# Balanced Configurations of $2 \boldsymbol{n}+1$ Plane Vectors 

N. RESSAYRE<br>ressayre@math.univ-montp2.fr<br>Université Montpellier II, Département de Mathématiques, Case courrier 051-Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

Received October 13, 2003; Revised June 28, 2004; Accepted July 7, 2004

## 1. Introduction

A plane configuration $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ (where $m$ is a positive integer) of vectors of $\mathbb{R}^{2}$ is said to be balanced if for any index $i \in\{1, \ldots, m\}$ the multiset

$$
\left\{\operatorname{det}\left(v_{i}, v_{j}\right): j \neq i\right\}
$$

is symmetric around the origin. A plane configuration is said to be uniform if every pair of vectors is linearly independent.
E. Cattani, A. Dickenstein and B. Sturmfels introduced this notion in [1,2] for its relationship with multivariable hypergeometric functions in the sense of Gel'fand, Kapranov and Zelevinsky (see [3,4]).

Balanced plane configurations with at most six vectors have been classified in [2]. With the help of computer calculation, E. Cattani, A. Dickenstein classified the balanced plane configurations of seven vectors in [2]. Moreover, they conjectured that any uniform balanced plane configuration is $\mathrm{GL}_{2}(\mathbb{R})$-equivalent to a regular $(2 n+1$ )-gon (where $n$ is a positive integer). In this note, we prove this conjecture.

## 2. Statement of the result

Let $m$ be a positive integer.
Definition 1 A configuration $\left\{v_{1}, \ldots, v_{m}\right\}$ is said to be balanced if for all $i=1, \ldots, m$ and for all $x$ in $\mathbb{R}$ the cardinality of the set $\left\{j \neq i: \operatorname{det}\left(v_{i}, v_{j}\right)=x\right\}$ equals that of the set $\left\{j \neq i: \operatorname{det}\left(v_{i}, v_{j}\right)=-x\right\}$.

Definition 2 A balanced configuration $\left\{v_{1}, \ldots, v_{m}\right\}$ is said to be uniform if for any pair $i \neq j$, the vectors $v_{i}, v_{j}$ are linearly independent.

Remark Assume $\left\{v_{1}, \ldots, v_{m}\right\}$ is balanced and $m$ even. Then, the multiset $\left\{\operatorname{det}\left(v_{1}, v_{j}\right)\right.$ : $j=2, \ldots, m\}$ is symmetric around 0 and of odd cardinality; so it contains 0 . Then,
$\left\{v_{1}, \ldots, v_{m}\right\}$ is not uniform. From, now on we are only interested in configurations with an odd number of vectors. So, we assume that $m=2 n+1$ for an integer $n$.

Let us identify $\mathbb{R}^{2}$ with the field $\mathbb{C}$ of complex numbers. To avoid any confusion with index-numbers, we denote by $\sqrt{-1}$ the complex number $i$. Denote by $\mathbb{U}_{m}$ the set of $m$ th-roots of 1 .

Set $\omega=e^{\frac{2 \sqrt{-l \pi} \pi}{m}}$. Then, $\mathbb{U}_{m}=\left\{w^{k}: k=0, \ldots 2 n\right\}$. For all integers $k$ and $a$, we have

$$
\begin{equation*}
\operatorname{det}\left(\omega^{k}, \omega^{k+a}\right)=-\operatorname{det}\left(\omega^{k}, \omega^{k-a}\right) \tag{1}
\end{equation*}
$$

In particular, $\mathbb{U}_{m}$ is a uniform balanced configuration.
One can note that the group $\mathrm{GL}_{2}(\mathbb{R})$ acts naturally on the set of balanced (resp. uniform balanced) configurations of $m$ vectors. Indeed, if $g \in \mathrm{GL}_{2}(\mathbb{R})$ then $\operatorname{det}\left(g . v_{i}, g . v_{j}\right)=$ $\operatorname{det}(g) \operatorname{det}\left(v_{i}, v_{j}\right)$.

The aim of this note is to prove the
Theorem 1 For any odd integer m, $\mathrm{GL}_{2}(\mathbb{R})$ acts transitively on the set of uniform balanced configurations of $m$ vectors.

In other words, modulo $\mathrm{GL}_{2}(\mathbb{R}), \mathbb{U}_{m}$ is the only uniform balanced configuration of $m$ vectors.

## 3. The proof

## 3.1. -

Let us fix some notation and convention. The set $\{0, \ldots, 2 n\}$ is denoted by $I$.
Definition 3.1 Let us recall that we identify $\mathbb{R}^{2}$ with the field $\mathbb{C}$ of complex numbers. Let $\left\{v_{0}, \ldots, v_{m-1}\right\}$ be a uniform configuration of $m$ points in $\mathbb{R}^{2}$. Each $v_{i}$ has a unique polar form $v_{i}=\rho_{i} e^{\alpha_{i}}$ with $\rho_{i}$ in $] 0 ;+\infty\left[\right.$ and $\alpha_{i}$ in $\left[0 ; 2 \pi\left[\right.\right.$. The set $\left\{v_{0}, \ldots, v_{m-1}\right\}$ is said to be labelled by increasing arguments if

$$
\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m-1} .
$$

Convention 1 Let $i \in I$. For all $k$ in $\mathbb{Z}$ which equals $i$ modulo $m$, we also denote by $v_{k}$ the vector $v_{i}$.

The first step of the proof is to show that any uniform configuration satisfies equations similar to Eqs. (1). Precisely, we have:

Lemma 3.1 Let $\mathcal{C}=\left\{v_{0}, \ldots, v_{2 n}\right\}$ be a uniform balanced configuration labelled by increasing arguments. Then,

$$
\operatorname{det}\left(v_{k}, v_{k+a}\right)=-\operatorname{det}\left(v_{k}, v_{k-a}\right) \quad \forall k, a \in \mathbb{Z}
$$

Proof: We denote by $\mathcal{P}_{2}(I)$ the set of pairs of elements of $I$. The fact that $\mathcal{C}$ is uniform balanced can be formulated as follow. For all $i \in I$, there exists a part $\mathcal{P}_{2}^{i}(I)$ of $\mathcal{P}_{2}(I)$ such that:

- $I-\{i\}$ is the disjoint union of the elements of $\mathcal{P}_{2}^{i}(I)$, and
- $\forall\{k, l\} \in \mathcal{P}_{2}^{i}(I) \quad \operatorname{det}\left(v_{i}, v_{k}\right)=-\operatorname{det}\left(v_{i}, v_{l}\right) \neq 0$.

For any pair $\{k, l\} \in \mathcal{P}_{2}(I)$, the set of vectors $v \in \mathbb{R}^{2} \operatorname{such}$ that $\operatorname{det}\left(v, v_{k}\right)=-\operatorname{det}\left(v, v_{l}\right)$ is the vectorial line generated by $v_{k}+v_{l}$ (let us recall that $v_{k}, v_{l}$ are linearly independent). In particular, since $\mathcal{C}$ is uniform there exists at most one $i \in I$ such that $\operatorname{det}\left(v_{i}, v_{k}\right)=$ $-\operatorname{det}\left(v_{i}, v_{l}\right)$. This means that for any $i \neq j$ the set $\mathcal{P}_{2}^{i}(I) \cap \mathcal{P}_{2}^{j}(I)$ is empty.

Moreover, the cardinality of $\mathcal{P}_{2}^{i}(I)$ equals $n$ for all $i \in I$. Then, the cardinality of $\bigcup_{i \in I} \mathcal{P}_{2}^{i}(I)$ equals $n m$, that is the cardinality of $\mathcal{P}_{2}(I)$. It follows that $\bigcup_{i \in I} \mathcal{P}_{2}^{i}(I)=\mathcal{P}_{2}(I)$. In other words, there exists a map

$$
\phi: \mathcal{P}_{2}(I) \longrightarrow I,
$$

such that, for all $\{k, l\} \in \mathcal{P}_{2}(I)$, we have:

$$
\operatorname{det}\left(v_{\phi(\{k, l\})}, v_{k}\right)=-\operatorname{det}\left(v_{\phi(\{k, l\})}, v_{l}\right)
$$

It is sufficient to prove the lemma for $a=-n, \ldots,-1,1, \ldots, n$; and by symmetry for $a=1, \ldots, n$. We prove this by decreasing induction going from $a=n$ to $a=1$.

Assume $a=n$ and fix $k$. Relabeling the vectors, we may assume that $k=n+1$. Then, we have to prove that: $\operatorname{det}\left(v_{n+1}, v_{0}\right)=-\operatorname{det}\left(v_{n+1}, v_{1}\right)$, that is, $\phi(\{0,1\})=n+1$.

Note that the set of $i \in I$ such that $\operatorname{det}\left(v_{0}, v_{i}\right)$ is positive (that is, such that $\alpha_{i}-\alpha_{0}<\pi$ ) is of cardinality $n$. Then, by Convention $1 \alpha_{n}-\alpha_{0}<\pi$.

For all $t=0, \ldots, n-1$, since $v_{\phi(\{t, t+1\})}$ belongs to $\mathbb{R}\left(v_{t}+v_{t+1}\right)$, its argument $\alpha_{\phi(\{t, t+1\})}$ belongs to $] \pi+\alpha_{t} ; \pi+\alpha_{t+1}$ [. In particular, each one of the $n$ intervals $] \pi+\alpha_{t} ; \pi+\alpha_{t+1}[$ (for $t=0, \ldots, n-1$ ) contains one of the $\alpha_{i}$ for $i=n+1, \ldots, 2 n$. So, $\alpha_{\phi(\{0,1)}$ is the only $\alpha_{i}$ in the interval $] \pi+\alpha_{0} ; \pi+\alpha_{1}[$. It follows that $\phi(\{0,1\})=n+1$.

Suppose now the proposition proved for $a=n, \ldots, n-u+2$ (with $n \geq u \geq 2$ ) and prove that it is true for $a=n-u+1$. As before, it is sufficient to prove that:

$$
\begin{aligned}
\phi(\{0, u\}) & =\frac{u}{2} \quad \text { if } u \text { is even } \\
& =\frac{u+m}{2}=\frac{u+1}{2}+n \quad \text { if } u \text { is odd }
\end{aligned}
$$

Since, $v_{\phi(\{0, u\})}$ belongs to $\mathbb{R} .\left(v_{0}+v_{u}\right)$, we have:

$$
\phi(\{0, u\}) \in\{1, \ldots, u-1\} \cup\{n+1, \ldots, n+u\} .
$$

Let us assume that $u=2 v$ is even. For $w=0,1, \ldots v-1$, we have $\phi(\{0,2 w+1\})=$ $n+1+w$. But, two elements of $\mathcal{P}_{2}^{n+1+w}$ are disjoint. So, $\phi(\{0, u\}) \notin\{n+1, \ldots, n+v\}$.

In the same way, for $w=1, \ldots, v-1$, we have: $\phi(\{0,2 w\})=w$. And so, $\phi(\{0, u\}) \notin$ $\{1, \ldots, v-1\}$. For $w=0,1, \ldots v-1$, we have $\phi(\{u, u-2 w-1\})=n+u-w$. Then, $\phi(\{0, u\}) \notin\{n+v+1, \ldots, n+u\}$. For $w=1, \ldots, v-1$, we have $\phi(\{u, u-2 w\})=u-w$. Then, $\phi(\{0, u\}) \notin\{v+1, \ldots, u-1\}$.

Finally, the only possible value for $\phi(\{0, u\})$ is $v$.
The proof is analog if $u=2 v+1$ is odd.
Lemma 3.1 has a very useful consequence:
Lemma 3.2 We keep notation of Lemma 3.1. We also use Convention 1.
Then, for all $k=0, \ldots, 2 n$ we have:

$$
\operatorname{det}\left(v_{k}, v_{k+1}\right)=\operatorname{det}\left(v_{0}, v_{1}\right)
$$

and

$$
\operatorname{det}\left(v_{k}, v_{k+n}\right)=\operatorname{det}\left(v_{0}, v_{n}\right)
$$

Proof: Lemma 3.1 shows that for all integers $k$ we have $\operatorname{det}\left(v_{k}, v_{k+1}\right)=\operatorname{det}\left(v_{k+1}, v_{k+2}\right)$. The first assertion follows immediately.

For all $k$, we also have $\operatorname{det}\left(v_{k}, v_{k+n}\right)=\operatorname{det}\left(v_{k+n}, v_{k+2 n}\right)$. Since $n$ is prime with $m=2 n+1$, this implies the second assertion.

## 3.2.

Let $\mathcal{C}=\left\{v_{0}, \ldots, v_{2 m}\right\}$ be a uniform balanced configuration labelled by increasing arguments. We are going to prove

Claim $1 v_{0}, v_{n}$ and $v_{n+1}$ determine $\mathcal{C}$.
Indeed, we are going to construct successively $v_{1}, v_{n+2}, v_{2}, v_{n+3}, v_{3}, v_{n+4} \ldots$. Set $A_{1}:=$ $\operatorname{det}\left(v_{n}, v_{n+1}\right)$ and $A_{n}:=\operatorname{det}\left(v_{0}, v_{n}\right)$. Assume that we have constructed $v_{1}, v_{n+2}, \ldots, v_{i-1}$, $v_{n+i}$ (for $1 \leq i \leq n-1$ ). By Lemma 3.2, we have:

$$
\begin{equation*}
\operatorname{det}\left(v_{i-1}, v_{i}\right)=A_{1} \quad \text { and } \quad \operatorname{det}\left(v_{i}, v_{n+i}\right)=A_{n} . \tag{2}
\end{equation*}
$$

Then,

$$
v_{i}=\frac{A_{1}}{\operatorname{det}\left(v_{i-1}, v_{n+i}\right)} v_{n+i}+\frac{A_{n}}{\operatorname{det}\left(v_{i-1}, v_{n+i}\right)} v_{i-1}
$$

But, since by Convention 1, $v_{n+i+n}=v_{i-1}$, we have: $\operatorname{det}\left(v_{i-1}, v_{n+i}\right)=-A_{n}$. Finally, we obtain:

$$
v_{i}=\frac{A_{1}}{A_{n}} v_{n+i}-v_{i-1} .
$$

In the same way, using

$$
\begin{equation*}
\operatorname{det}\left(v_{n+i}, v_{n+i+1}\right)=A_{1} \quad \text { and } \quad \operatorname{det}\left(v_{n+i+1}, v_{i}\right)=A_{n} \tag{3}
\end{equation*}
$$

we obtain:

$$
v_{n+i+1}=-\frac{A_{1}}{A_{n}} v_{i}-v_{n+i} .
$$

Claim 1 follows.

## 3.3. -

Inspired by the proof of Claim 1, we define two sequences of vectors of $\mathbb{R}^{2}$ (with a parameter $t \in \mathbb{R}$ ) as follows.

Start with

$$
U=\binom{1}{0} \quad V=\binom{0}{1} \quad w_{0}(t)=\binom{t}{-1}
$$

Set $A=\operatorname{det}\left(V, w_{0}\right)=-t$ and note that $\operatorname{det}(U, V)=1$. Then we define $w_{i}(t)$ and $u_{i}(t)$ by induction:

$$
\begin{cases}w_{0}(t) & \text { is already defined } \\ u_{0}(t)=U \\ u_{i+1}(t)=-t w_{i}(t)-u_{i}(t) \\ w_{i+1}(t)=t u_{i}(t)-w_{i}(t)\end{cases}
$$

## 3.4. -

Let $\mathcal{C}=\left\{v_{0}, \ldots, v_{2 m}\right\}$ be a uniform balanced configuration labelled by increasing arguments. Then, there exits a unique $g_{\mathcal{C}} \in \mathrm{GL}_{2}(\mathbb{R})$ such that $g_{\mathcal{C}} \cdot v_{0}=U$ and $g_{\mathcal{C}} \cdot v_{n}=V$. Since $\operatorname{det}\left(v_{0}, v_{n}\right)=-\operatorname{det}\left(v_{0}, v_{n+1}\right)$ (see Lemma 3.2), there exists a unique $t_{\mathcal{C}} \in \mathbb{R}$ such that $g_{\mathcal{C}} \cdot v_{n+1}=w_{0}\left(t_{\mathcal{C}}\right)$. Then, the proof of Claim 1 implies

Lemma 3.3 With above notation, for all $i=0, \ldots, n-1$, we have:

$$
g_{\mathcal{C}} \cdot v_{n+i+1}=w_{i}\left(t_{\mathcal{C}}\right) \quad \text { and } \quad g_{\mathcal{C}} \cdot v_{i}=u_{i}\left(t_{\mathcal{C}}\right)
$$

Moreover, $w_{n}\left(t_{\mathcal{C}}\right)=U$ and $v_{n}\left(t_{\mathcal{C}}\right)=V$.
3.5. -

Now, we are interested in the equation $w_{n}(t)=U$.

Useful properties of the functions $t \mapsto u_{i}(t)$ and $t \mapsto w_{i}(t)$ are stated in
Lemma 3.4 Denote by $\left(x^{*}, y^{*}\right)$ the coordinate forms of $\mathbb{R}^{2}$. Then, for all $i \geq 1$, we have:
(i) $x^{*}\left(u_{i}(t)\right)$ is an even polynomial function of degree $2 i$,
(ii) $y^{*}\left(u_{i}(t)\right)$ is an odd polynomial function of degree $2 i-1$,
(iii) $x^{*}\left(w_{i}(t)\right)$ is an odd polynomial function of degree $2 i+1$, and
(iv) $y^{*}\left(w_{i}(t)\right)$ is an even polynomial function of degree $2 i$.

In particular, the equation $w_{n}(t)=U$ has at most $n$ solutions.
Proof: The proof of the four assumptions is an immediate induction on $i$.
We can note that $y^{*}\left(w_{n}(0)\right) \neq 0$. Then, by Assertion (iv), the equation $y^{*}\left(w_{n}(t)\right)=0$ has at most $2 n$ solutions: $-t_{j}<\cdots<-t_{1}<t_{1}<\cdots<t_{j}$ (with $j \leq n$ ). Since $x^{*}\left(w_{n}(t)\right)$ is an odd polynomial function, at most one element of a pair $\pm t_{k}$ is a solution of the equation $x^{*}\left(w_{n}(t)\right)=1$. This ends the proof of the lemma.

## 3.6. -

Our goal is now to construct geometrically $n$ solutions of the equation $w_{n}(t)=U$.
Let me recall that we have identified $\mathbb{R}^{2}$ with $\mathbb{C}$. Consider $\mathbb{U}_{m}=\left\{\omega^{i}: i=0, \ldots 2 n\right\}$. Let us fix $k \in\{1, \ldots n\}$.

Denote by $g_{k}$ the element of $\mathrm{GL}_{2}(\mathbb{R})$ such that $g_{k} \cdot 1=U$ and $g_{k} \cdot \omega^{k}=V$. Let $t_{k}$ be the unique real number such that $g_{k} \cdot \omega^{-k}=w_{0}\left(t_{k}\right)$. Explicitly, $t_{k}=\frac{1}{\sin (2 k \pi / m)}$.

For all $i \in \mathbb{Z}$, we have:

$$
\operatorname{det}\left(\omega^{-2 k(i-1)}, \omega^{-2 k i}\right)=\operatorname{det}\left(\omega^{k}, \omega^{-k}\right) \quad \operatorname{det}\left(\omega^{-2 k i}, \omega^{-2 k(n+i)}\right)=\operatorname{det}\left(\omega^{0}, \omega^{k}\right)
$$

and

$$
\operatorname{det}\left(\omega^{-2 k(n+i)}, \omega^{-2 k(n+i+1)}\right)=\operatorname{det}\left(\omega^{k}, \omega^{-k}\right) \quad \operatorname{det}\left(\omega^{-2 k(n+i+1)}, \omega^{-2 k i}\right)=\operatorname{det}\left(\omega^{0}, \omega^{k}\right)
$$

Then, the sequence $\left(g_{k} \cdot \omega^{-2 k i}\right)_{i \in \mathbb{N}}$ satisfies Relations (2) and (3), with $A_{1}=\operatorname{det}\left(V, w_{0}\left(t_{k}\right)\right)$ and $A_{n}=\operatorname{det}(U, V)$. This implies that

$$
\begin{equation*}
w_{i}\left(t_{k}\right)=g_{k} \cdot \omega^{-k(1+2 i)}, \text { for all } i \geq 0 \tag{4}
\end{equation*}
$$

In particular, $t_{k}$ satisfies $w_{n}\left(t_{k}\right)=U$.
With Lemma 3.4, this implies the
Lemma 3.5 We have:

$$
\left\{t \in \mathbb{R}: w_{n}(t)=U\right\}=\left\{\frac{1}{\sin (2 k \pi / m)}: k=1, \ldots n\right\}
$$

## 3.7. -

Proof of Theorem 1: Let $\mathcal{C}=\left\{v_{0}, \ldots, v_{2 n}\right\}$ be a uniform balanced configuration labelled by increasing arguments. We define $g_{\mathcal{C}} \in \mathrm{GL}_{2}(\mathbb{R})$ and $t_{\mathcal{C}} \in \mathbb{R}$ as in Paragraph 3.4. Then, by Lemmas 3.3 and 3.5, there exists a unique $k_{\mathcal{C}}=1, \ldots n$ such that $t_{\mathcal{C}}=\frac{1}{\sin \left(2 k_{c} \pi / m\right)}$. Let $g_{k_{c}} \in \mathrm{GL}_{2}(\mathbb{R})$ defined as in Paragraph 3.6.

Then, by Lemma 3.3 and Equalities (4), we have:

$$
\begin{aligned}
& v_{0} \stackrel{g_{c}}{\longmapsto} U \stackrel{g_{k_{c}}^{-1}}{\longmapsto} 1 \\
& v_{n} \stackrel{g_{C}}{\longmapsto} V \stackrel{g_{k_{c}}^{-1}}{\longmapsto} \omega^{k_{C}} \\
& v_{n+i+1} \stackrel{g \mathcal{C}}{ } w_{i}\left(t_{\mathcal{C}}\right) \stackrel{g_{k_{\mathcal{C}}}^{-1}}{\longmapsto} \omega^{-k(1+2 i)} \quad \text { for all } i=0, \ldots, n-1 \\
& v_{i} \stackrel{g_{\mathcal{C}}}{\longmapsto} v_{i}\left(t_{\mathcal{C}}\right) \stackrel{g_{k_{\mathcal{C}}}^{-1}}{\longmapsto} \omega^{-2 k i} \quad \text { for all } i=0, \ldots, n-1
\end{aligned}
$$

Theorem 1 follows.

## References

1. E. Cattani and A. Dickenstein, "Planar configurations of lattice vectors and GKZ-rational toric fourfolds in $\mathbb{P}^{6}$, , J. Algebraic Combin. 19(1) (2004), 47-65.
2. E. Cattani, A. Dickenstein, and B. Sturmfels, "Rational hypergeometric functions," Compositio Math. 128(2) (2001), 217-239.
3. I. Gelfand, M. Kapranov, and A. Zelevinsky, "Hypergeometric functions and toral manifolds," Functional Anal. Appl. 23 (1989), 94-106.
4. I. Gelfand, M. Kapranov, and A. Zelevinsky, "Generalized Euler integrals and $\mathcal{A}$-hypergeometric functions," Adv. Math. 84 (1990), 255-271.
