The Terwilliger Algebra of a Distance-Regular Graph that Supports a Spin Model

JOHN S. CAUGHMAN, IV

caughman@pdx.edu

Department of Mathematical Sciences, Portland State University, P.O. Box 751, Portland, OR 97207-0751

NADINE WOLFF

nwolff@hawaii.edu Department of Mathematics, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI 96720

Received September 28, 2003; Revised July 6, 2004; Accepted July 7, 2004

Abstract. Let Γ denote a distance-regular graph with vertex set X, diameter $D \ge 3$, valency $k \ge 3$, and assume Γ supports a spin model W. Write $W = \sum_{i=0}^{D} t_i A_i$ where A_i is the *i*th distance-matrix of Γ . To avoid degenerate situations we assume Γ is not a Hamming graph and $t_i \notin \{t_0, -t_0\}$ for $1 \leq i \leq D$. In an earlier paper Curtin and Nomura determined the intersection numbers of Γ in terms of D and two complex parameters η and q. We extend their results as follows. Fix any vertex $x \in X$ and let T = T(x) denote the corresponding Terwilliger algebra. Let U denote an irreducible T-module with endpoint r and diameter d. We obtain the intersection numbers $c_i(U), b_i(U), a_i(U)$ as rational expressions involving r, d, D, η and q. We show that the isomorphism class of U as a T-module is determined by r and d. We present a recurrence that gives the multiplicities with which the irreducible T-modules appear in the standard module. We compute these multiplicites explicitly for the irreducible T-modules with endpoint at most 3. We prove that the parameter q is real and we show that if Γ is not bipartite, then q > 0 and η is real.

Keywords: distance-regular graph, spin model, Terwilliger algebra

AMS 2000 Subject Classification: Primary 05E30

1. Introduction

Let Γ denote a distance-regular graph with vertex set X, diameter $D \ge 3$ and valency $k \ge 3$. Fix any $x \in X$ and let T = T(x) denote the corresponding Terwilliger algebra (definitions appear below). T acts faithfully on the vector space \mathbb{C}^X by matrix multiplication. Since T is semi-simple, \mathbb{C}^X decomposes into a direct sum of irreducible *T*-modules.

Assume Γ supports a spin model W with Boltzmann weights t_0, \ldots, t_D . Write W = $\sum_{i=0}^{D} t_i A_i$ where A_i is the *i*th distance-matrix of Γ . To avoid degenerate situations we assume Γ is not a Hamming graph and $t_i \notin \{t_0, -t_0\}$ for $1 \leq i \leq D$. In an earlier paper Curtin and Nomura [8] determined the intersection numbers of Γ in terms of D and two complex parameters η and q. We extend their results as follows.

Let $U \subseteq \mathbb{C}^X$ denote an irreducible *T*-module with endpoint *r* and diameter *d*. By [7, 9] the module U is thin and dual thin. In this article, we describe the action of T on U using a set of scalars known as the *intersection numbers* of U. We obtain the intersection numbers as rational expressions involving r, d, D, η and q. We show that the isomorphism class of U as a T-module is determined by r and d.

Combining the above results, we find a recurrence that gives the multiplicities with which the irreducible *T*-modules occur in \mathbb{C}^X . Using this recurrence, we obtain explicit formulas for the multiplicities of the irreducible *T*-modules with endpoint at most 3.

The integrality and the nonnegativity of the multiplicities give us feasibility constraints on the parameters. We prove that the parameter q must be real. We also show that if Γ is not bipartite, then q > 0 and η is real. We hope that in future work, these constraints will contribute to a classification of the distance-regular graphs that support a spin model.

2. Preliminaries

We will use the following notation. Let *X* denote a nonempty finite set. Let $Mat_X(\mathbb{C})$ denote the \mathbb{C} -algebra of matrices with entries in \mathbb{C} whose rows and columns are indexed by *X*. We let \mathbb{C}^X denote the \mathbb{C} -vector space of column vectors with entries in \mathbb{C} whose coordinates are indexed by *X*. Observe that $Mat_X(\mathbb{C})$ acts on \mathbb{C}^X by left multiplication. We endow \mathbb{C}^X with the Hermitian inner product satisfying

$$\langle u, v \rangle = u^t \bar{v} \quad (u, v \in \mathbb{C}^X),$$

where u^t denotes the transpose of u, and \bar{v} denotes the complex-conjugate of v. For each $y \in X$, let \hat{y} denote the vector in \mathbb{C}^X with a 1 in coordinate y, and 0 in all other coordinates. Observe that $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for \mathbb{C}^X .

We now recall the notion of a spin model.

Definition 2.1 [15] By a *symmetric spin model* on *X* we mean a symmetric matrix $W \in Mat_X(\mathbb{C})$ with non-zero entries which satisfies the following equations for all $a, b, c \in X$:

$$\sum_{y \in X} W_{yb} (W_{yc})^{-1} = |X| \delta_{bc}, \tag{1}$$

$$\sum_{y \in X} W_{ya} W_{yb} (W_{yc})^{-1} = L W_{ab} (W_{ac})^{-1} (W_{cb})^{-1},$$
(2)

for some $L \in \mathbb{R}$ such that $L^2 = |X|$.

For the rest of this paper, when we refer to a *spin model*, we mean a symmetric spin model.

Let *W* denote a spin model on *X*. We now recall the Nomura algebra of *W*. For $b, c \in X$, let \mathbf{u}_{bc} denote the vector in \mathbb{C}^X which has *y*-coordinate

$$(\mathbf{u}_{bc})_{y} = W_{yb}(W_{yc})^{-1} \quad (y \in X).$$
(3)

Define N(W) to be the set of all matrices $B \in Mat_X(\mathbb{C})$ such that for all $b, c \in X$, the vector \mathbf{u}_{bc} is an eigenvector of B. Observe N(W) is a subalgebra of $Mat_X(\mathbb{C})$. By [13, Proposition 9], $W \in N(W)$. We refer to N(W) as the *Nomura algebra* of W.

3. Distance-regular graphs

Let Γ denote a finite, connected, undirected graph, without loops or multiple edges, with vertex set *X*, path-length distance function ∂ , and diameter $D := \max\{\partial(y, z) \mid y, z \in X\}$. For each $y \in X$ and each integer *i*, set

$$\Gamma_i(y) := \{ z \in X \mid \partial(y, z) = i \}.$$

We abbreviate $\Gamma(y) := \Gamma_1(y)$. Let *k* denote a nonnegative integer. We say Γ is *regular with* valency *k* whenever $|\Gamma(y)| = k$ for all $y \in X$. We say Γ is *distance-regular*, with *intersection* numbers $p_{ij}^h (0 \le h, i, j \le D)$, whenever for all integers $h, i, j(0 \le h, i, j \le D)$ and all $y, z \in X$ with $\partial(y, z) = h$,

$$|\Gamma_i(y) \cap \Gamma_j(z)| = p_{ij}^h.$$

Notice $p_{ij}^h = 0$ if one of h, i, j is greater than the sum of the other two.

For the remainder of this article we assume Γ is distance-regular with diameter $D \ge 3$. We abbreviate $c_i := p_{1i-1}^i (1 \le i \le D)$, $a_i := p_{1i}^i (0 \le i \le D)$, $b_i := p_{1i+1}^i (0 \le i \le D - 1)$, and $k_i := p_{ii}^0 (0 \le i \le D)$. We define $c_0 = 0$, $b_D = 0$. We observe $c_1 = 1$ and $a_0 = 0$. Note that Γ is regular with valency $k = k_1 = b_0$. Moreover

$$c_i + a_i + b_i = k \quad (0 \le i \le D).$$
 (4)

We now recall the Bose-Mesner algebra of Γ . For each integer $i(0 \le i \le D)$, let A_i denote the matrix in Mat_{*X*}(\mathbb{C}) with *yz*-entry

$$(A_i)_{yz} = \begin{cases} 1 & \text{if } \partial(y, z) = i, \\ 0 & \text{if } \partial(y, z) \neq i \end{cases} \quad (y, z \in X).$$

We call A_i the *i*th distance matrix of Γ . Observe that $A_0 = I$, where I denotes the identity matrix in Mat_X(\mathbb{C}). Observe $A := A_1$ is the adjacency matrix of Γ . Furthermore, we have: (i) $A_i^t = A_i \ (0 \le i \le D)$; (ii) $A_i A_j = \sum_{h=0}^{D} p_{ij}^h A_h \ (0 \le i, j \le D)$; (iii) $A_0 + A_1 + \dots + A_D = J$, where J denotes the all 1's matrix in Mat_X(\mathbb{C}). These properties imply the matrices A_0, A_1, \dots, A_D form a basis for a commutative subalgebra M of Mat_X(\mathbb{C}). Moreover, M is closed under the entry-wise matrix product \circ . We remark that for each $i \ (0 \le i \le D)$ the matrix A_i is a polynomial of degree exactly i in A. Moreover, A generates M. We call M the Bose-Mesner algebra of Γ .

By [2, pp. 59, 64], *M* has a second basis E_0, E_1, \ldots, E_D such that: (i) $E_0 = |X|^{-1}J$; (ii) $E_i^t = \overline{E}_i = E_i \ (0 \le i \le D)$; (iii) $E_i E_j = \delta_{ij} E_i \ (0 \le i, j \le D)$; (iv) $E_0 + E_1 + \cdots + E_D = I$. We refer to E_0, E_1, \ldots, E_D as the *primitive idempotents* of Γ .

The graph Γ is said to be *Q*-polynomial (with respect to the given ordering E_0, E_1, \ldots, E_D of the primitive idempotents) whenever for each integer i ($0 \le i \le D$), the primitive idempotent E_i is a polynomial of degree exactly i in E_1 , in the \mathbb{C} -algebra (M, \circ).

We now recall the Terwilliger algebra. Fix any $x \in X$. For each integer $i(0 \le i \le D)$, let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with *yy*-entry

$$\left(E_i^*\right)_{yy} = \begin{cases} 1 & \text{if } \partial(x, y) = i, \\ 0 & \text{if } \partial(x, y) \neq i \end{cases} \quad (y \in X).$$

We refer to E_i^* as the *i*th *dual idempotent of* Γ *with respect to x*. From the definition, the dual idempotents satisfy: (i) $E_i^{*t} = \overline{E_i^*} = E_i^*$ ($0 \le i \le D$); (ii) $E_i^* E_j^* = \delta_{ij} E_i^*$ ($0 \le i, j \le D$); (iii) $E_0^* + E_1^* + \cdots + E_D^* = I$.

It follows that the matrices E_0^*, \ldots, E_D^* form a basis for a subalgebra $M^* = M^*(x)$ of $Mat_X(\mathbb{C})$. We call M^* the *dual Bose-Mesner algebra of* Γ *with respect to x*. Observe that M^* is commutative, since the dual idempotents are diagonal.

Let T = T(x) denote the subalgebra of $Mat_X(\mathbb{C})$ generated by M and M^* . We call T the *Terwilliger algebra of* Γ *with respect to* x. It is known that T is semisimple [17, Lemma 3.4].

4. Distance-regular graphs that support a spin model

Let Γ denote a distance-regular graph with vertex set X and diameter $D \ge 3$. Let W denote a spin model on X. Following [7, Definition 2.3] we say Γ supports W whenever $W \in M \subseteq N(W)$, where M denotes the Bose-Mesner algebra of Γ .

Assume Γ supports *W*. Then there exist complex scalars t_i $(0 \le i \le D)$ such that

$$W = \sum_{i=0}^{D} t_i A_i, \tag{5}$$

where A_0, A_1, \ldots, A_D are the distance matrices of Γ . We refer to the scalars t_i as the *Boltzmann weights* of W. By (5) and since the entries of W are nonzero, we find $t_i \neq 0$ for $0 \le i \le D$. By (1) we have

$$W^{-1} = |X|^{-1} \sum_{i=0}^{D} t_i^{-1} A_i.$$

For $B \in M$, let $\Psi(B) \in Mat_X(\mathbb{C})$ be the matrix with *bc*-entry defined by

$$B\mathbf{u}_{bc} = (\Psi(B))_{bc}\mathbf{u}_{bc} \quad (b, c \in X).$$

By [7, Lemma 2.2], there exists an ordering E_0, E_1, \ldots, E_D of the primitive idempotents of Γ such that $\Psi(A_i) = |X|E_i$ ($0 \le i \le D$). We refer to this as the *standard order* with respect to W. By [7, Lemma 2.10] Γ is Q-polynomial with respect to the standard order. Throughout this article, we will assume the primitive idempotents are labelled according to this standard ordering. For $0 \le i \le D$ let θ_i denote the eigenvalue of A associated with E_i , so that

$$A = \sum_{i=0}^{D} \theta_i E_i.$$
(6)

Note that $\theta_0, \theta_1, \dots, \theta_D$ are mutually distinct, since A generates M. Also $\theta_0 = k$ since $E_0 = |X|^{-1}J$. By [7, Lemma 2.7] we have

$$W = L \sum_{i=0}^{D} t_i^{-1} E_i,$$
(7)

$$W^{-1} = L^{-1} \sum_{i=0}^{D} t_i E_i.$$
(8)

In view of (7) we define $W^* = W^*(x)$ by

$$W^* = L \sum_{i=0}^{D} t_i^{-1} E_i^*$$
(9)

and observe

$$W^{*-1} = L^{-1} \sum_{i=0}^{D} t_i E_i^*.$$
 (10)

We define $A^* = A^*(x)$ by

$$A^* = \sum_{i=0}^{D} \theta_i E_i^*.$$
 (11)

We observe A^* generates M^* since $\theta_0, \ldots, \theta_D$ are mutually distinct.

5. The Terwilliger algebra when Γ supports a spin model

For the remainder of this article we will be concerned with distance-regular graphs which support a spin model, so we make the following definition.

Definition 5.1 Let Γ denote a distance-regular graph with vertex set X, diameter $D \ge 3$, and valency $k \ge 3$. Assume Γ supports a spin model W with Boltzmann weights t_0, \ldots, t_D . Write $W = \sum_{i=0}^{D} t_i A_i$ where A_i is the *i*th distance-matrix of Γ . To avoid degenerate situations we assume Γ is not a Hamming graph [4, p. 261] and that $t_i \notin \{t_0, -t_0\}$ for $1 \le i \le D$. We set $\eta_i = t_{i-1}^{-1} t_i$ $(1 \le i \le D)$ and let η_0, η_{D+1} denote indeterminates. We define $q := \eta_1^{-1} \eta_2$ and $\eta := \eta_1$. Note that q, η are nonzero. Let E_0, E_1, \ldots, E_D denote the standard ordering of the primitive idempotents with respect to W. Fix any $x \in X$, and let T = T(x) denote the Terwilliger algebra of Γ with respect to x. (Where context allows, we also suppress reference to x for the individual matrices in T, e.g., $E_0^* = E_0^*(x)$, $W^* = W^*(x)$, etc.). We abbreviate $V = \mathbb{C}^X$.

With reference to Definition 5.1, fix any integers $i, j(0 \le i, j \le D)$. By [17, Lemma 3.2] we have

$$E_i^* A E_j^* = 0$$
 if $|i - j| > 1$. (12)

By [9, Theorems 4.1, 5.5] we have

$$E_i A^* E_j = 0$$
 if $|i - j| > 1$. (13)

The next results describe how the matrices W and W^* are related.

Lemma 5.2 With reference to Definition 5.1, we have

 $W^*WE_i^*V \subseteq E_iV \quad (0 \le i \le D).$

Proof: Let *i* be given. Pick any vertex $y \in X$ at distance $\partial(x, y) = i$. We show $W^*W\hat{y} \in E_iV$. Consider the vector $\mathbf{u}_{yx} \in V$ as defined in (3). We have $A\mathbf{u}_{yx} = \theta_i\mathbf{u}_{yx}$ by [8, Lemma 4.1] so $\mathbf{u}_{yx} \in E_iV$. From (5) and (9) we find $W^*W\hat{y} = L\mathbf{u}_{yx}$. By the above comments we have $W^*W\hat{y} \in E_iV$. The result follows.

Theorem 5.3 *With reference to Definition* 5.1, *we have*

$$WA^*W^{-1} = W^{*-1}AW^*, (14)$$

$$W^{-1}A^*W = W^*AW^{*-1}. (15)$$

Proof: To prove (14) it suffices to show

$$W^*WA^* = AW^*W. ag{16}$$

Pick any $y \in X$. We show $W^*WA^*\hat{y} = AW^*W\hat{y}$. Let $i := \partial(x, y)$. Observe $A^*\hat{y} = \theta_i\hat{y}$ by (11) so $W^*WA^*\hat{y} = \theta_iW^*W\hat{y}$. Observe $W^*W\hat{y} \in E_iV$ by Lemma 5.2 so $AW^*W\hat{y} = \theta_iW^*W\hat{y}$. From these comments we find $W^*WA^*\hat{y} = AW^*W\hat{y}$ and (16) follows. Rearranging (16) we get (14). By construction, each of A, A^*, W, W^* is symmetric. Taking the transpose in (14) we obtain (15).

We finish this section with an aside. We will not use the following result, but we believe it is of independent interest.

Corollary 5.4 [14] *With reference to Definition* 5.1, *we have*

$$WW^*W = W^*WW^*.$$
 (17)

Proof: We begin with an observation. Comparing (5) and (9), we find

$$W_{zz}^* = L(W_{xz})^{-1} \quad (z \in X).$$
(18)

Now fix $a, b \in X$. The *ab*-entry of the left-hand side of (17) is

$$\sum_{z \in X} W_{az} W_{zz}^* W_{zb} = L \sum_{z \in X} W_{az} (W_{xz})^{-1} W_{zb} \quad \text{by (18)}$$
$$= L^2 W_{ab} (W_{xa})^{-1} (W_{xb})^{-1} \quad \text{by (2)}$$
$$= W_{aa}^* W_{ab} W_{bb}^*, \quad \text{by (18)}$$

which equals the *ab*-entry of the right-hand side of (17). The result follows. \Box

6. The parameters of Γ

Let Γ be as in Definition 5.1. In [8] Curtin and Nomura determined the intersection numbers of Γ in terms of the diameter *D* and the scalars *q* and η . In this section we recall some of the details for future use.

Lemma 6.1 [8, Theorem 1.1] With reference to Definition 5.1,

$$\eta_i = q^{i-1}\eta \quad (1 \le i \le D).$$
 (19)

Lemma 6.2 [8, Lemma 4.3] *With reference to Definition* 5.1, for $0 \le i \le D$, both

$$c_{i}\eta_{i}^{-1} + a_{i} + b_{i}\eta_{i+1} = \eta\theta_{i},$$
(20)
(21)

$$c_i \eta_i + a_i + b_i \eta_{i+1}^{-1} = \eta^{-1} \theta_i.$$
⁽²¹⁾

Lemma 6.3 [8, Lemma 4.5] *With reference to Definition* 5.1, *for* $1 \le i \le D$ *the expressions*

$$\frac{\eta_i - \eta_i^{-1}}{\theta_{i-1} - \theta_i}$$

are independent of i.

Theorem 6.4 [8, Theorem 1.1] With reference to Definition 5.1, there exists a nonzero scalar $h \in \mathbb{C}$ such that

$$\theta_i = \theta_0 + h(1 - q^i)(1 - \eta^2 q^{i-1})q^{-i} \quad (0 \le i \le D).$$
(22)

Proof: First we claim $q \neq 1$. If q = 1, then by [8, Lemma 5.2] Γ has the parameters of a Hamming graph. So by [11] Γ is isomorphic to a Hamming graph or an Egawa graph. But by [7, Theorem 3.8], Γ is thin and so by [16], Γ is not an Egawa graph. By assumption Γ is not a Hamming graph. Therefore $q \neq 1$. Observe $\eta^2 \neq 1$ by Definition 5.1. Now there exists $h \in \mathbb{C}$ such that (22) holds for i = 1. Observe $h \neq 0$ since $\theta_1 \neq \theta_0$. Observe (22) holds for i = 0 since in this case both sides are equal to θ_0 . Line (22) holds for $2 \leq i \leq D$ by induction and Lemma 6.3.

Corollary 6.5 With reference to Definition 5.1, the following hold.

$$q^i \neq 1 \quad (1 \le i \le D), \tag{23}$$

$$q^i \eta^2 \neq 1 \quad (0 \le i \le 2D - 2).$$
 (24)

Proof: Recall for $0 \le i, j \le D$, we have $\theta_i - \theta_j \ne 0$ if $i \ne j$. Evaluating $\theta_i - \theta_j$ using (22), we obtain (23) and (24).

Theorem 6.6 [8, Theorem 1.1] With reference to Definition 5.1, the intersection numbers of Γ are given by

$$b_0 = \frac{h(1-q^D)(q+\eta^3 q^D)}{q^{D+1}(\eta-1)},$$
(25)

$$b_{i} = \frac{hq^{i-D}(1-q^{D-i})(1-\eta^{2}q^{i-1})(1+\eta^{3}q^{D+i-1})}{(\eta q^{i}-1)(1-\eta^{2}q^{2i-1})} \quad (1 \le i \le D-1),$$
(26)

$$c_{i} = \frac{h\eta q^{i-1-D}(1-q^{i})(1+\eta q^{D-i})(1-\eta^{2}q^{D+i-1})}{(1-\eta^{2}q^{2i-1})(1-\eta q^{i-1})} \quad (1 \le i \le D-1),$$
(27)

$$c_D = \frac{h\eta (1 - q^D)(\eta + 1)}{q - \eta q^D}.$$
(28)

We remark the denominators in (25)–(28) are nonzero by Corollary 6.5.

Proof: To get (25), (28) combine (4), (20), (21) at i = D, using (19), (22) and $\theta_0 = k$. To obtain (26), (27) first eliminate a_i in (20), (21) using (4), and then solve the resulting linear system for b_i , c_i . Evaluate the result using (19), (22) and $\theta_0 = k$.

Corollary 6.7 With reference to Definition 5.1,

$$q^i \eta^3 \neq -1 \quad (D-1 \le i \le 2D-2).$$
 (29)

Proof: By (25), (26) and since $b_i \neq 0$ for $0 \le i \le D - 1$.

Theorem 6.8 [8, Theorem 1.1] With reference to Definition 5.1, the scalar h is given by

$$h = \frac{q^D (1 - \eta^2 q)(\eta - 1)}{\eta (q - 1)(1 - \eta^2 q^D)(1 + \eta q^{D - 1})}.$$
(30)

We remark the denominator in (30) is nonzero by Corollary 6.5.

Proof: In (27) set
$$i = 1, c_1 = 1$$
 and solve for h .

Corollary 6.9 With reference to Definition 5.1,

$$a_{i} = \frac{h(q^{i} - 1)(q^{D}\eta - 1)(q - \eta^{2}q^{i})(q^{D}\eta^{2} + q)}{q^{D+1}(\eta - 1)(q^{i}\eta - q)(q^{i}\eta - 1)} \quad (1 \le i \le D - 1),$$
(31)

$$a_D = \frac{h(q^D - 1)(q - \eta^2 q^D)(q^D \eta^2 + q)}{q^{D+1}(\eta - 1)(q^D \eta - q)},$$
(32)

where h is from (30). We remark the denominators in (31), (32) are nonzero by Corollary 6.5.

Proof: Immediate by (4) and Theorem 6.6.

Remark 6.10 Expressions (25)–(28) can be obtained from the type I fomulas in Leonard's theorem [2, p. 260] by setting $r_1 = -\eta/q$, $r_2 = -q^{D-2}\eta^3$, $r_3 = q^{-D-1}$, and $s = s^* = r_1^2$.

Let Γ denote a distance-regular graph with diameter $D \ge 3$. Recall Γ is *almost bipartite* whenever the intersection numbers satisfy $a_i = 0$ for $0 \le i \le D - 1$ and $a_D \ne 0$.

Lemma 6.11 With reference to Definition 5.1, Γ is not almost bipartite.

Proof: By way of contradiction, suppose Γ is almost bipartite. By [9, Theorems 4.1, 5.5], θ_1 has multiplicity *k*. By [2, Example III.4(4)] there exists a bipartite antipodal 2-cover $\tilde{\Gamma}$ of Γ with valency *k* and diameter 2D + 1. By [4, Proposition 4.2.3] θ_1 is an eigenvalue of $\tilde{\Gamma}$ with multiplicity *k*, so $\tilde{\Gamma}$ is 2-homogeneous by [15, Proposition 3.3]. Now $\tilde{\Gamma}$ has diameter at most 5 by [15, Theorem 5.1], so Γ has diameter $D \leq 2$, contradicting our assumptions.

7. The irreducible *T*-modules

With reference to Definition 5.1, by [17, Lemma 3.4] the space V decomposes into an orthogonal direct sum of irreducible T-modules. Let U denote an irreducible module for T. By [7, Theorem 3.8] and since Γ supports a spin model we have dim $E_i^*U \leq 1$ for $0 \leq i \leq D$. By the *endpoint* of U we mean min $\{i \mid 0 \leq i \leq D, E_i^*U \neq 0\}$. By the *dual*

endpoint of U we mean $\min\{i | 0 \le i \le D, E_i U \ne 0\}$. By [9, Theorems 4.1, 5.5] we have dim $E_i^*U = \dim E_iU$ for $0 \le i \le D$. It follows the endpoint of U is equal to the dual endpoint of U. By the *diameter* of U we mean one less than the dimension of U. Let r (resp. d) denote the endpoint (resp. diameter) of U. It follows by [17, Lemma 3.9] that for $0 \le i \le D$ we have

$$E_i^* U \neq 0 \quad \text{if and only if} \quad r \leq i \leq r + d,$$

$$E_i U \neq 0 \quad \text{if and only if} \quad r \leq i \leq r + d.$$

By [5, Lemma 7.1] and since $r + d \le D$ we have

$$(D-d)/2 \le r \le D-d. \tag{33}$$

Now let U denote an irreducible T-module with endpoint r and diameter d. We consider the action of A and A* on U. Let u denote a nonzero vector in E_rU . By [17, Lemma 3.9] the sequence E_{r+i}^*u ($0 \le i \le d$) is a basis for U. Let B = B(U) denote the matrix which represents the action of A with respect to this basis. By [17, Lemma 3.9] B is irreducible tridiagonal. We write

$$B(U) = \begin{pmatrix} a_0(U) & b_0(U) & & \mathbf{0} \\ c_1(U) & a_1(U) & b_1(U) & & \\ & c_2(U) & \cdot & \cdot & \\ & & \cdot & \cdot & \cdot & b_{d-1}(U) \\ \mathbf{0} & & & c_d(U) & a_d(U) \end{pmatrix}.$$
 (34)

We refer to the $c_i(U)$, $a_i(U)$, $b_i(U)$ as the *intersection numbers* of U. For notational convenience we define $c_0(U) = 0$, $b_d(U) = 0$. We will compute the scalars $a_i(U)$, $b_i(U)$, $c_i(U)$ in the next section. Note that since B(U) is irreducible,

$$b_i(U)c_{i+1}(U) \neq 0 \quad (0 \le i \le d-1).$$
 (35)

We now consider a second basis for U. Let u^* denote a nonzero vector in E_r^*U . By [9, Theorems 4.1, 5.5] the sequence $E_{r+i}u^*$ ($0 \le i \le d$) is a basis for U. Moreover the matrix B(U) represents the action of A^* with respect to this basis.

There exists a unique irreducible *T*-module V_0 which has endpoint 0. The module V_0 has diameter *D*. We call V_0 the *primary T*-module. We remark that $a_i(V_0) = a_i$, $b_i(V_0) = b_i$, $c_i(V_0) = c_i$ for $0 \le i \le D$.

8. The scalars $a_i(U), b_i(U), c_i(U)$

With reference to Definition 5.1, let U denote an irreducible T-module. In this section we compute the scalars $a_i(U)$, $b_i(U)$, $c_i(U)$.

Lemma 8.1 With reference to Definition 5.1, let U denote an irreducible T-module with endpoint r and diameter d. Then

$$c_i(U) + a_i(U) + b_i(U) = \theta_r \quad (0 \le i \le d).$$
 (36)

Proof: For nonzero $u \in E_r U$ we have $u = \sum_{i=0}^d E_{r+i}^* u$ and $Au = \theta_r u$. Combining these facts we get the result.

Theorem 8.2 With reference to Definition 5.1, let U denote an irreducible T-module with endpoint r and diameter d. Assume $d \ge 1$. Then for $0 \le i \le d$ we have

$$c_i(U)\eta_{r+i}^{-1} + a_i(U) + b_i(U)\eta_{r+i+1} = a_0(U)(1 - \eta_{r+1}) + \theta_{r+i}\eta_{r+1},$$
(37)

$$c_i(U)\eta_{r+i} + a_i(U) + b_i(U)\eta_{r+i+1}^{-1} = a_0(U)(1 - \eta_{r+1}^{-1}) + \theta_{r+i}\eta_{r+1}^{-1}.$$
(38)

Proof: To obtain (37), we use (15). Let u denote a nonzero vector in $E_r U$. First we claim

$$E_{r+i}^* E_{r+1} A^* u = (\theta_{r+i} - a_0(U)) E_{r+i}^* u \quad (0 \le i \le d).$$
(39)

To see (39), let *i* be given and observe

$$\theta_{r+i} E_{r+i}^* u = E_{r+i}^* A^* E_r u \quad \text{by (11)}$$

$$= E_{r+i}^* \left(\sum_{i=0}^D E_i \right) A^* E_r u \quad \text{since } \sum_{i=0}^D E_i = I$$

$$= E_{r+i}^* (E_r A^* E_r u + E_{r+1} A^* E_r u) \quad \text{by (13)}$$

$$= a_0(U) E_{r+i}^* u + E_{r+i}^* E_{r+1} A^* u \quad \text{by (34)},$$

and (39) follows. Now we consider $E_{r+i}^* W^{-1} A^* W u$. On the one hand,

$$E_{r+i}^{*}W^{-1}A^{*}Wu = E_{r+i}^{*}W^{-1}A^{*}t_{r}^{-1}E_{r}u \qquad \text{by (7)}$$

$$= t_{r}^{-1}E_{r+i}^{*}(t_{r}E_{r}A^{*}E_{r}u + t_{r+1}E_{r+1}A^{*}E_{r}u) \qquad \text{by (8), (13)}$$

$$= a_{0}(U)E_{r+i}^{*}u + \eta_{r+1}E_{r+i}^{*}E_{r+1}A^{*}u \qquad \text{by (34)}$$

$$= a_{0}(U)E_{r+i}^{*}u + \eta_{r+1}(\theta_{r+i} - a_{0}(U))E_{r+i}^{*}u \qquad \text{by (39).} (40)$$

On the other hand,

$$E_{r+i}^{*}W^{-1}A^{*}Wu = E_{r+i}^{*}W^{*}AW^{*-1}u \quad \text{by (15)}$$

$$= L t_{r+i}^{-1}E_{r+i}^{*}AW^{*-1}u \quad \text{by (9)}$$

$$= \left(\eta_{r+i}^{-1}E_{r+i}^{*}AE_{r+i-1}^{*} + E_{r+i}^{*}AE_{r+i}^{*} + \eta_{r+i+1}E_{r+i}^{*}AE_{r+i+1}^{*}\right)u \quad \text{by (10), (12)}$$

$$= \left(\eta_{r+i}^{-1}c_{i}(U) + a_{i}(U) + \eta_{r+i+1}b_{i}(U)\right)E_{r+i}^{*}u \quad \text{by (34).}$$
(41)

Equating (40), (41) and using $E_{r+i}^* u \neq 0$ we obtain (37). Line (38) is similarly obtained using (14).

Remark 8.3 Referring to Theorem 8.2, suppose $U = V_0$. Setting r = 0, d = D, $a_0(U) = 0$ in (37), (38) we get (20), (21) respectively.

Lemma 8.4 With reference to Definition 5.1, let U denote an irreducible T-module with endpoint r and diameter d. For d = 0 we have $a_0(U) = \theta_r$. For $d \ge 1$ we have

$$a_0(U) = \frac{\theta_{r+d} \left(1 + \eta_{r+d} \eta_{r+1}^2 \right) - \theta_r \eta_{r+1} (1 + \eta_{r+d})}{(1 - \eta_{r+1})(1 - \eta_{r+1} \eta_{r+d})}.$$
(42)

We remark the denominator in (42) is nonzero by Lemma 6.1 and Corollary 6.5.

Proof: Assume $d \ge 1$; otherwise the result is clear by (36). Now set i = d in (37), (38) and evaluate the result using $b_d(U) = 0$, $a_d(U) = \theta_r - c_d(U)$.

Theorem 8.5 With reference to Definition 5.1, let U denote an irreducible T-module with endpoint r and diameter d. Then

$$b_{0}(U) = \frac{h(1-q^{d})(q+\eta^{3}q^{d+3r})}{q^{d+r+1}(\eta q^{r}-1)},$$

$$b_{i}(U) = \frac{hq^{i-r-d}(1-q^{d-i})(1-\eta^{2}q^{2r+i-1})(1+\eta^{3}q^{d+3r+i-1})}{(\eta q^{r+i}-1)(1-\eta^{2}q^{2r+2i-1})} \quad (1 \le i \le d-1),$$
(43)
$$(43)$$

$$(43)$$

$$(43)$$

$$(43)$$

$$(44)$$

$$c_{i}(U) = \frac{h\eta q^{i-1-d}(1-q^{i})(1+\eta q^{r+d-i})(1-\eta^{2}q^{d+2r+i-1})}{(1-\eta^{2}q^{2r+2i-1})(1-\eta q^{r+i-1})} \quad (1 \le i \le d-1),$$
(45)

$$c_d(U) = \frac{h\eta(1-q^d)(1+\eta q^r)}{q-\eta q^{r+d}},$$
(46)

where h is from (30). We remark the denominators in (43)–(46) are nonzero by Corollary 6.5.

Proof: To see (43), first assume d = 0. Then the right-hand side is apparently zero and the left-hand side also vanishes since $b_d(U) = 0$. Next assume $d \ge 1$. Set i = 0 in (36), (37) and solve for $b_0(U)$ using $c_0(U) = 0$. We now have (43). Line (46) is obtained similarly.

It remains to prove (44) and (45). Assume $d \ge 2$ and fix any i $(1 \le i \le d - 1)$. In (37) and (38), eliminate $a_i(U)$ on the left using (36) and eliminate $a_0(U)$ on the right using Lemma 8.4. Solve the resulting system for $b_i(U)$, $c_i(U)$.

Remark 8.6 Expressions (43)–(46) can be obtained from the type I fomulas in Leonard's theorem [17, Theorem 2.1] by setting $r_1(U) = -\eta q^{r-1}$, $r_2(U) = -q^{d-2}\eta^3$, $r_3(U) = q^{-d-1}$, and $s(U) = s^*(U) = r_1(U)^2$.

Remark 8.7 Referring to Theorem 8.5, suppose $U = V_0$. Setting r = 0, d = D in (43)–(46) we get (25)–(28) respectively.

Corollary 8.8 With reference to Definition 5.1, let U, U' denote irreducible T-modules with respective endpoints r, r' and diameters d, d'. Then the following are equivalent.

- (i) U and U' are isomorphic as T-modules.
- (ii) r = r' and d = d'.
- (iii) B(U) = B(U').

Proof: (i) \rightarrow (ii). Let $\phi : U \rightarrow U'$ denote an isomorphism of *T*-modules. We recall ϕ is a vector space isomorphism such that $(C\phi - \phi C)U = 0$ for all $C \in T$. For $0 \le i \le D$ we have

$$E_i^*U = 0 \Leftrightarrow \phi(E_i^*U) = 0 \Leftrightarrow E_i^*\phi(U) = 0 \Leftrightarrow E_i^*U' = 0.$$

The result follows.

(ii) \rightarrow (iii). Observe that the entries in B(U) and B(U') agree by Theorem 8.5.

(iii) \rightarrow (i). Note B(U) is a d + 1 by d + 1 matrix and B(U') is d' + 1 by d' + 1, so d = d'. By (36), the row sums of B(U) equal θ_r and the row sums of B(U') equal $\theta_{r'}$. Hence r = r', since the eigenvalues are distinct. Pick any nonzero $u \in E_r U$ and any nonzero $u' \in E_r U'$. Recall $E_r^* u, \ldots, E_{r+d}^* u$ is a basis for U and $E_r^* u', \ldots, E_{r+d}^* u'$ is a basis for U'. Moreover, B(U) = B(U') is the matrix representing the action of A with respect to each of these bases. Let $\phi : U \rightarrow U'$ denote the vector space isomorphism such that

$$\phi : E_i^* u \mapsto E_i^* u' \quad (r \le i \le r+d).$$

We show ϕ is an isomorphism of *T*-modules. Since $A, E_0^*, E_1^*, \ldots, E_D^*$ generate *T*, it suffices to show

$$(A\phi - \phi A)U = 0, (47)$$

$$(E_j^* \phi - \phi E_j^*) U = 0 \quad (0 \le j \le D).$$
(48)

Line (48) is clear from the construction, and (47) is immediate from the assumption B(U) = B(U').

9. The parameter q is in \mathbb{R}

In this section we show the scalar q from Definition 5.1 is contained in \mathbb{R} . Let us first consider the case when Γ is bipartite.

Lemma 9.1 With reference to Definition 5.1, the following (i)–(iii) are equivalent.

(i) $a_1 = 0.$ (ii) $q^{D-1}\eta^2 = -1.$ (iii) Γ is bipartite.

Proof: (i) \rightarrow (ii). By way of contradiction, suppose $q^{D-1}\eta^2 \neq -1$. Evaluating the expression for a_1 given in (31) using Corollary 6.5, we find that $q^D\eta = 1$. So by Corollaries 6.5 and 6.9, $a_i = 0$ for $1 \le i \le D - 1$ and $a_D \ne 0$. So Γ is almost bipartite, contradicting Lemma 6.11.

(ii) \rightarrow (iii). Observe $a_i = 0$ for $0 \le i \le D$ by Corollary 6.9, so Γ is bipartite. (iii) \rightarrow (i). Clear.

Lemma 9.2 With reference to Definition 5.1, suppose Γ is bipartite. Then $q \in \mathbb{R}$.

Proof: By [9, Theorems 4.1, 5.5], θ_1 has multiplicity k, so Γ is 2-homogeneous by [18, Theorem 1]. Now $q \in \mathbb{R}$ by [6, Corollary 8.3].

We now consider the case when Γ is not bipartite.

Lemma 9.3 With reference to Definition 5.1, suppose Γ is not bipartite. Then the following hold.

(i) $q^D \eta \neq 1$. (ii) $p_{2,i-1}^i \neq 0$ for $2 \le i \le D$.

Proof: (i). By way of contradiction, suppose $q^D \eta = 1$. Then by (31), $a_i = 0$ for $1 \le i \le D - 1$. Since Γ is not bipartite, $a_D \ne 0$ and Γ is almost bipartite, contradicting Lemma 6.11.

(ii). By [4, Lemma 4.1.7] we have

$$p_{2,i-1}^{i} = \frac{c_i}{c_2}(a_i + a_{i-1} - a_1) \quad (2 \le i \le D).$$
(49)

Evaluating (49) using (4) and Theorem 6.6, we have

$$p_{2,i-1}^{i} = \frac{c_i(1-q^D\eta)(q^i-q)(1-\eta^2q^3)(q-\eta^2q^i)(q+\eta^2q^D)}{\eta(1-\eta q^i)(q^2-\eta q^i)(1-q)(1-\eta^2q^{D+1})(q^2+\eta q^D)}$$
(50)

for $2 \le i \le D - 1$ and

$$p_{2,D-1}^{D} = \frac{c_{D}(q^{D} - q)(1 - \eta^{2}q^{3})(q - \eta^{2}q^{D})(q + \eta^{2}q^{D})}{\eta(q^{2} - \eta q^{D})(1 - q)(1 - \eta^{2}q^{D+1})(q^{2} + \eta q^{D})}.$$
(51)

302

By (23), (24), Lemma 9.1, and part (i), no factor in the numerator of (50), (51) is zero. The result follows. \Box

Lemma 9.4 With reference to Definition 5.1, suppose Γ is not bipartite. Fix an integer i with $2 \le i \le D$ and vertices $y, z \in X$ with $\partial(x, y) = i - 1$, $\partial(x, z) = i$, and $\partial(y, z) = 2$. (Such y, z exist by Lemma 9.3(ii).) Define L_i , H_i by

$$L_i = |\Gamma_{i-1}(x) \cap \Gamma(y) \cap \Gamma(z)|, \tag{52}$$

$$H_i = |\Gamma_i(x) \cap \Gamma(y) \cap \Gamma(z)|.$$
(53)

Then the following hold.

(i)

$$c_2 = L_i + H_i. ag{54}$$

(ii)

$$L_{i} = c_{2} \frac{(q^{i} \eta - 1)q}{(q^{i} \eta - q)(q+1)}, \quad H_{i} = c_{2} \frac{(q^{i} \eta - q^{2})}{(q^{i} \eta - q)(q+1)}.$$
(55)

In particular, L_i and H_i are constants independent of x, y, z. We remark the denominators in (55) are nonzero by Corollary 6.5.

Proof: (i) Observe $L_i + H_i = |\Gamma(y) \cap \Gamma(z)| = c_2$. (ii) First we claim

$$E_{i-1}^* A E_{i-1}^* A E_i^* = \xi_i E_{i-1}^* A E_i^* A E_i^* + \zeta_i E_{i-1}^* A E_i^*,$$
(56)

where

$$\xi_i = \frac{q^i \eta - 1}{q^{i-1} \eta - q}, \quad \zeta_i = \frac{(q^D \eta - 1)(q \eta^2 - 1)(q^D \eta^2 + q)(q^{i-1} \eta + 1)}{\eta(q^{i-1} \eta - q)(q^D \eta + q)(q^D \eta^2 - 1)}.$$

To see this, let *i* be given. Let Δ denote the left-hand side of (56) minus the right-hand side of (56). We show $\Delta = 0$. In order to do so we show Δ vanishes on each irreducible *T*-module. Let *U* denote an irreducible *T*-module, and let *r* (resp. *d*) denote the endpoint (resp. diameter) of *U*. We assume $r < i \leq r + d$; otherwise $\Delta U = 0$ from the construction. Applying Theorem 8.5 we find

$$a_{i-r-1}(U)b_{i-r-1}(U) = \xi_i a_{i-r}(U)b_{i-r-1}(U) + \zeta_i b_{i-r-1}(U)$$

and it follows that $\Delta U = 0$. Recall V is a direct sum of irreducible T-modules. The element Δ vanishes on each of these modules so $\Delta = 0$. We now have (56).

We now consider the *yz*-entry of each term in (56). The *yz*-entry of $E_{i-1}^*AE_i^*AE_i^*$ is L_i . The *yz*-entry of $E_{i-1}^*AE_i^*AE_i^*$ is H_i . The *yz*-entry of $E_{i-1}^*AE_i^*$ is 0. Evaluating the

yz-entry in (56) using this we find

$$L_i = \xi_i H_i. \tag{57}$$

Observe $\xi_i \neq -1$ by (24) and Lemma 9.3(i). Solving (54), (57) using this we routinely obtain (55).

Lemma 9.5 With reference to Definition 5.1, suppose Γ is not bipartite. Let L_i , H_i be as in Lemma 9.4. Then the following hold.

(i) $L_i \neq 0$ and $H_i \neq 0$ for $2 \le i \le D$. (ii) $L_2 \le L_3$.

Proof: (i) Clear by (24), Lemma 9.3(i), and (55).

(ii) By Lemma 9.3(ii) there exist $y, z \in X$ with $\partial(x, y) = 2$, $\partial(x, z) = 3$, and $\partial(y, z) = 2$. Since $L_3 \neq 0$, there exists a vertex $u \in \Gamma_2(x) \cap \Gamma(y) \cap \Gamma(z)$. Observe that any vertex w adjacent to both x and u has $\partial(z, w) = 2$, since $\partial(x, z) = 3$ and $\partial(u, z) = 1$. Therefore

$$L_2 = |\Gamma(x) \cap \Gamma(y) \cap \Gamma(u)| \le |\Gamma(x) \cap \Gamma(y) \cap \Gamma_2(z)| = L_3.$$

as desired.

Lemma 9.6 With reference to Definition 5.1, suppose Γ is not bipartite. Let $\beta = q + q^{-1}$ and let L_i , H_i be as in Lemma 9.4. Then the following hold.

(i) $(\beta + 2)L_2H_3 = c_2^2$. (ii) $\beta \in \mathbb{Q}$. (iii) $\beta \ge 2$. (iv) $q \in \mathbb{R}$ and q > 0.

Proof: (i) Compare L_2/c_2 and H_3/c_2 using (55). (ii) Immediate by (i) and Lemma 9.5(i), since c_2 , L_2 , and H_3 are integers. (iii) By (i), Lemma 9.4(i), and Lemma 9.5(ii),

$$\beta + 2 = \frac{c_2^2}{L_2 H_3} = \frac{c_2^2}{L_2 (c_2 - L_3)} \ge \frac{c_2^2}{L_2 (c_2 - L_2)} \ge 4.$$

(iv) Solving $\beta = q + q^{-1}$ for q using (iii), we find $q \in \mathbb{R}$ and q > 0.

We finish this section with a comment.

Lemma 9.7 With reference to Definition 5.1, suppose Γ is not bipartite. Then $\eta \in \mathbb{R}$.

Proof: Let L_2 be as in Lemma 9.4 and define $\alpha = (q + 1)L_2/c_2 - q$. By Lemma 9.6(iv) we have $\alpha \in \mathbb{R}$. Evaluating α using Lemma 9.4 we obtain

$$\alpha = \frac{q-1}{q\eta - 1}.\tag{58}$$

Recall $q \neq 1$ by (23) so $\alpha \neq 0$. Solving (58) for η we find $\eta = (\alpha + q - 1)/\alpha q$, so $\eta \in \mathbb{R}$ as desired.

10. Multiplicities of the irreducible *T*-modules

Let Γ be as in Definition 5.1. In this section, we compute the multiplicities with which the irreducible *T*-modules appear in the standard module *V*.

Definition 10.1 With reference to Definition 5.1, fix a decomposition of the standard module V into an orthogonal direct sum of irreducible T-modules. For any integers $r, d(0 \le r, d \le D)$, we define mult(r, d) to be the number of irreducible modules in this decomposition which have endpoint r and diameter d. The scalar mult(r, d) is independent of the decomposition (cf. [10]).

Definition 10.2 With reference to Definition 5.1, define a set Υ by

$$\Upsilon := \{ (r, d) \in \mathbb{Z}^2 \mid 0 \le d \le D, (D - d)/2 \le r \le D - d \}.$$

By (33), mult(r, d) = 0 for all integers r, d such that (r, d) $\notin \Upsilon$. We define a partial order \leq on Υ by

$$(r, d) \leq (r', d')$$
 if and only if $r \leq r'$ and $r' + d' \leq r + d$.

Example 10.3 With reference to Definition 5.1, suppose D = 7. In Figure 10.4, we represent each element $(r, d) \in \Upsilon$ by a line segment beginning in column r and having length d. For any elements $a \in \Upsilon$, $b \in \Upsilon$, observe that $a \leq b$ if and only if the line segment representing a extends the line segment representing b.

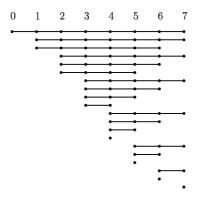


Figure 10.4 The set Υ when D = 7

In order to state our next theorem we need a bit of notation. With reference to Definition 5.1, for all $(r, d) \in \Upsilon$ we define

$$b_0(r,d) := \frac{h(1-q^d)(q+\eta^3 q^{d+3r})}{q^{d+r+1}(\eta q^r - 1)},$$
(59)

$$b_i(r,d) := \frac{hq^{i-r-d}(1-q^{d-i})(1-\eta^2 q^{2r+i-1})(1+\eta^3 q^{d+3r+i-1})}{(\eta q^{r+i}-1)(1-\eta^2 q^{2r+2i-1})} \quad (1 \le i \le d-1),$$
(60)

$$c_i(r,d) := \frac{h\eta q^{i-1-d}(1-q^i)(1+\eta q^{r+d-i})(1-\eta^2 q^{d+2r+i-1})}{(1-\eta^2 q^{2r+2i-1})(1-\eta q^{r+i-1})} \quad (1 \le i \le d-1),$$
(61)

$$c_d(r,d) := \frac{h\eta(1-q^d)(1+\eta q^r)}{q-\eta q^{r+d}},$$
(62)

where *h* is from (30). We also set $c_0(r, d) = b_d(r, d) = 0$. Observe that if *U* is any irreducible *T*-module with endpoint *r* and diameter *d*, then $(r, d) \in \Upsilon$ and $c_i(r, d) = c_i(U)$, $b_i(r, d) = b_i(U)$ ($0 \le i \le d$). However, such a module need not exist.

We will use the fact that the scalars $b_i(r, d)$ and $c_i(r, d)$ from (59)–(62) are nonzero for every $(r, d) \in \Upsilon$. To establish this we need the following lemma.

Lemma 10.5 With reference to Definition 5.1,

$$q^i \eta^3 \neq -1 \quad (2D - 1 \le i \le 3D - 3).$$
 (63)

Proof: By way of contradiction, let *i* be given such that $2D - 1 \le i \le 3D - 3$ and suppose

$$q^i \eta^3 = -1. \tag{64}$$

First suppose $a_1 = 0$. Then by Lemma 9.1 we have $q^{D-1}\eta^2 = -1$; combining this with (64) we find $q^{2i-3D+3} = -1$. Since q is real we must have q = -1, contradicting (23).

Now suppose $a_1 \neq 0$. Then $q, \eta \in \mathbb{R}$ and q > 0 by Lemmas 9.6 and 9.7. Recall $q \neq 1$ by (23). So either q > 1 or 0 < q < 1. First consider the case q > 1. By (64) and since $2D - 1 \le i \le 3D - 3$ we have

$$-q^{-(2D-1)/3} \le \eta \le -q^{1-D},\tag{65}$$

where $q^{-(2D-1)/3}$ denotes the real cube root of $q^{-(2D-1)}$. By (25), (30) we find

$$b_0 = \frac{(q^D - 1)(1 - \eta^2 q)(1 + \eta^3 q^{D-1})}{\eta(1 - q)(1 + \eta q^{D-1})(1 - \eta^2 q^D)}.$$
(66)

By (65) and since q > 1, each of the factors in the numerator of (66) is positive. By (24), (65) we have $1 + \eta q^{D-1} < 0$ so each of the first three factors in the denominator of (66) is negative. Similarly $1 - \eta^2 q^D > 0$. We conclude $b_0 < 0$, which is impossible. Now consider the case 0 < q < 1. By (64) and since $2D - 1 \le i \le 3D - 3$ we have

$$-q^{1-D} \le \eta \le -q^{-(2D-1)/3}.$$
(67)

Again consider the expression for b_0 given in (66). By (67) and since 0 < q < 1, each of the factors in the numerator is negative. In the denominator, clearly $\eta < 0$ and 1 - q > 0. By (24), (67) we have $1 + \eta q^{D-1} > 0$ and $1 - \eta^2 q^D < 0$. We conclude $b_0 < 0$, which is impossible.

Corollary 10.6 With reference to Definition 5.1, fix any $(r, d) \in \Upsilon$. Then we have

$$b_i(r,d) \neq 0 \quad 0 \le i \le d-1,$$
 (68)

$$c_i(r,d) \neq 0 \quad 1 \le i \le d. \tag{69}$$

Proof: Assume $d \ge 1$; otherwise there is nothing to prove. By the definition of Υ we have $(D - d)/2 \le r \le D - d$. In particular $r \le D - 1$. Now consider the numerators in the expressions for $b_i(r, d)$ and $c_i(r, d)$ given in (59)–(62). Each of the factors in these numerators is nonzero by (23), (24), (29), and (63).

The following theorem provides us with a recurrence relation satisfied by the multiplicities. In [5], this result was proved under the assumption that the graph is bipartite. However, the proof carries over without modification to the nonbipartite case.

Theorem 10.7 [5, Theorem 14.7] With reference to Definition 5.1, fix any $(r, d) \in \Upsilon$. *Then*

$$k_r \prod_{h=r}^{r+d-1} b_h c_{r+d-h} = \sum_{\substack{(i,j)\in\Upsilon\\(i,j)\leq(r,d)}} \text{mult}(i,j) \prod_{h=r-i}^{r-i+d-1} b_h(i,j) c_{h+1}(i,j).$$
(70)

Remark 10.8 With reference to Definition 5.1, we can use Theorem 10.7 to recursively compute the multiplicities $\operatorname{mult}(r, d)$ for each $(r, d) \in \Upsilon$. Indeed, pick any $(r, d) \in \Upsilon$. Then (70) gives a linear equation in the variables { $\operatorname{mult}(i, j)|(i, j) \in \Upsilon, (i, j) \preceq (r, d)$ }. In this equation, the coefficient of $\operatorname{mult}(r, d)$ is

$$\prod_{h=0}^{d-1} b_h(r,d) c_{h+1}(r,d).$$
(71)

By Corollary 10.6 the coefficient (71) is nonzero. Thus we can divide both sides of equation (70) by it to obtain mult(r, d) in terms of $\{mult(i, j)|(i, j) \prec (r, d)\}$.

Theorem 10.9 With reference to Definition 5.1, the following hold.

(i) mult(0, D) = 1. (ii) mult(1, D - 1) = $-\frac{(\eta + 1)(q^D - 1)(q^{D-1}\eta^2 + 1)(q^D\eta^3 + 1)}{\eta(q - 1)(q^{D-1}\eta + 1)(q^{2D-1}\eta^3 + 1)}$. (iii) mult(1, D - 2) = $\frac{q(\eta + 1)(q^{D-1} - 1)(q^D\eta - 1)(q^{D-1}\eta^3 + 1)}{(q - 1)(q^D\eta^2 - 1)(q^{2D-1}\eta^3 + 1)}$. (iv) mult(2, D - 2) (n + 1)(q^P - 1)

$$=\frac{(\eta+1)(q^D-1)(q^{D-1}-1)(q^{2D-1}\eta^4-1)(q\eta+1)(q^{D-1}\eta^2+1)(q^{D-1}\eta^3+1)(q^{D+2}\eta^3+1)}{\eta^2(q^2-1)(q-1)(q^D\eta^2-1)(q^{D-1}\eta+1)(q^{D-2}\eta+1)(q^{2D-1}\eta^3+1)(q^{2D}\eta^3+1)}$$

(v) mult(2, D - 3)

$$=-\frac{(\eta+q)(q^D-1)(q^{D-2}-1)(q^D\eta-1)(q\eta+1)(q^{D-1}\eta^2+1)(q^{D-1}\eta^3+1)(q^{D+1}\eta^3+1)}{\eta(q-1)^2(q^{D+1}\eta^2-1)(q^{D-2}\eta+1)(q^{2D-2}\eta^3+1)(q^{2D}\eta^3+1)}$$

(vi) Suppose $D \ge 4$. Then mult(2, D - 4)

$$=\frac{q^2(\eta+1)(q^D-1)(q^{D-3}-1)(q^D\eta-1)(q\eta+1)(q^{2D-1}\eta^2-1)(q^{D-1}\eta^3+1)(q^D\eta^3+1)}{(q-1)(q^2-1)(q^{D+1}\eta^2-1)(q^{D-1}\eta+1)(q^{2D-2}\eta^3+1)(q^{2D-1}\eta^3+1)(q^D\eta^2-1)}.$$

(vii) mult(3, D - 3)

$$= -\frac{(q^{D}-1)(q^{D-1}-1)(q^{D-2}-1)(q^{2D-1}\eta^{4}-1)}{(q-1)(q^{2}-1)(q^{3}-1)(q^{D+1}\eta^{2}-1)} \times \frac{(\eta+1)(q\eta+1)(q^{2}\eta+1)(q^{D}\eta^{2}+1)(q^{D-1}\eta^{2}+1)(q^{D}\eta^{3}+1)(q^{D+4}\eta^{3}+1)(q^{D-1}\eta^{3}+1)}{\eta^{3}(q^{D-1}\eta+1)(q^{D-2}\eta+1)(q^{D-3}\eta+1)(q^{2D-1}\eta^{3}+1)(q^{2D}\eta^{3}+1)(q^{2D+1}\eta^{3}+1)}.$$

(viii) Suppose $D \ge 4$. Then mult(3, D - 4)

$$=\frac{(q^{D}-1)(q^{D}\eta-1)(q^{D-1}-1)(q^{D-3}-1)(q^{2D-1}\eta^{4}-1)}{(q^{D}\eta^{2}-1)(q^{D+2}\eta^{2}-1)(q-1)^{2}(q^{2}-1)}$$

$$\times\frac{(\eta+1)(q^{D}\eta^{3}+1)(\eta+q)(q^{2}\eta+1)(q^{D-1}\eta^{3}+1)(q^{D+3}\eta^{3}+1)(q^{D-1}\eta^{2}+1)}{\eta^{2}(q^{2D-1}\eta^{3}+1)(q^{2D-2}\eta^{3}+1)(q^{2D+1}\eta^{3}+1)(q^{D-3}\eta+1)(q^{D-2}\eta+1)}$$

(ix) Suppose $D \ge 5$. Then mult(3, D - 5)

$$= -\frac{q(q^{D}-1)(q^{D-1}-1)(q^{D-4}-1)(q^{D}\eta-1)(q^{2D-1}\eta^{2}-1)}{(q-1)^{2}(q^{2}-1)(q^{D+1}\eta^{2}-1)(q^{D+2}\eta^{2}-1)} \times \frac{(\eta+1)(q+\eta)(q^{2}\eta+1)(q^{D-1}\eta^{2}+1)(q^{D-1}\eta^{3}+1)(q^{D}\eta^{3}+1)(q^{D+2}\eta^{3}+1)}{\eta(q^{D-1}\eta+1)(q^{D-3}\eta+1)(q^{2D}\eta^{3}+1)(q^{2D-1}\eta^{3}+1)(q^{2D-3}\eta^{3}+1)}.$$

(x) Suppose
$$D \ge 6$$
. Then mult(3, $D - 6$)

$$=\frac{q^{3}(q^{D}-1)(q^{D-1}-1)(q^{D-5}-1)(q^{D}\eta-1)(q^{D-1}\eta-1)(q^{2D-1}\eta^{2}-1)}{(q-1)(q^{2}-1)(q^{3}-1)(q^{D}\eta^{2}-1)(q^{D+1}\eta^{2}-1)(q^{D+2}\eta^{2}-1)}$$
$$\times\frac{(\eta+1)(q\eta+1)(q^{2}\eta+1)(q^{D-1}\eta^{3}+1)(q^{D}\eta^{3}+1)(q^{D+1}\eta^{3}+1)}{(q^{D-2}\eta+1)(q^{2D-1}\eta^{3}+1)(q^{2D-2}\eta^{3}+1)(q^{2D-3}\eta^{3}+1)}.$$

We remark the denominators in (i)-(x) are nonzero by Corollaries 6.5, 6.7, and (63).

Proof: Solve (70) recursively for the multiplicities, as outlined in Remark 10.8. \Box

We end this article with a conjecture. To state the conjecture, we use the following notation. For any integer $n \ge 0$ and any $a, q \in \mathbb{C}$, set

$$(a;q)_n := \prod_{i=1}^n (1 - aq^{i-1}).$$

Conjecture 10.10 With reference to Definition 5.1, pick any $(r, d) \in \Upsilon$. Then

$$\begin{split} & \operatorname{mult}(r,d) \\ &= \frac{(q^{d+1}-1)(q^{2r+d-1}\eta^2-1)(q^{d+3r-2}\eta^3+1)(q^{2d+3r-1}\eta^3+1)(q^{r+d}\eta+1)(q^{r-1}\eta+1)}{(1-q^{D+1})(1+\eta^3q^{D+2r+d-1})(1+\eta^3q^{D+r-2})(1+\eta q^{t-1})(1+\eta q^D)(1-\eta^2q^{D+r-1})} \\ &\times \frac{q^t(-\eta^3q^{D-1};q)_r(-\eta q^{-1};q)_{r-t}(-\eta;q)_t(q^{D-r+2};q)_r(\eta^4q^{2D-2};q)_{r-t}(\eta^2q^{2D-t+1};q)_t}{(-\eta)^{r-t}(q;q)_{r-t}(q;q)_t(-\eta^3q^{2D-t-1};q)_r(\eta^2q^{D-1};q)_r(-\eta q^{D-r};q)_r} \end{split}$$

where t = D - r - d. We remark the denominator is nonzero by Corollaries 6.5, 6.7, and (63).

Acknowledgment

The authors would like to thank Paul Terwilliger and Brian Curtin for many helpful comments and discussions.

References

- E. Bannai and Et. Bannai, "Generalized generalized spin models (four weight spin models)," *Pacific J. Math.* 170 (1995), 1–16.
- 2. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
- 3. E. Bannai, F. Jaeger, and A. Sali, "Classification of small spin models," Kyushu J. Math. 48 (1994), 185–200.
- 4. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
- 5. J.S. Caughman, IV, "The Terwilliger algebras of bipartite *P* and *Q*-polynomial schemes," *Discrete Math.* **196** (1999), 65–95.
- 6. B. Curtin, "2-homogeneous bipartite distance-regular graphs," Discrete Math. 187 (1998), 39-70.
- 7. B. Curtin, "Distance-regular graphs which support a spin model are thin," *Discrete Math.* **197/198** (1999), 205–216.

CAUGHMAN AND WOLFF

- 8. B. Curtin and K. Nomura, "Some formulas for spin models on distance-regular graphs," J. Combin. Theory Ser. B 75 (1999), 206–236.
- B. Curtin and K. Nomura, "Spin models and strongly hyper-self-dual Bose-Mesner algebras," J. Algebraic Combin. 13 (2001), 173–186.
- C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
- 11. Y. Egawa, "Characterization of H(n, q) by the parameters," J. Combin. Theory Ser. A **31** (1981), 108–125.
- F. Jaeger, "Towards a classification of spin models in terms of association schemes," *Adv. Stud. Pure Math.* 24 (1996), 197–225.
 F. Jaeger, M. Matsumoto, and K. Nomura, "Bose-Mesner algebras related to type II matricers and spin models,"
- J. Algebraic Combin. 8 (1998), 39–72.
- 14. A. Munemasa, Personal communication, 1994.
- K. Nomura, "Spin models and almost bipartite 2-homogeneous graphs," in *Progress in Algebraic Combina*torics (Fukuoka, 1993), vol. 24 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo (1996) pp. 285–308.
- K. Tanabe, "The irreducible modules of the Terwilliger algebras of Doob schemes," J. Algebraic Combin 6 (1997), 173–195.
- 17. P. Terwilliger, "The subconstituent algebra of an association scheme, I," J. Algebraic Combin. 1(4) (1992), 363–388.
- 18. N. Yamazaki, "Bipartite distance-regular graphs with an eigenvalue of multiplicity *k*," *J. Combin. Theory Ser. B* 66 (1996), 34–37.