n = V$. Since $det(v_0, v_n) = -det(v_0, v_{n+1})$ (see Lemma 3.2), there exists a unique $t_C \in \mathbb{R}$ such that $g_C.v_{n+1} = w_0(t_C)$. Then, the proof of Claim 1 implies

Lemma 3.3 With above notation, for all i = 0, ..., n - 1, we have:

 $g_{\mathcal{C}}.v_{n+i+1} = w_i(t_{\mathcal{C}})$ and $g_{\mathcal{C}}.v_i = u_i(t_{\mathcal{C}}).$

Moreover, $w_n(t_c) = U$ and $v_n(t_c) = V$.

3.5. —

Now, we are interested in the equation $w_n(t) = U$.

Useful properties of the functions $t \mapsto u_i(t)$ and $t \mapsto w_i(t)$ are stated in

Lemma 3.4 Denote by (x^*, y^*) the coordinate forms of \mathbb{R}^2 . Then, for all $i \ge 1$, we have:

- (i) $x^*(u_i(t))$ is an even polynomial function of degree 2*i*,
- (ii) $y^*(u_i(t))$ is an odd polynomial function of degree 2i 1,
- (iii) $x^*(w_i(t))$ is an odd polynomial function of degree 2i + 1, and
- (iv) $y^*(w_i(t))$ is an even polynomial function of degree 2*i*.

In particular, the equation $w_n(t) = U$ has at most n solutions.

Proof: The proof of the four assumptions is an immediate induction on *i*.

We can note that $y^*(w_n(0)) \neq 0$. Then, by Assertion (iv), the equation $y^*(w_n(t)) = 0$ has at most 2n solutions: $-t_j < \cdots < -t_1 < t_1 < \cdots < t_j$ (with $j \leq n$). Since $x^*(w_n(t))$ is an odd polynomial function, at most one element of a pair $\pm t_k$ is a solution of the equation $x^*(w_n(t)) = 1$. This ends the proof of the lemma.

3.6. —

Our goal is now to construct geometrically *n* solutions of the equation $w_n(t) = U$.

Let me recall that we have identified \mathbb{R}^2 with \mathbb{C} . Consider $\mathbb{U}_m = \{\omega^i : i = 0, ..., 2n\}$. Let us fix $k \in \{1, ..., n\}$.

Denote by g_k the element of $GL_2(\mathbb{R})$ such that $g_k.1 = U$ and $g_k.\omega^k = V$. Let t_k be the unique real number such that $g_k.\omega^{-k} = w_0(t_k)$. Explicitly, $t_k = \frac{1}{\sin(2k\pi/m)}$.

For all $i \in \mathbb{Z}$, we have:

$$\det\left(\omega^{-2k(i-1)},\omega^{-2ki}\right) = \det(\omega^k,\omega^{-k}) \quad \det\left(\omega^{-2ki},\omega^{-2k(n+i)}\right) = \det(\omega^0,\omega^k),$$

and

$$\det\left(\omega^{-2k(n+i)},\omega^{-2k(n+i+1)}\right) = \det(\omega^k,\omega^{-k}) \quad \det\left(\omega^{-2k(n+i+1)},\omega^{-2ki}\right) = \det(\omega^0,\omega^k).$$

Then, the sequence $(g_k.\omega^{-2ki})_{i\in\mathbb{N}}$ satisfies Relations (2) and (3), with $A_1 = \det(V, w_0(t_k))$ and $A_n = \det(U, V)$. This implies that

$$w_i(t_k) = g_k . \omega^{-k(1+2i)}, \text{ for all } i \ge 0$$
 (4).

In particular, t_k satisfies $w_n(t_k) = U$. With Lemma 3.4, this implies the

Lemma 3.5 We have:

$$\{t \in \mathbb{R} : w_n(t) = U\} = \left\{\frac{1}{\sin(2k\pi/m)} : k = 1, \dots n\right\}.$$

286

3.7. —

Proof of Theorem 1: Let $C = \{v_0, \ldots, v_{2n}\}$ be a uniform balanced configuration labelled by increasing arguments. We define $g_C \in GL_2(\mathbb{R})$ and $t_C \in \mathbb{R}$ as in Paragraph 3.4. Then, by Lemmas 3.3 and 3.5, there exists a unique $k_C = 1, \ldots n$ such that $t_C = \frac{1}{\sin(2k_C\pi/m)}$. Let $g_{k_C} \in GL_2(\mathbb{R})$ defined as in Paragraph 3.6.

Then, by Lemma 3.3 and Equalities (4), we have:

$$v_{0} \xrightarrow{g_{C}} U \xrightarrow{g_{k_{C}}^{n-1}} 1$$

$$v_{n} \xrightarrow{g_{C}} V \xrightarrow{g_{k_{C}}^{n-1}} \omega^{k_{C}}$$

$$v_{n+i+1} \xrightarrow{g_{C}} w_{i}(t_{C}) \xrightarrow{g_{k_{C}}^{n-1}} \omega^{-k(1+2i)} \text{ for all } i = 0, \dots, n-1$$

$$v_{i} \xrightarrow{g_{C}} v_{i}(t_{C}) \xrightarrow{g_{k_{C}}^{n-1}} \omega^{-2ki} \text{ for all } i = 0, \dots, n-1$$

Theorem 1 follows.

References

- 1. E. Cattani and A. Dickenstein, "Planar configurations of lattice vectors and GKZ-rational toric fourfolds in \mathbb{P}^6 ," *J. Algebraic Combin.* **19**(1) (2004), 47–65.
- E. Cattani, A. Dickenstein, and B. Sturmfels, "Rational hypergeometric functions," *Compositio Math.* 128(2) (2001), 217–239.
- I. Gelfand, M. Kapranov, and A. Zelevinsky, "Hypergeometric functions and toral manifolds," *Functional Anal. Appl.* 23 (1989), 94–106.
- I. Gelfand, M. Kapranov, and A. Zelevinsky, "Generalized Euler integrals and A-hypergeometric functions," Adv. Math. 84 (1990), 255–271.