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1. Introduction

A plane configuration {v;, vy, ..., v,,} (Where m is a positive integer) of vectors of R? is
said to be balanced if for any index i € {1, ..., m} the multiset

{det(v;, v;) : j # i}

is symmetric around the origin. A plane configuration is said to be uniform if every pair of
vectors is linearly independent.

E. Cattani, A. Dickenstein and B. Sturmfels introduced this notion in [1, 2] for its rela-
tionship with multivariable hypergeometric functions in the sense of Gel’fand, Kapranov
and Zelevinsky (see [3,4]).

Balanced plane configurations with at most six vectors have been classified in [2]. With
the help of computer calculation, E. Cattani, A. Dickenstein classified the balanced plane
configurations of seven vectors in [2]. Moreover, they conjectured that any uniform balanced
plane configuration is GL,(R)-equivalent to a regular (2n + 1)-gon (where n is a positive
integer). In this note, we prove this conjecture.

2. Statement of the result
Let m be a positive integer.

Definition 1 A configuration {vy, ..., v,} is said to be balanced if foralli = 1,...,m
and for all x in R the cardinality of the set {j # i : det(v;, v;) = x} equals that of the set
{j #1i:det(v;, vj) = —x}.

Definition 2 A balanced configuration {vy, ..., v,} is said to be uniform if for any pair
i # j, the vectors v;, v; are linearly independent.

Remark Assume {vy, ..., v,]} is balanced and m even. Then, the multiset {det(v, v;) :
Jj = 2,...,m} is symmetric around 0 and of odd cardinality; so it contains 0. Then,
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{vi, ..., vy} is not uniform. From, now on we are only interested in configurations with an
odd number of vectors. So, we assume that m = 2n + 1 for an integer n.

Let us identify R? with the field C of complex numbers. To avoid any confusion with
index-numbers, we denote by +/—1 the complex number i. Denote by U,, the set of m
th-roots of 1.zﬂ

Setw =e¢"n .Then, U, = {wf:k=0,...2n)}. Forall integers k and a, we have
det(o*, ") = — det(o*, 0" ™). (1)

In particular, U, is a uniform balanced configuration.

One can note that the group GL,(R) acts naturally on the set of balanced (resp. uni-
form balanced) configurations of m vectors. Indeed, if g € GL,(R) then det(g.v;, g.v;) =
det(g) det(v;, v;).

The aim of this note is to prove the

Theorem 1 Forany odd integer m, GL,(R) acts transitively on the set of uniform balanced
configurations of m vectors.

In other words, modulo GL,(R), U,, is the only uniform balanced configuration of m
vectors.

3. The proof
31 —
Let us fix some notation and convention. The set {0, ..., 2n} is denoted by /.

Definition 3.1 Let us recall that we identify R? with the field C of complex numbers. Let
{v0s ..., Uy_1} be a uniform configuration of m points in R%. Each v; has a unique polar
form v; = p;e* with p; in ]0; +00[ and «; in [0; 277 [. The set {vg, ..., v,_1} is said to be
labelled by increasing arguments if

Op <0 < -+ < 0Opy—1-

Convention 1 Let i € /. For all £ in Z which equals i modulo m, we also denote by v the
vector v;.

The first step of the proof is to show that any uniform configuration satisfies equations
similar to Egs. (1). Precisely, we have:

Lemma 3.1 Let C = {vy, ..., v} be a uniform balanced configuration labelled by
increasing arguments. Then,

det(vg, Vi) = —det(vg, vi—y) Vk,a€eZ
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Proof: We denote by P>(I) the set of pairs of elements of /. The fact that C is uniform
balanced can be formulated as follow. For all i € I, there exists a part P5(/) of P,(1) such
that:

e [ — {i} is the disjoint union of the elements of Pé(] ), and
o Vik, I} € Pi(I) det(v;, vx) = —det(v;, v;) # 0.

For any pair {k, [} € P»(I), the set of vectors v € R? such that det(v, v;) = — det(v, v;)
is the vectorial line generated by v, + v; (let us recall that v, v; are linearly independent).
In particular, since C is uniform there exists at most one i € I such that det(v;, v;) =
— det(v;, vy). This means that for any i # j the set 775(1) NP, (I) is empty.

Moreover, the cardinality of P5(I) equals n for all i € I. Then, the cardinality of
Ui Pi(I) equals nm, that is the cardinality of P»(7). It follows that | .., Pi(I) = P>(I).
In other words, there exists a map

iel

¢:P(l)— 1,
such that, for all {k, [} € P,(I), we have:

det (v¢,([k31]), l)k) = —det (Uqg({kyl}), U[).

It is sufficient to prove the lemma fora = —n, ..., —1, 1, ..., n; and by symmetry for
a =1,...,n. We prove this by decreasing induction going froma =ntoa = 1.

Assume a = n and fix k. Relabeling the vectors, we may assume that k = n + 1. Then,
we have to prove that: det(v, 41, vo) = — det(v,+1, v1), that is, ({0, 1}) = n + 1.

Note that the set of i € I such that det(vy, v;) is positive (that is, such that o; — g < 7)
is of cardinality n. Then, by Convention 1 o,, — g < 7.

Forallt =0,...,n — 1, since vy +1)) belongs to R(v; 4+ v,41), its argument g, 1+1})
belongs to ]w + o;; m + &;11[. In particular, each one of the n intervals Jm + o; 7 + ot; 41 [
(fort =0,...,n— 1) contains one of the ; fori =n+1, ..., 2n. So, ayo,1)) is the only
«; in the interval |w + ag; m + «q[. It follows that ¢({0, 1}) = n + 1.

Suppose now the proposition proved fora = n,...,n —u + 2 (withn > u > 2) and
prove that it is true for a = n — u + 1. As before, it is sufficient to prove that:

¢({0,M})=% if u is even

1
:u+m:u+ +n ifuisodd
2 2

Since, vy, belongs to R.(vy 4 v,), we have:
d({0,uh)e{l,...,u—1}U{n+1,...,n+ u}.

Let us assume that ¥ = 2v is even. Forw = 0, 1,...v — 1, we have ¢({0, 2w + 1}) =
n + 1+ w. But, two elements of P;'H’L“’ are disjoint. So, ¢({0, u}) € {n+1,...,n+ v}.
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In the same way, for w = 1,...,v — 1, we have: ¢({0, 2w}) = w. And so, ¢({0, u}) ¢
{1,...,v—=1} . Forw=0,1,...v—1,wehave ¢({u, u —2w — 1}) = n + u — w. Then,
o({0,u}) €{n+v+1,...,n+u}.Forw=1,...,v—1,wehave p({u, u —2w}) = u —w.
Then, ({0, u}) € {v+1,...,u—1}.

Finally, the only possible value for ¢({0, u}) is v.

The proof is analog if # = 2v + 1 is odd. O

Lemma 3.1 has a very useful consequence:

Lemma 3.2 We keep notation of Lemma 3.1. We also use Convention 1.
Then, for allk =0, ..., 2n we have:

det(vg, viy1) = det(uvo, vy),
and
det(vg, Viyn) = det(vg, v,).

Proof: Lemma 3.1 shows that for all integers £ we have det(vy, vg11) = det(vit1, Vg42)-
The first assertion follows immediately.
For all k, we also have det(vy, Vit,) = det(Vgiy, Vrio,). Since nis prime withm = 2n+1,

this implies the second assertion. U
32, —
Let C = {vp, ..., vy} be a uniform balanced configuration labelled by increasing argu-

ments. We are going to prove
Claim 1 vy, v, and v,y determine C.

Indeed, we are going to construct successively vy, V42, U2, Unt3, U3, Upa - ... SEt A 1=
det(v,, v,+1) and A, := det(vg, v,). Assume that we have constructed vy, v,12, ..., Vi—1,
Upti (for 1 <i <n —1). By Lemma 3.2, we have:

det(v;_1,v;) = A1 and det(v;, v,1) = A,. )
Then,
v — Al v + An v
= it — .
" det(ig, vpg) T det(uioy, Vagi)
But, since by Convention 1, v, y;y+, = v;_1, we have: det(v;_;, v,4+;) = —A,. Finally, we
obtain:
Ay
Vi = ——Upyi Vi—1



BALANCED CONFIGURATIONS 285

In the same way, using

det(Vpgi, Vagiv1) = A1 and  det(vyqiq1, Vi) = Ay 3
we obtain:
Ay
Un+i+1 = —A—Ui — Un+i-

n

Claim 1 follows.

33 —

Inspired by the proof of Claim 1, we define two sequences of vectors of R? (with a parameter
t € R) as follows.
Start with

- (Q) 1) (1)

Set A = det(V, wy) = —t and note that det(U, V') = 1. Then we define w;(¢) and u;(t)
by induction:

wo(t) is already defined
up(t)y=U

uip1(t) = —tw;(¢) — u;(t)

wi1 (1) = tu; () — w;(t)

34, —

Let C = {vp, ..., v} be a uniform balanced configuration labelled by increasing argu-
ments. Then, there exits a unique g¢ € GL,(R) such that gc.vg = U and ge.v, = V.
Since det(vg, v,) = — det(vy, v,+1) (see Lemma 3.2), there exists a unique #; € R such that
gc-Vn+1 = wolte). Then, the proof of Claim 1 implies

Lemma 3.3 With above notation, for alli =0,...,n — 1, we have:
8c-Vntit1 = wi(te) and ge.v; = u;(fc).

Moreover, w,(t¢) = U and v,(t¢) = V.

35 —

Now, we are interested in the equation w,(t) = U.
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Useful properties of the functions # — u;(¢) and ¢t — w;(¢) are stated in

Lemma 3.4 Denote by (x*, y*) the coordinate forms of R%. Then, for alli > 1, we have:
(1) x*(u;(t)) is an even polynomial function of degree 2i,

(i) y*(u;(t)) is an odd polynomial function of degree 2i — 1,

>iii) x*(w;(t)) is an odd polynomial function of degree 2i + 1, and

@iv) y*(w; (1)) is an even polynomial function of degree 2i.

In particular, the equation w,(t) = U has at most n solutions.

Proof: The proof of the four assumptions is an immediate induction on .
We can note that y*(w, (0)) # 0. Then, by Assertion (i v), the equation y*(w,(¢)) = 0 has

at most 2n solutions: —f; < --- < —t; < t; < --- < t; (with j < n). Since x*(w,()) is
an odd polynomial function, at most one element of a pair % is a solution of the equation
x*(w,(t)) = 1. This ends the proof of the lemma. d
3.6. —

Our goal is now to construct geometrically » solutions of the equation w,(t) = U.

Let me recall that we have identified R? with C. Consider U,, = {&’ : i =0, ...2n).
Letus fixk € {1,...n}.

Denote by g; the element of GL,(R) such that g;.1 = U and gk.a)k = V. Let #; be the
unique real number such that g0 = woty). Explicitly, #, =

For all i € Z, we have:

1
sin(2kw/m) *

det (™D =) = det(o*, ™) det (07, 0 ) = det(w’, o),
and

det (w—Zk(n-‘ri)’ w—2k(n+i+l)) — det(a)k, C()_k) det (w—Zk(n-'ri-}—l), w—Zki) — det(a)O, C()k).

Then, the sequence (g;.~"); <y satisfies Relations (2) and (3), with A; = det(V, wo(#))
and A, = det(U, V). This implies that

w;(ty) = gr. 12D foralli >0 ).

In particular, # satisfies w,(f;) = U.
With Lemma 3.4, this implies the

Lemma 3.5 We have:

1
{teR:wn(t)zU}z{m:kzl,...n}.
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37 —

Proof of Theorem 1: LetC = {vy, ..., vy,} be a uniform balanced configuration labelled
by increasing arguments. We define g¢ € GL,(R) and #¢c € R as in Paragraph 3.4. Then,
by Lemmas 3.3 and 3.5, there exists a unique k¢ = 1, ...n such that o = m Let
8k € GL2(R) defined as in Paragraph 3.6.

Then, by Lemma 3.3 and Equalities (4), we have:

—1

8k
vo F¥ U 5 1
1

2 8,
8c ke
v, —> V I—— wke

—1
g ; .
Uppitl EE.CI w;(te) — K02 forall i = 0,....n—1
—1
i . .
v % vite) — @ * foralli =0,...,n— 1
Theorem 1 follows. ]
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