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1. Introduction

A plane configuration {v1, v2, . . . , vm} (where m is a positive integer) of vectors of R
2 is

said to be balanced if for any index i ∈ {1, . . . , m} the multiset

{det(vi , v j ) : j �= i}

is symmetric around the origin. A plane configuration is said to be uniform if every pair of
vectors is linearly independent.

E. Cattani, A. Dickenstein and B. Sturmfels introduced this notion in [1, 2] for its rela-
tionship with multivariable hypergeometric functions in the sense of Gel’fand, Kapranov
and Zelevinsky (see [3, 4]).

Balanced plane configurations with at most six vectors have been classified in [2]. With
the help of computer calculation, E. Cattani, A. Dickenstein classified the balanced plane
configurations of seven vectors in [2]. Moreover, they conjectured that any uniform balanced
plane configuration is GL2(R)-equivalent to a regular (2n + 1)-gon (where n is a positive
integer). In this note, we prove this conjecture.

2. Statement of the result

Let m be a positive integer.

Definition 1 A configuration {v1, . . . , vm} is said to be balanced if for all i = 1, . . . , m
and for all x in R the cardinality of the set { j �= i : det(vi , v j ) = x} equals that of the set
{ j �= i : det(vi , v j ) = −x}.

Definition 2 A balanced configuration {v1, . . . , vm} is said to be uniform if for any pair
i �= j , the vectors vi , v j are linearly independent.

Remark Assume {v1, . . . , vm} is balanced and m even. Then, the multiset {det(v1, v j ) :
j = 2, . . . , m} is symmetric around 0 and of odd cardinality; so it contains 0. Then,
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{v1, . . . , vm} is not uniform. From, now on we are only interested in configurations with an
odd number of vectors. So, we assume that m = 2n + 1 for an integer n.

Let us identify R
2 with the field C of complex numbers. To avoid any confusion with

index-numbers, we denote by
√−1 the complex number i . Denote by Um the set of m

th-roots of 1.
Set ω = e

2
√−1π

m . Then, Um = {wk : k = 0, . . . 2n}. For all integers k and a, we have

det(ωk, ωk+a) = − det(ωk, ωk−a). (1)

In particular, Um is a uniform balanced configuration.
One can note that the group GL2(R) acts naturally on the set of balanced (resp. uni-

form balanced) configurations of m vectors. Indeed, if g ∈ GL2(R) then det(g.vi , g.v j ) =
det(g) det(vi , v j ).

The aim of this note is to prove the

Theorem 1 For any odd integer m, GL2(R) acts transitively on the set of uniform balanced
configurations of m vectors.

In other words, modulo GL2(R), Um is the only uniform balanced configuration of m
vectors.

3. The proof

3.1. —

Let us fix some notation and convention. The set {0, . . . , 2n} is denoted by I .

Definition 3.1 Let us recall that we identify R
2 with the field C of complex numbers. Let

{v0, . . . , vm−1} be a uniform configuration of m points in R
2. Each vi has a unique polar

form vi = ρi eαi with ρi in ]0; +∞[ and αi in [0; 2π [. The set {v0, . . . , vm−1} is said to be
labelled by increasing arguments if

α0 < α1 < · · · < αm−1.

Convention 1 Let i ∈ I . For all k in Z which equals i modulo m, we also denote by vk the
vector vi .

The first step of the proof is to show that any uniform configuration satisfies equations
similar to Eqs. (1). Precisely, we have:

Lemma 3.1 Let C = {v0, . . . , v2n} be a uniform balanced configuration labelled by
increasing arguments. Then,

det(vk, vk+a) = − det(vk, vk−a) ∀ k, a ∈ Z
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Proof: We denote by P2(I ) the set of pairs of elements of I . The fact that C is uniform
balanced can be formulated as follow. For all i ∈ I , there exists a part P i

2(I ) of P2(I ) such
that:

• I − {i} is the disjoint union of the elements of P i
2(I ), and

• ∀{k, l} ∈ P i
2(I ) det(vi , vk) = − det(vi , vl) �= 0.

For any pair {k, l} ∈ P2(I ), the set of vectors v ∈ R
2 such that det(v, vk) = − det(v, vl)

is the vectorial line generated by vk + vl (let us recall that vk, vl are linearly independent).
In particular, since C is uniform there exists at most one i ∈ I such that det(vi , vk) =
− det(vi , vl). This means that for any i �= j the set P i

2(I ) ∩ P j
2 (I ) is empty.

Moreover, the cardinality of P i
2(I ) equals n for all i ∈ I . Then, the cardinality of⋃

i∈I P i
2(I ) equals nm, that is the cardinality of P2(I ). It follows that

⋃
i∈I P i

2(I ) = P2(I ).
In other words, there exists a map

φ : P2(I ) −→ I,

such that, for all {k, l} ∈ P2(I ), we have:

det
(
vφ({k,l}), vk

) = − det
(
vφ({k,l}), vl

)
.

It is sufficient to prove the lemma for a = −n, . . . ,−1, 1, . . . , n; and by symmetry for
a = 1, . . . , n. We prove this by decreasing induction going from a = n to a = 1.

Assume a = n and fix k. Relabeling the vectors, we may assume that k = n + 1. Then,
we have to prove that: det(vn+1, v0) = − det(vn+1, v1), that is, φ({0, 1}) = n + 1.

Note that the set of i ∈ I such that det(v0, vi ) is positive (that is, such that αi − α0 < π )
is of cardinality n. Then, by Convention 1 αn − α0 < π .

For all t = 0, . . . , n − 1, since vφ({t,t+1}) belongs to R(vt + vt+1), its argument αφ({t,t+1})
belongs to ]π + αt ; π + αt+1[. In particular, each one of the n intervals ]π + αt ; π + αt+1[
(for t = 0, . . . , n − 1) contains one of the αi for i = n + 1, . . . , 2n. So, αφ({0,1}) is the only
αi in the interval ]π + α0; π + α1[. It follows that φ({0, 1}) = n + 1.

Suppose now the proposition proved for a = n, . . . , n − u + 2 (with n ≥ u ≥ 2) and
prove that it is true for a = n − u + 1. As before, it is sufficient to prove that:

φ({0, u}) = u

2
if u is even

= u + m

2
= u + 1

2
+ n if u is odd

Since, vφ({0,u}) belongs to R.(v0 + vu), we have:

φ({0, u}) ∈ {1, . . . , u − 1} ∪ {n + 1, . . . , n + u}.

Let us assume that u = 2v is even. For w = 0, 1, . . . v − 1, we have φ({0, 2w + 1}) =
n + 1 + w. But, two elements of Pn+1+w

2 are disjoint. So, φ({0, u}) �∈ {n + 1, . . . , n + v}.
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In the same way, for w = 1, . . . , v − 1, we have: φ({0, 2w}) = w. And so, φ({0, u}) �∈
{1, . . . , v − 1}. For w = 0, 1, . . . v − 1, we have φ({u, u − 2w − 1}) = n + u − w. Then,
φ({0, u}) �∈ {n +v+1, . . . , n +u}. For w = 1, . . . , v−1, we have φ({u, u −2w}) = u −w.
Then, φ({0, u}) �∈ {v + 1, . . . , u − 1}.

Finally, the only possible value for φ({0, u}) is v.
The proof is analog if u = 2v + 1 is odd.

Lemma 3.1 has a very useful consequence:

Lemma 3.2 We keep notation of Lemma 3.1. We also use Convention 1.
Then, for all k = 0, . . . , 2n we have:

det(vk, vk+1) = det(v0, v1),

and

det(vk, vk+n) = det(v0, vn).

Proof: Lemma 3.1 shows that for all integers k we have det(vk, vk+1) = det(vk+1, vk+2).
The first assertion follows immediately.

For all k, we also have det(vk, vk+n) = det(vk+n, vk+2n). Since n is prime with m = 2n+1,
this implies the second assertion.

3.2. —

Let C = {v0, . . . , v2m} be a uniform balanced configuration labelled by increasing argu-
ments. We are going to prove

Claim 1 v0, vn and vn+1 determine C.

Indeed, we are going to construct successively v1, vn+2, v2, vn+3, v3, vn+4 . . .. Set A1 :=
det(vn, vn+1) and An := det(v0, vn). Assume that we have constructed v1, vn+2, . . . , vi−1,

vn+i (for 1 ≤ i ≤ n − 1). By Lemma 3.2, we have:

det(vi−1, vi ) = A1 and det(vi , vn+i ) = An. (2)

Then,

vi = A1

det(vi−1, vn+i )
vn+i + An

det(vi−1, vn+i )
vi−1.

But, since by Convention 1, vn+i+n = vi−1, we have: det(vi−1, vn+i ) = −An . Finally, we
obtain:

vi = A1

An
vn+i − vi−1.
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In the same way, using

det(vn+i , vn+i+1) = A1 and det(vn+i+1, vi ) = An; (3)

we obtain:

vn+i+1 = − A1

An
vi − vn+i .

Claim 1 follows.

3.3. —

Inspired by the proof of Claim 1, we define two sequences of vectors of R
2 (with a parameter

t ∈ R) as follows.
Start with

U =
(

1

0

)

V =
(

0

1

)

w0(t) =
(

t

−1

)

.

Set A = det(V, w0) = −t and note that det(U, V ) = 1. Then we define wi (t) and ui (t)
by induction:






w0(t) is already defined

u0(t) = U

ui+1(t) = −twi (t) − ui (t)

wi+1(t) = tui (t) − wi (t)

3.4. —

Let C = {v0, . . . , v2m} be a uniform balanced configuration labelled by increasing argu-
ments. Then, there exits a unique gC ∈ GL2(R) such that gC .v0 = U and gC .vn = V .
Since det(v0, vn) = − det(v0, vn+1) (see Lemma 3.2), there exists a unique tC ∈ R such that
gC .vn+1 = w0(tC). Then, the proof of Claim 1 implies

Lemma 3.3 With above notation, for all i = 0, . . . , n − 1, we have:

gC .vn+i+1 = wi (tC) and gC .vi = ui (tC).

Moreover, wn(tC) = U and vn(tC) = V .

3.5. —

Now, we are interested in the equation wn(t) = U .



286 RESSAYRE

Useful properties of the functions t �→ ui (t) and t �→ wi (t) are stated in

Lemma 3.4 Denote by (x∗, y∗) the coordinate forms of R
2. Then, for all i ≥ 1, we have:

(i) x∗(ui (t)) is an even polynomial function of degree 2i,
(ii) y∗(ui (t)) is an odd polynomial function of degree 2i − 1,

(iii) x∗(wi (t)) is an odd polynomial function of degree 2i + 1, and
(iv) y∗(wi (t)) is an even polynomial function of degree 2i .

In particular, the equation wn(t) = U has at most n solutions.

Proof: The proof of the four assumptions is an immediate induction on i .
We can note that y∗(wn(0)) �= 0. Then, by Assertion (iv), the equation y∗(wn(t)) = 0 has

at most 2n solutions: −t j < · · · < −t1 < t1 < · · · < t j (with j ≤ n). Since x∗(wn(t)) is
an odd polynomial function, at most one element of a pair ±tk is a solution of the equation
x∗(wn(t)) = 1. This ends the proof of the lemma.

3.6. —

Our goal is now to construct geometrically n solutions of the equation wn(t) = U .
Let me recall that we have identified R

2 with C. Consider Um = {ωi : i = 0, . . . 2n}.
Let us fix k ∈ {1, . . . n}.

Denote by gk the element of GL2(R) such that gk .1 = U and gk .ω
k = V . Let tk be the

unique real number such that gk .ω
−k = w0(tk). Explicitly, tk = 1

sin(2kπ/m) .
For all i ∈ Z, we have:

det
(
ω−2k(i−1), ω−2ki

) = det(ωk, ω−k) det
(
ω−2ki , ω−2k(n+i)

) = det(ω0, ωk),

and

det
(
ω−2k(n+i), ω−2k(n+i+1)

) = det(ωk, ω−k) det
(
ω−2k(n+i+1), ω−2ki

) = det(ω0, ωk).

Then, the sequence (gk .ω
−2ki )i∈N satisfies Relations (2) and (3), with A1 = det(V, w0(tk))

and An = det(U, V ). This implies that

wi (tk) = gk .ω
−k(1+2i), for all i ≥ 0 (4).

In particular, tk satisfies wn(tk) = U .
With Lemma 3.4, this implies the

Lemma 3.5 We have:

{t ∈ R : wn(t) = U } =
{

1

sin(2kπ/m)
: k = 1, . . . n

}

.
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3.7. —

Proof of Theorem 1: Let C = {v0, . . . , v2n} be a uniform balanced configuration labelled
by increasing arguments. We define gC ∈ GL2(R) and tC ∈ R as in Paragraph 3.4. Then,
by Lemmas 3.3 and 3.5, there exists a unique kC = 1, . . . n such that tC = 1

sin(2kCπ/m) . Let
gkC ∈ GL2(R) defined as in Paragraph 3.6.

Then, by Lemma 3.3 and Equalities (4), we have:

v0
gC� U

g−1
kC� 1

vn
gC� V

g−1
kC� ωkC

vn+i+1
gC� wi (tC)

g−1
kC� ω−k(1+2i) for all i = 0, . . . , n − 1

vi
gC� vi (tC)

g−1
kC� ω−2ki for all i = 0, . . . , n − 1

Theorem 1 follows.
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