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Abstract. A purely combinatorial construction of the quantum cohomology ring of the generalized flag manifold
is presented. We show that the ring we construct is commutative, associative and satisfies the usual grading
condition. By using results of our previous papers [12, 13], we obtain a presentation of this ring in terms of
generators and relations, and formulas for quantum Giambelli polynomials. We show that these polynomials
satisfy a certain orthogonality property, which—for G = SLn(C)—was proved previously in the paper [5].
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1. Introduction

Let us consider the complex flag manifold G/B, where G is a connected, simply connected,
simple, complex Lie group and B ⊂ G a Borel subgroup. Let t be the Lie algebra of
a maximal torus of a compact real form of G and � ⊂ t∗ the corresponding set of roots.
Consider an arbitrary W -invariant inner product 〈, 〉 on t. The Weyl group W is the subgroup
of O(t, 〈, 〉) generated by the reflections about the hyperplanes ker α, α ∈ �+. To any root
α corresponds the coroot

α∨ := 2α

〈α, α〉

which is an element of t, by using the identification of t and t∗ induced by 〈, 〉. If {α1, . . . , αl}
is a system of simple roots then {α∨

1 , . . . , α∨
l } is a system of simple coroots. Consider

{λ1, . . . , λl} ⊂ t∗ the corresponding system of fundamental weights, which are defined by
λi (α∨

j ) = δi j . It can be shown that the Weyl group W is actually generated by the simple
reflections s1 = sα1 , . . . , sl = sαl about the hyperplanes ker α1, . . . , ker αl . The length l(w)
of w is the minimal number of factors in a decomposition of w as a product of simple
reflections. We denote by w0 the longest element of W .

Let B− ⊂ G denote the Borel subgroup opposite to B. To each w ∈ W we assign the
Schubert variety Xw = B−.w. The Poincaré dual of [Xw] is an element of H 2l(w)(G/B),
which is called the Schubert class. The set {σw | w ∈ W } is a basis of the cohomology1
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module H∗(G/B). The Poincaré pairing (, ) on H∗(G/B) is determined by:

(σu, σv) =
{

1, if u = w0v

0, otherwise
(1)

According to a theorem of Borel [2], the ring homomorphism S(t∗) → H∗(G/B) defined
by

λi �→ σsi , 1 ≤ i ≤ l

is surjective and it induces the ring isomorphism

H∗(G/B) 
 R[{λi }]/IW , (2)

where IW is the ideal of S(t∗) = R[λ1, . . . , λl] = R[{λi }] generated by the W -invariant
polynomials of strictly positive degree. Recall that, by a result of Chevalley [4], there exist
l homogeneous, functionally independent polynomials u1, . . . , ul ∈ S(t∗) which generate
IW . We identify H∗(G/B) with Borel’s presentation and denote them both by H. So

H = H∗(G/B) = R[{λi }]/IW .

In this way the homogeneous elements of H will be of the form

[ f ] = f mod IW ,

where f ∈ R[{λi }] is a homogeneous polynomial. In particular, the degree two Schubert
classes will be [λi ], 1 ≤ i ≤ l.

In fact we would like to see all Schubert classes as cosets of certain polynomials in the
presentation (2). A construction of such polynomials was obtained by Bernstein et al. [1],
as follows: To each positive root α we assign the divided difference operator �α on the ring
R[{λi }] (since the latter is just the symmetric algebra S(t∗), it admits a natural action of the
Weyl group W ):

�α( f ) = f − sα f

α
,

f ∈ R[{λi }]. If w is an arbitrary element of W , take w = si1 . . . sik a reduced expression
and then set2

�w = �αi1
◦ · · · ◦ �αik

.

The polynomial

cw0 := 1

|W |
∏

α∈�+
α
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is homogeneous, of degree l(w0) and has the property that �w0 cw0 = 1. To any w ∈ W we
assign

cw := �w−1w0 cw0

which is a homogeneous polynomial of degree l(w) satisfying

�vcw =
{

cwv−1 , if l(wv−1) = l(w) − l(v)

0, otherwise
(3)

for any v ∈ W (see for instance [9, Chapter 4]).

Theorem 1.1 ([1]) By the identification (2) we have

σw = [cw],

for any w ∈ W .

The main goal of our paper is to construct in a purely combinatorial way a certain
“quantum deformation” of the ring H. This will depend on the “deformation parameters”
q1, . . . , ql , which are just some additional multiplicative variables. Let us begin with the
following lemma, which was proved for instance in [12] (see also [15] or [3]). Recall first
that if α is a positive root, then the height of the corresponding coroot α∨ is by definition

ht(α∨) = m1 + · · · + ml ,

where the positive integers m1, . . . , ml are given by

α∨ = m1α
∨
1 + · · · + mlα

∨
l . (4)

Lemma 1.2 For any positive root α we have that l(sα) ≤ 2ht(α∨) − 1.

Denote by �̃+ the set of all positive roots α with the property that

l(sα) = 2ht(α∨) − 1.

We will obtain in Section 3 a complete description of the elements of �̃+ (see Lemma 3.1).
One can easily deduce from this that if the root system of G is simply laced, then �̃+ = �+.

The following divided difference type operators on R[{λi }, {qi }] have been considered
by Peterson in [15]:

� j = λ j +
∑
α∈�̃+

λ j (α
∨)qα∨

�sα
, 1 ≤ j ≤ l (5)
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where we use the notation

qα∨ = qm1
1 . . . qml

l ,

with m1 . . . , ml given by (4). It is obvious that � j leaves the ideal IW ⊗ R[{qi }] of
R[{λi }, {qi }] invariant, hence it induces an operator on H ⊗ R[{qi }].

The following result3 was stated by Peterson [15] (for G = SL(n, C), a proof can be
found in [5]).

Lemma 1.3 The operators �1, . . . , �l on R[{λi }, {qi }] commute.

We will prove this lemma in Section 3 of our paper. The operator ψ defined in the next
lemma will be an important object in our paper.

Lemma 1.4 The map ψ : R[{λi }, {qi }] → R[{λi }, {qi }] given by

ψ( f ) = f ({�i }, {qi })(1),

f ∈ R[{λi }, {qi }] is an isomorphism of R[{qi }]-modules. For f ∈ R[{λi }, {qi }] of degree
m with respect to λ1, . . . , λl , we have

ψ−1( f ) = I − (I − ψ)m

ψ
( f )

=
(

m

1

)
f −

(
m

2

)
ψ( f ) + · · · + (−1)m−2

(
m

m − 1

)
ψm−2( f )

+ (−1)m−1ψm−1( f ),

where
(m

1

)
, . . . ,

( m
m−1

)
are the binomial coefficients.

The proof follows in an elementary way from the fact that the degree of f − ψ( f ) with
respect to λ1, . . . , λl is strictly less than the degree of f (the details can be found in [12,
Lemma 3.4]).

Our aim is to investigate the ring defined as follows (note that for G = SL(n, C) a similar
object has been considered by Postnikov [16]).

Theorem-Definition 1.5 The composition law 	 on the R[{qi }]-module H ⊗ R[{qi }] =
R[{λi }, {qi }]/(IW ⊗ R[{qi }]) given by

[ f ] 	 [g] = [ψ(ψ−1( f )ψ−1(g))], f, g ∈ R[{λi }, {qi }] (6)

is well defined, commutative, associative, R[{qi }]-bilinear, and satisfies:
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• deg(a 	 b) = deg a + deg b, for any two homogeneous elements a, b of H ⊗ R[{qi }],
where we assign

deg[λi ] = 2, deg qi = 4, 1 ≤ i ≤ l.

• (Frobenius property) (a 	 b, c) = (a, b 	 c), for any a, b, c ∈ H, where (, ) is the R[{qi }]-
bilinear extension of the Poincaré pairing on H.

We will call 	 the combinatorial quantum product on H ⊗ R[{qi }].

We will prove this theorem at the beginning of Section 2.
A complete knowledge of the combinatorial quantum cohomology R[{qi }]-algebra de-

fined in the previous theorem can be achieved by finding the structure constants (which are
in R[{qi }]) of the multiplication 	 with respect to the basis consisting of the Schubert classes
σw = [cw], w ∈ W . Like in the classical situation (see the beginning of this section), we
can obtain this information about (H ⊗ R[{qi }], 	) as follows:

(a) describe it in terms of generators and relations (i.e. find the quantum analogue of Borel’s
presentation (2))

(b) determine representatives of the Schubert classes in the quotient ring obtained at (a)
(i.e. find the quantum analogue of the Bernstein-Gelfand-Gelfand polynomials, see
Theorem 1.1).

The next two theorems give solutions to problems (a), respectively (b). The first theorem
can be interpreted as the combinatorial version of B. Kim’s theorem [11]. Our proof, which
can be found in Section 2, is a direct application of a more general result obtained by us in
[13].

Theorem 1.6 Let I q
W denote the ideal of R[{λi }, {qi }] generated by Fk({λi }, {−〈α∨

i , α∨
i 〉

qi }), 1 ≤ k ≤ l, where Fk are polynomials in 2l variables which represent the integrals of
motion of the Hamiltonian system of Toda lattice type associated to the coroot system of G
(for more details, see Section 2). Then the map

(H ⊗ R[{qi }] = R[{λi }, {qi }]/(IW ⊗ R[qi ]), 	) → R[{λi }, {qi }]/I q
W ,

given by

f mod IW �→ ψ−1( f ) mod I q
W ,

f ∈ R[{λi }, {qi }], is an isomorphism of R[{qi }]-algebras.

Alternatively, one can see that I q
W is the ideal of R[{λi }, {qi }] generated by the polynomials

ψ−1(u1), . . . , ψ−1(ul), which is the same as ψ−1(IW ) (see Proposition 2.1).
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What follows now is the combinatorial version of the main result of [12], where a quantum
Giambelli formula for G/B has been obtained. In the context of our present paper, we obtain
the same formula by a straightforward application of Theorem 1.6 and Lemma 1.4.

Corollary 1.7 The isomorphism described by Theorem 1.6 maps the Schubert class σw =
cw mod IW to the class modulo I q

W of the polynomial

ψ−1(cw) = I − (I − ψ)l

ψ
(cw)

=
(

l

1

)
cw −

(
l

2

)
ψ(cw) + · · · + (−1)l−2

(
l

l − 1

)
ψ l−2(cw)

+ (−1)l−1ψ l−1(cw),

where l denotes l(w).

We will also show that the polynomials described by Corollary 1.7 satisfy a certain
orthogonality condition (similar to (1)) with respect to the “quantum intersection pairing”
(see Proposition 2.3).

Remarks 1 The actual quantum product ◦ on H∗(G/B) ⊗ R[{qi }] is defined in terms of
numbers of holomorphic curves which intersect “general” translates of three given Schubert
varieties (for the precise definition, one can see [6] or [7]). The quantum Chevalley formula
describes the multiplication of degree two Schubert classes by arbitrary Schubert classes.
More precisely, in terms of the identification (2) (see also Theorem 1.1), it states that

[λi ] ◦ [cw] = �i ([cw]). (7)

This formula was announced by Peterson in [15] and then proved by Fulton and Woodward
[7]. In order to relate (7) to our product 	, we note that

�i ([cw]) = [�i (cw)] = [�i (ψψ−1(cw))] = [ψ(λiψ
−1(cw))] = [λi ] 	 [cw] (8)

where we have used that ψ(λi ) = λi . We deduce that

[λi ] ◦ [cw] = [λi ] 	 [cw], 1 ≤ i ≤ l, w ∈ W.

This implies that

[cv] ◦ [cw] = [cv] 	 [cw],

for any v, w ∈ W , because both (H ⊗ R[{qi }], 	) and (H ⊗ R[{qi }], ◦) are generated by
[λ1], . . . , [λl] as R[{qi }]-algebras. Now, since 	 = ◦, the results about 	 which we prove
in our paper hold for ◦ as well. In this way we are able to recover results about the actual
quantum cohomology ring Q H∗(G/B) = (H⊗ R[{qi }], ◦) (see [11, 12] for the ◦-versions
of Theorem 1.6 respectively Corollary 1.7).
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2. We hope that a similar approach can be used by considering instead of the root system
of G an arbitrary affine root system and obtain in this way a combinatorial model for
the quantum cohomology ring of the infinite dimensional flag manifold L K/T , which is
investigated in [14].

2. Definition and presentations of (H ⊗ R[{qi}], �)

Our first concern is to show that the combinatorial quantum product 	 described by Eq. (6)
is well-defined.

Proof of Theorem 1.5: Let us note that in fact we can define the product 	 on R[{λi }, {qi }],
as follows:

f 	 g := ψ(ψ−1( f )ψ−1(g)) = (ψ−1 f )({�i }, {qi })(g), (9)

f, g ∈ R[{λi }, {qi }]. If g ∈ IW ⊗ R[{qi }], then the last expression in (9) is in IW ⊗ R[{qi }]
as well (since the latter is invariant under any � j , 1 ≤ j ≤ l). We deduce that IW ⊗R[{qi }]
is an ideal of the ring (R[{λi }, {qi }], 	). The quotient of the latter ring by the former ideal
is just (H ⊗ R[{qi }], 	). It is commutative, associative and satisfies the grading condition
deg(a	b) = deg a+deg b, because the ring (R[{λi }, {qi }], 	) is commutative and associative,
and the operator �i defined by (5) satisfies

deg �i ( f ) = deg f + 2,

for any homogeneous polynomial f ∈ R[{λi }, {qi }] (provided that deg λi := 2, deg qi :=
4).

In order to prove the Frobenius property, we only have to check that

([λi ] 	 [cv], [cw]) = ([cv], [λi ] 	 [cw]) (10)

for any 1 ≤ i ≤ l, v, w ∈ W . In turn, (10) follows from the fact that

[λi ] 	 [cw] = �i ([cw])

(see Eq. (8) in the introduction), the definition (5) of �i and the equation

(�sα
[cv], [cw]) = ([cv], �sα

[cw]),

v, w ∈ W , α ∈ �+, which is a consequence of (1) and (3).

We are interested now in obtaining a presentation of the ring (H ⊗ R[{qi }], 	) in terms
of generators and relations. One way4 of obtaining this is as follows:
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Proposition 2.1 Let I q
W be the ideal of R[{λi }, {qi }] generated by ψ−1(u1), . . . , ψ−1(ul).

The map

ψ−1 : (H ⊗ R[{qi }] = R[{λi }, {qi }]/(IW ⊗ R[{qi }]), 	) → R[{λi }, {qi }]/I q
W

given by

f mod IW ⊗ R[{qi }] �→ ψ−1( f ) mod I q
W ,

f ∈ R[{λi }, {qi }] is a ring isomorphism.

Proof: From the definition (9) we can see that

ψ−1 : (R[{λi }, {qi }], 	) → (R[{λi }, {qi }], ·) (11)

is a ring isomorphism. As pointed out before (see the proof of Theorem 1.5), the combinato-
rial quantum cohomology ring (H⊗ R[{qi }], 	) is the quotient of the ring (R[{λi }, {qi }], 	)
by its ideal IW ⊗R[{qi }]. Note that the latter—regarded as an ideal of (R[{λi }, {qi }], 	)—is
generated by the same fundamental W -invariant polynomials u1, . . . , ul . This is because
for any f ∈ R[{λi }, {qi }] we have

f 	 uk = f · uk,

k = 1, . . . , l. Consequently, the ring isomorphism (11) maps the quotient of (R[{λi }, {qi }],
	) by the ideal generated by u1, . . . , ul isomorphically onto the quotient of (R[{λi }, {qi }], ·)
by the ideal generated by ψ−1(u1), . . . , ψ−1(ul).

As pointed out out in the introduction, we are also able to deduce B. Kim’s presentation
[11] for the combinatorial quantum cohomology ring. In fact Theorem 1.6 is a straightfor-
ward consequence of the following result, which was proved in [13]:

Theorem 2.2 ([13]) Let • be an R[{qi }]-bilinear product onH⊗R[{qi }] with the following
properties:

(i) • is commutative
(ii) • is associative

(iii) • is a deformation of the usual product, in the sense that if we formally replace all qi

by 0, we obtain the usual product on H
(iv) (H ⊗ R[{qi }], •) is a graded ring with respect to deg[λi ] = 2 and deg qi = 4
(v) [λi ] • [λ j ] = [λi ][λ j ] + δi j q j

(vi) di ([λ j ] • a)d = d j ([λi ] • a)d , for any a ∈ H, 1 ≤ i, j ≤ l, and d = (d1, . . . , dl) ≥ 0
(here we use the notation [λi ] • a = ∑

d=(d1,...,dl )≥0([λi ] • a)dqd1
1 . . . qdl

l , with ([λi ] •
a)d ∈ H).
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Then the following relation holds in the ring (H ⊗ R[{qi }], •):

Fk
({[λi ]•}, { − 〈

α∨
i , α∨

i

〉
qi

}) = 0, (12)

1 ≤ k ≤ l, where Fk are the integrals of motion of the Toda lattice associated to the coroot
system of G (see below). Moreover, the ring (H⊗R[{qi }], •) is isomorphic to R[{λi }, {qi }]
modulo the ideal generated by Fk({λi }, {−〈α∨

i , α∨
i 〉qi }), 1 ≤ k ≤ l.

The Toda lattice we are referring to in the theorem is the Hamiltonian system whose
phase space is (R2l ,

∑l
i=1 dri ∧ dsi ) and Hamiltonian function

E =
l∑

i, j=1

〈
α∨

i , α∨
j

〉
rir j +

l∑
i=1

e2si .

It turns out (see for instance [8]) that this system admits l independent integrals of motion
E = F1, F2, . . . , Fl , which are all polynomial functions in variables r1, . . . , rl , e2s1 , . . . , e2sl

and satisfy the condition

Fk(λ1, . . . , λl , 0, . . . , 0) = uk(λ1, . . . , λl), (13)

where u1, . . . , ul are the fundamental W -invariant polynomials (see Section 1). According
to Theorem 2.2, the ring (H ⊗ R[{qi }], •) is generated by [λ1], . . . , [λl], q1, . . . , ql , and
the relations are obtained by taking all polynomials Fk and for each of them making the
replacements

ri �→ [λi ]•, e2si �→ −〈
α∨

i , α∨
i

〉
qi , 1 ≤ i ≤ l.

It is easy to see that the combinatorial quantum product 	 satisfies the hypotheses (i)–(iv)
of Theorem 2.2. We prove condition (v) as follows:

[λi ] 	 [λ j ] = [ψ(λi )] 	 [ψ(λ j )] = [ψ(λiλ j )] = [�i (λ j )] = [λiλ j + δi j q j ],

1 ≤ i, j ≤ l. In order to prove (vi), we note that the coefficient of qα∨
in

[λ j ] 	 a = � j (a)

is λi (α∨)�sα
(a); thus for the multi-index d = α∨ = λ1(α∨)α∨

1 + · · · + λl(α∨)α∨
l we have

di ([λ j ] 	 a)d = λi (α
∨)λ j (α

∨)�sα
(a),

which is symmetric in i and j .
Our next goal is to show that the “quantum BGG-polynomials” (see Theorem 1.1)

ψ−1(cw), w ∈ W , satisfy a certain orthogonality property, which can be thought of as
the quantum version of (1). For any f ∈ R[{λi }, {qi }] we denote by [ f ]q its class modulo
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I q
W . By Theorem 1.6, the set {[ψ−1(cw)]q | w ∈ W } is a basis of R[{λi }, {qi }]/I q

W as an
R[{qi }]-module. Define

(([ f ]q )) = αw0

where the elements αw of R[{qi }] are defined by

[ f ]q =
∑
w∈W

αw[ψ−1(cw)]q .

Consider the pairing ((, )) on R[{λi }, {qi }]/I q
W given by

(([ f ]q , [g]q )) = (([ f g]q )).

Proposition 2.3 We have that

(([ψ−1(cu)]q , [ψ−1(cv)]q )) =
{

1, if u = w0v

0, otherwise

Proof: Write

[ψ−1(cu)ψ−1(cv)]q =
∑
w∈W

αw[ψ−1(cw)]q ,

which means that the polynomial

ψ−1(cu)ψ−1(cv) −
∑
w∈W

αwψ−1(cw) (14)

is in I q
W . Consider ψ of the expression (14), take into account that ψ−1(cw)({[λi ]	}, {qi }) =

[cw] and that ψ(I q
W ) = IW ⊗ R[{qi }] (see Proposition 2.1) and obtain in this way the

following equality in H ⊗ R[{qi }]:

[cu] 	 [cv] =
∑
w∈W

αw[cw]

If (, ) denotes the usual Poincaré pairing5 on H ⊗ R[{qi }], we deduce that

αw0 = ([cu] 	 [cv], 1) = ([cu], [cv])

where we have used the Frobenius property of 	. The orthogonality relation stated in the
lemma is a direct consequence of Eq. (1).
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3. Commutativity of the operators Λ1, . . . ,Λl

The goal of this section is to provide a proof of Lemma 1.3. Let us start with the following
recursive construction of the elements of �̃+ (the latter has been defined immediately after
Lemma 1.2).

Proposition 3.1 A positive root α is in �̃+ if and only if it is simple, or else there exist
k ≥ 2 and i1, . . . , ik ∈ {1, . . . , l} such that

α = sik . . . si2

(
αi1

)

and

αi j+1

(
si j . . . si2

(
αi1

)∨) = −1,

for all 1 ≤ j ≤ k − 1. When this is true, the expression

sα = sik . . . si2 si1 si2 . . . sik

is reduced and we have

α∨ = α∨
i1

+ · · · + α∨
ik
,

hence ht(α∨) = k. All roots si j . . . si2 (αi1 ), 1 ≤ j ≤ k, are in �̃+.

Proof: First we use induction on k ≥ 1 to prove that any root of the form described in
the lemma is in �̃+. Since any simple root is in �̃+, we only have to perform the induction
step. Assume that k ≥ 2. The root

β := sik−1 . . . si2

(
αi1

)

satisfies the hypotheses of the lemma, hence it is in �̃+. Moreover, we have αik (β∨) = −1,
hence

α∨ = sik (β∨) = β∨ + α∨
ik
,

which implies that

ht(α∨) = ht(β∨) + 1. (15)

In particular, α is not a simple root. Also because αik (α∨) = 1, we deduce that the roots

sα

(
αik

) = αik − αik (α∨)α and sik sα

(
αik

) = (
α
(
α∨

ik

)
αik

(
α∨) − 1

)
αik − αik (α∨)α
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are both negative. Consequently we have

l(sα) = l
(
sik sαsik

) + 2 = l(sβ) + 2 = 2ht(β∨) − 1 + 2 = 2ht(α∨) − 1,

where we have used (15). Hence α ∈ �̃+.
Now we will use induction on l(sα) in order to prove that any element of �̃+ can be

realized in this way. If l(sα) = 1, then α is simple, hence it is of the type indicated in the
lemma. Assume now that α ∈ �̃+ is not simple. There exists a simple root αi such that
α(α∨

i ) > 0 (otherwise we would be led to α(α∨) ≤ 0). Also αi (α∨) must be strictly positive,
hence the roots

sα(αi ) = αi − αi (α
∨)α and si sα(αi ) = (

α
(
α∨

i

)
αi (α

∨) − 1
)
αi − αi (α

∨)α

are both negative. We deduce that l(si sαsi ) = l(sα) − 2. From

si (α)∨ = si (α
∨) = α∨ − αi (α

∨)α∨
i

it follows that si (α) is a positive root which satisfies ht(si (α)∨) = ht(α∨) − αi (α∨). By
Lemma 1.2, we have that:

l(sα) = l(si sαsi ) + 2 ≤ 2ht(si (α)∨) − 1 + 2

= 2ht(α∨) − 1 + 2(1 − αi (α
∨)) ≤ 2ht(α∨) − 1.

Since α ∈ �̃+, the two inequalities from the last equation must be equalities. In other
words, siα ∈ �̃+ and αi (α∨) = 1, the latter being equivalent to αi ((siα)∨) = −1. We use
the induction hypothesis for siα, which has the property that l(ssi α) = l(si sαsi ) = l(sα) − 2
and the induction step is accomplished.

The following property of �̃+ will be needed later.

Lemma 3.2 If α, β ∈ �̃+ are such that

l(sαsβ) = l(sα) + l(sβ)

and sαsβ �= sβsα, then α(β∨) < 0.

Proof: We use induction on l(sβ). If β is simple, the condition l(sαsβ) = l(sα) + 1 is
equivalent to the fact that the root sα(β) = β−β(α∨)α is positive, which implies β(α∨) ≤ 0,
and then α(β∨) ≤ 0. We cannot have α(β∨) = 0, since otherwise sα and sβ would commute.

The induction step will follow now. Let us assume first that the root system involved here
is not of type G2. Consider α, β ∈ �̃+ both non-simple; by Proposition 3.1, β is of the form
β = si (β̃), where β̃ ∈ �̃+ and αi (β̃∨) = −1. Suppose that α(β∨) ≥ 1. Since αi (β∨) = 1,
the root sβ(αi ) = αi −β is negative, hence l(sβsi ) = l(sβ)−1. From l(sαsβ) = l(sα)+ l(sβ),
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we deduce now that l(si sα) = l(sα) + 1, hence the root sα(αi ) = αi − αi (α∨)α is positive,
which implies αi (α∨) ≤ 0.

Claim. αi (α∨) �= 0.

Because otherwise si and sα commute, hence

l(sβ̃sα) = l(sβ̃si sαsi )

= l(sβ̃si sα) − 1

= l(si sβ̃si sα) − 2

= l(sβsα) − 2

= l(sβ) − 2 + l(sα)

= l(sβ̃) + l(sα)

where the second equality holds since l(sβ̃si sα) = l(sβ̃) + l(sα) + 1 > l(sβ̃sα). By the
induction hypothesis, we must have β̃(α∨) ≤ 0. On the other hand we have

β̃(α∨) = siβ(α∨) = β(siα
∨) = β(α∨)

the last number being strictly positive. This contradiction concludes the claim.
From the claim we deduce that

α(β̃∨) = α(β∨) − α
(
α∨

i

) ≥ 2. (16)

Since the root system is not of type G2, we must have equality in (16), hence

α
(
α∨

i

) = −1. (17)

We distinguish the following two possibilities:
(i) α �= β̃. From (16) we deduce that ||β̃|| < ||α||. Since ||β̃|| = ||si β̃|| = ||β||, we have

that ||β|| < ||α||, hence α(β∨) ≥ 2. Consequently,

α(β̃∨) = α(β∨) − α
(
α∨

i

) ≥ 3, (18)

which cannot happen as long as the root system is not of type G2.
(ii) α = β̃. This means that β = si (α),

αi (α
∨) = −1, (19)

and β∨ = α∨ + α∨
i . From (17) and (19) we deduce that

sαsi sα(αi ) = −α,
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which is a negative root, hence

l(sαsβ) = l(sαsi sαsi ) = l(sαsi sα) − 1 ≤ l(sα) + l(si sα) − 1

= l(sα) + l(si sαsi ) − 2 = l(sα) + l(sβ) − 2.

This is a contradiction.
Now let us consider the case when the root system is of type G2. Let α1, α2 be the standard

basis of the root system G2, with ||α1|| > ||α2||. By Proposition 3.1 we can see that �̃+

consists of α1, α2, s2(α1) = α1 + 3α2, and s1s2(α1) = 2α1 + 3α2. Since α(β∨) ≥ 1 and
none of α and β is simple, we can only have α = s1s2(α1) and β = s2(α1), which implies
sα = s1s2s1s2s1 and sβ = s2s1s2, hence sαsβ = s1s2s1s2s1s2s1s2 = (s1s2)4; but the latter is
the same as (s2s1)2, having length 4, which is strictly less than l(sα) + l(sβ) = 5 + 3 = 8.
The contradiction shows that also in this case we must have α(β∨) < 0.

Lemma 3.3 If α, β ∈ �̃+ with l(sαsβ) = l(sα) + l(sβ) and sαsβ �= sβsα, then there exists
γ ∈ �̃+ such that

α∨ + β∨ = γ ∨.

Proof: By Lemma 3.2, one of the numbers α(β∨) and β(α∨) is −1. We will actually prove
that ifβ(α∨) = −1 then sβ(α) ∈ �̃+ (it is obvious that sβ(α)∨ = sβ(α∨) = α∨+β∨). We will
use induction on l(sβ). If β is simple, the result follows immediately from Proposition 3.1.
Consider now the case when β ∈ �̃+ is non-simple; by Proposition 3.1, β is of the form
β = si (β̃), where β̃ ∈ �̃+ and αi (β̃∨) = −1. From l(sβsi ) = l(sβ) − 1 and l(sαsβ) =
l(sα) + l(sβ) it follows that l(sαsi ) = l(sα) + 1, hence sα(αi ) = αi − αi (α∨)α is positive,
which means αi (α∨) ≤ 0. We show that the only possible values for αi (α∨) are −1 and 0.
Otherwise, the root system is not simply laced and the roots α and αi are short, respectively
long; on the other hand, αi (β∨) = 1, so ||αi || ≤ ||β|| and β(α∨) = −1, so ||β|| ≤ ||α||,
which gives a contradiction.

Case 1. αi (α∨) = 0. This implies si (α) = α, hence

−1 = β(α∨) = si (β̃)(α∨) = β̃(si (α)∨) = β̃(α∨).

From the induction hypothesis, sβ̃(α) = si sβ(α) := γ is in �̃+. We also have that

αi (γ
∨) = αi (si sβ(α∨)) = −αi (sβ(α∨)) = −αi (α

∨ + β∨) = −1.

By Proposition 3.1, the root si (γ ) = sβ(α) is in �̃+.

Case 2. αi (α∨) = −1. We have again that

−1 = β(α∨) = si (β̃)(α∨) = β̃(si (α)∨).
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By Proposition 3.1, the root si (α) is in �̃+. A simple calculation shows that

sβ̃si sα(αi ) = α − (
1 + α

(
α∨

i

))
αi − (1 + α(β∨))β̃

which is a positive root. Consequently we have

l
(
sβ̃ssi (α)

) = l(sβ̃si sαsi ) = l(sβ̃si sα) + 1 = l(sβ̃) + l(si sαsi ) = l(sβ̃) + l
(
ssi (α)

)
.

From the induction hypothesis we deduce that sβ̃(si (α)) = si sβ(α) := γ is also in �̃+. But
as before,

αi (γ
∨) = −αi (α

∨ + β∨),

the right hand side being now 0. It follows that γ = si (γ ) = sβ(α).

We are now able to prove Lemma 1.3:

Proof of Lemma 1.3: Denote byλ∗
i the operator of multiplication byλi on R[{λ1, . . . , λl}],

1 ≤ i ≤ l. The following formula can be found for instance in [9, Chapter 4, Section 3]:

�wλ∗
i − wλ∗

i w
−1�w =

∑
β∈�+,l(wsβ )=l(w)−1

λi (β
∨)�wsβ

, (20)

where w ∈ W . Put w = sα in (20) and obtain that:

�sα
λ∗

i = (λ∗
i − λi (α

∨)α∗)�sα
+

∑
γ∈�+,l(sαsγ )=l(sα )−1

λi (γ
∨)�sαsγ

.

We deduce that:

� j�i = (λ jλi )
∗ +

∑
α∈�̃+

λi (α
∨)qα∨

λ∗
j�sα

+
∑
α∈�̃+

λ j (α
∨)qα∨

λ∗
i �sα

−
∑
α∈�̃+

λ j (α
∨)λi (α

∨)qα∨
α∗�sα

+
∑

α∈�̃+,γ∈�+,l(sαsγ )=l(sα )−1

λ j (α
∨)λi (γ

∨)qα∨
�sαsγ

+
∑

β,δ∈�̃+,l(sβ sδ )=l(sβ )+l(sδ )

λ j (β
∨)λi (δ

∨)qβ∨+δ∨
�sβ sδ

.

Denote by �1, . . . , �5 the five consecutive sums in the right hand side. It is obvious that
(λiλ j )∗, �1 + �2 and �3 are symmetric in i and j . We split �4 = �′

4 + �′′
4 , where �′

4
contains only terms corresponding to α simple (consequently γ = α and �sαsγ

is the
identity operator) and �′′

4 consists of the remaining terms. We also split �5 = �′
5 + �′′

5 ,
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where �′
5 contains only terms corresponding to β, δ with sβsδ = sδsβ , and �′′

5 consists of
the remaining terms.

We only need to show that

�′′
4 + �′′

5 =
∑

α∈�̃+,γ∈�+,l(sαsγ )=l(sα )−1≥1

λ j (α
∨)λi (γ

∨)qα∨
�sαsγ

+
∑

β,δ∈�̃+,l(sβ sδ )=l(sβ )+l(sδ ),sβ sδ �=sδsβ

λ j (β
∨)λi (δ

∨)qβ∨+δ∨
�sβ sδ

is symmetric in i and j . To this end, let us take first two arbitrary elements β, δ of �̃+ with
l(sβsδ) = l(sβ) + l(sδ) and sβsδ �= sδsβ ; by Lemmas 3.2 and 3.3, there exists α ∈ �̃+ such
that α∨ = β∨ + δ∨; we will show that:

• there exists a unique γ ∈ �+ with sαsγ = sβsδ and l(sαsγ ) = l(sα) − 1,

• for γ determined above, the sum

λ j (α
∨)λi (γ

∨)�sαsγ
+ λ j (β

∨)λi (δ
∨)�sβ sδ

= (λ j (α
∨)λi (γ

∨)

+ λ j (β
∨)λi (δ

∨))�sβ sδ
:= Sβ,δ

i j �sβ sδ

is symmetric in i and j .

By Lemma 3.2, we distinguish the following two cases:

Case 1. β(δ∨) = −1, which implies α = sβ(δ), so the condition sαsγ = sβsδ is equivalent
to γ = β. Note that

l(sα) = 2ht(α∨) − 1 = 2(ht(β∨) + ht(δ∨)) − 1 = l(sβsδ) + 1 = l(sαsγ ) + 1.

We deduce that

Sβ,δ

i j = λ j (α
∨)λi (β

∨) + λ j (β
∨)λi (δ

∨) = λ j (β
∨)λi (β

∨) + λ j (δ
∨)λi (β

∨) + λ j (β
∨)λi (δ

∨)

which is obviously symmetric in i and j .

Case 2. δ(β∨) = −1, which implies that α = sδ(β), so this time the condition sαsγ = sβsδ

is equivalent to γ = ±sα(δ). Because δ(α∨) = 1, the number α(δ∨) is strictly positive,
hence the root sα(δ)∨ = sα(δ∨) = δ∨ −α(δ∨)α∨ = δ∨ −α(δ∨)(β∨ + δ∨) is negative, so we
must have γ = −sα(δ). We have again that

l(sα) = 2ht(α∨) − 1 = 2(ht(β∨) + ht(δ∨)) − 1 = l(sβsδ) + 1 = l(sαsγ ) + 1.
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This time we can express Sβ,δ

i j as follows:

Sβ,δ

i j = −λ j (α
∨)λi (sα(δ∨)) + λ j (β

∨)λi (δ
∨)

= −λ j (α
∨)(λi (δ

∨) − λi (α
∨)α(δ∨)) + λ j (β

∨)λi (δ
∨)

= −λ j (δ
∨)λi (δ

∨) + λ j (α
∨)λi (α

∨)α(δ∨),

which is again symmetric in i and j .
In order to complete the proof, we must show that the map

{(β, δ) ∈ �̃+ × �̃+ : l(sβsδ) = l(sβ) + l(sδ), sβsδ �= sδsβ}
→ {(α, γ ) ∈ �̃+ × �+ : l(sαsγ ) = l(sα) − 1}

given by α∨ = β∨ + δ∨ and sβsδ = sαsγ , is bijective.

Injectivity. Suppose that there exist two different pairs (β1, δ1), (β2, δ2) which are mapped
to a given (α, γ ). By looking at Cases 1 and 2 from above, we see that we must have
β1(δ∨

1 ) = −1, δ2(β∨
2 ) = −1 and correspondingly

δ1 = sγ (α), β1 = γ and δ2 = −sα(γ ), β2 = sδ2 (α).

We deduce that

−1 = β1
(
δ∨

1

) = γ (sγ (α)∨) = γ (α∨ − γ (α∨)γ ∨) = −γ (α∨).

If α(γ ∨) = 1, then δ1 = α − γ = δ2, hence also β1 = β2, which is a contradiction. If
α(γ ∨) ≥ 2 then the roots δ∨

1 = sγ (α∨) = α∨ − γ ∨ and

β∨
2 = sδ2 (α∨) = γ ∨ + (1 − α(γ ∨))α∨ = −[α∨ − γ ∨ + (α(γ ∨) − 2)α∨]

cannot be simultaneously positive, which is again a contradiction.

Surjectivity. We take α ∈ �̃+ non-simple, γ ∈ �+ with l(sαsγ ) = l(sα) − 1 and show that
there exists β, δ ∈ �̃+ with β∨ + δ∨ = α∨, sαsγ = sβsδ and sβsδ �= sδsβ . Consider the
reduced decomposition sα = sik . . . si2 si1 si2 . . . sik given by Proposition 3.1. By the “strong
exchange condition” (see for instance [10, Section 5.8]) we distinguish the following two
cases:

Case A. sγ = sik . . . si j+1 si j si j+1 . . . sik for some j between 2 and k. We deduce that γ =
sik . . . si j+1 (αi j ), the latter being a positive root since the expression sik . . . si j+1 si j is reduced.
We notice that

γ (α∨) = sik . . . si j+1 (αi j )
(
sik . . . si2

(
α∨

i1

)) = αi j

(
si j . . . si2

(
α∨

i1

)) = 1,

where we have used Proposition 3.1. The root

sγ (α) = sik . . . ŝi j . . . si2 (αi1 )
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is positive, because the expression

sαsγ = sik . . . si2 si1 si2 . . . ŝi j . . . sik

is reduced, which implies that sik . . . ŝi j . . . si1 is reduced as well. We set β = γ and δ =
sγ (α), so that δ∨ = sγ (α∨) = α∨ − γ ∨, which implies α∨ = β∨ + δ∨. We obviously have
sβsδ = sαsγ , hence

l(sβsδ) = 2ht(α∨) − 2 = 2ht(β∨) − 1 + 2ht(γ ∨) − 1.

From Lemma 1.2 we deduce that β and δ are both in �̃+ and l(sβsδ) = l(sβ) + l(sδ). If we
had sβsδ = sδsβ , then sαsγ = sγ sα , hence sγ (α) = α; this is not true, as α(γ ∨) > 0.

Case B.

sγ = sik . . . si2 si1 si2 . . . si j−1 si j si j−1 . . . si2 si1 si2 . . . sik

= sαsik . . . si j+1 si j si j+1 . . . sik sα

which implies that

γ = −sα

(
sik . . . si j+1

(
αi j

)) = sik . . . si2 si1 si2 . . . si j−1

(
αi j

)
.

A straightforward calculation shows that γ (α∨) = 1. We set δ = −sα(γ ), and β = −sαsγ (α)
(it is not difficult to see that both sα(γ ) and sαsγ (α) are negative roots). We have that
δ∨ = −γ ∨ + α(γ ∨)α∨ and β∨ = γ ∨ − (α(γ ∨) − 1)α∨, which implies that β∨ + δ∨ = α∨.
We can easily check that sβsδ = sαsγ . As in the previous situation, we show that β and δ are
both in in �̃+ and we have l(sβsδ) = l(sβ) + l(sδ). If we had sβsδ = sδsβ , then sαsγ = sγ sα ,
hence −sα(γ ) = γ ; this implies α = 2γ , which is not true.
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Notes

1. Only cohomology with coefficients in R will be considered in this paper.
2. One can show (see for instance [9, Chapter 4]) that the definition does not depend on the choice of the reduced

expression.
3. The proof of this result given in [12] relies essentially on the associativity of the ring Q H∗(G/B), which is a

highly nontrivial fact; the proof of Lemma 1.3 we are going to give here is entirely in the realm of root systems.
4. I am grateful to the referee for suggesting me this idea.
5. Actually its R[{qi }]-linear extension.
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